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Abstract

Mass-action kinetics is frequently used in systems biology to model the behaviour of interacting
chemical species. Many important dynamical properties are known to hold for such systems if their
underlying networks are weakly reversible and have a low deficiency. In particular, the Deficiency
Zero and Deficiency One Theorems guarantee strong regularity with regards to the number and
stability of positive equilibrium states. It is also known that chemical reaction networks with
distinct reaction structure can admit mass-action systems with the same qualitative dynamics. The
theory of linear conjugacy encapsulates the cases where this relationship is captured by a linear
transformation. In this paper, we propose a mixed-integer linear programming algorithm capable
of determining the minimal deficiency weakly reversible reaction network capable of admitting a
mass-action system which is linearly conjugate to a given reaction network.

Keywords: chemical kinetics; stability theory; weak reversibility; linear programming; dynamical
equivalence

1. Introduction

A chemical reaction network is given by sets of chemical reactants reacting to form sets of chem-
ical products. Under suitable assumptions, such as mass-action kinetics and spatial homogeneity,
the time evolution of the concentrations of the chemical species can be modeled by a set of au-
tonomous polynomial ordinary differential equations. Such mass-action systems are frequently used
to model systems in systems biology and other areas of computational biology [27, 37, 38].

The systematic study of chemical reaction networks and their related mass-action systems was
initiated in 1972 in the papers [6, 15, 17]. In [17], the authors presented a condition on the positive
equilibrium concentrations, called complex balancing, which is sufficient to guarantee that within
each linear invariant space of the mass-action system there exists a unique equilibrium concentration,
and that this concentration is locally asymptotically stable relative to its invariant space. In [6]
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and [15], the authors related the capacity of a network to admit systems which exhibit complex
balancing to a nonnegative network parameter called the deficiency. In particular, they showed
that mass-action systems with the same underlying network are complex balanced for all sets of
rate constant values if and only if the network is weakly reversible and has a deficiency of zero.
This deficiency-oriented approach to analysing chemical reaction networks has since been applied
to a wide variety of biochemical systems, including enzymatic models, signal transduction, and
phosphorylation networks [30, 31, 23, 4, 25].

It is also known that many qualitative properties of the dynamics of mass-action systems can
be shared by systems with distinct network structure. The most thorough study of dynamical
equivalence, the property that two mass-action systems with distinct reaction network structure
give rise to identical governing dynamics, was conducted in [2]. (This property of networks has
been known since at least the 1970’s and was termed macro-equivalence in [17], non-uniqueness of
rate constants in [22], and confoundability in [2].) In [19], dynamical equivalence was extended to
linear conjugacy, whereby the trajectories of two mass-action systems could be related by a non-
trivial linear transformation. The problem of determining dynamically equivalent systems with the
greatest and fewest number of reactions was placed in a mixed-integer linear programming (MILP)
context in [33]. This methodology has since been extended to detailed and complex balanced
systems [34, 35], weakly reversible networks [36, 21], and linear conjugate systems [21, 20].

Linear conjugacy effectively creates classes of mass-action systems which, despite distinct net-
work structure and properties, have equivalent qualitative dynamics in terms of number and sta-
bility of equilibria, boundedness/persistence or trajectories, and dimension of invariant spaces. A
long-standing problem in chemical reaction network theory, first stated in [14], is to “... look for a
mechanism in a class of mechanisms with a given - chemically relevant - property. Such a property
may be conservativity, (weak) reversibility, zero deficiency or just structural stability as well.” In
this paper, we use linear conjugacy and MILP methods to address this challenge for the class of
weakly reversible networks where the structural property of interest is the deficiency.

In general, we will be interested in mass-action systems within the class of all linearly conjugate
systems for which the underlying reaction network has the minimal deficiency. This is due to the
observation that mass-action systems generally exhibit more regular dynamics (e.g. fewer steady
states, lower capacity for oscillations, etc.) when the underlying networks have a lower deficiency
than a higher deficiency [6, 15, 10, 8]. We therefore modify the existing MILP framework to
compute linearly conjugate systems for which the underlying network is weakly reversible and has
the minimal deficiency. The methodology is based on known properties of the kernel of the kinetics
matrix of a mass-action system for which the underlying reaction network is weakly reversible.

2. Background

In this section we present terminology and notation relevant to the study of chemical reaction
networks. We introduce the notion of the deficiency of a network and a few classical results which
relate the deficiency of a network to the dynamics of the network’s corresponding mass-action
systems. We also introduce the notion of two mass-action systems being linearly conjugate.

2.1. Chemical Reaction Networks

The chemical species or reactants of a network will be given by the set S = {X1, Xo,..., X, }.
The combined elements on the left- and right-hand side of a reaction are given by linear combinations



of these species. These combined terms are called complezes and will be denoted by the set C =
{C1,C4,...,Cy} where

n
CZ‘:E ainj, i:l,...,m
j=1

and the «;; are nonnegative integers called the stoichiometric coefficients. The complex with all
stoichiometric coefficients equal to zero will be called the null complexr and denoted by C; = (). We
define the reaction set to be R = {(C;, C;) | C; reacts to form C;}. The property (C;, C;) € R will
commonly be denoted C; — C;. The triplet N' = (S,C,R) will be called the chemical reaction
network.

The above formulation naturally gives rise to a directed graph G(V, E) where the set of vertices
is given by V = C and the set of directed edges is given by E = R. That is to say, if we are given
the set of elementary reactions

X1 — X2
XQ — X3+X4
X3+X4y — X4

we will prefer to express the network with each stoichiometrically distinct complex appearing only
once as
X — X
N (1)
X3+ X4

In the literature this has been termed the reaction graph of the network [17]. In this setting, a
linkage class is a maximally connected set of complexes, that is to say, two complexes are in the
same linkage class if and only if there is a sequence of reactions in the reaction graph (of either
direction) which connects them. We will denote by ¢ the number of linkage classes in a network.
A reaction network is called weakly reversible if C; — C; for any C;, C; € C implies there is some
sequence of complexes such that C; = C,1) = Cp2) = -+ = Cy-1) = Cpuqy = Ci. The network
given in (1) is weakly reversible and has a single linkage class so that £ = 1.

A directed graph is called strongly connected if there exists a directed path from each vertex
to every other vertex. A strongly connected component of a directed graph is a maximal set of
vertices for which paths exist from each vertex in the set to every other vertex in the set. A
strongly connected component is called terminal if there is no reaction leading from a vertex in the
strongly connected component to a vertex not in the component. For a weakly reversible network,
all strongly connected components are terminal, and they correspond to the linkage classes of the
reaction graph.

We would like to ascribe a kinetics to the chemical reaction network N which will control
how the species concentrations evolve over time. A commonly used choice is mass-action kinetics,
whereby the rate of each reaction is assumed to be proportional to the product of the reactant
concentrations, e.g. the rate of the reaction X; + Xo — X3 is given by [rate] = k[X1][X3] where
k > 0 is a proportionality constant [13, 17]. Other common choices, especially in biochemistry, are
Michaelis-Menten kinetics [24] and Hill kinetics [15]. In this paper, we will focus exclusively on
mass-action kinetics.

We now make the connection between a chemical reaction network A" and mass-action kinetics.
We start by assigning to each (C;, C;) € R a positive rate constant k(i,j) > 0. For each (C;, C;) ¢ R



we will set k(i,7) = 0. We let x = [x1 22 -+ ,]T denote the vector of species concentrations and
denote by W(x) € RZ, the vector given by

n
Y] s
\Ilj(x):HxE ] , j=1,...,m. (2)

i=1

The entries of ¥(x) are the mass-action terms disjoint from their corresponding rate constants. The
rate constants instead appear in the Kirchoff /kinetics matrix Ay € R™*™ given by

I _Zln;l,l;éik(ivl)a if 1=y s
[Ak]w{ k(7.9) i it ,j=1,...,m. (3)

Due to the correspondence between elementary reactions (C;, C;) € R and the non-zero rate con-
stants k(i,7) > 0, the structure of the network’s reaction graph can be determined by considering
the distribution of positive and zero entries in the off-diagonal elements of Ay. Finally, we define
the complex matriz Y € ZZ5™ to be the matrix with entries [Y];; = «j;. The complex matrix
keeps track of how the species X7, ..., X,, are embedded in the complexes C1,...,Cy,.

Following the derivation of equation (2-28) of [17], the system of differential equations governing
the evolution of species concentrations over time under mass-action kinetics can be given by

dx

T =Y A ¥ (x). (4)
A chemical reaction network endowed with the mass-action kinetics (4) will be called a mass-action
system and denoted by the quadruple M = (S,C, R, k) where k is the set of specified rate constants.

Since mass-action kinetics is the only kinetics considered in this paper, we will consider a chem-
ical reaction network N' = (S,C,R) to be a super-set of the mass-action systems M = (S,C, R, k).
That is to say, we will think of chemical reaction networks as the set of all mass-action sys-
tems M with specified network structure. Since two mass-action systems M = (S,C, R,k) and
M' = (8,C,R,K’) can possess wildly disparate behaviour despite having the same underlying re-
action network N' = (S,C,R), it will be important to distinguish between dynamical results which
hold for all mass-action systems M with a particular network structure N and those which hold
for only some.

The behaviour of solutions of (4) can be further understood by consideration of the reaction
vectors

- Y], —[Y]. for (C;,C;) € R
K 0 otherwise

where [Y].; denotes the ith column of Y. The span of the vectors is called the stoichiometric
subspace and is denoted by S = span{v;; | (C;,C;) € R}. We will denote the dimension of S by
s = dim(S). Tt is clear that the right-hand side of (4) is contained in S so that the vector field
always directs trajectories within an affine translation of S. It can be shown that trajectories are
restricted to the stoichiometric compatibility classes (xo +5) NRZ, [17, 39].

2.2. Complex Balanced Mass-Action Systems and Deficiency

The structure of the reaction graph of a chemical reaction network N plays an important role
in determining the dynamical behaviour of the network’s admissible mass-action systems M.

A particularly important structural parameter of a chemical reaction network is the deficiency,
which was introduced in [15, 6] and has been studied extensively since [7, 11, 8, 29].



Definition 2.1. The deficiency of a chemical reaction network N = (S,C,R) is given by
d=m—~0—s

where m is the number of stoichiometrically distinct complexes, £ is the number of linkage classes,
and s is the dimension of the stoichiometric subspace.

The deficiency is strongly related to the capacity for a network A/ to admit mass-action systems
M with complex balanced equilibrium concentrations. It may only take on nonnegative integer
values [6].

Definition 2.2. An equilibrium concentration x* € RZ, of a mass-action system M is called a
complex balanced equilibrium concentration if

Ak . \IJ(X*) =0.

A mass-action system is called complex balanced if every equilibrium concentration is a complex
balanced equilibrium concentration.

It is known that if a mass-action system is complex balanced at one equilibrium concentration then
it is complex balanced at all of them (Theorem 6A, [17]). Consequently, a mass-action system for
which any equilibrium concentration is complex balanced is a complex balanced system.

The following results relate the deficiency of a chemical reaction network to its capacity to admit
complex balanced mass-action systems (see Theorem 4A of [15] and Theorem 4.1 of [6]). Theorem
2.1 is a special case of Theorem 2.2, taking the deficiency to be zero. We state it separately, however,
due to its historical importance.

Theorem 2.1 (Deficiency Zero Theorem). Every mass-action system admitted by a chemical
reaction network is complex balanced if and only if the network is weakly reversible and has a
deficiency of zero.

Theorem 2.2. If a chemical reaction network is weakly reversible, then the deficiency corresponds
to the number of algebraically independent conditions on the rate constants which need to be satisfied
in order for a corresponding mass-action system to be complex balanced.

Predictable dynamical properties are known to follow from complex balancing; in particular,
the following was proved in [17].

Theorem 2.3 (Theorem 6A and Lemma 4C, [17]). If a mass-action system M is complex
balanced then there exists within each positive stoichiometric compatibility class exactly one equi-
librium concentration, and that equilibrium concentration is locally asymptotically stable relative to
its compatibility class.

The surprising implication of Theorem 2.1 and Theorem 2.3 is that we can know very strong
properties about the equilibrium set of a mass-action system based on structural properties of the
underlying chemical reaction network alone. In other words, the results hold regardless of the
values of the rate constants. This is particularly important for biological examples, where the
relevant rate constants are frequently difficult to obtain or measure. In cases where the deficiency
is nonzero, supplemental conditions on the rate constants are required to bridge the gap from weak
reversibility to complex balancing. Theorem 2.2 tells us that we are more likely to be interested



in mass-action systems where the underlying network has a lower deficiency, since networks with
a lower deficiency permit more mass-action systems exhibiting complex balancing (and the regular
dynamics guaranteed by Theorem 2.3) than networks with a higher deficiency.

A result which further relates the deficiency of a chemical reaction network to properties of the
equilibrium set of the corresponding mass-action systems is the following, which can be found in
[10]. Tt is worth noting, once again, that a lower deficiency generally guarantees more predictable
behaviour than a higher deficiency. (Further work investigating the capacity of deficiency one
networks to admit mass-action systems which exhibit multistability was presented in [8].)

Theorem 2.4 (Deficiency One Theorem). Consider a chemical reaction network N with defi-
ciency & and linkage classes L1,...,Ly. Let 6;, 1 = 1,...,£, be the deficiency of the linkage class
L; considered as its own subnetwork. Suppose that

1. 6; <1, fori=1,...,¢
2. Zle d; =6; and
3. each linkage class contains only one terminal strongly connected component.

Then, if a mass-action system M admitted by N has a positive equilibrium concentration, there
18 exactly one equilibrium concentration in each positive stoichiometric compatibility class of the
system. Furthermore, if N is weakly reversible, then every mass-action system admitted by the
network has a positive equilibrium concentration.

2.8. Linearly Conjugate Networks

It is possible for two mass-action systems to give rise to the same governing kinetics (4); inter-
estingly, this can occur even when the underlying network structures are different. For example,
the mass-action systems

1
M: 2X; = 2X, (5)
1
and
M:o2X) 52X, 2 X+ Xo (6)
both generate the dynamics @7 = —2x1 + 2x9, &2 = 221 — 225 under (4). We can see that, while

the networks N and N’ underlying M and M’ share several qualitative features, they also have
many fundamental differences, e.g. N is weakly reversible while N is not; A/ contains the complex
X1+ X5 while does not, etc. In spite of these structural differences, however, it nevertheless follows
that M and M’ exhibit identical dynamical behaviour as a result of sharing the same governing
kinetics.

Two mass-action systems which give rise to the same mass-action kinetics (4) are said to be
dynamically equivalent. Two dynamically equivalent mass-action systems M and M’ are alterna-
tively said to be realizations of the kinetics (4), although it is sometimes preferable to say that
M is an alternative realization of M’ or vice-versa [34]. (This phenomenon has long been known
and has also been called macro-equivalence in [17], non-uniqueness of rate constants in [22], and
confoundability in [2].) The most complete analysis of dynamical equivalence to date was conducted
in [2], where the authors considered the question of whether a network structure could be uniquely
determined based on information about the mass-action kinetics. The authors give necessary and
sufficient conditions under which two chemical reaction networks N and A can admit mass-action
systems M and M’ respectively, which are dynamically equivalent. (A technical correction to the
main result of [2] was made in [32].)



In [19], the notion of dynamical equivalence was extended to linear conjugacy, whereby the
trajectories of two mass-action systems could be related by a non-trivial linear transformation. For
completeness, we include the formal definition of linear conjugacy as presented in [19]. We will let
®(xg,t) denote the flow of (4) associated with M and W(xg,t) denote the flow of (4) associated
with M.

Definition 2.3. Two mass-action systems M and M’ are said to be linearly conjugate if there
exists a bijective linear mapping h : RZ, — RZ, such that h(®(xg,t)) = ¥(h(xo),t) for all xg €

n
>0-

It is known that a bijective linear transformation h : R%; — RZ, can consist of at most positive
scaling and reindexing of coordinates (Lemma 3.1, [19]). Consequently, when consideringly linearly
conjugate systems, it will be sufficient to consider transformations of the form h(x) = Tx where
T =diag{c} for ¢ = [c1 ¢z -+ ]’ € RZ,. The components of ¢ will be called the conjugacy
constants.

Conditions which guarantee linear conjugacy are known. We now state the main result of [19];
to accommodate the notation used in this paper, however, we state the result as it appears in a
later paper [21].

Theorem 2.5 ( Theorem 3.2 of [19]; Theorem 2 of [21]). Consider a mass-action system M
(8,C,R,k) and a chemical reaction network N = (S,C',R’'). Let Y be the complex matriz consist-
ing of the union of the complexes contained in either C or C' and let Ay denote the kinetics matriz
corresponding to M. Suppose that there is a kinetics matriz Ay, corresponding to a mass-action
system admitted by N and a vector ¢ € RZ such that

Y -Ay=T Y- A4 (7)

where T =diag{c}. Then M is linearly conjugate to the mass-action system M’ admitted by N’
which has the kinetics matrix given by

A, = Ay - diag{¥(c)}. (®)

Theorem 2.5 gives conditions under which a mass-action system M can be shown to be linearly
conjugate to a mass-action system M’ within a specified network structure N”. If the conditions
can be satisfied (i.e. a ¢ € RZ, and kinetics matrix A, satisfying (7) can be found) then Theorem
2.5 tells us a linearly conjugate network M’ = (S,C, R,k’) exists and the rate constant set k' can
be determined according to (12).

An important property of linear conjugacy is that, if a mass-action system M is linearly conju-
gate to another mass-action system M’ which has known dynamics, properties such as number and
stability of equilibria, persistence/boundedness of trajectories, and dimension of invariant spaces are
easily transferred to M (Lemma 3.2, [19]). In particular, if the dynamics of M’ can be determined
by the underlying network structure A, as in Theorem 2.1 and Theorem 2.4, then this behaviour
is transferred to M even if the underlying network structure N is not sufficient to guarantee such
behaviour by itself. For example, consider the networks

k
X1 Lo Xo
ko

2X2 — 2X1

N



and

k1
N/S X1 = 2X2
ks
These networks give rise to the dynamics 27 = —kiz1 + 2k2x§, To = kix1 — 2k2x§ and ;1 =

—kjmy + khad, 92 = 2kjx1 — 2kba3, respectively. These systems are not dynamically equivalent
for any rate constant choices; however, it can be easily checked that every mass-action system
M admitted by N is linearly conjugate to a mass-action system M’ admitted by N’ under the
transformation yq (t) = x1(¢), y2(t) = 222(¢) (that is to say, taking conjugacy constants ¢; = 1 and
co = 2). Since N is weakly reversible and has a deficiency of zero, it follows by Theorem 2.1 that
every mass-action system admitted by N satisfies the restrictive dynamics guaranteed by Theorem
2.3. It follows that every mass-action system M admitted by N exhibits the same restrictive
dynamics even though the network is neither weakly reversible nor deficiency zero.

In general, we are not given a network structure N within which to search for linearly conjugate
mass-action systems. This raises the question of how to find the network structure N underlying
the linearly conjugate mass-action system M’ when only the original system M is given. This
question was first addressed for dynamically equivalent systems in [33]. In that paper, the authors
presented a mixed-integer linear programming (MILP) procedure capable of determining, within
the class of mass-action systems with a fixed complex set, a dynamically equivalent system with
the greatest and fewest reactions (terms the sparse and dense realization, respectively). This MILP
framework was extended to search for complex balanced and detailed balanced realizations in [35]
and realizations for which the underlying network structure is weakly reversible in [36].

This methodology was extended to linearly conjugate networks in [21] and [20]. Given a mass-
action network M and a fixed complex set C (and the associated kinetics matrix A € R™*™ and
complex matrix Y € ZZ3™), we can restrict our feasible region to the space of mass-action systems
M’ which are linearly conjugate to M and have complex set C with the linear constraint set

Y A =T"' M
[Ab]ij:O; jzl,...,m
(LC) i=1 (9)
OS[Ab]ijSI/Ea 7’7‘7:1’amal7é‘7
[Ab]ZZS(L izl,...,m
e<c;<lle, j=1,...,n

where 0 < € < 1, and the matrices M € R"*™ and T' € R™*" are given by:

M = Y-A;, and (10)
T diag {c}. (11)

The kinetics matrix for the linearly conjugate mass-action system M’ can then be constructed from
Ay € R™*™ and ¢ € R, by the relation

Al = Ay - diag {T(c)} . (12)

Finding a network satisfying (9) and then solving (12) is sufficient to determine a mass-action
system M’ which is linearly conjugate to M via the transformation h(x) = T~ 'x.
There are several important observations to make about the constraint set (9):



1. The given mass-action system M and underlying network A will be called the original system
and the original network, respectively. The linearly conjugate system M’ and its underlying
network N’ will be called the target system and target network, respectively.

2. The complex set C, and consequently the complex matrix Y € ZZ5™, must be specified before
any optimization procedure may begin, but it is not immediately obvious how this specification
should be done. It is common in the literature to initialize the complexes set C as the union
of the reactant and product complexes from the original network A [33, 34, 36, 21]. This
choice is not the only or necessarily the best which could be made, and for some systems it is
beneficial to add additional complexes [20]. At any rate, it is possible for different initiations
with different complex sets to give mass-action systems with different underlying network
structures. Consequently, it is important to recognize that the constraint set (9) is over the
space of systems M’ which are linearly conjugate to M for a fized complex set only.

3. While the matrix A, does not exactly correspond to the kinetics matrix Aj of M’, the
matrix has the same structure as A). Consequently, the chemical reaction network N’ can be
determined from consideration of the structure of Ap. It is sufficient, therefore, to impose on
Ap network properties of A/ such as weak reversibility, minimal deficiency, etc.

4. There is no guarantee a prior: that all the complexes assigned to Y will be present in the
network A’ underlying M’. Without further clarification, therefore, the value m may be
different in the linear conjugacy constraints (9) than that in Definition 2.1. We will avoid
this notational difficulty by expanding the definition of the network A/ to include all of the
complexes initialized in Y; that is to say, we will allow complexes to be in N’ even if they
are not the reactant or product complex for any reaction in N’. We will see in Section 3.1
that expanding the definition of a chemical reaction network does not pose a problems when
determining the deficiency of the network N”.

3. Minimal Deficiency Networks

We saw in Section 2.2 that many properties of the equilibrium set of a mass-action system M =
S,C, R, k) can be related to the value of the deficiency of the underlying chemical reaction network
N = (S,C,R). Theorem 2.1 and Theorem 2.2 show that weakly reversible networks with lower
deficiency permit more complex balanced mass-action systems (which have the restrictive dynamics
guaranteed by Theorem 2.3) than ones with higher deficiency. Theorem 2.4 gives conditions under
which a reaction network with a nonzero deficiency can still be guaranteed to permit only mass-
action systems with a unique positive equilibrium concentration in each compatibility class.

In both of these cases, we find that for mass-action systems with underlying network structures
which are weakly reversible, a lower deficiency is more likely to be indicative of predictable dynamics
than a higher deficiency. In cases where a mass-action system is linearly conjugate to multiple mass-
action systems with underlying network structures which are weakly reversible, we are likely to be
most interested in the system corresponding to the underlying network with the minimal deficiency.
In this section, we develop a mixed-integer linear programming procedure capable of determining
linearly conjugate mass-action systems whose underlying reaction network is weakly reversible and
has the minimal deficiency.

8.1. Parameters of Interest

We recall that, according to Definition 2.1, the deficiency of a chemical reaction network depends
on three structural parameters of the reaction network: the number of stoichiometrically distinct
complexes m, the number of linkage classes ¢, and the dimension of the stoichiometric space s.



In order to avoid ambiguity with the value m used to represent the number of potential complexes
in the linear constraints (9) and the value in Definition 2.1, we allow the network A" underlying the
target system M’ to contain complexes which do not correspond to the reactant or product complex
of a reaction in N/. These unused complexes will appear in the reaction graph as isolated nodes.
For example, if we initialize the complex set {2X7,2X5, X1 + X2} and find the desired network N’
only contains the complexes {2X7,2X5} as in (5), we will represent the underlying network as

y 2X; &= 2X,

N X1+ Xo
We can see that each unused complex in this setting corresponds to a linkage class in itself and
this linkage class is trivially strongly connected. Consequently, including these unused complexes
in A" will not change the value of the deficiency of N, since the increase to m will be offset by a
corresponding increase in £ in Definition 2.1. (In other words, the deficiency of the network above
is zero whether we include {X; + X2} as its own trivial linkage class or exclude it from the network
entirely.) Including these unused complexes will also not alter properties related to the reversibility
of the network.

In order to minimize the deficiency within a linear programming framework, we need to find
a way to quantify the parameters m, ¢, and s. Since we will restrict the target system M’ to
have an underlying network A which is weakly reversible, the largest invariant linear space of M’
will correspond to the dimension of the stoichiometric space s of the underlying network A’ (see
Corollary 1 of [16]). Furthermore, since linear conjugacy preserves the dimension of invariant linear
spaces of mass-action systems, it follows that s is given by the dimension of the largest invariant
linear space of the original system M. (It is worth noting that this many not, and need not,
correspond to the dimension of the stoichiometric space of the original network A" underlying M
(see Example 2 of [19]).) We also notice that the value of m corresponds to the number of potential
complezes and is consequently determined prior the optimization procedure.

It follows that, in order to minimize the deficiency of the network AN’ underlying a linearly
conjugate target system M’, it is sufficient to maximize £. In other words, we need to maximize the
number of linkage classes of N/, where we allow that each unused complex will correspond trivially
to its own linkage class.

3.2. Counting Linkage Classes

We need to keep track of the number of linkage classes £ of the target network A/’. In general,
this is a difficult task; however, we are aided by the following result.

Theorem 3.1 (Appendix of [16]). Let Ay be the kinetics matriz of a mass-action network M
and let A;, i = 1,...,4, denote the support of the it" linkage class of the underlying network N .
Then the reaction graph corresponding to Ay is weakly reversible if and only if there is a basis of
ker(Ag), {b(l), ..,bO}, such that, fori=1,...,¢,

) ]EAZ

. 0
B : (13)

It is easy to see that, for a mass-action system with an underlying network which is weakly reversible,
the dimension of ker(Aj) given by Theorem 3.1 corresponds to the number of linkage classes.
Consequently, the parameter ¢ here coincides with the earlier usage.

10



When applying Theorem 3.1, it is typical to assume that the kinetics matrix A corresponds to a
network where every complex appears on either the reactant or product side of at least one reaction.
It is easy to extend this to the case where complexes are not used by the reaction network by noting
that any unused complexes will contribute an element to ker(Ay) satisfying (13) corresponding to a
single positive value in the coordinate corresponding to the unused complex and zeroes elsewhere.
In other words, for weakly reversible networks with unused complexes, we can extend the basis of
ker(Ay) by considering unused complexes as their own linkage classes. Throughout this section,
we will allow ¢ to correspond to both traditional linkage classes containing several complexes and
unused complexes.

Theorem 3.1 implies that for a weakly reversible network, the supports of the basis elements of
ker(Ay) represent a complete partition of the set {1,...,m}, that is to say, we require

Ak:1 ﬂAkz :@, for all ki,ko =1,...,0, k1 # ko
4

UAx=1{1,...,m}. (14)
k=1

The value of ¢, however, is not known; in fact, it is what is to be determined through the
procedure. In order to implement this into a computational framework, therefore, we need to
determine an upper limit for the number of possible supports A;. We recall that the deficiency is a
nonnegative parameter, so that we have § = m—/¢—s > 0 [6, 15]. Consequently, we have £ <m —s
and therefore may use m — s as an upper bound for ¢. It is also clear that the deficiency will be
zero if and only if this upper bound is attained.

We now introduce the binary variables v;, € {0,1}, fori =1,...,m, k= 1,...,m — s, defined
according to

|1, ifi e Ay
7*_{0, itid Ay (15)
The variables ;. keep track of how the supports of the basis vectors in ker(A) according to (13)
partition the set {1,...,m}. For weakly reversible networks, this corresponds to an assignment

between the complexes and the linkage classes by Theorem 3.1. In other words, 7;; = 1 if and only
if C; € L.

We also introduce variables 0, € [0,1], k = 1,...,m — s, defined according to
1 ifsupp(Ag) £ 0
O = { 0, if supp(Ag) = 0. (16)

The variables ), keep track of whether the kth partition of {1,...,m} is empty or nonempty. It
should be noted that, while we would like the €;’s to count the number of non-empty supports,
and are therefore interested in only the values 6 = 0 and 6 = 1, it will be possible to relax the
integrality of the 0;’s to vary continuously within the range [0, 1]. This will be justified in Section
3.5.
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In order to accommodate the complete partition requirements (14) as linear constraints, and to
accommodate (16), we impose

m—s
Z’Yz’kzl, i=1,....m
k=1

> vik—etp >0, k=1,....m—s
(CP) i=1 (17)
“ 1
—Zerfekzo, k=1,....m—s
€
k=1
vit € {0,1}, i=1,....mk=1,....,m—s
0L €10,1], k=1,...,m—s.

where 0 < € < 1 is sufficiently small and can be chosen to be the same as in (9).
The first constraint set guarantees that each complex appears in exactly one partition. The
second two constraint sets of (17) correspond to the constraint

“ 1
0<ef < E Vi < =0
€
im1

which keeps track of whether the kth partition is empty or nonempty. If no element is in the kth
partition, then the sum is zero, which forces 6 to be zero (first inequality). If there is an element
in the kth partition, then the sum is nonzero, which forces 6 to be nonzero (second inequality).
An argument in Section 3.5 will allow us to conclude that any nonzero 6, must be one, so that this
fulfills the requirements of (16).

3.8. Constructing the Kernel

We still need to guarantee that the sets Ay considered in Section 3.2 correspond to the supports
of vectors in ker(A4p) which satisfy (13). In other words, we need to restrict ourselves to sets A;,
i=1,...,¢, where there exists a b(*) satisfing (13) and

A, -bD =0, i=1,...,¢ (18)

We follow the technique outlined in the paper [21] for determining weakly reversible networks.
We define a matrix ® € R™*™ with entries

(I)ij = [Ab]ij . bj (19)

where b = 2221 b*) and {b(l)7 . 7b(é)} is any set of vectors satisfying (13) and forming a basis
of ker(A4p). We can see that the system of non-linear equations (18) is satisfied if and only if the
system of linear equations

d =0, foralli=1,....,mk=1,...,¢ (20)
JEAK

is satisfied.
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We know that ® is a kinetics matrix since A, is and (19) preserves this property. That is to

say, we have
m

d =0, foralli=1,...,m (21)
j=1
and
®;; >0, forallé,j=1,...,m,i#].

Consequently, we can solve the diagonal elements of ® in (21) and substitute them into (20) to get
the simplified constraint set

m
S 0y =>4, fori=1,....mk=1,...L (22)
JEAK Jj=1
j#i j#i

We need to derive linear constraints capable of constructing a matrix ® according to (19) which
satisfies (22) and has the same structure as A,. This is made more challenging than the case
considered in [21] by the requirement that the kernel vector b in (19) decompose according to the
partitions Ag, k=1,...,4.

We notice first of all that we do not know how many partitions Ax we will need, so we will
take the upper bound m — s on the number of partitions (see Section 3.2). We also notice that
the construction (19) requires that ®;; = 0 for any 7 and j such that i € Ay and j ¢ Ay, for some
k=1,...,m—s. That is to say, we do not permit reactions to occur between complexes in different
linkage classes. This can be accommodated by noticing that, if two indices ¢ and j are on the same
support Ay, then we will have v, —vjx = 0 for all k =1,...,m — s, where as if 7 and j are not on
the same support Ay, we will have ;1 — ;5 € {—1,0,1} and attain the value —1 for at least one
k. Consequently, we can accommodate this requirement with the linear constraints

O < 1/e(vik — vk + 1),

. ., (23)
fori,j=1,....mi#jk=1,...,m—s.

We can accommodate (22), (23), and the requirement that ® have the same structure as Ay,
with the linear constraint set

PILEDILY

=1 1=1

16 I£i

Qij < —(Vik — vk +1
(Ker) J (’Y k IYJk )
D, >

®,; <

i7j:15-~-am,i7éj, kzl,...7m—s_

Notice that (22) can be generalized to the first constraint in (24) because of the imposition that
®,;; =0 for any [ & Ay in the left sum. This is guaranteed by (23).

13



8.4. Uniqueness of Solution

The constraint sets (9), (17), and (24), form the basis of a mixed-integer linear programming
(MILP) problem. The problem is mixed-integer due to the non-continuous binary variables ~v;,
i=1,...,m,j=1,...,m—s, which keep track of how the complexes are assigned to the partitions.

MILP problems are known to NP-hard and are generally approached by a branch-and-bound
method (for an accessible introduction to branch-and-bound methodology, see [12, 26]). One well-
known complicating factor for branch-and-bound methods is non-uniqueness of the integer portion
of the problem. There is nothing in the constraint sets (17) which guarantee a unique assignment
of the complexes to partitions. That is to say, a linkage class could be assigned to the first partition
as easily as the second or third. Consequently, we would like to introduce further constraints which
guarantee a unique partitioning structure for the optimal solution.

An intuitive way to structure the partitioning variables v, is to always assign the first complex
to the first partition, and then to assign each subsequent free complex to the next available partition.
That is to say, if the second complex is not in the same partition as the first complex, it will be
assigned to the second partition. If it is in the same partition as the first complexes, but the third
is not, then the third complex will be assigned to the second partition.

This unique partition structure can be guaranteed by the linear constraint set

(U) Z’ij > Z Vit (25)

I=k+1
z_1,...,m,k—1,...,m—s,k§z’.

This constraint set guarantees that, in ascending order, each complex which is assigned to a
new partition is assigned to the unused partition with the lowest index. It does so in the following
way:

1. For the case i = k = 1, the left sum in (25) is empty and therefore returns a value of zero.
This forces y1; = 0 for [ = 2,...,m — s, which forces 117 = 1 by the first condition of (17). In
other words, the first complex is always assigned to the first partition.

2. The left sum in (25) is zero for ¢ = k = 2, which forces v5; = 0 for j = 3,...,m —s. This
forces the second complex to be assigned to either the first partition or the second partition
by (17), depending on whether it is grouped with the first complex or not.

3. Following an induction on the complexes as i = 3,..., m, we can see that the constraint (25)
corresponding to the ¢th complex and the first unused partition will always guarantee this
complex may not be assigned to a partition of a higher index than the first unused partition.
Consequently, if it not grouped with an earlier complex, it must be assigned the index of the
next available partition.

4. Tt is easy to see that the conditions (25) are satisfied for all of the entries not corresponding
to leading ones, so that we are done.

8.5. Minimizing the Deficiency

We know that minimizing the deficiency § is equivalent to maximizing the number of linkage
classes £, where we include the unused complexes as linkage classes unto themselves.

In Section 3.2 we introduced variables 0, € [0,1] ,k = 1,...,m—s, according to (16) to keep track
of the number of partitions Ay of {1,...,m} which corresponded to vectors in ker(A;) satisfying
(13). We have no guarantee, however, that these sets correspond to a complete basis of ker(Ap)
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since any two vectors in ker(A) satisfying (13) can be added to one another to produce another
vector in ker(Ap) also satisfying (13). (This corresponds to multiple linkage classes being placed on
the same support Ag.) We also have no guarantee that the 0;’s will properly enumerate the number
of basis elements of ker(A,) since any 6y, corresponding to a nonempty support may attain a value
anywhere between zero and one, and not just the value of one.

We need to guarantee that the sum of the 6j’s corresponds to the maximal partition of {1,...,m}
and that each 6 attains a value of one when it corresponds to a nonempty support. Consider the
objective function corresponding to maximizing the number of linkage classes, which corresponds
to minimizing the deficiency. We have

m—1
(Min Def) { minimize Z —0s (26)
k=1

over the constraint sets (9), (17), and (24). We notice that this objective function guarantees
that, if a 0 is in between zero and one, it will attain the value one and that a maximal partition
of {1,...,m} will be chosen, because in both cases such a situation is more optimal than the
alternative. In other words, the 6;’s count the number of linkage classes when (26) is imposed.

If the off-diagonal elements are solved for in (9), the algorithm presented here for finding a
weakly reversible network with minimal deficiency which is linearly conjugate to a given network
contains m(2m — 1) + n — s continuous decision variables and m(m — s) binary decision variables.

It should be noted that a linearly conjugate system whose underlying reaction network has a
maximal deficiency cannot be obtained in the same fashion as outlined here. This is due to having
to maximize the sum in (26) in order to make the correspondence between the sum of the 6;’s and
the value of £. Without this step, we could not rule out linkage classes clumping together onto the
same support in ker(Ag).

4. Examples

We now introduce a few examples which illustrate the methods presented in this paper. All
computations are performed on the primary author’s personal-use Acer laptop (AMD Athlon II
Neo K125 Processor 1.70 GHz, 4 GB RAM).

Example 1: We propose the following network. Consider a substrate which can bind to an enzyme
T at one of three binding sites and let Thgg, 1010, and Tpp1 denote the enzyme with the substrate
bound at the first, second, and third binding site, respectively. Suppose that binary collisions
between the substrates can cause a spontaneous shift in the substrate from one binding site to
another, but no transfer of substrate from one bound enzyme to another. This web of interactions
can be visualized by the network in Figure 1.

This network is weakly reversible and has a deficiency of three (m = 6,¢/ = 1,s = 2, § =
m — ¢ —s = 3). Due to the high deficiency, we may not apply Theorem 2.1 or Theorem 2.4;
however, since the network is weakly reversible, we may apply Theorem 2.2. This tells us that
there are three algebraically independent conditions on the rate constants which must be satisfied
in order for a mass-action system admitted by the network to be complex balanced and therefore
fall within the scope of dynamics guaranteed by Theorem 2.3. If we set C; = 27199, Co = 21010,
03 = 2T001, 04 = TlOO —|—T010, 05 = T100 —|—T001, and 06 = TOlO +T001, then the required conditions
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2T,
Ti00+ Toos ﬁ Ti00+ Toro

N 7N

2T g5 —~< To1o+ Too1 ﬁ 2T o1

Figure 1: Network of singularly bound enzymes with three binding sites. Interactions between the enzymes allow
transfer of substrates from one binding site to another.

are K1 Ky = K3, K1 K3 = K2, and K;K3 = K2, where K; is the absolute value of the (i,4) minor
of Ag. (For details, see [1].)

We might wonder what additional behaviour is permitted by mass-action systems with the
underlying reaction network given in Figure 1. A general analysis can be conducted by the CRN
toolbox made freely available online [18]. This is a powerful computational toolbox capable of
determining whether a chemical reaction network admits mass-action systems with the capacity for
zero eigenvalues, injectivity, or multistability [9, 7, 5]. It is also capable of determining the deficiency
of a chemical reaction network and determining whether it is concordant [28]. The toolbox’s Higher
Deficiency Report reveals that multiple positive steady states are permitted for the mass-action
system corresponding to the rate constant choices

k(1,4) = 7.389056  k(4,1) = 2.7182818 k(5,4) = 4.3002585
k(1,5) = 7.380056  k(4,2) = 2.7182818 k(5,6) = 4.3002585
k(2,4) =1 k(4,5) = 55.125832  k(6,2) = 32.08195 @7)
k(2,6) = 1 k(4,6) = 29.019118  k(6,3) = 1.5819767
k(3,5) = 2.5026503 k(5,1) = 45.90757  k(6,4) = 1.5819767
k(3,6) = 2.5026503 k(5,3) = 4.3002585 k(6,5) = 1.5819767.

Optimizing (26) over the constraint sets (9), (17), (24), and (25), using GLPK and the rate constant
set (27) gives a mass-action system whose underlying reaction network has a deficiency of three.
We conclude that there is no mass-action system which is linearly conjugate to the system given by
the network in Figure 1 and the rate constant set (27) for which the underlying network has a lower
deficiency than the original network. This is not necessarily surprising, since multistability is less
common in mass-action systems for which the underlying reaction network has a low deficiency.

We now consider applying the deficiency-reducing methodology introduced in this paper on
mass-action systems with the underlying network structure given by Figure 1 over different rate
constant choices. Consider the mass-action systems with rate constants given by

k(i,5) =4, 4,j=1,...6, (4,j)€R (28)

and
k(i,j) =1, i,j=1,...,6, (i,j) €R. (29)
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In other words, consider setting the rate constant for each reaction which produces C; to be the
same (28) and consider setting the rate constant for each reaction catalyzed by C; to be the same
(29). For simplicity, we have taken the differences between complexes to scale according to the
index of the complex itself.

We optimize (26) over the contraint sets (9), (17), (24), and (25), in GLPK. The algorithm runs
in under a second for both rate constant sets.

2T,
(a) ij;)\\/ 2? /\\/
Linearly 2T %ﬁ 2T
100+T001ﬁ Tio0+Toro o e
@/ /X/ @/ /X/ conjugate T100+T001ﬁ T100+T010
2T oo %5 To1o+Too1% 2To10 /x/ é/
Tot10*+ Toos
(b) 2T 2T 1062 Toio+ Too

5 E
! 4 Linearly

5 2
100+T001 ﬁ T100+T010 <: 21—010@5 Tio0tToor

; 3 N
2T001 % 010+Tomﬁ 2T010 2T001H4 T100+T010

Figure 2: Weakly reversible networks which are dynamically equivalent to the one contained in Figure 1. The network
in (a) is dynamically equivalent for the rate constant choices (28) and has a deficiency of two. The network in (b) is
dynamically equivalent for the rate constant choices (29) and has a deficiency of one.

The results of the optimization for (28) and (29) together with their rate constants are con-
tained in Figure 2. In both cases, the conjugacy constants are ¢; = co = ¢3 = 1, which implies
the systems presented are dynamically equivalent. The network underlying the system in Figure
2(a) is deficiency two while the network underlying the system in Figure 2(b) is deficiency one.
Neither network is amenable to application of Theorem 2.1 or Theorem 2.4. The CRN toolbox
can, however, be used to verify (by the algorithm presented in [8]) that the mass-action system
contained in Figure 2(b) admits at most one equilibrium concentration in each positive compat-
ibility class. (Since weakly reversible networks contain at least one equilibrium concentration in
each compatibility class, this is sufficient to guarantee that the network has exactly one equilibrium
concentration in each compatibility class [3].)

Example 2: We are often only given information about the dynamics of a system and asked to
infer a plausible network structure based on this kinetic information. For example, consider the
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kinetic system given by

d

% = 1—3:%—3:1 + Tox3

d

7;;2 = 23)1 — 2]72.233 — 2.’13% + 237% (30)
d

% =1 —mga:g—i—a:g —x%.

Using the algorithm presented in [14] and reproduced in [34] we can determine that the mass-action
system given in Figure 3 generates the kinetics (30).

P 2X,—1—> 2X,+ X,

X2 2 1 2Xi
1
X+ XotXo €= XotXs B T2 X, =25 X4,
X, < 2 ™ X +X,

~N
2
Figure 3: A mass-action system capable of generating the kinetics (30).

The underlying network of the mass-action system given in Figure 3 is not weakly reversible
and has a deficiency of eight. It is therefore not amenable to Theorem 2.2 or Theorem 2.4. In order
to apply these results, therefore, we would like to find a linearly conjugate mass-action system for
which the underlying network is weakly reversible and which has a minimal deficiency. We construct
the matrices

01 2011000O0O0T1F0
Y=100011 1021010 2
0001101002211
and
1 -1 -1 1 000 O O O OOUPO
M=|0 2 0 -2 000 -220 2 000
01 0 -1 000 1 0 -1000
and optimize (26) over the contraint sets (9), (17), (24), and (25). The upper limit for the number

of partitions, m — s, can be easily determined to be 10.

A quick computation in GLPK produces the network given in Figure 4(a). The underlying
reaction network is a weakly reversible zero deficiency network and therefore falls within the scope
of the networks considered by Theorem 2.1 and Theorem 2.3. Consequently, we know that (30) has
exactly one positive equilibrium concentration and that this equilibrium concentration is locally
asymptotically stable.

It is interesting to note that the network underlying the system contained in Figure 4(a) is not
the only weakly reversible network which admits mass-action systems which are linearly conjugate
to the network in Figure 3. If we do not insist on maximizing the number of linkage classes, other
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networks can be selected with a sub-optimal deficiency value. For instance, the mass-action system
in Figure 4(b) is also linearly conjugate to the system given in Figure 3 and has the same conjugacy
constants as that of Figure 4(a). The underlying network is weakly reversible but has a deficiency
of two and is therefore not amenable to either Theorem 2.1 or Theorem 2.4.

@ gy O D 2X,

> N

X, T2 XX, X, T2 XX,

7N

>
2X, <7 2X, X DX,

Figure 4: Two mass-action systems which are linearly conjugate to the mass-action system given by Figure 3. The
conjugacy constants are ¢; = c¢3 = 1 and ¢2 = 2. The network underlying part (a) has a deficiency of zero while
the network underlying part (b) has a deficiency of two. (Isolated complexes have been excluded from the reaction
graph.)

5. Conclusions

In this paper, we have presented a computational method for determining mass-action systems
which are linearly conjugate to a given mass-action system or kinetic system for which the underlying
network is weakly reversible networks and has the minimal deficiency.

It was shown that, for this purpose, it is sufficient to maximize the number of the linkage
classes of the underlying network, where linkage classes are defined to include isolated complexes
as well as traditional linkage classes with multiple complexes. The proposed algorithm is based
on mixed integer linear programming where the binary variables are used to keep track of the
assignment of the complexes within the linkage classes, and the continuous variables keep track
of the reaction rate coefficients, the conjugacy constants, the structure of the underlying network,
and the emptiness/non-emptiness of complex partitions. An additional linear constraint on the
binary variables ensures the uniqueness of the complex partitioning, which dramatically improves
the computational efficiency of the algorithm. We then applied the algorithm to several examples
and were able to use the Deficiency Zero Theorem (Theorem 2.1) and Deficiency One Theorem
(Theorem 2.4) to determine properties of the equilibrium set of the original mass-action system or
kinetic system.

Future work in this area includes:

1. In order to apply the algorithm outlined in this paper, it is necessary for the original network’s
rate constants be specified. Two mass-action systems, even with the same underlying reaction
network, must be tested separately and can give different results. (Example 1 provides a good
example of a network which permits different optimal deficiencies for different rate constant
choices. If we were, for instance, only given the rate constant values specified by (27) or (28),
we would not realize that the mechanism permitted a linearly conjugate network for which the
underlying network had a deficiency of one.) Consequently, we may be overlooking linearly
conjugate systems for which the underlying network has a lower deficiency due to poor rate
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constant selection. (Research on these ‘structurally-fixed’ networks was initiated in [20] but
can so far limited to dynamically equivalent systems.)

. Many deficiency results do not require the networks in consideration be weak reversibility. For

instance, the Deficiency One Theorem (Theorem 2.4) and the algorithm presented in [8] only
require the networks have a single terminal strongly linked component within each linkage
class. It would be useful, therefore, to adapt the presented algorithm to systems for which the
underlying networks are not necessarily weakly reversible but rather have a single terminal
strongly linked component in each linkage class.
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Sciences and Engineering Research Council of Canada Discovery Grant. G. Szederkényi acknowl-
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