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Abstract

The model complexity reduction problem of large chemical reaction networks
under isobaric and isothermal conditions is considered. With a given detailed
kinetic mechanism and measured data of the key species over a finite time
horizon, the complexity reduction is formulated in the form of a mixed-integer
quadratic optimization problem where the objective function is derived from
the parametric sensitivity matrix. The proposed method sequentially elimi-
nates reactions from the mechanism and simultaneously tunes the remaining
parameters until the pre-specified tolerance limit in the species concentra-
tion space is reached. The computational efficiency and numerical stability
of the optimization are improved by a pre-reduction step followed by suitable
scaling and initial conditioning of the Hessian involved. The proposed com-
plexity reduction method is illustrated using three well-known case studies
taken from the reaction kinetics literature.
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1. Introduction

The mathematical models of reaction kinetic systems are most often too
large and detailed for dynamic analysis or parameter estimation purposes
as they are usually constructed based on detailed kinetic studies. More-
over, advanced control design often requires the significant simplification of
dynamical models to be able to compute the feedback action in real time
[1, 2]. There are a number of important and extensively studied areas where
there are detailed models of chemically reacting systems available. These
include biochemical systems, such as signal transduction pathway modeling
and reacting flow or catalytic reaction systems. These models are used for
both model analysis (stability analysis and the investigation of strange non-
linear dynamic properties, such as oscillations or chaotic behavior), and for
dynamic predictions (simulation). Because of the huge number of species
and/or chemical reactions present in the detailed reaction kinetic mechanism
of these systems, the need has arisen for developing simplified or reduced
mechanisms that can accurately describe the dynamics of the system under
some restricted circumstances (e.g. in isobaric or isothermal conditions).

The complexity of reaction kinetic models is determined by the number
of species (reacting chemical components), and by the number of chemical
reactions that are taking place among them. The complexity of the functional
form of the reaction rate expression plays an important role, too. Then the
aim of complexity reduction is to obtain a reduced or simplified mechanism
of the system such that the reduced model-predicted dynamic behavior of at
least the key important species is close to the original one. In addition, the
physical meaning of the variables in the simplified model should be preferably
conserved, and the characteristic model structure should also remain the
same.

There are three main categories of commonly applied approaches for ob-
taining simplified kinetic representations: (i) the use of engineering model
simplification transformations, such as quasi-steady state or quasi-equilibrium
assumptions, (ii) the use of general nonlinear model reduction techniques
applied to reaction kinetic models, (iii) the use of optimization methods for
reducing the number of reacting species and reactions.
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Engineering model reduction transformations. This is a simple and tradi-
tional method [3] that uses the quasi-steady state, the quasi-equilibrium and
the variable lumping transformation [4] for obtaining a reduced model. Un-
fortunately, the reaction kinetic form of the model cannot be always pre-
served, and the simplified model may have rather different qualitative dy-
namic properties than the original one; for example may lose its structural
stability property.

General model reduction techniques. If one considers the concentrations of
the key important species as output variables, then the reaction kinetic model
can be written in the form of a nonlinear input-affine state-space model, for
which recent extensions to balanced truncation are available for the reduction
[5]. This approach, however, applies a nonlinear coordinate transformation
and thus both the physical meaning of the variables and the characteristic
kinetic structure may be lost.

An alternative way of general model reduction techniques without the
need for nonlinear coordinate transformation is the singular perturbation
method. Anderson et al. [6] propose a model reduction algorithm that can
be used to uncover the structure of the underlying biological system while
avoiding any coordinate transformations and ensuring that the state vector
in the reduced model is a strict subset of the one in the full model. The
approach is similar to singular perturbation but does not try to identify fast
or slow states; in fact, it collapses (lumps) states based on the worst-case
error.

The related method of invariant grids [7] can also be used for obtaining
reduced models of reaction kinetic systems that are based on the construction
of low-dimensional manifolds of reduced description for equations of chemical
kinetics from the standpoint of invariant manifolds.

Optimization-based kinetic model reduction. The general formulation of a
complexity reduction problem for reaction kinetic systems leads to a mixed
integer nonlinear program (MILNP) problem, see e.g. [8], that presents com-
putational complexity challenges in realistic problem sizes. Similarly to the
case of the related parameter estimation problem, one has to use efficient and
reliable global optimization algorithms (see e.g. in [9]) to solve the general
model reduction problem. Therefore, the specialties of the system and/or
the complexity reduction problem can be used to develop efficient solution
heuristics. For example, there are combined approaches (see e.g. [10]) that
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apply engineering model reduction (variable lumping) in order to improve
the computational efficiency of the MINLP solution. The inherent relation-
ship between model reduction and model parameter estimation has also been
realized recently (see e.g. [11]), where the need to re-estimate the parameters
of the reduced model has arisen.

The model reduction methods applied to biochemical reaction systems ex-
hibit a few important specialties compared to the general case [12]. These
reactions take place in a liquid phase under almost constant temperature;
therefore isobaric and isothermal conditions are assumed, which imply con-
stant reaction rate coefficients. At the same time, one should assume com-
plex nonlinear dependence of the reaction rate on the species concentration;
therefore the mass action law [13] is not necessarily applicable here. In the
general case when both the structure and the parameters of the reaction ki-
netic model are to be determined from a detailed mechanism and measured
data, an MINLP [14] can be formulated that is difficult to solve in the general
case.

The need for kinetic model reduction is traditionally strong in the area of
reacting flow systems (e.g. flames and combustion), where the detailed chem-
ical mechanisms contain hundreds to thousands of species and reactions. An
MINLP is obtained if one has a detailed reaction mechanism obeying the
mass action law on a finite number of control points, and the task is to de-
termine an approximate simpler kinetic scheme under isobaric and adiabatic
circumstances that ensure that the production rates are within pre-specified
limits from the production rates of the full mechanism [15].

Model reduction of reaction kinetic networks. The simplest models within
the class of reaction kinetic systems form the subclass of reaction kinetic
networks that obey the mass action law [16, 17, 18]. This sub-class is also
called chemical reaction networks (CRNs). Here one assumes constant reac-
tion rate coefficients and polynomial dependence of the reaction rate on the
species concentrations that corresponds to closed, isothermal and isobaric
conditions. The applicability of this model class is surprisingly wide: be-
sides the description of purely chemical mechanisms, CRNs can be effectively
used to model processes of living (i.e. cell) environments [19], compartmental
models [20] or general nonnegative systems with possible application domains
completely outside of (bio)chemistry [21, 16].

In complex chemically reacting systems there are usually multiple path-
ways that contribute to the dynamic evolution of a particular species concen-
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tration. Then the model reduction task involves a step to identify the dom-
inant pathways, which can be performed by using a combination of graph-
theoretical and optimization techniques [22].

An early approach to obtain CRNs with reduced complexity was based
on principal component analysis of the parametric sensitivity matrix of the
detailed kinetic model [23]. An improved version using also concentration
sensitivities was developed for the case of gas phase reactions [24]. Finally, a
sophisticated combined method for constructing the minimal suitable mech-
anism based on combined species and reaction selective inclusion and elimi-
nation has been proposed recently [25].

A systematic model reduction method that combines the sensitivity and
principal component analysis methods with variable lumping is proposed in
[26]. A simultaneous adjustment of the structure of CRN and its parameters
such that the qualitative dynamical properties of the system are preserved
during the reduction is the basis of the complexity reduction method pre-
sented in [27] in the application area of biochemical networks.

Motivation and aim. The above literature review clearly shows that there are
numerous methods available to reduce the complexity of CRNs that all use
the specialties of the problem and the model to propose a feasible solution
to the inherently computationally challenging problem. However, there are
certain important features of the model reduction task that received little
attention but they significantly influence the mathematical problem to be
solved and the properties of the solutions. Firstly, measured data are usually
not available about all of the species but only about a small subset of them
(the key species). Secondly, the reaction kinetic parameters, most notably
the reaction rate coefficients can only be determined with an approximately
10 % of accuracy even in the best cases, and the estimated value is strongly
model structure dependent. This implies that the value of these parameters
is not precise, therefore the re-estimation of them can significantly improve
the fit between the output of the original detailed and the reduced model.

Therefore, the overall aim of our work was to propose a robust, numeri-
cally stable yet feasible method for reducing the complexity, i.e. the number
of reactions of a CRN, that is also able to re-estimate the reaction rate coef-
ficients and produce a sub-set of the original detailed reaction kinetic scheme
as a result, but with suitably adjusted coefficients.

Instead of the general MINLP formulation of the problem, we construct
a convex mixed integer quadratic problem (MIQP) formulation for which
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efficient solvers exist. The effect of the problem and model parameters, as
well as the tuning parameters of the proposed algorithm is also investigated
on the solution procedure and on the solution properties.

2. Problem formulation

2.1. The initial value problem corresponding to chemical reaction network
dynamics

In this paper, we consider deterministic chemical reaction networks (CRNs)
with mass action kinetics assuming constant temperature and perfect mix-
ing of the materials [28, 13]. From a mathematical point of view, the species
concentrations under these assumptions can be described by initial value
problems of parametric ordinary differential equations (ODEs)

ẋ(t) = f(x(t), k), t ∈ [t0, tf ], (1)

x(t0) = x0, (2)

where the right-hand side function f : Rn×Rm → Rn in Eq. (1) can be easily
constructed from the list and parameters of chemical reactions in the CRN
(see the following subsection).

First, we explain the variables occurring in Eqs. (1) and (2): t is the
independent time variable; t0 and tf are the initial and final times, re-
spectively; x(t) ∈ Rn is the concentration vector of the n chemical species
X1, . . . , Xn at time t, where xi corresponds to the concentration of the species
Xi, i = 1, . . . , n; k ∈ Rm is the vector of kinetic parameters corresponding
to m reactions; x0 = (x0,1, . . . , x0,n)T ∈ Rn in Eq. (2) is the vector of the
corresponding initial values; and f(x(t), k) in the right hand-side of Eq. (1)
collects the change rates of the species’ concentrations.

Note that x(t) implicitly depends on the initial values x0 and the kinetic
parameters k. To stress these dependencies we may also use the notation
x(t, k, x0) or only x(t, k), especially when we are interested in the parametric
sensitivities ∂x(t, k)/∂k.

2.2. Representation of chemical reaction network by chemical reactions

As an introductory example we consider the hydrogen-bromine chemical
reaction network according to Snow [29]. Its reactions take place in the gas
phase at a temperature of about 1000 K and a pressure of about 1 bar. The
chemical reactions are listed in Eqs. (HBr1)–(HBr6).
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Br2 + M
k1−−→ 2 Br·+ M (HBr1)

2 Br·+ M
k2−−→ Br2 + M (HBr2)

Br·+ H2
k3−−→ H·+ HBr (HBr3)

H·+ HBr
k4−−→ Br·+ H2 (HBr4)

H·+ Br2
k5−−→ Br·+ HBr (HBr5)

Br·+ HBr
k6−−→ H·+ Br2 (HBr6)

In Eqs. (HBr1)–(HBr6), the involved chemical species comprise Br2 (bromine
molecule), Br· (bromine radical), H2 (hydrogen molecule), H· (hydrogen rad-
ical), HBr (hydrogen bromide) and a so-called third body , also referred to as
inert component1, arbitrarily denoted by the symbol M. The third body M
is a kind of catalyst which does not react with the other chemical species.
Its only relevance is to adsorb or transfer kinetic energy from the reactant
species, e.g. to split a bromine molecule into its corresponding radicals (Eq.
(HBr1)). In the paper of Snow [29], nitrogen (N2) was the third body, but
any other inert gas would do as well.

2.3. Constructing the ODE from chemical reactions

Ordinary differential equations can be easily constructed from the CRN’s
chemical reactions. Starting from the chemical reactions, we first define the
reaction rates as follows. For a general equation with n species X1, . . . , Xn

and associated stoichiometric coefficients2 ν1, . . . , νn (reactants) and µ1, . . . , µn
(products):

n∑
i=1

νiXi
k−−→

n∑
i=1

µiXi. (3)

1Usually, chemists use the term “third body” while chemical engineers employ the term
“inert component”. Since the third body/inert component is only used for the transfer of
kinetic energy, it can be either a pure chemical component or a mixture of components.

2Stoichiometric coefficients denote the multiplicity of chemical species in the reactants
and products of a chemical reaction. For example, within the reactants of the reaction
equation (HBr2), Br· and M have the stoichiometric coefficients 2 and 1, respectively.
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Table 1: Reaction rates and rate coefficients of Hydrogen-Bromine reaction

Reaction Reaction rate Rate coefficient

(HBr1) r1 = k1 [Br2] [M] k1 = 6.26 ·105 cm3

mol s

(HBr2) r2 = k2 [Br·]2 [M] k2 = 1.56 ·1015 cm6

mol2 s

(HBr3) r3 = k3 [Br·] [H2] k3 = 2.61 ·109 cm3

mol s

(HBr4) r4 = k4 [H·] [HBr] k4 = 1.39 ·1013 cm3

mol s

(HBr5) r5 = k5 [H·] [Br2] k5 = 1.17 ·1014 cm3

mol s

(HBr6) r6 = k6 [Br·] [HBr] k6 = 1.31 ·104 cm3

mol s

Assuming that the system obeys the mass action law, the corresponding
reaction rate r is given by

r = k ·
n∏
i=1

[Xi]
νi ,

where [Xi] denotes the concentration of species Xi, and k > 0 is the reaction
rate coefficient. It is important to note that reaction rates depend on the
reactants but not on the products.

For example, the reaction rate of the chemical equation (HBr1) is given
by

r1 = k1 [Br2] [M].

Here, k1 is the reaction rate coefficient while [Br2] and [M] are the concen-
trations of Br2 and M, respectively3. Obviously, Br2 and M constitute the
reactants of the chemical equation (HBr1). It is important to note that the
expressions for the reaction rates are linear in the reaction rate coefficients.
We show all reaction rates of the chemical reaction network (HBr1)–(HBr6)
in Table 1.

To derive the differential equations describing the time evolution of chem-
ical species concentrations, we will apply the classical description using the
stoichiometric matrix [7]. According to this notation, considering n species

3In chemistry, concentrations are commonly denoted by enclosing rectangular brackets.
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and k reactions, the species concentrations can be described as

d[X]

dt
= N · r, (4)

where [X] ∈ Rn is the species concentration vector, r ∈ Rk is the vector of
reaction rates and N ∈ Rn×k is the stoichiometric matrix, the columns and
rows of which correspond to reactions and species, respectively. Nij is a real
(most often integer) number denoting how many atoms/molecules of species
Xi are produced or consumed in the jth reaction (where a positive value cor-
responds to overall production and a negative value to overall consumption).
For example, in reaction (HBr2), the participating species are Br·, M, and
Br2. One molecule of Br2 is produced, two Br· radicals are consumed, while
formally one catalyst molecule M is both consumed and produced (therefore,
the overall production/consumption corresponding to M is zero). Thus, using
X = (Br2, Br·, H2, H·, HBr, M)T , the second column of the stoichiometric
matrix for the reactions (HBr1)–(HBr6) is given by (1, − 2, 0, 0, 0, 0)T .

Applying the above notation and rules, the stoichiometric matrix for the
reaction system (HBr1)–(HBr6) can be written as

N =


−1 1 0 0 −1 1

2 −2 −1 1 1 −1
0 0 −1 1 0 0
0 0 1 −1 −1 1
0 0 1 −1 1 −1
0 0 0 0 0 0

 . (5)

Using N and the reaction rates in Table 1, we can easily write the ordinary
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differential equations of the hydrogen-bromine CRN shown in Eqs. (6)–(11).

d[Br2]

dt
= −r1 + r2 − r5 + r6 (6)

d[Br·]
dt

= 2 r1 − 2 r2 − r3 + r4 + r5 − r6 (7)

d[H2]

dt
= −r3 + r4 (8)

d[H·]
dt

= r3 − r4 − r5 + r6 (9)

d[HBr]

dt
= r3 − r4 + r5 − r6 (10)

d[M]

dt
= 0 (11)

2.4. Initial Values

After the construction of the ODEs, we only have to specify the initial
values at the initial time t0. For the hydrogen-bromine CRN we take the
values of Turányi et al. [23]:

[Br2](t0)= 1 ·10−8 mol
cm3 ,

[Br·](t0)= 0,
[H2](t0)= 1 ·10−8 mol

cm3 ,
[H·](t0)= 0,

[HBr](t0)= 0,
[M](t0)= 1 ·10−5 mol

cm3 .

(12)

2.5. Notational conventions

In the general case, if X1, . . . , Xn are the chemical species,

(x1, . . . , xn)T = ([X1], . . . , [Xn])T (13)

is the state vector. The reaction rate coefficients k1, . . . , km of a CRN with
m reactions are collected in the parameter vector

k = (k1, . . . , km)T ∈ Rm. (14)
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Then, the notation is consistent with Eqs. (1) and (2). In particular, the
hydrogen-bromine system is

ẋ1 = −k1 x1 x6 + k2 x2
2 x6 − k5 x1 x4 + k6 x2 x5, (15)

ẋ2 = 2 k1 x1 x6 − 2 k2 x2
2 x6 − k3 x2 x3 + k4 x4 x5 + k5 x1 x4 − k6 x2 x5, (16)

ẋ3 = −k3 x2 x3 + k4 x4 x5, (17)

ẋ4 = k3 x2 x3 − k4 x4 x5 − k5 x1 x4 + k6 x2 x5, (18)

ẋ5 = k3 x2 x3 − k4 x4 x5 + k5 x1 x4 − k6 x2 x5, (19)

ẋ6 = 0, (20)

which is obviously linear in the reaction rate coefficients ki, i = 1, 2, . . . , 6.

3. Model Reduction

3.1. Objective

Suppose that in a chemical reaction network we are only interested in
variables corresponding to a few species. The concentrations of these species
can be relevant because for example they are the measurable system output.
Thus we want to reduce the network such that their concentrations remain
unchanged. These species are named important in the following and we
collect the indices of the associated variables into the set

I := {i1, i2, . . . , inI} , (21)

where ij ∈ {1, 2, . . . , n}, j = 1, 2, . . . , nI and nI is the number of important
species.

Additionally, we only care about the trajectories of the important species
within a limited time horizon [t0, tf ]. Then, the objective of the model re-
duction is to

1. reduce the number of reactions, i.e. set the corresponding rate coeffi-
cient ki to zero, while keeping the concentration functions of the im-
portant species essentially unchanged on the time horizon [t0, tf ],

2. simultaneously adjust the remaining rate coefficients to improve the fit
of the important species.
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3.2. The reduced model and its error

Due to the similar structure of the CRNs, where the reduced model is
structurally a subset of the original one, the reduced model is totally specified
by the reduced rate coefficient vector k̃ ∈ Rm. Reaction l is not present in
the reduced CRN, iff k̃l = 0 holds. The states x̃(t) of the reduced model drop
simply out as the solution of the initial value problem

˙̃x = f(x̃, k̃), x̃(t0) = x0, (22)

where f and x0 are the same as in Eqs. (1) and (2).
Of course, the error of the reduced model needs to be measured. This

measure has to rely on the states x̃(t) of the reduced model as well as on the
states x(t) of the original model, and it can be quantified by means of some
functional Φ(x̃, x). We choose the least-square functional

Φ(x̃, x) :=
N∑
l=0

∑
i∈I

wil
2 (x̃i(tl)− xi(tl))2 , (23)

where t0 < t1 < · · · < tN are selected time points, and wil, i ∈ I, 0 ≤ l ≤ N
are some weights, e.g. to take into account the magnitude of xi(tl). Actually,
the same objective function for model reduction was used by Androulakis [8].

3.3. A straightforward MINLP

Note that x̃(·) and x(·) in Eq. (23) are totally determined by means of the
corresponding parameter vectors k̃ and k, respectively. Hence, the nonlinear
function

φ(k̃, k) := Φ(x̃(·, k̃), x(·, k)), (24)

is well defined since, for each t ∈ [t0, tf ], x̃(t, k̃) and x(t, k) are uniquely
determined by means of the corresponding initial value problems in Eqs. (1),
(2) and Eq. (22).

As already mentioned in the preceding subsection, the number of non-
zeros in k̃ equals the number of reactions present in the reduced model. Let
NNZ denote the function which returns the number of non-zeros of a real
vector, i.e.

NNZ : Rm → {0, 1, . . . ,m}, NNZ(v) = #{i : vi 6= 0} (v ∈ Rm). (25)

Obviously, the first objective of the model reduction is to find a reduced
parameter vector k̃ ∈ Rm which minimizes NNZ(k̃), such that the model
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error φ(k̃, k) is small, say φ(k̃, k) < δ, where δ > 0 is the user-specified error
tolerance.

In terms of mathematical optimization, according to Androulakis [8], we
want to solve the mixed-integer nonlinear program (MINLP)

min
k̃∈[k,k]

NNZ(k̃) (26)

s.t. φ(k̃, k) ≤ δ. (27)

where k is fixed to the original values, and k, k ∈ Rm (0 ≤ k ≤ k) are the
lower and upper bounds on k̃. The simplicity of the formulation is appealing.
We have a simple linear objective function in Eq. (26) subject to a single
nonlinear and nonconvex constraint in Eq. (27). In general, to find the
global optimum of this MINLP, a global numerical MINLP solver has to be
applied for the solution. In this context, the key problem is the evaluation of
the constraint in Eq. (27) which requires the integration of the initial value
problem (22). This may be very time consuming, especially when the MINLP
solver additionally requires first- and second derivatives.

The situation would be much better, if we could approximate the non-
convex MINLP by an optimization problem class, which can be solved more
easily. This is exactly what we will do in the following: we will approxi-
mate the MINLP by a finite sequence of maximal m convex mixed-integer
quadratic programs, which can be solved much faster.

At first, we consider the parametric MINLP{
min
k̃∈[k,k]

φ(k̃, k)

s.t. NNZ(k̃) ≤ m̃.

}
, (MINLP(m̃))

which depends on the integer parameter m̃ ∈ {1, 2, . . . ,m}. We realize that
by solving MINLP(m̃) for m̃ = 1, 2, . . . ,m, the associated objective function
value is monotonically decreasing. Let k̃(m̃) denote the optimal solution of
MINLP(m̃). Then, for the smallest m̃ which satisfies φ(k̃(m̃), k) ≤ δ, the
corresponding solution k̃(m̃) is identical to the solution of MINLP (26), (27).

The benefit of the reformulation is that, if we could approximate the
non-convex objective function φ(k̃, k) in MINLP(m̃) by a convex quadratic
objective function, we would significantly reduce the computational complex-
ity.
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Obviously, the key contributions of non-convexity in Eq. (23) are due to
terms of type

(x̃i(tl)− xi(tl))2. (28)

Since x̃i(t0) = xi(t0) = x0 and Eqs. (1) and (22), we have the identity

(x̃i(tl)− xi(tl))2 =

(∫ tl

t0

[fi(x̃(t), k̃)− fi(x(t), k)] dt

)2

. (29)

We consider only the integrand of (29) and add the zero term (−fi(x(t), k̃)+
fi(x(t), k̃)) to obtain

fi(x̃(t), k̃)− fi(x(t), k) = fi(x̃(t), k̃)− fi(x(t), k̃)︸ ︷︷ ︸
=:Ai(x̃(t),x(t),k̃)

+ fi(x(t), k̃)− fi(x(t), k)︸ ︷︷ ︸
=:Bi(x(t),k̃,k)

.

(30)
Note that, since f(x, k) in Eq. (1) depends only linearly on k, we have

fi(x(t), k) =
m∑
j=1

bij(x(t))kj, (31)

where

bij(x) :=
∂fi
∂kj

(x, k) (32)

is independent of k. Hence we have the identity

Bi(x(t), k̃, k) =
m∑
j=1

bij(x(t))(k̃j − kj), (33)

which is linear in k. We emphasize that Eq. (33) is an exact identity. On
the other hand, if we assume that x̃ is close to x(t), we have by means of the
continuity of f that

Ai(x̃(t), x(t), k̃) ≈ 0. (34)

Surely we may assume that x̃i(t) ≈ xi(i) for i ∈ I, i.e. the important species
are not affected too much by the reduction. However, there is in general no
justification why for non-important species (i 6∈ I) x̃i(t) should be close to
xi(t). Then, equation (34) is no longer valid and the reduction algorithm
may fail. One solution of the preceding problem is to enlarge the set I by
the indices of species which are indeed not important, but indispensable for
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a correct simulation of the important species. Turányi [30] calls these kind of
species necessary species and further proposes an algorithm to identify them.

Loosely speaking, these necessary species have a strong influence on the
term Ai(x̃(t), x(t), k̃) in Eq. (30). However, we found a way to deal implicitly
with necessary species without applying Turányi’s algorithm. If a species xl
is necessary for some index l 6∈ I, then in general for some i ∈ I the absolute
value of the sensitivity

∂fi(x(t), k)

∂xl
(35)

is relatively high. The corresponding change of fi might be approximated to
first-order by

∂fi(x(t), k)

∂xl
(x̃l(t)− xl(t)).

But (x̃l(t)−xl(t)) may be approximated by first-order Taylor series expansion:

(x̃l(t)− xl(t)) ≈
∂xl(t)

∂k
(k̃ − k).

On the other hand, if a species xl(t) is not necessary at all, then the absolute
of the corresponding sensitivites in Eq. (35) is relatively small for all i ∈
I. This motivates us to approximate Ai(x̃(t), x(t), k̃) in Eq. (30) by the
linearization in (k̃ − k)

Ai(x̃(t), x(t), k̃) ≈
m∑
j=1

∂fi(x(t), k)

∂x

∂x(t)

∂kj︸ ︷︷ ︸
=:ãij(t)

(k̃j − kj). (36)

We are aware, that this is an heuristic approach and some problems may
arise when (k̃ − k) is so large that the linearization is not valid anymore.
However, since we are always able to compare the reduced model with the
original one, we may ignore this possible complications. Finally we collect
the two alternative approximations in Eqs. (34) and (36) and approximate
the term Ai(x̃(t), x(t), k̃) in Eq. (30) by

Gi(x̃(t), x(t), k̃) ≈
m∑
j=1

σ ãij(t)(k̃j − kj), σ ∈ {0, 1}, (37)
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to yield

fi(x̃(t), k̃)− fi(x(t), k) ≈
m∑
j=1

(σ ãij(t) + bij(t)︸ ︷︷ ︸
=: g̃ij(t)

)(k̃j − kj), (38)

where σ = 0 means that we are relying on Eq. (34), while σ = 1 refers to
Eq. (36). In general, both choices of σ are possible and may be used for the
subsequently introduced reduction method. However, if the partial Jacobian
(∂fi/∂kj), i ∈ I, j ∈ {1, . . . ,m}, is very sparse, the choice σ = 0 may
produce only poor approximations of (fi(x̃(t), k̃)− fi(x(t), k)), so that then
σ = 1 should be chosen.

Inserting Eqs. (29) and (38) into Eq. (23) finally yields the approximate
objective functional

φ̃(k̃, k) :=
N∑
l=1

∑
i∈I

wil
2

(∫ tl

t0

m∑
j=1

g̃ij(t)(k̃j − kj) dt

)2

=
N∑
l=1

∑
i∈I

(
wil

∫ tl

t0

m∑
j=1

g̃ij(t)(k̃j − kj) dt

)2

=
N∑
l=1

∑
i∈I


m∑
j=1

wil
∫ tl

t0

g̃ij(t)) dt︸ ︷︷ ︸
=: c̃ilj

 (k̃j − kj)


2

=
N∑
l=1

∑
i∈I

(
wil

m∑
j=1

c̃ilj(k̃j − kj)

)2

. (39)

Setting C̃il := (c̃il1, . . . , c̃ilm), we have

φ̃(k̃, k) =
N∑
l=1

∑
i∈I

(
wilC̃il(k̃ − k)

)2

=
N∑
l=1

∑
i∈I

(k̃ − k)T
(
wilC̃il

)T (
wilC̃il

)
(k̃ − k)

=(k̃ − k)T

(
N∑
l=1

∑
i∈I

(
wilC̃il

)T (
wilC̃il

))
(k̃ − k), (40)
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which is obviously quadratic in k̃ − k and therewith quadratic in k̃. We
may further compute the integrals by trapezoidal sums, say on the interval
[tl−1, tl] (1 ≤ l ≤ N):∫ tl

tl−1

g̃ij(t) dt =
g̃ij(tl−1) + g̃ij(tl)

2
(tl − tl−1) , (41)

where the “=” shall be interpreted from a numerical point of view, i.e. we
assume that the grid t0 < t1 < · · · < tN is sufficiently fine to accurately
compute the integrals in Eq. (41). Hence, we have

c̃il̄j =
1

2

l̄∑
l=1

(g̃ij(tl) + g̃ij(tl−1))(tl − tl−1), (42)

and setting for notational convenience

G̃i(t) := (g̃i1(t), . . . , g̃im(t)) (43)

yields

C̃il̄ =
1

2

l̄∑
l=1

(
G̃i(tl) + G̃i(tl−1)

)
(tl − tl−1), (44)

and

φ̃(k̃, k) =(k̃ − k)T

 N∑
l̄=1

∑
i∈I

(
wil
2

l̄∑
l=1

(
G̃i(tl) + G̃i(tl−1)

)
(tl − tl−1)

)T

(
wil
2

l̄∑
l=1

(
G̃i(tl) + G̃i(tl−1)

)
(tl − tl−1)

)]
(k̃ − k)

=(k̃ − k)T

(
N∑
j=0

∑
i∈I

(
w∗ilG̃i(tl)

)T (
w∗ilG̃i(tl)

))
︸ ︷︷ ︸

=: H

(k̃ − k), (45)

where w∗il, i ∈ I, 0 ≤ l ≤ N are weighting factors, depending on the original
weights wil and the length of the intervals [tl−1, tl]. The m×m-matrix H in
(45) is positive semidefinite by construction.
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3.4. Relationship to sensitivity analysis

We expand the definition of G̃i in Eq. (45):

G̃i(t) = σ
∂fi(x(t), k)

∂x

∂x(t)

∂k
+
∂fi(x(t), k)

∂k
, σ ∈ {0, 1}. (46)

Now we see how to relate the factor σ ∈ {0, 1} to the sensitivity of the
change rate fi with respect to k: for σ = 0 the function Gi(t) is identical
to the partial derivative of fi with respect to k; for σ = 1, Gi(t) can be
identified with the total derivative of fi with respect to k. In both cases
we have to compute the partial derivatives ∂fi/∂k, by either by symbolic or
algorithmic differentiation. Furthermore, for the choice σ = 1, Gi(t) depends
on the parametric sensitivities ∂x(t)/∂k. Hence, then the computation of H
requires a sensitivity analysis of the CRN with the original parameter vector
k. In general, these sensitivities should be computed by an efficient numerical
integrator with sensitivity analysis capabilities, e.g. [31].

3.5. From MINLP to MIQP

In the following, we substitute in the MINLP sequence (MINLP(m̃)) the
original objective function φ(k̃, k) by the convex and quadratic approximation
φ̃(k̃, k) to yield the MIQP{

min
k̃∈[k,k]

(k̃ − k)TH(k̃ − k)

s.t. NNZ(k̃) ≤ m̃.

}
, (MIQP(m̃))

which depends on the integer parameter m̃. However, for practical reasons,
we eliminate the NNZ-operator in MIQP(m̃) by means of a reformulation
using the binary variable vector y ∈ {0, 1}m which will satisfy

m∑
i=1

yi = NNZ(k̃).
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Therefore, we set up the equivalent MIQP

min
k̃,y

1

2
(k̃ − k)TH(k̃ − k) (47)

s.t. yi ∈ {0, 1}, i = 1, . . . ,m (48)

k̃i ≥ 0, i = 1, . . . ,m (49)

k̃i − ki yi ≤ 0, i = 1, . . . ,m (50)

k̃i − ki yi ≥ 0, i = 1, . . . ,m (51)
m∑
i=1

yi ≤ m̃. (52)

Note that the objective function in Eq. (47), if we recall the construction of
H and Eq. (46), can be interpreted as minimizing the weighted quadratic
deviation of the change rates. In particular, we do not directly minimize
the deviation in the species concentration but the deviation of their time
derivatives. The same idea has been successfully applied in the incremental
identification of kinetic models for homogeneous reaction systems [32].

3.6. Comparison with PCA-based methods

Turányi proposes in [30] a reduction method based on the Principal Com-
ponent Analysis (PCA) [23] of the sensitivities of the reaction rates with
respect to the parameters

(F̃ (t))ij =
∂ log(fi)

∂ log(kj)
(x(t), k) =

∂fi
∂kj

(x(t), k) · kj
xi(t)

. (53)

The objective function used by PCA in a particular case can be related to
ours. For bij(t) in Eq. (33) we have the identity bij(t) = ∂fi

∂kj
(x(t), k), and

consequently, if we use the notation F̃i = (F̃i1, F̃i2, . . . , F̃im) and if σ and the
weights w∗il in Eq. (45) are set to

σ = 0, w∗il =
1

xi(tl)
, i ∈ I, l = 0, . . . , N,

then we have the identity

N∑
l=0

∑
i∈I

F̃i(tl)
T F̃i(tl) = H. (54)
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This directly relates Turányis method to our MIQP approach. However,
PCA-based model reaction is not able to eliminate reactions and simultane-
ously adjust the remaining rate coefficients. Therefore, we expect that the
MIQP approach is able to further reduce the number of reactions compared
to PCA-based reduction. Indeed this hypothesis is confirmed in Section 5,
where we compare the reduced models of both approaches.

4. Implementation Issues

4.1. Scaling, regularization and pre-reduction

In order to have a robust and numerically efficient method, one should
pay attention to the implementation issues, that is the subject of this sec-
tion. First we have found that a direct optimization of the MIQP (47)–(52)
may result in non-acceptable results, due to numerical ill-conditioning. To
avoid this problems one can apply scaling, regularization and pre-reduction
to significantly improve the solution quality.

To force the optimized parameters k̃ to be in the same order of magnitude,
a scaling of H with the diagonal matrix D := diag(k) is performed, i.e. we
employ the matrix

Hs := DTHD. (55)

Formally, this leads to scaling the original parameter vector k to

k = (1, 1, . . . , 1)T . (56)

Hence, from now on, we assume without loss of generality the validity of Eq.
(56).

Obviously, the matrix Hs is (at least) positive semidefinite by construc-
tion. However, using finite-precision arithmetic, Hs may become indefinite.
Indeed, this is the case for many case studies. To circumvent optimization
with an indefinite Hessian, we compute the minimal eigenvalue λmin(Hs) of
Hs and use the regularization

Hr = Hs + γI, γ = |min(λmin(Hs), 0)|, (57)

where I is the m-dimensional unit matrix. However, the minimal eigenvalue
is computed numerically and due to unreliabilities in this computation, Hr

may still be indefinite, or at least the numerical MIQP solver claims Hr to be
indefinite. In order to help the above detailed regularization and to facilitate
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the subsequent optimization, a pre-reduction step is also performed. There
we reduce the dimension of the parameter vector k̃ by at least mpre-reduce

reactions. The key point of the pre-reduction is to successively drop the
parameters which, if only they are individually set to zero, have the least
influence on the objective function. The corresponding algorithm is shown
in Table 2.

Table 2: Heuristic pre-reduction algorithm to determine the set J of important reactions

J := {1, 2, . . . ,m}
for l = 1, . . . ,m do

if λmin(HJ ) ≥ 0 and #J ≤ m−mpre-reduce then
break

else
j = arg minj∈J {∆k(j)THJ∆k(j) : ∆ki(j) = −δij ki (i ∈ J )} a

J = J \{j}
end if

end for
return J
aHere, δij denotes the Kronecker symbol, i.e. δij = 0, iff i 6= j and δij = 1, iff

i = j. In detail, ∆k(j) is a #J -dimensional vector with only one non-zero entry at
the position of index j.

The algorithm produces a set of parameter indices J which is of cardi-
nality nJ = #J less or equal than m, such that

RnJ×nJ 3 HJ := (Hr)ij, i, j ∈ J (58)

is positive semidefinite. The corresponding parameter vectors and binary
variable vector are denoted by k̃J , kJ and yJ , respectively. Then, the pre-
reduced set of reactions is used as an initial CRN in the model reduction,
i.e. H, k̃, k and y in MIQP (47)–(52) are replaced by HJ , k̃J , kJ and yJ ,
respectively.

4.2. Termination condition

The model reduction was formulated as a finite sequence of MIQPs in
Eqs. (47)–(52) where in each iteration step we specify the maximum number
of existing reactions m̃, m̃ = 1, 2, . . . ,m. This MIQP sequence is derived
from the original sequence MINLP(m̃), where for each m̃ the goal is to find a
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reduced parameter vector k̃ such that the original objective function φ(k̃, k)
is small. This original objective function is substituted by the quadratic ap-
proximation φ̃(k̃, k) (see Eq. (45)). At first sight, it might be straightforward
to terminate the iteration based on the original objective function in Eq.
(24). However, relying on the original objective is not necessary at all. Any
other measurement for the model error can be used as well. In general, the
termination condition can be any user-specified condition. This condition
might even test sophisticated features of the reduced model like stability,
weak reversibility, etc.

In the simplest particular case the termination condition can be defined
such that the average relative deviation for all the important species should
be smaller than a given limit, let say 5 %:

φmodel error(k̃, k) < δ := 0.05, (59)

where we decided to measure the model error by means of the function

φmodel error(k̃, k) =
1

NnI

N∑
l=1

∑
i∈I

(
|x̃i(tl)− xi(tl)|

w̃il

)
. (60)

A natural choice for the weighting factors w̃il in Eq. (60) can be w̃il = xi(tl),
however if the concentration of an important species approaches zero the well
known problem of the relative deviation occurs: the denominator approaches
zero causing high relative deviation despite of small absolute deviation. This
can be handled by choosing w̃il = max{Toli, xi(tl)}, where the tolerance
value Toli is arbitrarily chosen to be

Toli = 10−4 max
l
xi(tl).

This gives relatively smaller weights to those points where the species con-
centration is less than 0.01%-of the maximum.

Note that though the approximate objective function φ̃(k̃, k) of the MIQPs
(47)–(52) is monotonically increasing as the maximum number of non-zero
reaction coefficients decreases, this is not necessarily valid either for the orig-
inal objective function φ(k̃, k) in Eq. (24), or for the model error function
φmodel error in Eq. (60). Instead, there is only some correlation instead of di-
rect causality between the objective function of the MIQPs and the model
error.
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4.3. Computational Environment

For the computational tasks performed, different software programs were
used for general computations, numerical sensitivity analysis and optimiza-
tion.

General computations: IVP, eigenvalues, etc.

Apart from numerical sensitivity analysis and optimization, all computa-
tions were performed in MATLAB 7.12 (Windows 32bit). For the solution of
initial value problems (IVPs) of type (1)–(2), the built-in od15s initial value
problem solver was employed, with non-standard absolute and relative tol-
erances. Further, we used the built-in eig function to compute the minimal
eigenvalue λmin(H).

At this point we shall give a warning to those readers who want to repro-
duce our results. To the authors’ best knowledge, since version 5.3, MATLAB
uses the LAPACK QZ-algorithm [33] for the computation of the eigenvalues.
In particular, the accuracy of the computed eigenvalues is limited. We found
that, if we deal with non-trivial matrices with a high condition number, the
minimal eigenvalue computed by different MATLAB versions may differ by
more than 100 %. Since the minimal eigenvalue affects the regularization in
the reduction algorithm, we have the strange effect that the outcome of the
algorithm is affected by the used MATLAB version. However, the robust-
ness of the algorithm is not affected at all, only the number of eliminated
reactions may be concerned to some extent. The idea to employ the minimal
eigenvalue for the regularization is to provide a minimal intrusive regulariza-
tion. To overcome the problems with different MATLAB versions one could
either hand-code the QZ-algorithm provide another heuristic choice of their
regularization parameter γ in Eq. (57). For example, we could set γ to an ar-
bitrarily small value, and the following pre-reduction will hopefully make the
Hessian positive definite. If the MIQP solver still claims Hr to be indefinite
we would just increase γ, e.g. by doubling its value, and then let the MIQP
solver try again. Anyway, in the numerical experiments, the pre-reduction
step seemed to be much more important than the regularization, so we did
no further investigations with respect to this issue.

Numerical Sensitivity Analysis

For the numerical sensitivity analysis, required for computation of G̃i(tl)
in Eq. (46) we used the JADE environment [34]. JADE combines automatic
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differentiation by means of the derivative code compiler dcc [35] and the
numerical sensitivity solver NIXE [31] to generate accurate sensitivities.

Numerical optimization

The solutions of the MIQP (47)–(52) were performed in the AMPL math-
ematical programming environment [36] using version 11.0 of the CPLEX
MIQP solver [37]. The best reduction results are achieved if the MIQP is
solved with high accuracy. Therefore, we changed the default CPLEX MIQP
solver parameters as follows: convergence tolerance for barrier algorithm
comptol=1e-12; tolerance for optimality of reduced costs optimality=1e-9;
amount by which an integer variable can differ from the nearest integer and
still be considered feasible integrality=1e-9. Any other parameter keeps
its default value.

4.4. Tuning knobs

Of course, the proposed reduction methods require some tuning factors
which can be divided into two groups: the parameters of the numerical solvers
and the parameters of the model reduction method itself.

The first class comprises the absolute and relative tolerance of the numeri-
cal integration routines for the solution of the IVP, as well as the parameters
for the CPLEX numerical MIQP solver. However, these parameters may
strongly depend on the numerical solvers and we do not discuss them in
detail.

The second class comprises the number N of the grid points, as well
as the location the grid points, t0, t1, . . . , tN and the associated weights wil,
i ∈ I, l = 0, . . . , N in Eq. (23). Further the choice of σ = 0 or σ = 1 in Eq.
(38) may affect the solution. And last but not least the specification of the
number of pre-reduced reactions mpre-reduce is an important tuning factor.

5. Case Studies

The use of the proposed method has been illustrated on three case studies
taken from the literature.

5.1. Reduction of hydrogen-bromine reaction network

The hydrogen-bromine reaction is a well-known reaction mechanism in
the literature [29, 23]. Because of the small size of this system it is easy to
interpret the main idea of the method. The detailed description of the model
equations (6-11) can be found in Subsection 2.2.

24



Initialization

The species in the reaction networks are Br2, HBr, H2, Br·, H· and M
from which the molecules, namely Br2, HBr and H2 were selected as im-
portant. The rate constants corresponding to the reactions can be found in
Table 3. The initial concentrations of species were taken from Turányi et al.
[23]: [Br2]0 =[H2]0 = 10−8mol/cm3, [M]0 = 10−5mol/cm3, the initial con-
centrations of the other species were considered to be zero. The time interval
for model reduction is [0, 1] second.

Table 3: Rate coefficients of the original and the reduced models of the Hydrogen-Bromine
reaction network

Rate Original (1∗) (2a∗) (2b∗)
Coefficients

k1 6.260 · 105 1.000 0.9937 1
k2 1.560 · 1015 1.000 1.0066 1
k3 2.610 · 109 1.000 0.8542 1
k4 1.390 · 1013 1.000 0.0 0
k5 1.170 · 1014 1.000 1.0236 1
k6 1.310 · 104 0.0 0.0 0

In the second column are the rate coefficients of the original model, in the third column
(1) are the relative rate coefficients of the reduced-by-one model, while in the last two
columns (2a and 2b) are the rate coefficients for the reduced-by-two models.
∗The rate constants are in the table for the reduced networks in relative units, i.e. the
ratio of the estimated and the original value. For example, a value of 1.0 means that the
rate coefficient did not change.

Computation of matrix H

The matrix H is computed with the assumption of the validity of Eq.
(34) i.e. σ = 0 in Eq. (38). To solve the IVP (1)–(2) the Matlab ode15s

solver was used with AbsTol = 10−19 and RelTol = 10−13 absolute and
relative tolerance settings. For the computation of the Hessian, N = 100
equidistantly sampled time points in the time interval were chosen:

tl =
l

N
, l = 1, . . . , N.

The weighting factors wil in Eq. (23) were set to

wil =
1

N ·max(10−12, xi(tl))
, i ∈ I, l = 1, . . . , N,
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to reflect the relative error, where the “max”-term was introduced to avoid
division by zero. Actually, apart from the “max”-term, these weights equally
reflect the relative error of the important species, an approach also followed
by Androulakis [8].

Table 4: Important species concentration at the final time (tf = 1 s) in the original model
and in the reduced models.

Species Original conc.
Relative deviation

(1) (2a) (2b)

[Br2] 1.2876 · 10−9 2.2481 · 10−5 0.3730 0.5140
[H2] 1.6504 · 10−9 1.9882 · 10−5 0.3359 0.4652

[HBr] 1.6699 · 10−8 −3.9301 · 10−6 −0.0664 −0.0919

Results

One can see the solution of the original system of equations (6)–(11) for
the important species together with the solutions of the reduced systems in
Figure 1. The corresponding rate coefficient values can be found in Table
3. In the first step the algorithm omits the k6 parameter which corresponds
to the 6th reaction, while the other parameter values are not changed in the
first 4 digits. The resulted trajectories perfectly fit to the original solution.
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Figure 1: The concentrations of each important species in the original system and in the
reduced systems.
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If we further omit one more reaction the algorithm neglects the 4th and 6th

rate coefficients. Using the k and k constraints in Eqs. (50) and (51) one can
easily decide to let the algorithm estimate the value of non-zero parameters
or not. If we want to identify the negligible parameters but want to keep
the original values of the non-zero parameters then ki = ki = 1 should be
defined. Figure 1 shows the result marked with dotted line when ki = 0.1
and ki = 10 and marked with dash-dotted line when ki = ki = 1 was chosen.
The corresponding parameters are given in Table 3, in the columns (2a) and
(2b) respectively.

The relative deviation of the concentration at the final time point (RD)
for each important species

RDi =
x̃i(tf )− xi(tf )

xi(tf )
, i ∈ I (61)

can be found in Table 4, where x̃i is the concentration of the i-th important
species in the reduced system and xi is the corresponding concentration in
the original system. If only less than 5 % difference is acceptable then it is
clear that only the 6th reaction can be omitted from the network.

5.2. Reduction of formaldehyde oxidation reaction network

Formaldehyde oxidation in the presence of carbon-monoxide is a medium-
size reaction network which consists of 25 reactions listed with the corre-
sponding rate coefficients in Table 6. The detailed reaction network was
published by Vardanyan [38] and used for model reduction by Turányi [23].
In this section the model reduction of this reaction system on two different
time horizons is shown.

The species in the network are HCO, O2, HO2, CO, CH2O, H2O2, M
which is a kind of catalyst, OH, H2O, CO2, H, H2, O, and finally Destruction
which is a sink for reaction (6) and (7). From this list of species, 9 species
(HCO, HO2, H2O2, OH, H2O, CO2, H, H2, O) were chosen as important.
The initial conditions for the reaction network are [O2]0 = 1.27 ·1018 cm−3,
[CO]0 = 2.83 ·1018 cm−3, [CH2O]0= 6.77 ·1016 cm−3, [M]0 = 7.09 ·1018 cm−3

and zero for the other species, the same as in [23].
Two different time horizons were chosen for model reduction, the shorter

is [0, 5 · 10−3] seconds the same as presented in [23] while the longer [0,
0.1] seconds shows much more colorful dynamic behavior. In both cases the
sensitivity part was included in the computation, i.e. σ = 1 in Eq. (38). For
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the solution of IVP (1)–(2), an absolute tolerance of AbsTol = 10−14 and a
relative tolerance of RelTol = 10−10 were set.
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Figure 2: Model error and objective function against the number of non-zero reaction
coefficients in case of the formaldehyde reaction network in the longer time horizon

5.2.1. Model reduction in longer time horizon

In this time horizon N = 1500 equidistant time points were selected and
the weighting factors in Eq. (23) are

wil =
ν

N ·max(10−2, xi(tl))
, ν = 10−10,

where the choice of ν = 10−10 in the numerator is introduced to avoid large
eigenvalues of H. The choice ν = 1 would result in a mathematically equiva-
lent optimization problem. However, according to our experiences, the MIQP
solver of CPLEX has computational difficulties with large eigenvalues which
is the only reason for our particular choice of ν. In other respects, again
apart from the “max”-term to avoid by-zero division, these weights equally
reflect the relative error of the important species, an approach also followed
by Androulakis [8].

The solution of the sequence of MIQPs resulted in the set of objective
function values as a function of maximal number of non-zero reaction coeffi-
cients k̃(m). The objective function (47), the model error (60) together with
the 5 % limit can be seen in Figure 2. One can conclude that on the specified
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level of acceptance the reaction network can be reduced by 5 reactions. We
have depicted the important concentration trajectories which belong to the
original reaction network together with the trajectories of the reduced mod-
els in Figure 3. The reduced model is in good agreement with the original
one. The corresponding estimated parameter values can be found in Table
6. in column A5.

Table 5: Relative deviation of the important species in the reduced models and in the
reference paper.

Important species
Relative deviation in concentration

A5 B12 Turányi [23]

HCO 0 0.008 0.023
HO2 0.054 0.006 0.024
H2O2 0.001 0.031 0.019
OH 0.036 0.009 0.023
H2O 0.006 0.016 0.016
CO2 0.004 0.029 0.017

H 0.042 0.031 0.036
H2 0.001 0.004 0.01
O 0.001 0.009 0.004
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Figure 3: The concentrations of each important species in the original system and in the reduced systems in the longer time
horizon.
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5.2.2. Model reduction in shorter time horizon

The model reduction on a shorter time horizon using PCA was presented
in [23]. The author concluded that the minimal reaction network which can
successfully describe the original dynamics of the important species consists
of 13 reactions.

For the computation of matrix H, 100 equally distributed time points
along the interval were selected. The weighting factors in Eq. (23) are

wil =
w̃i

N ·max(1, xi(tl))
,

where w̃i = 10 for i ∈ {3, 8, 9} and w̃i = 1 for the other species. Again,
apart from the “max”-term to avoid division by zero and apart from the
important species x3, x8, x9, these weights equally reflect the relative error
of the important species, an approach also followed by Androulakis [8]. The
increase of the weights for x3, x8, x9 are just a result of some heuristic tuning
to achieve a better reduction.

One can find the model error as a function of the number of non-zero rate
coefficients in Figure 4 according to which the model can be reduced to 12
reactions while the average relative deviations of the important species are
around 1%. The estimated parameter values are given in Table 6, column
B12. If we compare the two last columns of the table we find that the
proposed method found the same unnecessary parameters as presented in [23]
except for the 13th parameter. The relative deviations for the concentrations
are depicted in Table 5 from which it can be clearly seen that the simultaneous
estimation of the parameters resulted in a better fit than only omitting the
unnecessary reactions using the PCA (see Figure 5).
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Table 6: Rate coefficients of the Formaldehyde case study

Reactions
Original A5 B12 [23]

coeff. [0, 0.1 s] [0, 5 · 10−3 s]

(1) HCO + O2→ HO2 + CO 1.00 ·10−13 0.999 1.0051 1
(2) HO2 + CH2O→ H2O2 + HCO 5.70 ·10−14 0.9993 1.0012 1
(3) H2O2 + M→ 2 OH + M 6.66 ·10−18 1.0065 0.9925 1
(4) OH + CH2O→ H2O + HCO 1.60 ·10−10 1.0019 1.012 1
(5) OH + H2O2→ H2O + HO2 5.10 ·10−12 2.0844 0 0
(6) H2O2→ Destruction 1.05 ·102 1.0011 0.808 1
(7) HO2→ Destruction 1.05 ·101 1.2011 0 0
(8) 2 HO2→ H2O2 + O2 3.00 ·10−12 1.0174 1.0398 1
(9) OH + CO→ CO2 + H 3.30 ·10−13 0.943 0.7241 1
(10) HO2 + CO→ CO2 + OH 1.20 ·10−15 1.0316 0.9909 1
(11) H + CH2O→ H2 + HCO 2.70 ·10−12 0.9493 0.9923 1
(12) H + O2→ OH + O 5.51 ·10−14 1.0217 0.9354 1
(13) H + O2 + M→ HO2 + M 1.00 ·10−32 1.0173 0 1
(14) HO2 + M→ H + O2 + M 4.70 ·10−19 0 0 0
(15) O + H2→ OH + H 3.02 ·10−13 1.009 0∗ 0
(16) O + CH2O→ OH + HCO 1.00 ·10−10 0.9986 0.9341 1
(17) H + H2O2→ HO2 + H2 1.30 ·10−12 0 0 0
(18) H + H2O2→ H2O + OH 5.90 ·10−12 1.1459 0 0
(19) O + H2O2→ OH + HO2 1.00 ·10−13 1.0472 0 0
(20) HCO→ H + CO 4.60 ·10−12 0 0 0
(21) OH + H2→ H2O + H 1.00 ·10−11 0∗ 0∗ 0
(22) CH2O + O2→ HCO + HO2 2.90 ·10−20 0.9934 0.9967 1
(23) H + HO2→ 2 OH 5.00 ·10−12 0 0 0
(24) H + HO2→ H2O + O 5.00 ·10−11 0.9852 0 0
(25) H + HO2→ H2 + O2 4.50 ·10−11 0.9559 0 0

Rate coefficients of the original system and the relative rate coefficients in the reduced
systems. In the A5 case the system was reduced by 5 reactions. In the B12 case the

reduced system contains 12 reactions in the shorter time horizon. Reactions denoted by
(∗) were pre-reduced.
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coefficients in the shorter time horizon.
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Figure 5: The concentrations of each important species in the original system and in the reduced systems in the shorter time
horizon.
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5.3. Reduction of the alkane pyrolysis reaction network

The alkane pyrolysis is a large reaction network consisting of 98 reactions
and 32 species. The reactions and the corresponding rate coefficients can be
found in Table 7. The reduction of this network using Principal Component
Analysis was presented in [30]. The author could reduce the original 98
reactions to 38 reactions, while the concentrations of the important species
did not change more than 1 %. As the author remarked the reaction network
has no formation steps for five species, which resulted in that reactions 6, 74
76, 78, 82, 86, 87, 96 and 98 can be omitted because the corresponding rates
are zero. These reactions are marked with a hash (#) symbol in Table 7.

5.3.1. Initialization

During the model reduction the same initial conditions, time horizon
and selected important species were used as presented in [30] to produce
comparable results. The following species were chosen as important: C3H8,
H2, CH4, C3H6, C2H6, C2H4. The time horizon is [0, 100] seconds along
which the H matrix was computed from 1000 equidistant time points using
sensitivity information, i.e. σ = 1 in Eq. (38). The initial conditions are
1.912·10−3mol/dm3 for the propane (C3H8) and zero for all the other species.
The weighting factors in Eq. (23) are

wil = (1− δN0 + δNl
2

)
w̃i

N ·max(1, xi(tl))
, i ∈ I, l = 0, . . . , N

where w̃i = 5 · 10−4 for i = 5 and w̃i = 5 · 10−3 for the other species. Here
the factor (1− (δN0 + δNl)/2) equals 1, for l = 1, . . . , N − 1 and 1/2 for l = 0
or l = N , where δ is the Kronecker symbol. In this way, the sum over l in
Eq. (23) becomes a trapezoidal sum.

For the solution of IVP (1)–(2), AbsTol = 10−20 as absolute tolerance
and RelTol = 10−10 as relative tolerance were set.

5.3.2. Pre-reduction

The size of the reaction network necessitated the usage of the pre-reduction
described in section 4.1. We have found that the optimal number of reactions
which should be omitted during the pre-reduction is 57. The corresponding
reaction coefficients are marked with a star (∗) in Table 7.
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5.3.3. Results

In the Figure 6 one can find the objective function and the model error
as a function of the number of non-zero reaction coefficients. It suggests
that if we accept less than 5 % model error then the model can be reduced
to 23 reactions, which is 15 reactions fewer than we find in [30]. This is a
remarkable result which shows the advantage of the simultaneous reduction
and parameter estimation.

The trajectories of the important species in the reduced model together
with the original concentrations are depicted in Figure 7. The fitting of the
concentration trajectories is almost perfect for all species.
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Figure 6: The objective function value versus the number of non-zero reaction coefficients.

Table 7: Rate Coefficients of the alkane pyrolysis case
study

Reactions
Rate coefficients

Original Reduced

(1) C3H8→ CH3· + C2H5· 1.3203 ·10−06 0.9903
(2) 1-C4H8→ CH3· + C2H5· 1.5304 ·10−04 0∗

(3) 1-C5H10→ C2H5· + C3H5· 7.7239 ·10−04 0∗

(4) 1-C6H12→ 1-C3H7· + C3H5· 2.3342 ·10−03 0∗

(5) (C3H5)2→ C3H5· + C3H5· 3.1620 ·10−02 1.0082
(6)# 1,5-heptadiene→ C3H5· + C4H7· 9.7127 ·10−01 -
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Reactions
Rate coefficients

Original Reduced

(7) n-C4H10→ CH3· + 1-C3H7· 3.6312 ·10−06 0∗

(8) n-C4H10→ C2H5· + C2H5· 2.6527 ·10−06 0∗

(9) H2 + CH3·→ H· + CH4 1.4971 ·10+06 0∗

(10) H2 + C3H5·→ H· + C3H6 1.6856 ·10+05 1.138
(11) C3H8 + H·→ 1-C3H7· + H2 3.1881 ·10+08 0.5922
(12) C3H8 + CH3·→ 1-C3H7· + CH4 8.3505 ·10+05 0.7493
(13) C3H8 + C2H5·→ 1-C3H7· + C2H6 1.6128 ·10+05 1.5675
(14) C3H8 + 2-C3H7·→ 1-C3H7· + C3H8 3.5234 ·10+04 1.7239
(15) C3H8 + 1-C3H7·→ 2-C3H7· + C3H8 8.2443 ·10+04 0
(16) C3H8 + C3H5·→ 1-C3H7· + C3H6 2.5859 ·10+03 0.8467
(17) C3H6 + H·→ C3H5· + H2 1.1565 ·10+10 0.5149
(18) C3H8 + H·→ 2-C3H7· + H2 5.4813 ·10+08 0.5551
(19) C3H8 + CH3·→ 2-C3H7· + CH4 9.7586 ·10+05 1.2128
(20) C3H8 + C2H5·→ 2-C3H7· + C2H6 8.2443 ·10+04 0
(21) C3H8 + C3H5·→ 2-C3H7· + C3H6 9.7813 ·10+03 1.0561
(22) H2 + C2H5·→ H· + C2H6 7.1206 ·10+05 0∗

(23) C2H6 + CH3·→ C2H5· + CH4 4.9539 ·10+05 0∗

(24) n-C4H10 + H·→ 1-C4H9· + H2 3.1881 ·10+08 0∗

(25) n-C4H10 + CH3·→ 1-C4H9· + CH4 9.8842 ·10+05 0∗

(26) n-C4H10 + C2H5·→ 1-C4H9· + C2H6 1.6128 ·10+05 0∗

(27) n-C4H10 + C3H5·→ 1-C4H9· + C3H6 2.5859 ·10+03 0∗

(28) C3H6 + CH3·→ C3H5· + CH4 6.9894 ·10+05 1.7449
(29) C3H6 + C2H5·→ C3H5· + C2H6 2.3810 ·10+05 0∗

(30) n-C4H10 + H·→ 2-C4H9· + H2 1.0937 ·10+09 0∗

(31) n-C4H10 + CH3·→ 2-C4H9· + CH4 1.0723 ·10+06 0∗

(32) n-C4H10 + C2H5·→ 2-C4H9· + C2H6 1.6450 ·10+05 0∗

(33) n-C4H10 + C3H5·→ 2-C4H9· + C3H6 1.2885 ·10+04 0∗

(34) C2H5·→ H· + C2H4 5.7421 ·10+02 0.9013
(35) 1-C3H7·→ CH3· + C2H4 2.5147 ·10+04 1.4012
(36) 1-C3H7·→ H· + C3H6 7.3732 ·10+02 0
(37) 2-C3H7·→ H· + C3H6 1.2185 ·10+03 1.0313
(38) 2-C4H9·→ CH3· + C3H6 2.5889 ·10+05 0∗

(39) 2-methyl-1-propyl·→ CH3· + C3H6 1.6603 ·10+05 0∗

(40) 3-methyl-1-butyl·→ 2-C3H7· + C2H4 3.8624 ·10+05 0∗

(41) 4-methyl-2-pentyl·→ 2-C3H7· + C3H6 7.1039 ·10+05 0∗

37



Reactions
Rate coefficients

Original Reduced

(42) 1-C4H9·→ C2H5· + C2H4 4.9079 ·10+05 0∗

(43) 1-C5H11·→ 1-C3H7· + C2H4 7.9061 ·10+05 0∗

(44) 2-C5H11·→ C2H5· + C3H6 8.1393 ·10+04 0∗

(45) 2-methyl-1-butyl·→ C2H5· + C3H6 1.5978 ·10+05 0∗

(46) H· + C2H4→ C2H5· 8.0175 ·10+09 0.4892
(47) H· + C3H6→ 2-C3H7· 3.7913 ·10+09 0∗

(48) H· + C3H6→ 1-C3H7· 1.3296 ·10+09 0
(49) CH3· + C2H4→ 1-C3H7· 1.0937 ·10+06 0∗

(50) CH3· + C3H6→ 2-C4H9· 3.3051 ·10+06 0∗

(51) CH3· + C3H6→ 2-methyl-1-propyl· 1.1591 ·10+06 0∗

(52) C2H5· + C2H4→ 1-C4H9· 5.8298 ·10+05 0∗

(53) C2H5· + C3H6→ 2-C5H11· 3.9122 ·10+05 0∗

(54) 1-C3H7· + C3H6→ 2-C6H13· 8.4384 ·10+05 0∗

(55) 2-C3H7· + C2H4→ 3-methyl-1-butyl. 5.6627 ·10+05 0∗

(56) 2-C3H7· + C3H6→ 4-methyl-2-pentyl. 5.6627 ·10+05 0∗

(57) C2H5· + C3H6→ 2-methyl-1-butyl. 1.3720 ·10+05 0∗

(58) 1-C5H11·→ 2-C5H11. 4.4305 ·10+05 0∗

(59) 2-C5H11·→ 1-C5H11. 6.8604 ·10+04 0∗

(60) 1-C6H13·→ 2-C6H13. 1.6935 ·10+06 0∗

(61) 2-C6H13·→ 1-C6H13. 2.6223 ·10+05 0∗

(62) H· + 2-C3H7·→ C3H8 1.0000 ·10+11 0∗

(63) CH3· + CH3·→ C2H6 2.5119 ·10+10 0
(64) CH3· + 1-C3H7·→ n-C4H10 1.9953 ·10+10 0∗

(65) CH3· + 2-C3H7·→ 2-methylpropane 1.5849 ·10+10 2.5848
(66) CH3· + C3H5·→ 1-C4H8 1.9953 ·10+10 1.4427
(67) C2H5· + 2-C3H7·→ 2-methylbutane 7.9433 ·10+09 0∗

(68) C2H5· + C3H5·→ 1-C5H10 1.0000 ·10+10 1.2315
(69) 1-C3H7· + 2-C3H7·→ 2-methylpentane 7.9433 ·10+09 0
(70) 1-C3H7· + C3H5·→ 1-C6H12 1.0000 ·10+10 0∗

(71) 2-C3H7· + 2-C3H7·→ product 3.1623 ·10+09 0
(72) 2-C3H7· + C3H5·→ product 1.0000 ·10+10 0.9624
(73) C3H5· + C3H5·→ (C3H5)2 6.3096 ·10+09 1.1095
(74)# C3H5· + C4H7·→ 1,5-heptadiene 1.2589 ·10+10 -
(75) CH3· + C2H5·→ C3H8 1.9953 ·10+10 0∗

(76)# CH3· + C4H7·→ 2-C5H10 2.5119 ·10+10 -
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Reactions
Rate coefficients

Original Reduced

(77) C2H5· + C2H5·→ n-C4H10 3.9811 ·10+09 0∗

(78)# C2H5· + C4H7·→ 2-C6H12 1.0000 ·10+10 -
(79) H· + 2-C3H7·→ C3H6 + H2 5.0119 ·10+10 0∗

(80) CH3· + 1-C3H7·→ C3H6 + CH4 1.2589 ·10+09 0∗

(81) CH3· + 2-C3H7·→ C3H6 + CH4 2.5119 ·10+09 0
(82)# CH3· + C4H7·→ C4H6 + CH4 7.9433 ·10+09

(83) C2H5· + 2-C3H7·→ C3H6 + C2H6 1.5849 ·10+09 0∗

(84) 1-C3H7· + 2-C3H7·→ C3H6 + C3H8 1.5849 ·10+09 0∗

(85) 2-C3H7· + 2-C3H7·→ C3H6 + C3H8 1.9953 ·10+09 0.6416
(86)# 2-C3H7· + C4H7·→ C4H6 + C3H8 5.0119 ·10+09 -
(87)# C3H5· + C4H7·→ C4H6 + C3H6 6.3096 ·10+09 -
(88) C3H5· + C2H5·→ C2H4 + C3H6 1.2589 ·10+09 0∗

(89) C3H5· + 1-C3H7·→ C3H6 + C3H6 1.0000 ·10+09 0∗

(90) C3H5· + 2-C3H7·→ C3H6 + C3H6 1.0000 ·10+09 0
(91) C2H5· + 2-C3H7·→ C3H8 + C2H4 1.2589 ·10+09 0∗

(92) 1-C3H7· + 2-C3H7·→ C3H8 + C3H6 1.2589 ·10+09 0 ∗

(93) CH3· + C2H5·→ C2H4 + CH4 7.9433 ·10+08 0∗

(94) C2H5· + C2H5·→ C2H4 + C2H6 5.0119 ·10+08 0∗

(95) C2H5· + 2-C4H9·→ 2-C4H8 + C2H6 1.5849 ·10+09 0∗

(96)# C2H5· + C4H7·→ C4H6 + C2H6 3.9811 ·10+09 -
(97) C2H5· + 2-C4H9·→ n-C4H10 + C2H4 7.9433 ·10+08 0∗

(98)# C2H5· + C4H7·→ C2H4 + olefin 1.0000 ·10+09 -

6. Conclusions

A robust numerically stable method for reducing the complexity of large
chemical reaction networks is constructed as a sequence of MIQPs where the
objective function is derived from the parametric sensitivity matrix. The
algorithm uses a given detailed kinetic mechanism and measured data of
the key species over a finite time horizon to determine the set of reactions
as subsets of the reactions in the detailed mechanism, together with a re-
estimated value of the reaction kinetic parameters. The proposed method
sequentially eliminates reactions from the mechanism until the pre-specified
tolerance limit in the species concentration space is reached.

The computational efficiency and numerical stability of the optimization
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Figure 7: The concentrations of each important species in the original system and in the
reduced system.

is improved by applying a pre-reduction step, followed by suitable scaling
and initial conditioning of the Hessian involved.

The proposed complexity reduction method is illustrated using two case
studies taken from the reaction kinetics literature.

It is expected that the proposed method can be extended to make it
suitable for eliminating the non-influential species, i.e. the species that do
not change their concentration values over the time interval of interest. This
is a possible direction of further work.

A further possible generalization step would be to use the same algo-
rithmic principles applied to general nonlinear models that are linear in their
parameters. However, much further work is needed to make this extended al-
gorithm robust and numerically stable by developing suitable pre-reduction,
scaling and initial conditioning of the Hessian.
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