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Abstract. Two partially overlapping classes of positive polynomial systems, chemical reaction
networks with mass action law (MAL-CRNs) and quasi-polynomial systems (QP systems) are
considered. Both of them have an entropy-like Lyapunov function associated to them which are
similar but not the same. Inspired by the work of Prof. Gorban [12] on the entropy-functionals
for Markov chains, and using results on MAL-CRN and QP-systems theory we characterize
MAL-CRNs and QP systems that enable both types of entropy-like Lyapunov functions.

The starting point of the analysis is the class of linear weakly reversible MAL-CRNs that are
mathematically equivalent to Markov chains with an equilibrium point where various entropy
level set equivalent Lyapunov functions are available. We show that non-degenerate linear kinetic
systems with a linear first integral (that corresponds to conservation) can be transformed to
linear weakly reversible MAL-CRNs using linear diagonal transformation, and the coefficient
matrix of this system is diagonally stable. This implies the existence of the weighted version
of the various entropy level set equivalent Lyapunov functions for non-degenerate linear kinetic
systems with a linear first integral.

Using translated X-factorable phase space transformations and nonlinear variable transfor-
mations a dynamically similar linear ODE model is associated to the QP system models with a
positive equilibrium point. The non-degenerate kinetic property together with the existence of
positive equilibrium point form a sufficient condition of the existence of the weighted version of
the various entropy level set equivalent Lyapunov functions in this case. Further extension has
been obtained by using the time re-parametrization transformation defined for QP models.
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1. Introduction

The class of positive polynomial ordinary differential equations (ODEs) plays an important role in de-
scribing the dynamics of various physical, chemical and ecological systems, where the positivity of the
variables is dictated and ensured by the physical meaning, as certain quantities - such as concentrations,
pressures, population numbers etc. - cannot take negative values. At the same time, the underlying physics
and chemistry of these systems often ensure certain advantageous dynamic properties, such as stability
or bounded trajectories by construction. Physically meaningful Lyapunov function candidates are also
available for certain classes of positive polynomial systems.

Lyapunov functions play a central role in stability analysis of dynamical systems, see e.g. [14]. Besides of
the well-known quadratic Lyapunov function candidate for linear systems, however, there is unfortunately
no unified way to construct a suitable Lyapunov function to an arbitrary nonlinear system, but one can
utilize the special structure of a given nonlinear system class or look for a physical interpretation to find
one. In the field of process systems, for example, the entropy and other entropy-related physical quantities
can be used for constructing Lyapunov or storage functions for stability or passivity analysis, see e.g.
[31], [15]. Entropy-inspired Lyapunov functions are also common in information science, where Markov
chains describe the dynamics in the simplest case, see [12] and the references therein.

Chemical reaction networks (abbreviated as CRNs in this paper) [1] and quasi-polynomial systems
(or QP systems in short) [3] are partially overlapping classes of positive polynomial systems, that are
the subject of this paper. Both have an entropy-inspired natural Lyapunov function candidate associated
with it (see [8] for CRNs and [9] for QP systems), but these are not exactly in the same functional form.

The presence of first integrals is another important joint property of CRNs, and the canonical Lotka-
Volterra forms of QP systems. In the case of CRNs, the presence of a linear first integral is the consequence
of mass conservation in closed systems, while other nonlinear first integrals may also exist in both system
classes. This property presents an additional difficulty when one applies Lyapunov method for stability
analysis, that is well recognized and solved under certain conditions, see e.g. [2].

The aim of this paper is to understand the difference of the functional form of the natural Lyapunov
functions of CRNs and QP systems, and to develop different level-set equivalent Lyapunov functions
that can be used for both classes. The idea is to use the level-set equivalent entropy-inspired Lyapunov
functions described by Gorban [12] and use them for both the linear CRN case and to a special subclass
of Lotka-Volterra systems.

2. Basic notions and properties of positive polynomial systems

A frequent and simple form of smooth nonlinear autonomous systems described by a set of ODEs is when
all the right hand sides are in the form of multivariate polynomials. This section is devoted to describing
the positivity and positivity-related properties of such dynamic systems, and to a brief overview on the
notion and basic properties of the two considered class of positive polynomial systems: the CRN and QP
system classes.

2.1. Positivity and kinetic property of polynomial systems

2.1.1. Positive systems

The notion of positive systems builds upon the essential nonnegativity of a function f = [f1 . . . fn]
T :

[0,∞)n → R
n, that holds if, for all i = 1, . . . , n, fi(x) ≥ 0 for all x ∈ [0,∞)n, whenever xi = 0 [5, 13].

Consider an autonomous nonlinear system

ẋ =
dx

dt
= f(x), x(0) = x0, (2.1)

where f : X → R
n is locally Lipschitz, and X is an open subset of Rn. Then the nonnegative orthant is

invariant for the dynamics of (2.1) if and only if f is essentially nonnegative [13].
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2.1.2. Polynomial and quasi-polynomial ODEs

Among the smooth nonlinear functions, multivariate polynomials play an important role. An autonomous
nonlinear system (2.1) defined on the nonnegative orthant is called polynomial, if its right-hand function
f : X → R

n is a multivariate polynomial in each of its coordinate functions fi.
A generalization of polynomial systems is the class of quasi-polynomial systems (QP systems in short),

where one allows real numbers in the exponents [3]. A brief overview of QP systems will follow in
subsection 2.3.

2.1.3. Kinetic property

A necessary and sufficient condition for the kinetic property for a polynomial ODE model was first given
in [17]. According to this result, a set of polynomial ODEs of the form (2.1) is kinetic if and only if all
coordinates functions of f can be written in the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (2.2)

where gi and hi are polynomials with nonnegative coefficients. It is easy to check that the kinetic property
implies the essential nonnegativity of f , i.e. kinetic systems are nonnegative systems [13].

2.2. Chemical reaction networks with mass action law (MAL-CRNs)

Deterministic kinetic systems with mass action kinetics or simply chemical reaction networks (CRNs) form
a wide class of nonnegative polynomial systems, that are able to produce all the important qualitative
phenomena (e.g. stable/unstable equilibria, oscillations, limit cycles, multiplicity of equilibrium points
and even chaotic behaviour) present in the dynamics of nonlinear processes [1]. The importance of the
CRN system class with mass action law (abbreviated as MAL-CRNs) lies in the fact that strong structural
(i.e. parameter-independent) stability results exist for the deficiency zero weakly reversible case [8], and
recently for the detailed balanced case, when each of the chemical reactions are assumed to be reversible
(see [4], [11], [14], [27] and recently [29]).

2.2.1. Basic description

Consider a CRN that obeys the mass action law (MAL), that will be called MAL-CRN. The structure
of the MAL-CRN is given in terms of its complexes Ci, i = 1, ...,m that are linear combinations of its
species Xj , j = 1, ..., n with nonnegative integer coefficients, i.e. Ci =

∑n

j=1 αjiXj , where αji ∈ N0,
∀i, j. The chemical reactions Ci 7→ Cj with the reaction rate coefficient kij ∈ R, kij > 0 transform the
complexes into each other with the reaction rate

rij = kijϕi(x) = kij

n
∏

l=1

xαli

l . (2.3)

We form two matrices, the complex composition matrix Y ∈ N
n×m
0 with non-negative integer elements,

the columns of which describe the composition of the complexes, and the Kirchhoff matrix Ak ∈ R
m×m,

that describes the structure of chemical reactions for the description such that

[Y ]ij = αij , [Ak]ij =

{

−
∑m

l=1,l 6=i kil if i = j

kji if i 6= j
(2.4)

The vertices V of the reaction graph G = (V,E) correspond to the complexes, and the edges E to the
reactions. Two complexes Ck and Cl are connected by a directed edge (Ck, Cl), if a reaction in the form
of Ck 7→ Cl exists. Edge weights are associated to the edges that are the reaction rate constants kkl > 0,
thus he reaction graph is a weighted directed graph.

Note that the Kirchhoff matrix Ak of a CRN uniquely determines its reaction graph and vice versa.
However, the Kirchhoff matrix of the reaction graph does not uniquely determine the reaction kinetic
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X1
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Figure 1. The reaction graph of the simple linear example

system itself, since the information on the composition of the complexes is missing from the graph: it is
contained in the complex composition matrix Y .

The reaction graph G without its edge weights (i.e. the values of the reaction rate coefficients) describes
the structure of a MAL-CRN.

The connected components in the reaction graph are called linkage classes, their number is denoted
by ℓ ≥ 1.

The dynamics of a MAL-CRN is described in the form of the following set of ODEs

dx

dt
= Y Akϕ(x) (2.5)

where x(t) ∈ R
n
+ is the concentration vector for the species, and ϕ(x) ∈ R

m
+ is the vector formed from

the reaction monomials in defined Eq. (2.3). From now, we assume for the studied CRN models that the
number of species is not more than the number of complexes, i.e. n ≤ m.

Example 2.1 (A simple linear example). Let us assume a simple reaction kinetic system with two
reversible first order steps (i.e. four irreversible elementary reaction steps) and three components

X1 ⇄ X2 ⇄ X3

The dynamic state equations are linear ODEs

dx1

dt
= −k1x1 + k2x2

dx2

dt
= k1x1 − k2x2 − k3x2 + k4x3

dx3

dt
= k3x2 − k4x3

The stoichiometric and Kirchhoff matrices are

Y =





1 0 0
0 1 0
0 0 1



 , Ak =





−k1 k2 0
k1 −(k2 + k3) k4
0 k3 −k4





The reaction graph of this simple linear example can be seen in Fig. 1.

2.2.2. Basic structural properties

A CRN is called weakly reversible if whenever there exists a directed path from Ci to Cj in its reaction
graph, then there exists a directed path from Cj to Ci. In graph theoretic terms, this means that all
components of the reaction graph are strongly connected components.

It is well-known from the literature [7] that

Lemma 2.2. a CRN is weakly reversible if and only if there is a strictly (element-wise) positive vector
q∗ in the kernel of Ak.

Then, the intersection of this kernel and the positive orthant contains (infinitely many) positive equilib-
rium points for the dynamics (2.5). It is important to remark that the stoichiometric compatibility class
can be fixed by selecting the equilibrium point q∗ = ϕ(x∗).
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The notion of the deficiency of a CRN is built on the set of reaction vectors that are defined as: R =
{ρ(l,k) = η(l) − η(k) | (Ck, Cl) ∈ E in G}, where η(i) denotes the ith column of Y . Then, the deficiency δ

of a CRN is an integer number that is usually defined as:

δ = m− ℓ− s (2.6)

where m is the number of complexes and ℓ is the number of connected components in the reaction graph,
while s is the dimension of the stoichiometric sub-space, i.e. s = rank(R).

The celebrated Deficiency Zero Theorem [8] shows a very robust stability property of a certain class of
kinetic systems. It says that deficiency zero weakly reversible networks possess well-characterizable equi-
librium points, and independently of the weights of the reaction graph (i.e. that of the system parameters)
they are at least locally stable with a known logarithmic Lyapunov function that is also independent of
the system parameters.

2.2.3. Linear diagonal (LD) transformation

It is known that under a positive diagonal state transformation, the kinetic property of a MAL-CRN
is preserved [6, 24]. Consider a positive diagonal matrix T = diag(c), where c ∈ R

n
+ is an element-wise

positive vector. Then one can transform the MAL-CRN model with a realization (Y,Ak) to another
MAL-CRN model with a realization (Y,A′

k) (i.e. this transformation does not lead out of the MAL-CRN
model class) [25] such that

Y Ak = TY A′
k(diag(ϕ(c)))

−1 (2.7)

It is important to note that the LD transformation is an invertible variable transformation, that is also
called variable rescaling. Therefore, the qualitative properties of the dynamics of the original and the
transformed system (e.g. number and stability of equilibria, boundedness of solutions, existence of limit
cycles, chaotic behavior etc.) are identical.

2.2.4. Conservation and the existence of a linear first integral

In classical chemical kinetics one assumes isotherm isobar conditions for a closed system where the
chemical reactions take place. Therefore, the overall mass of the system should be conserved, that is
expressed mathematically by the following conservation property.

Definition 2.3 (Conservation property). The mass conservation property of a general (not necessarily
linear) MAL-CRN model dx

dt
= Mϕ(x) = Y Akϕ(x) holds if a strictly element-wise positive row vector

m = [m1, ...,mn] exists in the left kernel of M , i.e.

mM = 0 (2.8)

with 0 = [0, 0, ..., 0], that shows the rank deficiency of M in a MAL-CRN with mass conservation using
the assumption that n ≤ m.

Note that the elements of the positive row vector m are the molecular weights of the species.

It is easy to see that the mass conservation (2.8) implies the existence of a linear first integral M =
∑

mixi(t) = const, that is the overall mass of the system. By fixingM and specifying the initial condition
of the ODE model accordingly, one can select an element from the stoichiometric compatibility class.

2.3. Quasi-polynomial (QP) and Lotka-Volterra (LV) systems

QP systems form a general descriptor class of dynamic systems with smooth nonlinearities in the sense
that such systems can be embedded into QP form by adding new auxiliary variables to the system and
thus extending the state-space [3].
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2.3.1. Basic description of QP systems

Quasi-polynomial models are systems of autonomous ODEs defined in the positive orthant with quasi-
polynomial RHS of the following form

dzi

dt
= zi



Λi +

m
∑

j=1

Aijqj



 , i = 1, . . . , n (2.9)

where qj =
∏m

i=1 z
Bji

i are the quasi-monomials, and z ∈ int(Rn
+), A ∈ R

n×m, B ∈ R
m×n, Λi ∈ R, i =

1, . . . , n. Furthermore, Λ = [λ1 . . . λn]
T . The equilibrium point of interest of (2.9) as z∗ = [z∗1 z∗2 . . . z∗n]

T

that gives rise to the equilibrium quasi-monomials q∗. Without the loss of generality it can be assumed
that rank(B) = n and m ≥ n [19]. The constant matrices and vectors (Λ,A,B) serve as an algebraic
characterization for the class of quasi-polynomial systems.

2.3.2. Quasi-monomial transformation

The product M = BA is a descriptor, that is invariant under a nonlinear coordinates transformation,
the so called quasi-monomial transformation (shortly, QM transformation) that defines the transformed
state variables as

xj =

n
∏

i=1

z
Γji

i , j = 1, . . . , n. (2.10)

The parameter of the QM transformation is the real square invertible matrix Γ ∈ R
n×n.

It is easy to see, that the transformed system can be characterized algebraically by the following
constants.

B̃ = B Γ, Ã = Γ−1A, Λ̃ = Γ−1Λ (2.11)

It means, that (2.10) defines a partitioning that splits QP models into equivalence classes defined by the
invariant matrix M = BA = B̃ Ã.

2.3.3. Lotka-Volterra systems

From any QP-model with parameters (A,B,Λ) of an equivalence class, the corresponding LV model form
that characterizes the class can be obtained by QM-transformation and variable extension such that
B̂ = I with x = q. Then the transformed matrix Â becomes

Â = M = BA (2.12)

The resulting transformed ODE in LV form

dxl

dt
= xl



Λl +
m
∑

j=1

Mijxj



 , l = 1, ...,m (2.13)

is a homogeneous bi-linear ODE that describes the dynamics in the space X ⊆ R
m
+ . However, because

of the variable extension and the relationship m ≥ n, the dynamics evolves in a lower n-dimensional
manifold of the monomial space Q.

Steady state points of LV systems The non-trivial nonnegative steady state points of the LV equation
can be obtained (if they exist) by solving the linear equation

0 = Λ+M · x∗ (2.14)

for x∗. From now on, we assume that there exists at least one strictly positive equilibrium point x∗ for the
LV-system (2.13).
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2.3.4. The homogeneous form of LV systems

In order to develop a compact vector-matrix form, the following notation is introduced

diag(x) =







x1 . . . 0
...

. . .
...

0 . . . xm






(2.15)

Then the dynamics (2.13) of a Lotka-Volterra system with a positive steady state point x∗ can be written
in the following form:

dx

dt
= diag(x) ·M · (x− x∗) (2.16)

In order to facilitate the joint analysis of MAL-CRNs and LV systems form a homogeneous set of
equations is needed where the equilibrium point does not appear in the equations. Therefore, we augment
the state vector x of the model (2.13) by a constant element to obtain the compact homogeneous form as
follows

dx

dt
= diag(x)

([

M Λ
0 0

]

x

)

(2.17)

where m = m+ 1, and x ∈ R
m is the new state vector.

2.3.5. Time-reparametrization transformation

There exists another nonlinear similarity transformation that preserve QP format, which is called time-
reparameterization [30], time-rescaling or simply new-time transformation [19]. It introduces a nonlinear
scaling of the time as follows.

dt =

n
∏

k=1

zΩk

k dt′ (2.18)

Using (2.18) the original QP system (2.9) transforms to

dzi

dt′
= zi





m+1
∑

j=1

Âi,j

n
∏

k=1

z
B̂j,k

k



 , i = 1, . . . , n. (2.19)

where the number of quasi-monomials formally increase by one, and thus Â ∈ R
n×(m+1) and B̂ ∈

R
(m+1)×n as follows

Âi,j = Ai,j , i = 1, . . . , n, j = 1, . . . ,m (2.20)

Âi,m+1 = λi, i = 1, . . . , n (2.21)

B̂i,j = Bi,j +Ωj , i = 1, . . . ,m, j = 1, . . . , n (2.22)

B̂m+1,j = Ωj , j = 1, . . . , n (2.23)

It is important to note that the dynamic properties and the entire phase plot of the original and the
transformed ODEs are the same including the steady state points and their stability properties, i.e. the
time-reparametrization transformation is indeed a similarity transformation.

An essential difference between QM transformation (2.10) and time-reparametrization (2.18) is that
while (2.10) is invariant in a QP class of invariance, this is not the case for (2.18). It is, however, possible
to recast the transformed Lotka-Volterra system (which is in QP form) to the form (2.13).

The matrices characterizing the time-reparametrized Lotka-Volterra model are given as follows

Â =
[

M Λ
]

, B̂ =

[

Im×m

01×m

]

+ 1(m+1)×1 ·Ω (2.24)
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where Im×m denotes the unit matrix of size m, and aj×k stands for the constant matrix of size j × k

with elements a ∈ {0, 1}, and Ω = [Ω1 ... Ωn] is the parameter vector of the transformation (2.18). The
invariant matrix M̂ of the QP model (2.24) is

M̂ = B̂Â =

[

M Λ
01×m 0

]

+ 1(m+1)×1 ·Ω · Â. (2.25)

It is easy to see, that (2.25) depends linearly on the parameters Ωi of (2.18).

2.3.6. Stability condition for QP systems

Thanks to the well characterized structure of QP systems with a positive equilibrium point expressed
with the quasi-monomials q∗, an easy-to-check sufficient condition for their global (asymptotic) stability
exists [10].

A QP system with a positive equilibrium point q∗ is globally stable if the linear matrix inequality

MTC + CM ≤ 0 (2.26)

is solvable for a positive diagonal matrix C = diag(c1, .., cm), with M = BA. In this case, the matrix
M is called diagonally stable. (The stability is asymptotic, if the inequality (2.26) is strict.) Given the
parameter matrix M of the system, the condition (2.26) can be checked effectively by solving a linear
matrix inequality (LMI). Actually, it is shown it [9] that we can apply even milder conditions: if we
assume (by appropriate ordering of the monomials) that the first n rows of B are linearly independent,
then ci > 0 for i = 1, . . . , n and cj ≥ 0 for j = n+ 1, . . . ,m still guarantee the global stability of q∗.

The above stability condition is derived using the following Lyapunov function candidate:

VQP (q) =

m
∑

i=1

ci

(

qi − q∗i − q∗i ln
qi

q∗i

)

(2.27)

2.4. Dynamically similar linear ODEs

As we have seen before in the case of QM or LD transformations, invertible state transformations are
equivalence transformations, and leave the properties of the system unchanged. Here we shall use a
nonlinear phase space transformation that is not an equivalence transformation but leaves the phase
portrait of a dynamic system unchanged in certain cases.

2.4.1. Nonlinear translated X-factorable transformation

Assume that the following set of ordinary differential equations

dX

dt
= F(X) (2.28)

is defined on the positive orthant Rn
+. The steady state solutions of Eq. (2.28) are defined by F(X) = 0.

Consider the following nonlinear translated X-factorable phase (or state) space transformation of Eq.
(2.28)

dX

dt
= F̂(X) = diag(X1, ..., Xn)F(X − C), (2.29)

where the elements of C = [c1, . . . , cn]
T are positive real numbers, and X = [X1, ..., Xn]

T .
The original motivation of the application of the transformation (2.29) in [28] was to represent non-

positive dynamical systems as kinetic systems. Clearly, the translation parameterized by C can be chosen
such that the equilibrium points (or operating domain) of interest are moved to the strictly positive
orthant, while the multiplication by diag(X) ensures the nonnegativity and the so-called geometrical
separability of the transformed system. Moreover, it is easy to see that models of the form (2.29) are always
kinetic, since they trivially fulfil the condition (2.2). It is shown in [28] that due to the transformation
(2.29), a substantial compression of trajectories occurs close to the boundary of the positive orthant,
however, this distortion is weak or negligible for trajectories far from the boundaries. Therefore, the
dynamics of the solutions of Eqs. (2.28) and (2.29) will be called dynamically similar.
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2.4.2. The underlying dynamically similar linear ODE model

Based on the above, the LV model in eq. (2.16) with a positive equilibrium point x∗ can be considered
as the X-factorable transformed version of the following linear system:

dx

dt
= M · (x− x∗) (2.30)

2.5. Compartmental and Metzler matrices

To show the stability of weakly reversible linear CRNmodels, we use results from the theory of nonnegative
and compartmental systems using mainly Chapter 2 of [21]. The review paper [23] is also devoted to the
qualitative analysis of compartmental systems.

An n× n matrix F is called a compartmental matrix if it satisfies the following conditions

1. Fij ≥ 0, for i, j = 1, . . . , n, i 6= j

2.
∑n

i=1 Fij ≤ 0, for j = 1, . . . , n

Clearly, the Kirchhoff matrix Ak of CRN models is a compartmental matrix and thus a special type of
Metzler matrix. We will use the following properties of compartmental matrices.

Consider a compartmental matrix F . Then, the following statements hold for the properties of the
eigenvalues of F :

P1 The eigenvalues of F are either zero, or they have strictly negative real parts. (In other words, com-
partmental matrices cannot have unstable or purely imaginary eigenvalues.)

P2 If F is the Kirchhoff matrix of a weakly reversible CRN, then the number of zero eigenvalues of F is
equal to the number of linkage classes (i.e. to the number of connected components of the reaction
graph).

P3 If zero is an eigenvalue of F with algebraic multiplicity κ, then its geometric multiplicity is also κ (i.e.
the eigenvectors corresponding to zero eigenvalues are always linearly independent).

3. Linear weakly reversible MAL-CRNs

Assume that every reaction in the MAL-CRN system is linear. This case forms the simplest class of
MAL-CRNs, with interesting structural dynamic properties that are easy to investigate.

3.1. Basic structural properties

The basic structural elements of linear MAL-CRNs are in the following special form.

– The complexes are the species, i.e. n = m and Ci = Xi. Therefore the complex composition matrix is
the unit matrix, i.e. Y = I, and the state variable vector x is identical to the monomial variable vector
ϕ(x), i.e. x = ϕ(x).

– The ODE model that describes the dynamics in the phase space X specializes to

dx

dt
= Akx (3.1)

that is a linear ODE with constant coefficients that are collected in the Kirchhoff matrix Ak:

[Ak]ij =

{

−
∑m

l=1,l 6=i kil if i = j

kji if i 6= j
(3.2)

where kji ≥ 0.
Therefore, Ak is a special compartmental matrix with zero column sums. This implies, that the eigen-
values of Ak are either zero or they have negative real parts, but there is at least one zero eigenvaule.

It is very easy to see that the realization (Y = I, Ak) of a linear MAL-CRN is unique, since Y ·Ak =
Y ·A′

k trivially implies Ak = A′
k in this case. For the precise definition of CRN realizations, see e.g. [25].
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3.2. Properties related to weak reversibility

It is known from the literature that in the weakly reversible linear CRN case rank(Ak) = m − ℓ, where
ℓ is the number of linkage classes [8].

Additionally, it is easy to see that weakly reversible linear CRNs have always zero deficiency: since
the columns of Y are the standard basis vectors of Rm, the rank of the reaction vectors in any strongly
connected component of the reaction graph containing m complexes is exactly m − 1 (that is equal to
the number of the edges in the spanning tree corresponding to the connected component). Therefore, the
rank of the stoichiometric space with ℓ strongly connected components is s = m − ℓ resulting in zero
deficiency.

3.3. Markov chains as linear weakly reversible CRNs

Consider continuous time Markov chains with positive equilibrium probabilities p∗j [12]. The dynamics of
the probability distribution pi, i = 1, ..., N satisfies the Master equation:

dpi

dt
=
∑

j,j 6=i

qijpj − qjipi (3.3)

where the coefficients qij , (i 6= j) are non-negative, and

∑

i

pi = 1 , 0 ≤ pi ≤ 1 (3.4)

Here we can establish the following correspondence with the CRN description

– pi corresponds to the concentration xi of the specie Xi (normalized)
– the term qijpj is the reaction rate of the reaction Xj → Xi with the reaction rate coefficient qij
– each reaction is reversible.

Note that (3.4) implies that the total mass of the system is constant (i.e. there is mass conservation). Let
us form the matrix Q as

Qji =

{

qij if j 6= i
∑

j qij if j = i

Then Q is a Kirchhoff matrix and (3.3) can be written as

dp

dt
= Qp

For chains with a positive equilibrium distribution p∗j , j = 1, ..., N another equivalent form is conve-
nient:

dpi

dt
=
∑

j,j 6=i

qijp
∗
j

(

pj

p∗j
−

pi

p∗i

)

(3.5)

where p∗i and qij are connected by the identity (coming form the steady state version of (3.3))

∑

j,j 6=i

qijp
∗
j =





∑

j,j 6=i

qji



 p∗i (3.6)
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3.3.1. Level-set equivalent Lyapunov functions

A unified form of modern relative entropies defined for Markov chains is the Csiszár-Morimoto function
over a discrete probability distribution p

Hh(p) = Hh(p||p
∗) =

∑

i

p∗i h

(

pi

p∗i

)

(3.7)

where h(x) is an extended real-valued proper convex function defined on the open (x > 0) or closed
(x ≥ 0) semi-axis. The above required property of h is equivalent to the Jensen inequality

h(ax+ (1− a)y) ≤ ah(x) + (1− a)h(y) for all x, y ∈ U , a ∈ [0, 1] (3.8)

These relative entropies are the Lyapunov functions for all Markov chains with the positive equilibrium
p∗ = [p∗1, ..., p

∗
N ]. [12]

Two special cases will be of interest in this paper.

– Kullback-Leibler divergence Here we use the function h(x) = −x ln(x) the results in the relative
entropy

Hh(p) = Hh(p||p
∗) = −

∑

i

pi ln

(

pi

p∗i

)

= VCRN (p) (3.9)

This is the same as the logarithmic Lyapunov function commonly used in the theory of CRNs (see Eq.
(3.13)).

– Relative Burg entropy Here the convex function is chosen as h(x) = − ln(x), and then

Hh(p) = Hh(p||p
∗) = −

∑

i

p∗i ln

(

pi

p∗i

)

= VQP−sim(p) (3.10)

This is similar to the logarithmic Lyapunov function candidate commonly used in the theory QP
systems (see Eq. (2.27)).

Lemma 3.1 (Gorban [12]). For Markov chain type dynamics and for the mathematically equivalent linear
CRNs the normalized relative Burg entropy (that is the QP-style Lyapunov function candidate) is level
set equivalent to the Kullback-Leibler divergence (that is the CRN-style Lyapunov function).

3.4. Stability and Lyapunov functions of linear weakly reversible CRNs

The Deficiency Zero Theorem ensures the global asymptotic stability of the equilibrium point x∗ within
the stoichiometric compatibility class on the positive orthant.

3.4.1. The quadratic Lyapunov function

It follows from the theory of linear time-invariant systems that weakly reversible linear CRNs of the
form (3.1) are globally stable with a quadratic Lyapunov function. Of course, the stability cannot be
asymptotic, since weak reversibility guarantees that the intersection of the positive orthant and the
kernel of Ak is non-empty (i.e. there exist infinitely many equilibrium points in the positive orthant).
Therefore, we can use the following quadratic Lyapunov function:

V2(x) = (x− x∗)TP (x− x∗) (3.11)

with an appropriate positive definite symmetric P . Taking the derivative of V2 along the solution of (3.1),
we obtain the classical non-strict Lyapunov inequality as the stability condition:

AT
k P + PAk � 0, (3.12)

where ‘� 0’ means negative semi-definiteness.
A nice property of stable Metzler matrices (and therefore of Kirchhoff matrices) is that they are

diagonally stable, i.e. there exists a positive definite diagonal P that satisfies (3.12) [26].
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3.4.2. The entropy-like logarithmic Lyapunov function

The zero deficiency property of weakly reversible linear CRNs implies that the logarithmic Lyapunov
function

VCRN (x) = −

n
∑

i=1

xi ln

(

xi

x∗
i

)

(3.13)

proposed e.g. in [22] can also be used for proving the stability of such CRNs. It is important to remark that
the stability of any equilibrium point x∗ is asymptotic if we restrict the dynamics to the corresponding
stoichiometric compatibility class.

3.5. LD transformation of linear CRNs

Assume we have a linear CRN with a coefficient matrix Ak and Y = I. If one applies an LD transformation
(2.7) to (3.1), then

A′
k = TAkT

−1 (3.14)

is obtained. Therefore, Ak and A′
k do not only encode the same reaction graph structure (only the edge

weights are scaled), but the eigenvalues of the two realization matrices are also the same.

This means that the (non-weighted) reaction graph structure (including weak reversibility) and its
dynamical consequences are system properties in the linear MAL case. Moreover, the sign pattern of the
two matrices Ak and A′

k should be the same, and should follow the sign pattern of Kirchhoff matrices
(3.2), i.e. they should be Metzler matrices. However, the zero column sum property is changed with the
application of (3.14).

3.6. The conservation property of linear MAL-CRNs

It is important to note that (2.8) can be rewritten in the form

[

m1

c1
, ...,

mn

cn

]

diag(c1, ..., cn)M = 0 (3.15)

that shows the invariance of the conservation with respect to the LD transformation (or variable rescaling),
where the elements of the re-scaled row vector m′ are mi

ci
, i = 1, ..., n. Furthermore, it is easy to see that

a quadratic matrix M keeps its conservation property unchanged if it is multiplied by a positive diagonal
matrix from the right, i.e. M ′ = MC has also the conservation property, if C = diag(c), ci > 0.

It is important to note that the conservation and the Kirchhoff properties are identical in the linear
MAL-CRN case. The zero column-sums within the Kirchhoff property of Ak can be expressed as

1Ak = 0 (3.16)

where 1 = [1, 1, ..., 1] [16], that shows the rank-deficient nature of Ak, i.e. rank(Ak) ≤ m − 1. Here Ak

has the conservation property with m = 1.

4. Linear kinetic systems and their Lyapunov functions

This section is devoted to a special class of positive linear systems and their level set equivalent Lyapunov
functions. The results will be generalized to the nonlinear case of Lotka-Volterra systems in section 5.
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4.1. Non-degenerate linear kinetic systems and their properties

Now consider a linear ODE
dx

dt
= Mx (4.1)

with the constant square coefficient matrix M that obeys the kinetic condition (2.2). This implies that

mij ≥ 0, i 6= j , mii ≤ 0 (4.2)

should hold. We shall say that a matrix M is kinetic if it has the sign pattern in (4.1). It is easy to check
that a linear system (4.1) is kinetic if and only if f = Mx is essentially nonnegative (i.e. if and only if M
is a Metzler matrix).

Definition 4.1 (Non-degenerate linear kinetic system). A linear ODE in the form of (4.1) models a
non-degenerate linear kinetic system, if the right-hand side of each differential equation is different from
zero, i.e. it contains at least one linear term, and each variable xi appears in at least one right-hand side.

This implies that each row and also column of the coefficient matrix M contains at least one non-zero
element that obey the sign pattern condition (4.2).

Let us associate a weighted directed graph to the linear ODE (4.1) that helps in analysing its structure.

Definition 4.2 (Variable-structure graph). A directed graph GM = (VM ,EM ) is the variable-structure
graph of M of (4.1), if VM = {x1, ..., xn}, and the directed edge eij = (xi, xj) is in E if M ji > 0.

Some important simple properties are as follows.

1. the row or column scaling of a matrix M leaves its variable-structure unchanged, i.e. GM = GTM =
GMT if T = diag(t1, ..., tn) is an element-wise positive diagonal matrix, i.e. T ∈ D+,

2. the transposition of a matrix M reverses the direction of the edges in GM , i.e. GM =
←−
GMT .

4.2. Conservation in linear kinetic systems

Similarly to the case of linear MAL-CRNs, the coefficient matrix M of a non-degenerate linear kinetic
system (4.1) has the conservation property, if (2.8) holds, i.e. mM = 0. Such matrices will be called
conservation matrices.

Theorem 4.3. The coefficient matrix M of a non-degenerate linear kinetic system (4.1) is a conservation
matrix if and only if there exists a positive diagonal matrix T = diag(t1, ..., tn), ti > 0 such that TM = Ak

where Ak is a Kirchhoff matrix.

Proof. Assume that M has the conservation property, i.e.

mM = 0 (4.3)

Because M is kinetic, it has the necessary sign-pattern of a Kirchhoff matrix. If one multiplies it with a
positive diagonal matrix T , the product will also have this sign property.

Let us form the positive diagonal matrix T from the elements of the row vector m, i.e. T =
diag(m1, ...,mn), where mi > 0. Then Eq. (2.8) can be written in the form

mM = 1 · TM = 0 (4.4)

that is equivalent to the required column conservation property (3.16) of the matrix TM . Together with
the sign property above, we can say that the matrix TM is a Kirchhoff matrix.

The proof of the reverse direction, when we have a positive diagonal matrix T = diag(t1, ..., tn), ti > 0
such that Ak = TM holds for a Kirchhoff matrix AK uses also the identity (4.4). From this it follows
that m = [t1, ..., tn]. �
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Corollary 4.4. A non-degenerate kinetic matrix M with the conservation property is a stability matrix.

Proof. Let us use a variable transformation x = Tx of the original ODE (4.1) using the positive diagonal
transformation matrix T = diag(m1, ...,mn). Then the following transformed ODE is obtained

dx

dt
= TMT−1x

where the transformed coefficient matrix TMT−1 has the same eigenvalues asM , but it is also a Kirchhoff
matrix Ak = AkT

−1 according to Theorem 4.3 and also keeping in mind that T−1 is a positive diagonal
matrix, too, that does not change the Kirchhoff property of a matrix. �

4.3. Positive equilibrium points and conservation of linear kinetic systems

We recall from section 2.2.2 (Lemma 2.2) that a linear MAL-CRN is weakly reversible if and only if there
exists at least one strictly positive vector c in the kernel of its Kirchhoff matrix Ak. This vector determines
the unique positive equilibrium point of the system within the appropriate stoichiometric compatibility
class.

Moreover, we notice that the variable structure graph of Ak (GAk
) is the non-weighted version of the

usual reaction graph of the MAL-CRN. Therefore, the linear MAL-CRN corresponding to Ak is weakly
reversible if and only if GAk

is strongly connected.

Lemma 4.5. If the coefficient matrix M of a non-degenerate linear kinetic system (4.1) is a conservation
matrix and its variable-structure graph is strongly connected, then there exists a linear weakly reversible
MAL-CRN that can be obtained from (4.1) by using a suitable LD transformation.

Proof. Theorem 4.3 implies that there is a positive diagonal matrix T = (t1, ..., tn), ti > 0 such that the
matrix Ak = TM is a Kirchhoff matrix.

Moreover, the variable structure graphs of Ak and M are the same, i.e. GM = GAk
, because the two

matrices are related by a positive diagonal transformation. Therefore, the strongly connected property of
GM holds also for GAk

. This implies that Ak corresponds to a weakly reversible linear MAL-CRN. �

The weak reversibility of GM can be checked using a well-known algebraic property. If GM contains
one graph component (linkage class), then it is weakly reversible if and only if M is irreducible which is
equivalent to the property that M cannot be transformed into block upper-triangular form by simulta-
neous row/column permutations. Consequently, linear kinetic systems containing more than one linkage
class are weakly reversible if and only if the diagonal blocks (possibly after renumbering the variables)
corresponding to the linkage classes in M .

Definition 4.6. A kinetic matrixM has the p-property, if its diagonal blocks (possibly after renumbering
the variables) corresponding to the linkage classes are irreducible.

Lemma 4.5 implies that all of the vertices lie at least one of the circles in the variable structure graph
GM , there is no idle vertex and no sink or source vertices. This gives rise to the Corollary below.

Corollary 4.7. The existence of positive equilibrium points of a linear kinetic system with a kinetic
matrix M having the p-property follows through the following statements.

A. The reaction graph of the transformed linear CRN with the Kirchhoff matrix Ak = TM , where T =
diag(m1, ...,mn), mM = 0 is also strongly connected. Therefore, there is an element-wise positive
vector c in the kernel of Ak, such that Akc = 0.

B. This positive vector is also in the kernel of M , because M = T−1Ak. Therefore, the element-wise
positive vector c determines the positive equilibrium point of the original linear kinetic system, too
(determined by the linear manifold given by the initial conditions).
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The following theorem states the equivalence of the existence of a positive equilibrium point and the
conservation property for a class of kinetic matrices.

Theorem 4.8. The non-degenerate kinetic matrix M has the p-property, i.e. it has an element-wise
positive vector p in its kernel (Mp = 0) if and only if M is a conservation matrix.

Proof. Let us form the matrix M
T
. This is a conservation matrix with m = pT , i.e. mM

T
= 0. It is also

easy to see, that M
T
is also a non-degenerate kinetic matrix with the p-property. This, together with its

conservation property implies that its variable structure graph G
M

T is strongly connected (see Lemma
4.5).

Furthermore, as Corollary 4.7.B states, there exists a positive vector c in the kernel of M
T
, such that

M
T
c = 0. By transposing this equality we get cTM = 0 that shows, that M is indeed a conservation

matrix with the conservation vector cT . �

4.4. Stability and Lyapunov functions of linear kinetic systems

The above results on conservation and positive equilibrium points give rise to the following stability
result.

Theorem 4.9. Consider a non-degenerate kinetic matrix M with the p-property, that has an element-
wise positive vector p in its kernel, i.e. Mp = 0. Then M is diagonally stable, i.e. there exists an
element-wise positive diagonal matrix Q ∈ D+ such that

M
T
Q+QM � 0 (4.5)

Proof. First we use Theorem 4.8 that states that M is a stability matrix with an element-wise positive
vector m. Let us form a Kirchhoff matrix from it by using the diagonal matrix T = diag(m1, ...,mn), i.e.
Ak = TM .

Because Ak is also a Metzler matrix, it is diagonally stable, i.e. there exists a positive diagonal matrix
Q ∈ D+ such that AT

kQ+QAk � 0. We can substitute the generating equation of Ak into it to obtain

M
T
(TP ) + (PT )M � 0

As T and P are both positive diagonal matrices, their product is also a positive diagonal matrix, and
PT = TP , therefore Eq. (4.5) holds with Q = PT = TP . �

4.4.1. Lyapunov functions for non-degenerate linear kinetic systems

Let us first define the set of coefficient matrices of non-degenerate kinetic systems with a strongly con-
nected variable structure graph GM , and denote this set byMwrCRN .

Based on the results above we can now state the following theorem.

Theorem 4.10. Assume that the coefficient matrix M of a non-degenerate kinetic system is inMwrCRN ,
i.e. the system has a strongly connected variable structure graph GM . Then this system allows to have
suitable scaled Lyapunov functions V2 (3.11), VCRN (3.13) and VQP (2.27) that are level set equivalent.

Proof. First we show that by suitable variable re-scaling we can transform the ODE of the system to a
model of a weakly reversible linear CRN. If M ∈ MwrCRN , then it is a conservation matrix and has a
positive equilibrium point. Then there exists a positive diagonal matrix T ∈ D+ with T = diag(t1, ..., tn),
such that Ak = TM is a Kirchhoff matrix, and Ak ∈ MwrCRN , too. Applying state transformation
x′
i = tixi to the ODE dx

dt
= Mx of the original system we obtain

dx′

dt
= (TM)T−1x′ = AkT

−1x′ = A′
kx

′ (4.6)
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where A′
k s also a Kirchhoff matrix and A′

k ∈MwrCRN , too. The state transformation implies xi

x∗

i

=
x′

i

x
′
∗

i

,

therefore the CRN-type Lyapunov function of the transformed system (4.6) can be written in the original
coordinates as

VCRN =

n
∑

i=1

tixi ln(
xi

x∗
i

) (4.7)

that is a weighted or scaled version (with the positive weights ti) of the original CRN-type Lyapunov
function (3.13).

The existence of a scaled quadratic Lyapunov function (3.11) follows immediately from Theorem 4.9.

Finally we can apply Lemma 3.1 to show that the system has a VQP -type Lyapunov function, too. �

5. Kinetic Lotka-Volterra systems

Combining the notation (2.16) introduced for Lotka-Volterra systems with the result of Theorem 4.10
some further results can be derived as follows.

5.1. Kinetic Lotka-Volterra systems and their Lyapunov functions

Theorem 5.1. Consider the special case of Lotka-Volterra systems

dx

dt
= diag(x) ·M · (x− x∗) (5.1)

with a non-degenerate kinetic matrix M having a variable structure graph with strongly connected com-
ponents. Then this system also admits suitably scaled Lyapunov functions

– V2 = (x− x∗)TP (x − x∗) with a positive definite diagonal P = diag(p1, ..., pn)

– VCRN = −
∑n

i=1 tix
∗
i ln

(

xi

x∗

i

)

besides of the usual VLV (x) =
∑m

i=1 ci

(

xi − x∗
i − x∗

i ln
xi

x∗

i

)

.

Proof. As a first step, apply nonlinear translated X-factorable transformation to the Lotka-Volterra ODE
model to obtain the dynamically similar linear ODEmodel dx

dt
= Mxwith the same non-degenerate kinetic

coefficient matrix M .

Then the statement follows directly from Theorem 4.10. �

5.2. Kinetic Lotka-Volterra models via time-reparametrization

The key tool for forcing the sign pattern (4.2) for the Lotka-Volterra model having a positive equilibrium
point (2.16) is time-reparametrization. As it was shown before, (2.18) is a similarity transformation that
practically increases the chance of proving asymptotic stability.

If the Ω parameter vector of transformed Lotka-Volterra model (2.25) can be selected in such a way,
that the resulting Lotka-Volterra model coefficient matrix M̂ admits the sign pattern (4.2), then Theorem
5.1 can be applied.
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The conditions (4.2) can be derived for (2.25) as the linear constraints (5.2).

mii +

n
∑

j=1

mjiΩj < 0, i = 1, . . . , n

n
∑

j=1

ΛjΩj < 0, i = 1, . . . , n

mij +

n
∑

k=1

mkjΩk < 0, i = 1, . . . , n, j = 1, . . . , n, i 6= j (5.2)

Λi +

n
∑

j=1

ΛjΩj > 0, i = 1, . . . , n

n
∑

j=1

mjiΩj > 0, i = 1, . . . , n

Then a suitable time-reparametrization transformation Ω can be found by solving (5.2), if it exists.

5.2.1. Example

Consider the Lotka-Volterra system with following coefficient matrices

M =

[

−0.1765 −1.3320
0.7914 −2.3299

]

, L =

[

1.5085
1.5385

]

(5.3)

The Lotka-Volterra model (5.3) has a positive eqilibrium point at [1 1]T .

Extending the constraints (5.2) with the linear objective function

Φ(Ω) = −Ω1 −Ω2

leads to a linear programming problem that can be solved by several software tools. A feasible solution
of the problem in this case is

Ω =
[

−0.7193 −0.1605
]

.

With the above solution, it is possible to cast the original Lotka-Volterra system to the set of Kinetic
Lotka-Volterra systems and use Theorem 5.1.

6. Conclusions

First an overview of the theory, methods and tools available for the two considered partially overlapping
class of positive polynomial systems, chemical reaction networks with mass action law (MAL-CRNs) and
quasi-polynomial systems (QP systems) were given. Both of them have an entropy-like Lyapunov function
associated to them which are similar but not the same.

Then we have shown that linear kinetic systems with a linear first integral (that corresponds to conser-
vation) and with the p-property can be transformed to linear weakly reversible MAL-CRNs using linear
diagonal transformation, and the coefficient matrix of this system is diagonally stable. The equivalence of
conservation and the existence of positive equilibrium points for linear kinetic systems with the p-property
was also shown for this case.

The mathematical equivalence of Markov chains with positive equilibrium point and linear weakly
reversible MAL-CRNs implies the existence of the weighted version of the various entropy level set
equivalent Lyapunov functions described in the pioneering work of Gorban et al. [12] for linear kinetic
systems with a linear first integral and with the p-property.

121



“mmnp-hangos” — 2014/5/17 — 10:42 — page 122 — #18
i

i

i

i

i

i

i

i
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Using translated X-factorable phase space transformations and nonlinear variable transformations
a dynamically similar linear ODE model has been associated to the QP system models that have a
positive equilibrium point. The non-degenerate kinetic property together with the existence of the positive
equilibrium point form a sufficient condition of the existence of the weighted version of the various entropy
level set equivalent Lyapunov functions in this case. Further extension has been obtained by using the
time re-parametrization transformation defined for QP models where the transformation parameters can
be determined by solving a linear programming problem.

Future work includes the extension of the results to other types of weakly reversible MAL-CRNs, and
the possible generalizations to the case of non-diagonal positive linear variable transformations.
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[16] K. Hangos, G. Szederkényi. The effect of conservation on the dynamics of chemical reaction networks. In: Proceedings
of IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory. Lyon, France, July 13-16, 2013,
30–35.
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