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aProcess Control Research Group, Systems and Control Laboratory, Institute for
Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences,

Kende u. 13-17, H-1111 Budapest, Hungary
bDepartment of Electrical Engineering and Information Systems,

University of Pannonia,
Egyetem u. 10, H-8200 Veszprém, Hungary

cFaculty of Information Technology and Bionics,
Pázmány Péter Catholic University,

Práter u. 50/a, H-1083 Budapest, Hungary

Abstract

New computational methods are proposed in this paper to construct polynomial
feedback controllers for the stabilization of polynomial systems with linear input
structure around a positive equilibrium point. Using the theory of chemical reac-
tion networks (CRNs) and previous results on dynamical equivalence, a complex
balanced or weakly reversible zero deficiency closed loop realization is achieved
by computing the gain matrix of a polynomial feedback using optimization. It is
shown that the feedback resulting in a complex balanced closed loop system having
a prescribed equilibrium point can be computed using linear programming (LP).
The robust version of the problem, when a convex set of polynomial systems is
given over which a stabilizing controller is searched for, is also solvable with an LP
solver. The feedback computation for rendering a polynomial system to deficiency
zero weakly reversible form can be solved in the mixed integer linear programming
(MILP) framework. It is also shown that involving new monomials (complexes) into
the feedback does not improve the solvability of the problems. The proposed meth-
ods and tools are illustrated on simple examples, including stabilizing an open
chemical reaction network .
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1 Introduction

Polynomial systems form a well-investigated class of smooth nonlinear systems
that enable us to apply computationally efficient methods for their dynamic
analysis and control [4], and at the same time, have practically important
applications in the field of process, mechanical, (bio)chemical etc. control.
Within this class, positive polynomial systems play an important role in the
applications, where the value of the variables is positive by nature, such as
pressure, temperature, composition etc.

Deterministic kinetic systems with mass action kinetics or simply chemical re-
action networks (CRNs) form a wide class of nonnegative polynomial systems.
CRNs are able to produce all the important qualitative phenomena present in
nonlinear systems, so they form a relatively rich sub-class there. At the same
time, CRNs are closed lumped process systems under isothermal and isobaric
conditions [21], that exhibit polynomial nonlinearities. A recent survey shows
[2] that CRNs are also widely used in other areas than chemical reaction kinet-
ics or process systems that include biological applications, such as to model the
dynamics of intracellular processes and metabolic or cell signalling pathways
[19].

The theory of chemical reaction networks has significant results relating net-
work structure and the qualitative properties of the corresponding dynamics
[26,15]. However, the network structure corresponding to a given dynamics is
generally not unique [8]. Recently, optimization-based computational meth-
ods were proposed for dynamically equivalent network structures with given
preferred properties (see, e.g. [41,43,42,32]).

The field of feedback controller design for nonlinear systems in general, and
process systems in particular has been continuously developing in recent decades,
because of its practical importance and challenging theoretical nature. It is
well-known that the utilization of the physical and/or structural specialities of
different nonlinear system classes greatly helps in obtaining theoretically well-
grounded, powerful and practically still feasible control methods. In general
control theory we have sound methods of nonlinear feedback design for smooth
input-affine systems [29], flat systems [33], Hamiltonian or port-Hamiltonian
systems [5,46], or that for Euler-Lagrange systems [38]. Utilizing the engineer-
ing insight into the physics and chemistry of the system, the thermodynamic
passivity approach [47] as a special control approach has been proposed for
nonlinear process systems that is based on controlling its inventories [30]. Fur-
ther improvements of the physically motivated nonlinear controller design have
been achieved by using passivity [24], control Lyapunov [12] and Hamiltonian
approaches [9,23,39,40] to nonlinear process systems.
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The control design of positive polynomial systems - to which CRNs belong
- has become quite popular recently (see e.g. [45]), that is explained by the
great practical importance and wide expressive power of such systems. An
introduction and overview on the analysis and design of polynomial control
systems using dissipation inequalities is given in [10]. The computational tools
used for both the stability analysis and feedback design for such systems is
the semidefinite programming and the sum of squares decomposition [4], that
is computationally hard, therefore, generally not feasible for large-scale prob-
lems. It is shown in [37] that the stabilizing control of quasi-polynomial (QP)
process models can be solved through bilinear matrix inequalities. A recent
paper proposes approximate but computationally feasible methods for opti-
mally controlling polynomial systems [28]. An LMI (linear matrix inequalities)
technique for the global stabilization of nonlinear polynomial systems using a
quadratic control Lyapunov function candidate is reported in [3].

Motivated by the above results, the general purpose of our work is to construct
polynomial feedback controllers to polynomial systems to achieve a closed loop
system in a CRN form with given advantageous structural properties. In [44],
the problem of obtaining a closed loop system in CRN form was addressed in
the framework of mixed integer linear programming. The idea has been further
extended to cover feedback design to achieve weak reversibility and minimal
deficiency in the closed loop CRN form in [34]. The aim of the present paper is
to propose a a systematic approach for the optimization-based state feedback
computation for polynomial systems to achieve structural stability utilizing
the prescribed properties of the closed loop CRN form of the system.

2 Reminder on polynomial systems assosciated with chemical re-
action networks

This section is devoted to the notions and tools applied in the theory of pos-
itive (or nonnegative) polynomial systems, that are widely applied in process
control. The main emphasis is put on the most important subclass of positive
polynomial systems, that are chemical reaction networks with mass action law
(abbreviated as MAL-CRN). The notations used in this section are mainly
based on Lecture 4 in [14] and on [18].

2.1 Kinetic systems, their dynamics and structure

Let us consider a polynomial nonlinear system that can be described in the
form of an ODE

ẋ = f(x) =M · ϕ(x), (1)
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where x ∈ Rn is the state variable, M ∈ Rn×l, and ϕ : Rn 7→ Rl is a polynomial
mapping.

A polynomial system has a kinetic realization, if a suitable MAL-CRN model
can be constructed for it. The problem of kinetic realizability of polynomial
ODE models was first examined and solved in [27] where it was shown, that
the necessary and sufficient condition for kinetic realizability of a polynomial
vector field is that all coordinates functions of f in (1) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (2)

where gi and hi are polynomials with nonnegative coefficients. It’s easy to
prove that kinetic systems are nonnegative [20].

2.1.1 CRN systems

If the condition (2) is fulfilled for a polynomial dynamical system, then it can
always be written into the form

ẋ = Y · Ak · ψ(x), (3)

where x ∈ Rn is the vector of state variables, Y ∈ Zn×m≥0 with distinct columns
is the so-called complex composition matrix, Ak ∈ Rm×m contains the infor-
mation corresponding to the weighted directed graph, the reaction graph, of
the reaction network (see below). As it will be visible later, the generally
non-unique factorization (3) is particularly useful for prescribing structural
constraints using optimization. According to the original chemical meaning
of this system class, the state variables xi represent the concentrations of the
chemical species denoted by Xi, for i = 1, . . . , n. Moreover, ψ : Rn 7→ Rm is a
mapping given by

ψj(x) =
n∏
i=1

x
Yij
i , j = 1, . . . ,m. (4)

Ak is a column conservation matrix (i.e. the sum of the elements in each
column is zero) defined as

[Ak]ij =

−
∑m
l=1,l 6=i kil, if i = j

kji, if i 6= j
(5)

where kij ≥ 0, i 6= j. Note that Ak is also called as the Kirchhoff matrix of
the network.

The complexes are formally defined as nonnegative integer linear combinations
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of the species in the following way:

Ci =
n∑
j=1

YjiXj, i = 1, . . . ,m (6)

Note, that a column (let’s say column i) of the matrix Y may be equal to the
zero vector. In such a case, complex Ci is called the zero complex.

2.1.2 The reaction graph and its incidence matrix

The structure of MAL-CRNs is well characterized by a weighted directed
graph, called the reaction graph, and by its complex composition matrix.

The weighted directed graph (or reaction graph) of kinetic systems is G =
(V,E), where V = {C1, C2, . . . , Cm} and E denotes the set of vertices and
directed edges, respectively. The directed edge (Ci, Cj) (also denoted by
Ci 7→ Cj) belongs to the reaction graph if and only if [Ak]ji > 0. In this
case, the weight assigned to the directed edge Ci 7→ Cj is [Ak]ji. Naturally,
[Ak]ji = 0 means that (Ci, Cj) /∈ E.

In addition to the Kirchhoff matrix of the system, one can characterize the
reaction graph using its incidence matrix BG ∈ {−1, 0, 1}m×r where r is the
number of reactions. Each reaction in the CRN is represented by the appropri-
ate column of BG as follows. Let the `-th reaction in the CRN be Cj 7→ Ci for
1 ≤ ` ≤ r. Then the `-th column vector of BG is characterized as: [BG]i` = 1,
[BG]j` = −1, and [BG]k` = 0 for k = 1, . . . , r, k 6= i, j. It is clear from the
above description that the unweighted directed graph structure of a kinetic
system can be characterized by the matrix pair (Y,BG).

2.2 Stoichiometric subspace and compatibility classes

The stoichiometric subspace is defined as

S = span {[Y ]·,j − [Y ]·,i | ∃Ci 7→ Cj} (7)

where [Y ]·,i denotes the ith column of Y . The rank (or dimension) of a reaction
network denoted by s is the dimension of the stoichiometric subspace.

The stoichiometric compatibility classes of a chemical reaction network are
the following affine spaces

Sp = (p+ S) ∩ Rn
≥0, (8)

where the elements of p are nonnegative. These classes are forward invariant
to the system (3).
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2.3 Dynamical equivalence and different realizations of MAL-CRNs

It is a known result of chemical reaction network theory that a reaction graph
corresponding to a given set of kinetic ODEs is generally not unique [8,41].
Moreover, the kinetic realizability of a polynomial dynamical system is not
coordinate-independent and it is preserved only up to the reordering and pos-
itive rescaling of the state variables [11].

Based on the above, a CRN realization (Y,A′k) is called dynamically equivalent
to a kinetic system of the form (1) if A′k is an m×m Kirchhoff matrix, and
Y ∈ Zn×m≥0 such that

M · ϕ(x) = Y · A′k · ψ(x), ∀x ∈ Rn
≥0 (9)

where ψ is defined as in Eq. (4). We note that the vector functions ϕ in Eq. (1)
and ψ in (9) are not necessary identical, since the monomials corresponding
to product complexes without any outgoing reaction do not appear in the
kinetic differential equations.

2.4 Weak reversibility, complex balance and deficiency

Important dynamic properties of a MAL-CRN depend on some of the struc-
tural properties of the reaction graph, most notably on its connectivity and
on its strong components.

A CRN is called weakly reversible if whenever there exists a directed path from
Ci to Cj in its reaction graph, then there exists a directed path from Cj to Ci,
too. In graph theoretic terms, this means that all components of the reaction
graph are strongly connected components. A MAL-CRN is called reversible,
if for each reaction Ci 7→ Cj there exists another (reverse) reaction Cj 7→ Ci.
It is well-known from the literature (see Theorem 3.1 of [16] and Proposition
4.1 of [14]) that a CRN is weakly reversible if and only if there is a strictly
(elementwise) positive vector q∗ in the kernel of Ak.

The equilibrium points of the system (3) can be obtained by solving the non-
linear set of algebraic equations

Y · Ak · ψ(x∗) = 0, (10)

with (4) for an element-wise non-negative x∗. Note that several equilibrium
points may exist due to the possible rank deficiency of the matrices Y and Ak,
and the nonlinearity of ψ.

The notion of complex balance originally comes from the study of the thermo-
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dynamic compatibility of reaction networks. An equilibrium point x∗ ∈ Rn
>0

of the system (3) is called complex balanced if Ak · ψ(x∗) = 0. It is known
that if any equilibrium point of a CRN given by the pair (Y,Ak) is complex
balanced, then all other equilibrium points are complex balanced, too. It is
an important result from the literature that complex balance implies weak
reversibility, since the kernel condition of weak reversibility is fulfilled [25].

Deficiency δ is a fundamental property of a reaction network and it is defined
as [15]:

δ = m− l − s, (11)

where m is the number of complexes (vertices) in the reaction graph, l is the
number of linkage classes (graph components) and s is the rank of the reaction
network. Another equivalent definition of deficiency [2] is

δ = dim(Ker(Y ) ∩ Im(BG)) (12)

where Y is the complex composition matrix and BG is the incidence matrix
of the reaction network. It is easy to see from (11) and (12) that deficiency
depends only on the complex composition (Y ) and the network structure (i.e.
on the unweighted reaction graph), but not on the values of the reaction rate
coefficients. The deficiency is a very useful measure for studying the dynamical
properties of reaction networks and for establishing parameter-independent
(at least) local stability conditions.

It is important to remark that weak reversibility, complex balance and defi-
ciency are all realization-dependent properties and not the inherent properties
of the kinetic differential equations [32,35]. This structural non-uniqueness
will be utilized for feedback design in Section 3.1.

2.5 Qualitative dynamical properties of MAL-CRNs

A central problem in CRN theory is the relation between the network struc-
ture/ parametrization and the qualitative properties of the dynamics. From
the numerous results and conjectures in the field, we only mention those that
are directly related to the forthcoming feedback design methods.

According to the Global Attractor Conjecture, for any complex balanced CRN
and any positive initial condition x(0), the equilibrium point x∗ is a global
attractor in the corresponding positive stoichiometric compatibility class [7].
Important special cases were proven in [1] and [17]. Moreover, the possible
general proof of the conjecture has recently appeared in [6].

A fundamental result of Chemical Reaction Network Theory is the Deficiency
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Zero Theorem (Theorem 6.1.1 in [15]), that proves a robust stability property
of a certain class of kinetic systems. Here we recall that the reaction rate co-
efficient kij (that is the weight of the directed edge Ci −→ Cj in the reaction
graph) is equal to [Ak]ji. Part (iii) of the Deficiency Zero Theorem says that
deficiency zero weakly reversible networks possess precisely exactly one equi-
librium point in each stoichiometric compatibility class, and these equilibria
are at least locally stable with a known logarithmic Lyapunov function that
is also independent of the rate coefficients. To connect complex balance and
the deficiency zero weak reversibility condition, we also recall from [25] and
[13] that a mass action reaction network is complex balanced for any posi-
tive choice of rate constants if and only if it is weakly reversible and has a
deficiency of zero.

The above results motivate us to design such feedbacks that are able to ensure
the complex balanced or deficiency zero weakly reversible properties.

3 Kinetic feedback forms

In order to be able to design any feedback controllers, one should extend the
closed autonomous form (1) of the system with a suitable input structure.
This is followed by the description of the proposed static and dynamic kinetic
state feedback structures in this section.

3.1 Open MAL-CRNs as process systems

The aim is to construct a nonlinear state equation in the case when the system
is open under the following conditions:

(1) isothermal and isobaric conditions,
(2) constant physico-chemical properties (density, reaction rate coefficients),
(3) only inlet and outlet convection and chemical reactions are taking place.

The model is constructed from the overall mass balance and from the compo-
nent mass balances for all n components as follows.

Assuming liquid in- and outflows with the same density, the overall mass
balance is in the following form

dV

dt
=

n∑
j=1

Fj,IN − FOUT (13)
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where Fj,IN is the inlet volumetric flow rate containing the jth component

and possibly a liquid inert solvent in units [m
3

s
], FOUT is the outlet volumetric

flow rate, that contains all components in the reactor, and V is the volume of
the liquid in the reactor.

The component molar balances are of an open MAL-CRN, are constructed
from the CRN model (1) augmented with in- and outflows [21]:

dmi

dt
= Fi,INxi,IN − FOUTxi + V [M ]i,·ϕ(x) , i = 1, ..., n (14)

where mi is the mole number of the ith component in the reactor, xi,IN is its
inlet concentration, xi is its concentration, and [M ]i,· is the ith row of matrix
M . One can use the fact, that mi = V xi to derive a simpler form of (14), by
substituting Eq. (13) for dV

dt
into it to obtain:

dxi
dt

=
Fi,IN
V

xi,IN −

 n∑
j=1

Fj,IN
V

xi + [M ]i,·ϕ(x) , i = 1, ..., n (15)

3.1.1 Transformation into polynomial form

Let us introduce a new dynamic variable z = 1
V

, and transform both (13) and
(15) to obtain

dz

dt
= z2

FOUT − n∑
j=1

Fj,IN

 (16)

dxi
dt

= Fi,INxi,INz −

 n∑
j=1

Fj,IN

xiz + [M ]i,·ϕ(x) , i = 1, ..., n (17)

3.1.2 The nonlinear state equations

The form of the nonlinear state equation depends on our choice of the manip-
ulable input variables. Two cases are considered here:

(1) inlet volumetric flow rates as manipulable inputs,
(2) inlet concentrations as manipulable inputs (but keeping V constant).

Inlet volumetric flow rates as manipulable inputs Assume that the
inlet concentrations are constant, i.e. xi,IN = Ki, i = 1, ..., n and let the inputs
be

ui = Fi,INz , i = 1, ..., n , uz = FOUT z (18)
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Then we can use uz to stabilize z at an arbitrary steady state point using the
equation

dz

dt
= z

uz − n∑
j=1

uj

 (19)

Then the component molar balances take the form

dxi
dt

= Kiui −

 n∑
j=1

uj

xi + [M ]i,·ϕ(x) , i = 1, ..., n (20)

Inlet concentrations as manipulable inputs In order to obtain a time-
invariant (i.e. constant parameter) model, let us assume that the inlet and
outlet volumetric flow rates are kept constant such that ki = Fi,IN , i = 1, ..., n
with Kz =

∑n
j=1 Fj,IN , and let the inputs be

ui = xi,INz , i = 1, ..., n , uz = FOUT (21)

Then we can use uz to stabilize z at an arbitrary steady state point using the
equation

dz

dt
= uzz

2 −Kzz
2 (22)

Furthermore, the component molar balances take the form

dxi
dt

= kiui −Kzxiz + [M ]i,·ϕ(x) , i = 1, ..., n (23)

It is important to remark, that both model structures arehierarchically de-
composed the same way as in [22]. This enables to control the mass/volume
separately and treat the component mass balances on the top of them. There-
fore, from now on we assume that z is perfectly controlled and constant in
our models. To relax this assumption, one has to prove that the subsystem
(23) stabilized with inputs ui is input to state stable for the additional input
z. Another possibility is to include (22) into the entire feedback computation
model considering z formally a ’pseudo concentration’, since z is a positive
variable, and the right hand side of (22) is kinetic.

3.2 Open loop model form

The analysis of the possible input structures of open MAL-CRNs presented in
subsection 3.1 showed that a simple linear input term with constant coefficients
is chemically plausible when the inlet concentrations are chosen as manipulable
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inputs. Therefore, we assume for the feedback design that the equations of the
open loop polynomial system with linear input structure are given as

ẋp = Mp · ψp(xp) +Bpup, (24)

where xp ∈ Rnp is the plant state vector, up ∈ Rrp is the input, ψp ∈ Rnp →
Rmp contains the monomials of the open-loop system, Mp ∈ Rnp×mp and Bp ∈
Rnp×rp .

It is important to note that the state equation (24) of open MAL-CRNs orig-
inating from component molar balances (23) when the inlet concentrations
are used as manipulable inputs can be simply derived from these molar bal-
ances in the following steps assuming that the volume has been stabilized to
a steady-state value V ∗ giving rise to a given value of z∗ = 1

V ∗
.

• The vector of state variables xp is formed from the concentrations, so xp = x
and dim(xp) = n.
• If all inlet concentrations are manipulable, then dim(up) = n, and the

constant input matrix Bp is a diagonal matrix with the positive constant
ki = Fi,IN in its diagonal elements, i.e. [Bp]ii = ki.
• The monomial vector ψp(xp) is extended by the one specie monomials Ci′ =
Xi if they were not present already. The corresponding coefficient in the
coefficient matrix Mp is obtained by subtracting the positive term Kzz

∗ from
the MAL-CRN coefficient matrix M in Eq. (23), i.e. [Mp]ii′ = [M ]ii′−Kzz

∗.

Parametric uncertainty in the open loop model In this case, we as-
sume that the coefficient matrix Mp is not known exactly, but it is an element
of the polytopic set

M =
{ L∑
i=1

αiM
(i)
p | (∀i : αi ≥ 0) ∧

L∑
i=1

αi = 1
}

(25)

where M (i)
p ∈ Rnp×mp for i = 1 . . . , L are the vertex points.

A simple example of the uncertainty described by Eq. (25) is the class of
models, where the elements of M are assumed to belong to predefined intervals
[36]. These intervals may easily come from parameter estimation as a result
of uncertainty (covariance) analysis of the estimate, since model (24) is linear
in the parameter matrix Mp. On the other hand, if the open-loop model (24)
is a reaction network, and some uncertain reaction rate coefficients (i.e. the
elements of matrix Ak) are modeled as intervals, we also obtain a polytopic
model of the form (25) for matrix Mp.
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3.3 The state feedback law

We assume a polynomial dynamic feedback of the form

up = K · ψ(x) (26)

where x = [xp xc]
T is the overall state vector with the state of the controller

xc ∈ Rnc , ψ(x) = [ψp(xp) ψc(xp, xc)]
T is the overall monomial vector with

ψc : Rnp+nc → Rmc containing possible additional monomials for the feedback,
and K ∈ Rrp×(mp+mc) is a constant feedback gain. The state equations of the
controller are

ẋc = Mc · ψ(x) (27)

where Mc ∈ Rnc×(mp+mc) and ψ(x) is the overall monomial vector containing
ψp and ψc. We can partition K and Mc into two blocks as K = [Kp Kc]

T

and Mc = [Mcp Mcc]
T where Kp ∈ Rrp×mp , Kc ∈ Rrp×mc , Mcp ∈ Rnc×mp and

Mcc ∈ Rnc×mc . In that case the equations of the closed loop system are given
by

ẋ =

Mp +BpKp BpKc

Mcp Mcc

 ·
 ψp(xp)

ψc(xp, xc)

 = M · ψ(x). (28)

The aim is to set the closed loop coefficient matrix M by choosing a suitable
feedback gain K such that it defines a kinetic system with prescribed properties
(e.g. complex balance) such that the overall complex composition matrix Y is
compatible with ψ. It is clear from subsection 2.1 that this is possible if and

only if M can be factorized as M = Y · Ak where Y ∈ Z(np+nc)×(mp+mc)
≥0

is the given complex composition matrix (which generates ψ(x) in (28)) ,
and Ak ∈ R(mp+mc)×(mp+mc) is a valid Kirchhoff matrix. In the following, let
np + nc = n and mp +mc = m.

3.4 The effect of feedback structure on the closed loop dynamics

The results in this subsection show that involving new monomials (complexes)
into the feedback law in (26) does not improve the solvability of the feedback
problem from the point of view of weak reversibility, deficiency or complex
balance. In the following, by additional complexes, we mean complexes corre-
sponding to the monomials of ψc in (28). Therefore, a closed loop system with-
out additional complexes means a controlled system of the form (28), where
Kc = 0 and Mc = 0. Note that this is a technical solution in order to keep
the dimension of the state vector and the Kirchhoff matrix of the closed loop
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system constant in the calculations. In this case, the complexes corresponding
to ψc are naturally isolated in the reaction graph.

Lemma 1 Consider the open loop system (24) and the feedback law (26).
Assume that there exist a closed loop system with feedback parameters K, Mc,
and it has a realization (Y,Ak) where the jth complex Cj is an additional
source complex (i.e. [Ak]jj 6= 0). Then, there exist other feedback parameters
K ′ and M ′

c such that the corresponding closed loop system has a realization
(Y,A′k), where A′k is given by

[A′k]·,i = [Ak]·,i +
[Ak]ji
−[Ak]jj

[Ak]·,j, ∀i. (29)

Remark It is visible from (29) that the jth complex is isolated in the real-
ization (Y,A′k), since [A′k]ji = 0 and [A′k]ij = 0 for all i.

Proof of Lemma 1 It can be seen from (29) that the matrix A′k is Kirch-
hoff, because the sum of its columns is zero and the off-diagonal elements are
positive due to [A′k]ji = 0 for all i.
First, we can write (29) in the following compact form

A′k = Ak +
1

−[Ak]jj
[Ak]·,j · [Ak]j,·. (30)

Then, we can construct the feedback gain K ′ as

K ′ = K +
1

−[Ak]jj
K·,j · [Ak]j,· (31)

and the matrix M ′
c as

M ′
c = Mc +

1

−[Ak]jj
[Mc]·,j · [Ak]j,·. (32)

Then, the matrix M ′ is given by

M ′ = M +
1

−[Ak]jj

BpK

Mc


·,j

[Ak]j,· (33)

which can be written as

M ′ = Y · Ak +
1

−[Ak]jj
Y · [Ak]·,j · [Ak]j,· = Y · A′k. (34)
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Therefore, M ′ has the realization A′k. 2

Lemma 2 Let Ak and A′k be Kirchhoff matrices where the matrix A′k is con-
structed by (29). Then Ker(Ak) ⊆ Ker(A′k).

Proof Let us take an element p of Ker(Ak), then

pj =
∑
i 6=j

pi
[Ak]ji
−[Ak]jj

. (35)

Let us consider the product A′k · p:

m∑
i=1

pi[A
′
k]·,i =

∑
i 6=j

pi[Ak]·,i +
∑
i 6=j

pi
[Ak]ji
−[Ak]jj

[Ak]·,j. (36)

We can now substitute (35) into (36) to obtain

m∑
i=1

pi[A
′
k]·,i =

∑
i 6=j

pi[Ak]·,i + pj[Ak]·,j = 0 (37)

that means p ∈ Ker(A′k). 2

Theorem 3 Consider the open loop system (24) and the feedback law (26).
Then the following statements apply.

(a) If there exists a weakly reversible closed loop system (28) with additional
complexes, then there exists another weakly reversible closed loop system
without additional complexes.

(b) Suppose there exists a weakly reversible closed loop system (28) with ad-
ditional complexes and deficiency δ. Then there exists another weakly re-
versible closed loop system without additional complexes, and it has defi-
ciency δ′ such that δ′ ≤ δ.

(c) Suppose there exists a complex balanced closed loop system (28) with ad-
ditional complexes and equilibrium points in the set E. Then there exists
another complex balanced closed loop system without additional complexes
and it has equilibrium points E ′ such that E ⊆ E ′.

Proof

(a) If there exists a closed loop system with a weakly reversible realization
(Y,Ak), then there exists another one with realization (Y,A′k) where the ad-
ditional complexes are isolated (Lemma 1) and Ker(Ak) ⊆ Ker(A′k) (Lemma
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2.). A Kirchhoff matrix is weakly reversible if and only if there exists a pos-
itive vector in its kernel. Therefore, matrix A′k is weakly reversible, too.

(b) If there exists a closed loop system with a weakly reversible realization
(Y,Ak), then there exists another one with realization (Y,A′k) where the ad-
ditional complexes are isolated (Lemma 1). Let us denote the corresponding
incidence matrices by BG and B′G. The columns of matrix B′G are linear com-
binations of the columns of matrixBG by construction. Therefore, Im(B′G) ⊆
Im(BG). By the definition of deficiency δ = dim(Ker(Y ) ∩ Im(BG)) and
δ′ = dim(Ker(Y ) ∩ Im(B′G)). So δ′ ≤ δ.

(c) If there exists a closed loop system with a weakly reversible realization
(Y,Ak), then there exists another one with realization (Y,A′k) where the ad-
ditional complexes are isolated (Lemma 1) and Ker(Ak) ⊆ Ker(A′k) (Lemma
2.). According to the assumption, (Y,Ak) is complex balanced, therefore the
set of equilibrium points of (28) can be described asE = {x | Ak · ψ(x) = 0}.
Since, Ker(Ak) ⊆ Ker(A′k), then A′k is complex balanced and E ⊆ E ′. 2

The kinetic feedback structure The theoretical results described in this
section can be summarized in the following simple statements to determine
the structure of the kinetic feedback, if one wants to achieve complex balanced
closed loop MAL-CRN structure, or a weakly reversible zero deficiency closed
loop MAL-CRN structure.

(1) There is not necessary to apply dynamic feedback to achieve complex
balance or weak reversibility with zero deficiency for the closed loop sys-
tem.

(2) It is sufficient to use only the monomials of the open loop system (24) in
the monomial function ψ(x) of the static feedback (26).

However, increasing the degrees of freedom of the control design with ad-
ditional state variables, monomials and the corresponding extra parameters
using the general form (28) might be advantageous to achieve additional goals,
such as improving the time-domain performance of the closed loop system.

4 Feedback computation

In this section, the optimization problems for the design of kinetic feedback
are described. First the control problem statement is described and analysed,
that is followed by the optimization problems.
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4.1 The feedback design problem

Based on the structure of the open loop system and that of the polynomial
feedback described before in Section 3, let us consider

• a polynomial system with linear constant parameter input-affine structure
as the open loop system (24) with its parameter matrices (Mp, Bp, Y ),
• and a static positive polynomial feedback law (26) with the monomials of

the open loop system. In that case the only design parameter is the feedback
gain matrix K = Kp .

The aim of the feedback is to set a region in the state space, where x∗ ∈ Rn
>0

is an (at least) locally asymptotically stable equilibrium point of the closed
loop system. This will be achieved in two different ways:

(i) to find a feedback gain K such that the closed loop system has a MAL-CRN
complex balanced realization with a given equilibrium point x∗,

(ii) to compute the feedback gain K such that the closed loop system is weakly
reversible with deficiency zero.

In the following, two realization computation problems are proposed for dy-
namically equivalent network structures that solve the feedback gain com-
putation problem for the above two cases. It will be shown in the following
sub-sections that one can apply linear programming (LP or MILP) optimiza-
tion approaches to compute the feedback gain K.

It is important to note that no control performance requirement is set besides
stabilizing the system, but one can additionally specify one on the price of
making the related feedback gain computation problem possibly more com-
plex.

Besides of the above general feedback design problem statement, the pro-
posed linear programming based approach is capable of handling additional
constraints on the feedback gain. These can serve to achieve a physically real-
izable feedback (in case of non-negativity) or to find a feedback with low gain
(when minimizing the l1 norm).

• Non-negativity of the feedback
In many cases non-negativity of the input is a necessary condition of physical
realizability. When the closed loop system is kinetic then its states are non-
negative. Therefore the feedback up = Kψ(x) is non-negative if the elements
of the matrix K are non-negative

Kij ≥ 0, ∀i = 1, . . . , n, j = 1, . . . ,m. (38)

• Minimization of the l1-norm of the feedback gain
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A suitable objective function of the optimization is the l1-norm of the matrix
K

fobj =
n∑
i=1

m∑
j=1

|Kij|. (39)

The minimization of this objective function can be easily implemented in
the LP framework.

4.2 Complex balanced closed loop

In this case, the equilibrium point x∗ of the closed loop system is a design
parameter, so it is assumed to be known before the optimization. A complex
balanced equilibrium point is (at least) locally asymptotically stable in its
stoichiometric compatibility class. Therefore, the aim of the feedback is to set
the vector x∗ to be a complex balanced equilibrium point of the controlled
system.

The linear optimization problem to be solved is described in terms of the linear
constraints that express the requirements in the feedback design. The first set
of constraints is responsible for the dynamical equivalence

Mp +BpK = Y · Ak
1T · Ak = 0T

[Ak]ij ≥ 0 i, j = 1, . . . ,m, i 6= j

(40)

where the elements of K and Ak are the continuous decision variables of the
optimization problem, and 0 and 1 are column vectors with all of their ele-
ments being 0 and 1, respectively.

The vector x∗ is a complex balanced equilibrium point of the closed loop system
if and only if Ak · ψ(x∗) = 0. This is also a linear constraint

Ak · q∗ = 0 (41)

where q∗ = ψ(x∗) is a priori known.

Finally, by minimizing the objective function (39), the feedback gain K can be
computed (if it exists) in a LP framework using the linear constraints (40)
and (41).

With the resulting feedback gain K, the point x∗ will be an equilibrium point
of the closed loop system, and x∗ will be locally asymptotically stable in the
region S = (x∗+S)∩Rn

≥0, where S is the stoichiometric subspace of the closed

17



loop system. We remark that the stability is proven to be global if the closed
loop system consists of one linkage class [1].

4.3 Handling the parametric uncertainty in the complex balanced closed loop
case

In this subsection, the above feedback computation method will be extended
by handling parametric uncertainty. The uncertainty is modelled by the poly-
topic set given in Eq. (25).

Lemma 4 Let x∗ be a joint complex balanced equilibrium point of the realiza-
tions (Y,A

(1)
k ) and (Y,A

(2)
k ). Then x∗ is a complex balanced equilibrium point

of the realization (Y,A
(3)
k ) where A

(3)
k is the convex combination of the matrices

A
(1)
k and A

(2)
k .

Proof It is clear that A
(3)
k is a Kirchhoff matrix. Then we have to show that

A
(3)
k · ψ(x∗) = 0 is fulfilled:

A
(3)
k · ψ(x∗) = (λA

(1)
k + (1− λ)A

(2)
k ) · ψ(x∗) = 0. (42)

for any λ ∈ [0, 1]. 2

The above convexity result shows that it is enough to compute a complex
balanced realization (Y,A

(h)
k ) with the joint equilibrium point x∗ in each vertex

M (h)
p (h = 1, ..., L where L is the number of vertices of the convex set) with

the same feedback gain matrix K. This gives the following constraints
M (h)

p +BpK = Y · A(h)
k

1T · A(h)
k = 0T

[A
(h)
k ]ij ≥ 0 i, j = 1, . . . ,m, i 6= j

A
(h)
k · q∗ = 0

(43)

where q∗ = ψ(x∗) is known and h = 1, . . . , L.

Finally, by minimizing the objective function (39), the feedback gain K can be
computed (if it exists) in a LP framework using the linear constraints (43).

With the resulting feedback gain K, the point x∗ will be an equilibrium point
of all possible closed loop systems, and x∗ will be locally asymptotically stable
in the region S = (x∗ + S) ∩ Rn

≥0, where S is the stoichiometric subspace of
the closed loop system.
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4.4 Weakly reversible closed loop with zero deficiency

In this case, the only computational goal is weak reversibility and zero de-
ficiency, but the equilibrium points are arbitrary, i.e. they are not specified
in advance. We recall that if a kinetic system is weakly reversible and has
zero deficiency, then its equilibrium points are complex balanced and they
are asymptotically stable within the appropriate stoichiometric compatibil-
ity classes. Therefore, the aim of the feedback is to transform the open loop
system into a weakly reversible kinetic system with zero deficiency.

A Kirchhoff matrix Ak is weakly reversible if and only if there exist a positive
vector p ∈ Rn

>0 in its kernel. This condition is nonlinear because the vector p
is unknown, too. Therefore, we use the solution proposed in [31] as follows. In
order to construct linear constraints, we are going to transform the decision
variables, the elements of the matrices K and Ak by diag(p) (a diagonal matrix
with the vector elements pi > 0 in its diagonal) where p ∈ Rn

>0 to form
A′k = Ak · diag(p) and K ′ = K · diag(p). Then A′k has same structure as Ak
and Ak · p = 0 if and only if A′k · 1 = 0. Then the resulting linear constraints
of dynamical equivalence are

Mp · diag(p) +Bp ·K ′ = Y · A′k
1T · A′k = 0T

[A′k]ij ≥ 0 i, j = 1, . . . ,m, i 6= j

p > 0

(44)

where the elements of K ′ and A′k are the continuous decision variables.

The linear constraint of weak reversibility is

A′k · 1 = 0. (45)

thanks to the suitable transformation of Ak to A′k.

The MILP constraints of zero deficiency are taken from [35] in the form of
ỹ(`) = η(`) + Y T · α(`), ` = 1, . . . ,m− rank(Y )

[A′k]ij ≤ U1 ·Θij i, j = 1, . . . ,m

| η(`)i − η
(`)
j |≤ 2 · U2(1−Θij) i, j = 1, . . . ,m, ` = 1, . . . ,m− rank(Y ).

(46)

The constant vectors ỹ(`) ∈ Rm for ` = 1, . . . ,m − rank(Y ) span the ker-
nel of the matrix Y . The bounds U1 and U2 are positive real constants, and
by increasing these bounds the optimization problem will be less conserva-
tive. The continuous decision variables are α(`) ∈ Rn and η

(`)
i ∈ Rm for
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` = 1, . . . ,m− rank(Y ) and i = 1, . . . ,m. Additionally, Θi,j for i, j = 1, . . . ,m
are the binary decision variables.

By minimizing the objective function (39), the feedback gain K can be com-
puted (if it exists) in a MILP framework using the linear constraints (44)-(46).
Note, that the resulting equilibrium point can also be computed from the op-
timization results.

It is important to observe, that the design based on achieving a weakly re-
versible closed loop with zero deficiency has generally less strict constraints
- even the equilibrium point cannot be specified - than that of the complex
balanced closed loop case, therefore it may be feasible when the latter is not.
At the same time, the underlying optimization problem is a MILP problem,
that is computationally much harder than the LP problem required to solve
the feedback design in the complex balanced closed loop case. However, we
can still check the existence of a weakly reversible closed loop system in poly-
nomial time by checking the feasibility of the linear constraints (44) and (45),
since they do not contain integer variables. If no weakly reversible solution
exists, then it is unnecessary to run the MILP optimization.

Finally, we recall that none of the feedback computation methods described in
this Section require that the open loop system is kinetic, therefore, generally,
no initial graph structure is assumed for it. The computation of the feedback
and the desired graph structure/parametrization of the closed loop system is
performed in one optimization step in all cases.

5 Case studies

The proposed methods are illustrated by two computational examples, and a
simple process control example in this section.

5.1 Computational examples

In this section, two simple examples are presented to highlight the feedback
computation in both the complex balanced and the weakly reversible zero
deficiency closed loop case. The purpose of these simple examples is to illus-
trate the developed computational methods in the case of stabilizing general
polynomial systems.
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5.1.1 Robust, complex balanced closed loop

In this example the robust design case is considered, when the uncertain coef-
ficient matrix of a polynomial system is characterized as the convex combina-
tion constant matrices of appropriate dimensions. Let the open-loop system
be given as

ẋp = Mp


xp1xp2

xp2xp3

xp1


︸ ︷︷ ︸

ψp(xp)

+


0

1

0


︸ ︷︷ ︸
Bp

up (47)

where Mp is the arbitrary convex combination of the following three matrices

M (1)
p =


−1 1 0

2 1 2

1 −1 0

 , M (2)
p =


0 0 0

1 1 3

0 0 0

 , M (3)
p =


0 1 −1

2 0 3

0 −1 1

 .

Let the desired equilibrium point be chosen as x∗ = [1 1 1]T .

We are looking for a feedback law with the gain K that transforms the systems
characterized by the matrices M (i)

p into a complex balanced kinetic system
with the given equilibrium point.

By solving the feedback design LP optimization problem using the linear con-
straints (43), we obtain the following feedback

up =
[
−2 −1 −2

]
ψp(xp). (48)

Fig. 1. depicts a complex balanced realization of the closed loop system in the
case Mp = 0.6M (1)

p + 0.2M (2)
p + 0.2M (3)

p . The obtained closed loop system in
an inner point of the convex setM has the following stoichiometric subspace:

S = span(


−1

0

1

 ,


0

−1

0

 ,


1

0

−1

 ,


1

−1

−1

 ,


0

1

0

 ,

−1

1

1

). (49)

Therefore, the equilibrium point x∗ will be asymptotically stable in the region
S = (x∗ + S) ∩ Rn

≥0. Therefore, if the initial value is chosen from the set S,
then the corresponding solution will converge to the desired equilibrium point
x∗ . Fig. 2 shows the time domain behaviour of the perturbed system.
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Figure 1. Complex balanced realization of the closed loop system (of subsection

5.1.1) in the case Mp = 0.6M
(1)
p + 0.2M

(2)
p + 0.2M

(3)
p

Figure 2. Time domain simulation of the perturbed closed loop system (of subsec-
tion 5.1.1) with the initial value x0 = [0.5 0.5 1.5].

5.1.2 Weakly reversible closed loop with zero deficiency

Let us consider the following polynomial system

ẋp1 = −xp1xp2 + 2x2p2xp3 (50)

ẋp2 = −4x2p2xp3 − 6x2p2xp3 + up1 (51)

ẋp3 = −1 + xp1xp2 − 4x2p2xp3 − 3xp2x
2
p3

+ up2 (52)

It is easy to see from (52) that for up1 = 0, up2 = 0, the system has no
equilibrium points in the nonnegative orthant. Using the notations of Section
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3.2, we have:

ψp(xp) = [1 xp1xp2 x
2
p2
xp3 xp2x

2
p3

]T ,

Mp =


0 −1 2 0

2 0 −6 0

−1 1 −4 −3

 , Bp =


0 0

1 0

0 1

 .

Then, after performing the procedure presented in Section 4, we find that the
MILP optimization problem is feasible, and the resulted feedback is

up =

 0 0 0 0 0

2 1 0 0 0

ψp(xp). (53)

Fig. 3. depicts the resulted weakly reversible realization with zero deficiency
of the closed loop system.

The obtained closed loop system has the following stoichiometric subspace:

S = span(


0

2

1

 ,

−1

0

2

 ,


0

−2

−1

 ,


1

−1

−1

 ,


0

−1

−2

 ,


1

1

0

 ,


1

−1

0

). (54)

It is easy to see that the dimension of S is 3. Therefore, the system has only
one equilibrium point in the positive orthant which is complex balanced and

asymptotically stable: x∗ =
[
2(1/3)2/3 (1/3)1/3 (1/3)1/3

]T
.

Fig. 4 shows the time domain behaviour of the closed loop system.

5.2 A process control example

Let us consider an open chemical reaction network in which the chemical
reactions

2X1 +X3 7→ X1 +X2 , X1 +X2 7→ X1 + 2X3 , X1 + 2X3 7→ X1 +X2

X1 + 2X2 7→ X1 +X2 , X1 + 2X2 7→ X1 + 2X3

take place under isothermal conditions, where all the reaction rate constants
are equal to 1. Fig. 5 shows the reaction graph of the above CRN without
any in- and outflow. Let us choose the inlet concentrations of the species X1

23



Figure 3. Weakly reversible realization with zero deficiency of the closed loop system
(of subsection 5.1.2)

Figure 4. Time domain simulation of closed loop system (of subsection 5.1.2) with
five different initial values.

and X2 as input variables and assume constant volume in the open chemical
reaction network.
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Figure 5. The reaction graph of the CRN in the process system example (of sub-
section 5.2)

Then the open-loop system model is in the following form

ẋp =


−1 0 0 0 −1 0 0

1 −1 −3 1 0 −1 0

−1 2 2 −2 0 0 −1


︸ ︷︷ ︸

Mp

·



x2p1xp3

xp1xp2

xp1x
2
p2

xp1x
2
p3

xp1

xp2

xp3


︸ ︷︷ ︸

ψp(xp)

+


1 0

0 1

0 0


︸ ︷︷ ︸

Bp

up. (55)

We are looking for the non-negative feedback gain K which transforms
the system into a complex balanced one with the desired equilibrium point
x∗p = [1 1 1].

The computed feedback gain is

K =

 0 0 0 0 1 0 1

1 0 0 0 0 1 1

 (56)

and the corresponding feedback is

up1 = xp1 + xp3 (57)

up2 = x2p1xp3 + xp2 + xp3 . (58)

The above equation (58) ensures the nonnegativity of the input variables,
that are the inlet concentrations of X1 and X2.
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Figure 6. Complex balanced realization of the closed loop process system (of sub-
section 5.2)

The closed loop system has a complex balanced realization which is depicted
in Fig. 6.

The dimension of the stoichiometric subspace of the closed loop system is 3,
so it has only one positive equilibrium point x∗p = [1 1 1]T which is asymptot-
ically stable. Fig. 7. shows the time domain simulation under different initial
conditions.

Finally, it is important to remark here that all three closed loop systems in
the examples of this section are globally stable, since their reaction graphs
contain only one linkage class.

6 Conclusions

A novel approach is proposed in this paper to asymptotically stabilize poly-
nomial systems with linear constant parameter input terms around a positive
equilibrium point. The stabilization is achieved by constructing a polynomial
state feedback that results in a closed loop system that has a MAL-CRN
realization with prescribed advantageous properties.

Based on the theory of MAL-CRN systems and the phenomenon of dynamical
equivalence, a complex balanced or weakly reversible zero deficiency realization
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Figure 7. Time domain simulation of closed loop system (of subsection 5.2) with
five different initial values.

is aimed at by computing the feedback gain of a polynomial feedback using
optimization. First the sufficient feedback structure is determined by proving
that it is enough to apply a static feedback with constant gains containing
only the monomials that are present in the open loop polynomial system.

The case of requiring a closed loop system with complex balanced MAL-CRN
realization having a prescribed equilibrium point results in a linear optimiza-
tion problem that is solvable in the LP framework. The robust version of the
problem, when a convex set of polynomial systems is given over which an
asymptotically stabilizing controller is searched for, is also solvable with a LP
solver.

If the complex balanced case has no solution, one can attempt to solve another
case with weaker but still linear constraint set to obtain a closed loop system
that has a weakly reversible realization with zero deficiency. Although this
also guarantees asymptotic stability around a positive steady state point, but
this point is not arbitrarily chosen, and the resulting optimization problem
is only solvable in a MILP framework. The proposed methods and tools are
illustrated on two simple examples, and on a process system case study.

The input structure and the proposed optimization framework technically al-
lows us to exclude certain (e.g. non-measured) state variables from the feed-
back law, since the feedback expression (26) may contain the linear combina-
tion of arbitrary monomials. Clearly, the assumptions of Theorem 3 would be
no longer valid in such a case. This situation would raise the problem of new
monomial selection, therefore, it will be a target of future research.
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and damping assignment passivity-based control in process engineering. Journal
of Process Control, 19:1413–1426, 2009.

[10] C. Ebenhauer and F. Allgöver. Analysis and design of polynomal control
systems using dissipation inequalities and sum of squares. Computers and
Chemical Engineering, 30:1590–1602, 2006.

[11] Gy. Farkas. Kinetic lumping schemes. Chemical Engineering Science, 54:3909–
3915, 1999.

[12] A. Favache and D. Dochain. Power-shaping control of reaction systems: The
CSTR case. Automatica, 46:1877–1883, 2010.

28



[13] M. Feinberg. Complex balancing in general kinetic systems. Archive for Rational
Mechanics and Analysis, 49:187–194, 1972.

[14] M. Feinberg. Lectures on chemical reaction networks. Notes of lectures given
at the Mathematics Research Center, University of Wisconsin, 1979.

[15] M. Feinberg. Chemical reaction network structure and the stability of complex
isothermal reactors - I. The deficiency zero and deficiency one theorems.
Chemical Engineering Science, 42 (10):2229–2268, 1987.

[16] K. Gatermann and B. Huber. A family of sparse polynomial systems arising
in chemical reaction systems. Journal of Symbolic Computation, 33:275–305,
2002.

[17] M. Gopalkrishnan, E. Miller, and A. Shiu. A geometric approach to the global
attractor conjecture. SIAM Journal on Applied Dynamical Systems, 13:758–
797, 2013.

[18] J. Gunawardena. Chemical reaction network theory for in-silico biologists.
Technical report, Bauer Center for Genomics Research, Harvard University,
2003. http://vcp.med.harvard.edu/papers/crnt.pdf.

[19] J. Haag, A. Wouver, and P. Bogaerts. Dynamic modeling of complex biological
systems: a link between metabolic and macroscopic description. Mathematical
Biosciences, 193:25–49, 2005.

[20] W. M. Haddad, VS. Chellaboina, and Q. Hui. Nonnegative and Compartmental
Dynamical Systems. Princeton University Press, 2010.

[21] K. M. Hangos, J. Bokor, and G. Szederkényi. Analysis and Control of Nonlinear
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[44] G. Szederkényi, G. Lipták, J. Rudan, and K.M. Hangos. Optimization-based
design of kinetic feedbacks for nonnegative polynomial systems. In IEEE 9th
International Conference of Computational Cybernetics, July 8-10, Tihany,
Hungary, pages 67–72, 2013. ISBN: 978-1-4799-0063-3.

[45] C.-F. Tong, H. Zhang, and Y.-X. Sun. Controller design for polynomial
nonlinear systems with affine uncertain parameters. Acta Automatica Sinica,
33(12):1321 – 1325, 2007.

[46] A. van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control.
Springer, Berlin, 2000.

[47] B.E. Ydstie and A.A. Alonso. Process systems and passivity via the Clausius-
Planck inequality. Systems and Control Letters, 30:253–264, 1997.

31


