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Abstract: A special polynomial state feedback structure is proposed for open chemical reaction
networks obeying the mass action law (MAL-CRNs) that stabilizes them for any of their
admissible positive set of parameters. The proposed feedback makes the closed-loop system a
reversible CRN that enables a generalized Hamiltonian description assuming that their number
of reversible reactions is less or equal that the number of species. The design is based on solving
a mixed integer linear optimization problem (MILP).
A simple example is used to illustrate the basic concepts and the design method.
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1. INTRODUCTION

Process systems are often highly nonlinear with a wide
range of nonlinear phenomena that make their dynamic
analysis and control a challenging task. At the same
time, they have a characteristic nonlinear structure that is
determined by the laws of thermodynamics, that opens the
possibility to apply physically inspired special approaches
(e.g. Lagrangian or Hamiltonian methods [19], [11]) for
their dynamic analysis and controller design.

The major sources of the nonlinearity in process systems
are the chemical reactions. A separate special positive
nonlinear system class, the chemical reaction networks
(CRN) with mass action law (MAL) kinetics is suitable to
characterize their nonlinear dynamic behavior. It has been
shown that the MAL CRN system class is a wide class, that
is often used to model complex biological mechanisms [18],
or even models of application fields far from chemistry such
as mechanical or electrical systems [22]. The increasing
interest for this field is shown by numerous surveys and
tutorials in different journals [25], [5], [2].

Motivated by the fact that MAL CRNs exhibit all the
qualitative dynamic behavior patterns (e.g. oscillations,
chaotic behavior, stable and unstable equilibrium points)
that a lumped process system with smooth nonlinearities
may show, the possibility of deriving a MAL CRN rep-
resentation i.e. a model in MAL CRN form for them has
been proposed recently [15].

The idea of constructing a Hamiltonian description of
process systems is not new [13], but it has become popular
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in recent years (see e.g. [21], [16]). However, no feasible
way of constructing a Hamiltonian description of a gen-
eral lumped process system has been found so far, but
only for some special cases (e.g. isothermal, one balance
volume, constant mass holdup etc). For the special case
of reversible chemical reaction networks it was shown [20]
that they admit a generalized Hamiltonian description if
the number of reversible reactions is less or equal than
the number of species in the system. Very recently, a
port-Hamiltonian description of close complex balanced
chemical reaction networks have also been proposed [24].

The aim of this paper is to propose a method for kinetic
nonlinear feedback design to the simplest case of a lumped
process system that enables to have a generalized Hamil-
tonian structure for the closed-loop system. The basic idea
is similar to the one applied earlier to general polynomial
systems (see e.g. [17]), namely to use a specially designed
polynomial feedback to the open loop system that makes
the closed loop system to have a desired property, a gen-
eralized Hamiltonian structure in our case.

2. BASIC NOTIONS

Consider a specially opened chemical reaction network,
where the reactions are taking place in a perfectly stirred
(lumped) reactor with the possibility of feeding in some
of the pure components (species). This corresponds to
the fed-batch operation case in the terminology of process
systems engineering.

Then the dynamic model is in the form of a set of ordinary
differential equations (possibly equipped with algebraic
equations, but we assume that these can be substituted
into the balance equations). In order to have the simplest



possible case, the following general assumptions are
made:

(1) constant temperature, i.e. no energy balance equa-
tions are considered,

(2) constant pressure (in-compressible fluid phases),
(3) the presence of an inert solvent with great excess such

that the reactor has constant overall volume despite
of the feed,

(4) chemical reactions obey the mass action law (MAL),
(5) constant physico-chemical properties.

This way we assume that the system is open with an inflow
of pure species, where the number of species is n. Then
we can describe the open-loop system by the following
variables and parameters:

• the specie mass flow rates of component (or specie)
As denoted by vI,s, s = 1, ..., n (measured in kg/s),
that are the manipulable inlet variables,

• the concentration (measured in mol
m3 ) of component

(or specie) As that is denoted by xs, s = 1, ..., n.
• the reaction rate constants denoted by kℓ,l, where the

pair ℓ, l is the identifier of the reaction.

2.1 Dynamic model equations

Under the general assumptions above, the model equations
originate from the component mass balances for the con-
sidered balance volume. These dynamic balances are of the
following general form for lumped balance volumes [14]:

{
rate of
change

}

=

{
in-
flow

}

±

{
source
sink

}

(1)

The first term on the right-hand side of the above equation
corresponds to the inbound convection term, while in the
source or sink terms may correspond to various other
mechanisms. For the sake of simplicity we only assume
to have chemical reactions obeying the mass action law.

It is important to note that the convective component mass
inflow rate vI,s corresponds to the concentration inflow
xI,s =

vI,s
V

for the chemical specie As, where the volume
of the reactor is V .

2.2 Chemical reaction networks and the reaction graph

A CRN obeying the mass action law is a closed system
where chemical species As, s = 1, ..., n take part in
r chemical reactions. The concentrations of the species
denoted by xs, (s = 1, ..., n) form the state vector x. The
elementary reaction steps have the following form:

n∑

s=1

αsjAs →
n∑

s=1

βslAs, (2)

where αsj is the so-called stoichiometric coefficient of com-
ponent As in reaction Cj → Cl, and βsl is the stoichiomet-
ric coefficient of the product As. The linear combinations
of the species in Eq. (2), namely Cj =

∑n
s=1 αsjAs and

Cl =
∑n

s=1 βslAs are called the complexes and are de-
noted by C1, C2, . . . , Cm. Reactions may share complexes
in complex reaction schemes, therefore m is generally not
equal to the number of reactions. Moreover, reactions are
assumed to be irreversible in classical reaction kinetic sys-
tems, therefore the stoichiometric coefficients are always
nonnegative integers.

The reaction rates of the individual reactions Cj −→ Cl

can be described as

ρjl(x) = kj,l

n∏

s=1

xαsj

s (3)

where kj,l > 0 is the reaction rate coefficient of the
reaction, and xs is the concentration of specie As.

In our computations, the following form will be used for
the description of the dynamics of CRNs obeying the mass
action law [8]:

ẋ =M · ϕ(x) = Y ·Ak · ϕ(x) (4)

where αsj = Ysj , Y ∈ R
n×m stores the stoichiometric

composition of the complexes, Ak ∈ R
m×m contains

information about the structure of the reaction network,
and ϕ : R

n 7→ R
m is a monomial-type vector mapping

given by

ϕj(x) =
n∏

s=1

xαsj

s , j = 1, . . . ,m (5)

Ak is a column conservation matrix (i.e. the sum of the
elements in each column is zero), called the Kirchhoff
matrix of the CRN, defined as

[Ak]lj =







−
m∑

ℓ = 1

ℓ 6= j

kl,ℓ, if l = j

kj,l, if l 6= j

(6)

where [Ak]lj denotes the ljth element of the matrix Ak.
It is important to note that the pair (Y,Ak) uniquely
characterizes a particular CRN with its structure and
parameters.

To handle the exchange of materials between the envi-
ronment and the reaction network, the so-called "zero-
complex" can be introduced and used which is a special
complex where all stoichiometric coefficients are zero i.e.,
it is represented by a zero column vector in the Y matrix
[8]. Note, however, that the presence of the zero complex
may imply the openness of the reaction kinetic system.

Similarly to [8] and many other authors, the following
weighted directed graph (called reaction graph) is as-
signed to the reaction network (2). The directed graphD =
(Vd, Ed) of a reaction network consists of a finite nonempty
set Vd of vertices and a finite set Ed of ordered pairs of
distinct vertices called directed edges. The vertices corre-
spond to the complexes, i.e. Vd = {C1, C2, . . . Cm}, while
the directed edges represent the reactions, i.e. (Cl, Cj) ∈
Ed if complex Cl is transformed to Cj in the reaction
network. The reaction rate coefficients kl,j for j = 1, . . . ,m
in (3) are assigned as positive weights to the corresponding
directed edges in the graph.

An example of a reaction graph is seen in Fig. 1.

For each reaction Ci → Cj corresponds a reaction
vector :

ek = [Y ]·,j − [Y ]·,i, k = 1, . . . , r, (7)

where [Y ]·,i denotes the ith column of Y and r is the num-
ber of reactions. The set of reaction vectors is equivalent
to the column vectors of Y ·BG where BG is the incidence
matrix of the reaction graph.



2.3 Generalized Hamiltonian description of reversible CRNs

The form of generalized dissipative Hamiltonian systems
we use is defined in [23].

Let us be given a closed CRN with n species and r
reversible reaction pairs, i.e. 2r elementary reaction steps
of the form (2) such that r ≤ n. Assume that the rank of
the vector space spanned by the reaction vectors is r. We
remark that the above conditions imply the following: the
CRN is weakly reversible, it is deficiency zero and there
are no circles formed by reversible reaction pairs in its
reaction graph (i.e. if we substitute the reversible reaction
pairs by undirected edges in the reaction graph, we obtain
a forest). It follows from these properties that the network
is complex balanced for any positive reaction rate coeffi-
cients, it has precisely one positive equilibrium point in
any stoichiometric compatibility class, and its dynamics
is globally stable with a known Lyapunov function [8, 1].
It is also important to remark that circuitless reversible
reaction networks of deficiency zero are always detailed
balanced independently of the values of the reaction rate
coefficients (see Remark 3.3 in [10]). Therefore, in our
case the so-called Wegscheider spanning forest conditions
will automatically be fulfilled in Section 4 if a closed loop
realization with the prescribed properties exist.

Consider an equilibrium point x∗ of the system, and
assume that its reactions are independent, i.e. the reaction
vectors of the system are linearly independent. Then this
system admits a dissipative Hamiltonian description in
a neighbourhood of x∗ [20] with a special logarithmic
Hamiltonian function.

We give here the short summary of the above Hamiltonian
description. Let the reversible reactions be given in the
form

n∑

i=1

αijXi ⇄

n∑

i=1

βijXi for j = 1, . . . , r. (8)

Then the overall reaction rates corresponding to the re-
versible reactions are given by

Wj(x) = k+j

n∏

i=1

x
αij

i

︸ ︷︷ ︸

pj(x)

− k−j

n∏

i=1

x
βij

i

︸ ︷︷ ︸

qj(x)

, j = 1, . . . , r. (9)

Let us define the so-called reaction space coordinates as
zj = ln pj − ln qj , j = 1, . . . , r. (10)

The Hamiltonian function H is the following

H(z) =

r∑

j=1

q∗j [exp(zj)− zj − 1] , (11)

where q∗j = qj(x
∗). It can be shown that the time-

derivative of z can be written as
ż = −G(x) · HT

z (z), (12)
where HT

z is the gradient transpose of H, and

G(x) = N TΓ(x)N · F (q) · (F (q∗))−1. (13)
The components of G are the following

N ∈ R
n×r,Nij = βij − αij ,

Γ(x) = diag

[
1

x1

1

x2
. . .

1

xn

]

, (14)

F (q) = diag [q1 . . . qr] .

It is easy to see that G(x∗) is symmetric and positive
definite, therefore the Hamiltonian structure (12) is locally
dissipative around the equilibrium point.

2.4 Simple example

In order to illustrate the constructions, the following
simple nonlinear example will be used.

In the reactor we consider a set of chemical reactions

2X1 +X2

k2,1 = 1
GGGGGGGGGGGGA X1 +X3 ,

2X3

k3,1 = 1
GGGGGGGGGGGGA X1 +X3 ,

X1 +X3

k1,4 = 1
GGGGGGGGGGGGBF GGGGGGGGGGGG

k4,1 = 1
2X1 +X2 + 2X3

(15)

The reaction graph of the above chemical reaction network
is depicted in Fig. 1. The complex composition matrix and
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Fig. 1. The simple reaction graph

Kirchhoff matrix of this system are

Y =

[
1 2 0 2
0 1 0 1
1 0 2 2

]

, Ak =






−1 1 1 1
0 −1 0 0
0 0 −1 0
1 0 0 −1




 . (16)

3. COMPUTING DYNAMICALLY EQUIVALENT
REVERSIBLE REALIZATIONS WITH

INDEPENDENT REACTION VECTORS

It is a known result of the chemical reaction network
theory that the graph structure of the system (4) is
generally not unique. In this section, an optimization based
method is presented for computing reversible realization
with independent reaction vectors.

3.1 The notion of dynamic equivalence

Consider two realizations (Y (1), A
(1)
k ) and (Y (2), A

(2)
k ). We

call these realizations dynamically equivalent if

Y (1) · A
(1)
k · ϕ(1)(x) = Y (2) ·A

(2)
k · ϕ(2)(x), ∀ x ∈ R

n
+

(17)

where for i = 1, 2, Y (i) ∈ Z
n×mi are the complex

composition matrices, A(i)
k are Kirchhoff matrices, and

ϕ
(i)
j (x) =

mi∏

k

x
Y

(i)

kj

k . (18)



Most often we assume that the complex set of the two
realizations are the same, i.e. Y (1) = Y (2) = Y , that
implies ϕ(1)(x) = ϕ(2)(x) = ϕ(x).

3.2 The underlying optimization problem

In the realization computation problem of the system (4),
the matrix M and the vector ϕ(x) are given. We are
looking for a realization (Y,Ak) which fulfils some addi-
tional requirements (e.g. reversibility). When the complex
composition matrix Y is a priori known the realization
computation problem can be solved efficiently as a linear
programming problem. In that case the dynamic equiva-
lence constraint is linear in the decision variable Ak:

Y · Ak =M. (19)

The constraints of the Kirchhoff property are
m∑

i=1

[Ak]ij = 0, j = 1, . . . ,m

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i 6= j
[Ak]ii ≤ 0, i = 1, . . . ,m.

. (20)

3.3 Computing reversible realizations

Let us introduce the binary variable Θ ∈ {0, 1}m×m

to ensure the reversibility. The construction of Θ is the
following

Θij = 1 ⇐⇒ [Ak]ij > 0, ∀i 6= j. (21)

This condition can be relaxed by a MILP constraint [3]

ǫ ·Θij ≤ [Ak]ij ≤ U ·Θij , ∀i 6= j (22)

where ǫ is a small positive number and U is the upper
bound of elements Ak. Finally, the realization (Y,Ak)
is reversible if and only if the matrix Θ is symmetric.
Therefore, the last constraint is

ΘT = Θ. (23)

3.4 Independent reaction vectors

Let us consider the incidence matrix BG of a reversible
CRN with m complexes and r reversible reaction pairs. It
can be partitioned in the following way

BG = [B | −B ] (24)

where B ∈ {−1, 0, 1}m×r. The reaction vectors are in-
dependent if and only if the matrix N = Y · B has
linearly independent column vectors. It is equivalent to
the following two conditions

Ker(B) = {0} (25)

and

Ker(Y ) ∩ Im(B) = {0} . (26)

The first condition (25) is satisfied if and only if the matrix
B has m− l columns where l is the number of the weakly
connected components [12]. In the further, we assume that
the realization has only one linkage class (l = 1) for
the simplicity. These conditions can be formulated as a
MILP constraint (this is the so-called subtour elimination
constraint [4]):

m∑

i=1

m∑

j=1

Θij = 2(m− 1) (27)

∑

i∈S

∑

j∈S

Θij = 2(|S| − 1), ∀S ⊂ {1, . . . ,m} (28)

The incidence matrix of two different connected graphs
with the same number of vertices span the same vector
space [12]. Therefore, the condition (26) can be checked
before the optimization using any incidence matrix of an
arbitrary connected graph with m vertices.

3.5 Summary of the optimization problem

The presented optimization problem for determining the
requested reversible realizations has two decision variables
Ak ∈ R

m×m and Θ ∈ {0, 1}m×m. The constraints in one
block are







Y · Ak = M
m∑

i=1

[Ak]ij = 0, j = 1, . . . ,m

[Ak]ij ≥ 0, i, j = 1, . . . , m, i 6= j

[Ak]ii ≤ 0, i = 1, . . . , m
ǫ ·Θij ≤ [Ak]ij ≤ U ·Θij , ∀i 6= j
m∑

i=1

m∑

j=1

Θij = 2(m − 1)

∑

i∈S

∑

j∈S

Θij = 2(|S| − 1), ∀S ⊂ {1, . . . ,m}

(29)

where ǫ is a small positive number and U is the upper
bound of the elements Ak. Since the constraints are linear
in the decision variables, the solution of the problem can
be solved in the MILP framework.

4. THE FEEDBACK DESIGN PROBLEM AND ITS
SOLUTION

4.1 Open loop system model

Consider a set of positive polynomial ODEs that describe
the chemical reactions inside the reactor

ẋ =M · ϕ(x) (30)
with an underlying complex composition matrix Y giving
rise to ϕ(x). This implies that the above system is kinetic
in itself.

Let us open the system by an inlet consisting of component
mass flow rates vI . Then the open-loop system model
becomes

ẋ =M · ϕ(x) + xI (31)
where xI is the vector of inlet concentrations, that form
the vector of (potential) input variables, i.e. xI = u. Note
that full actuation is assumed in this case.

4.2 Kinetic feedback structure

A polynomial feedback of the form
u = ψ(x) (32)

is considered, where ψ : R
n 7→ R

n is a monomial-type
vector mapping.

In order to have a physically realizable yet simple con-
troller the following requirements are made.



(1) The monomials in the mapping ψ are the same, as
that in the open-loop system model, i.e. the complex
composition matrix of the closed-loop system is also
Y . This implies, that

u = Kϕ(x) (33)

where K ∈ R
n×m

(2) The feedback should be physically realizable, i.e.
ui ≥ 0 should hold for any i = 1, ..., n. As each
concentration is non-negative (i.e. xi ≥ 0) and each
ϕj(x) is a monomial, this requirement is fulfilled,
when

Kij ≥ 0 , i = 1, ..., n, j = 1, ...,m (34)

(3) The closed-loop system should be kinetic. This re-
quirement will automatically be satisfied by the next
requirement.

(4) The closed-loop system should have a dynamically
equivalent reversible realization in order to enable
a generalized Hamiltonian structure.

(5) The simplest possible feedback is searched for, i.e. we
want to minimize the number of reaction monomials
in the feedback (33).

4.3 The optimization problem

The closed-loop system is

ẋ = (M +K)
︸ ︷︷ ︸

M

ϕ(x). (35)

The requirements (1)-(4) of the closed-loop can be guaran-
teed by the previously presented realization computation
method with the matrix M . The only difference is that
the matrix M contains a decision variable K. Therefore,
we have to introduce some additional constraints.

First, the matrix K has only nonnegative elements

Kij ≥ 0, ∀i = 1, . . . n, j = 1, . . .m. (36)

The second constraint belongs to the requirement (5). For
this, we introduce a binary variable Φ ∈ {0, 1}n×m and

Kij > 0 =⇒ Φij = 1, ∀i = 1, . . . n, j = 1, . . .m. (37)

This condition can be translated into a MILP one [3]

Kij ≤ UfΦij , ∀i = 1, . . . n, j = 1, . . .m (38)

where Uf is the upper bound of the elments of K. Then
the number of zeros in the matrix K can be minimized by
the objective function

fobj =

n∑

i=1

m∑

j=1

Φij . (39)

5. A SIMPLE EXAMPLE

Let us consider the open-loop version of the system (16)
presented earlier in subsection 2.4

ẋ =Mϕ(x) + u (40)

where M = Y · Ak. This system with zero input does not
have reversible realization.

Before the optimization, we have to check the condition
(26). Therefore, let us introduce an arbitrary incidence
matrix of a connected graph with 4 vertices:

X
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 + X

2
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 + 2X
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Fig. 2. The reaction graph of the closed loop system

B =






−1 −1 −1
1 0 0
0 1 0
0 0 1




 . (41)

It is easy to check that Ker(Y ) ∩ Im(B) = {0}.

Then, the resulted input of the optimization is

u =

[
0 0 0 0
0.1 0 0 0
0 0 0 0

]

ϕ(x) (42)

which means that u2 = 0.1 · ϕ1(x) and the other elements
of u are zero. The closed-loop system has a reversible
realization and the reaction vector pairs are independent.
It is depicted in Fig. 2.

The equilibrium point in this case is unique with the value
x∗ = [31.6228 0.0100 3.1623]T . The components of the
Hamiltonian description of the closed loop system are the
following.

q1 = x21x2, q2 = x23, q3 = x21x2x
2
3 (43)

z1 = ln

(

0.1
x1x3
x21x2

)

z2 = ln

(

0.1
x1x3
x23

)

(44)

z3 = ln

(
x1x3
x21x2x

2
3

)

N =

[
1 −1 1
1 0 1

−1 1 1

]

(45)

NTΓ(x)N =







(
1

x1

+
1

x2

+
1

x3

) (

−
1

x1

−
1

x3

) (
1

x1

+
1

x2

−
1

x3

)

(

−
1

x1

−
1

x3

) (
1

x1

+
1

x3

) (
1

x3

−
1

x1

)

(
1

x1

+
1

x2

−
1

x3

) (
1

x3

−
1

x1

) (
1

x1

+
1

x2

+
1

x3

)








(46)

6. CONCLUSIONS

A computational method was presented in this paper to
transform polynomial systems via appropriate polynomial
feedback into fully reversible CRN form having a locally
dissipative Hamiltonian description. The method is based
on computing dynamically equivalent realizations of ki-
netic systems through mixed integer linear programming.

Further work includes the generalization of the proposed
method for the port-Hamiltonian description [24] where
the more general complex balanced case could be covered.
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