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Abstract—The properties MAL-CRN having equal
number of species and complexes (called square CRNs)
are studied in this paper. It is shown that linear weakly
reversible MAL-CRNs have a unique realization, there-
fore all of their realization properties are system prop-
erties. Moreover, these CRNs have always zero defi-
ciency, that implies the stability of their positive steady
state point within the appropriate stoichiometric com-
patibility class. Additionally, it is shown that weakly
reversible nonlinear square MAL-CRNs have also zero
deficiency and a unique realization. Furthermore, a
dynamically similar stable linear ODE model can be as-
sociated to a nonlinear square CRN by using translated
X-factorable phase space transformations and nonlin-
ear variable transformations. This way it is shown,
that their unique positive steady state point within the
appropriate stoichiometric compatibility class is also
globally asymptotically stable under mild conditions.

Index Terms—dynamics, stability, chemical reaction
networks, transformations

I. Introduction

Chemical reaction networks (CRNs) obeying the mass
action law (MAL-CRNs) form an especially interesting
class of smooth nonlinear systems with excellent descrip-
tive power for important nonlinear phenomena such as
the stability/multiplicity of equilibrium points, limit cycles
or even chaos. Therefore, CRNs can be considered as a
possible “prototype of nonlinear science” [1] being able to
represent dynamical systems that are originated outside of
chemistry [2].

In the field of chemical reaction network theory
(CRNT), several strong results have been published on the
relation between the network structure and the qualitative
properties of the corresponding dynamics since the 1970’s
[2], [3]. Among these, the Deficiency Zero and Deficiency
One Theorems are of exceptional significance assuring
the simple structure of equilibrium points and a robust
stability property in the case of zero deficiency [4], [5].
The properties of interest for these celebrated theorems
are weak reversibility that implies the boundedness of the
trajectories and the existence of a positive steady-state,

and the deficiency that jointly characterizes the network
structure and the complex compositions.

The above deficiency theorems are based on the di-
rected graph structure of the studied CRN, but it is well-
known that the network structure corresponding to a given
kinetic dynamics is generally not unique. Therefore, an
optimization approach has been proposed recently for the
computation of certain dynamically equivalent network
structures [6], [7]. It is also known that the dynamically
equivalent realizations may have different network struc-
ture, for example, one of them may be weakly reversible
and another is not. Therefore, it would be highly desirable
to find such sub-classes of MAL-CRNs that possess these
interesting network properties as system properties that
hold for every possible dynamically equivalent realizations,
if such exists.

Motivated by the above general goal, the aim of this
paper is to use the dynamic properties of special lin-
ear MAL-CRNs (the ones that have a positive steady
state (equilibrium) point) and similarity transformations
to establish nonlinear MAL-CRN classes that are globally
asymptotically stable, as well.

II. Basic notions

The basic notions about CRNs with mass action law
and their structure are briefly summarized below.

A. The basic structural elements

Consider a CRN that obeys the mass action law (MAL),
that will be called MAL-CRN. The structure of the MAL-
CRN is given in terms of its complexes Ci, i = 1, ...,m
that are linear combinations of its species Xj , j = 1, ..., n,
i.e. Ci =

∑n
j=1 αjiXj . The chemical reactions Ci 7→ Cj

with the reaction rate coefficient kij > 0 transform the
complexes into each other with the reaction rate

rij = kijϕi(x) = kij

n∏
l=1

xαli

l .

We form two matrices, the complex composition ma-
trix Y ∈ Zn×m+0 with non-negative integer elements,
the columns of which describe the composition of the



complexes, and the Kirchhoff matrix Ak ∈ Rm×m, that
describes the structure of chemical reactions for the de-
scription such that

[Y ]ij = αij , [Ak]ij =

{
−
∑m
l=1 kil if i = j
kji if i 6= j

(1)

B. The structure of a MAL-CRN: the reaction graph

The vertexes V of the reaction graph G = (V,E)
correspond to the complexes, and the edges E to the
reactions. Two complexes Ck and Cl are connected by a
directed edge (Ck, Cl), if a reaction in the form of Ck 7→ Cl
exists. Edge weights can be associated to the edges that
are the reaction rate constants kkl > 0, thus he reaction
graph is a weighted directed graph.

Note that the Kirchhoff matrix Ak of a CRN uniquely
determines its reaction graph and vice versa. However, the
Kirchhoff matrix of the reaction graph does not uniquely
determine the reaction kinetic system itself, since the
information on the composition of the complexes is missing
from the graph: it is contained in the complex composition
matrix Y .

The reaction graph G without its edge weights (i.e.
the values of the reaction rate coefficients) describes the
structure of a MAL-CRN.

The connected components in the reaction graph are
called linkage classes, their number is denoted by ` ≥ 1.

Basic assumptions: In this paper the MAL-CRNs
obeying the following basic assumptions are considered.

G1. There is no isolated (i.e. unconnected) complex in the
CRN.

G2. The relation m ≥ n is assumed.
G3. Y is of full rank.

C. Weak reversibility and deficiency

A CRN is called weakly reversible if whenever there
exists a directed path from Ci to Cj in its reaction graph,
then there exists a directed path from Cj to Ci. In graph
theoretic terms, this means that all components of the
reaction graph are strongly connected components. We
shall use the fact known from the literature that a a CRN
is weakly reversible if and only if there exists a vector with
strictly positive elements in the kernel of Ak, i.e. there
exists b ∈ Rn+ such that Ak · b = 0 [8].

The notion of the deficiency of a CRN is built on the
set of reaction vectors that are defined as: R = {ρ(l,k) =
η(l)− η(k) | (Ck, Cl) ∈ E in G}, where η(i) denotes the ith
column of Y . Then, the deficiency δ of a CRN is an integer
number that is usually defined as:

δ = m− `− s (2)

where m is the number of complexes and ` is the number
of connected components in the reaction graph, while s
is the dimension of the stoichiometric sub-space, i.e. s =
rank(R).

The Deficiency Zero Theorem [4] shows a very robust
stability property of a certain class of kinetic systems.

It says that deficiency zero weakly reversible networks
possess well-characterizable equilibrium points, and inde-
pendently of the weights of the reaction graph (i.e. that
of the system parameters) they are at least locally stable
with a known logarithmic Lyapunov function that is also
independent of the system parameters. Moreover, they
are input-to-state stable with respect to the off-diagonal
elements of Ak as inputs [9], it is straightforward to
asymptotically stabilize them by additional feedback [10],
and it is possible to construct efficient state observers for
them [11].

D. The ODE form and its transformations

With the above matrices the time evolution of the
specie concentrations x = [x1, ..., xn]T is described by the
following set of ODEs:

dx

dt
= Y Akϕ(x) = Mϕ(x) , ϕi(x) =

n∏
j=1

x
Yji

j (3)

where M = Y Ak is a constant matrix. The vector x
belongs to the state or phase space X ⊆ Rm+ , i.e. x ∈ X .

The stoichiometric vector space is the space denoted by
S is spanned by the reaction vectors, i.e. S = span{R}
The positive stoichiometric compatibility class containing
a state x0 is a translated linear manifold defined as:

(x0 + S) ∩ Rn+, (4)

where Rn+ denotes the positive orthant in Rn.
A polynomial dynamical system is called kinetic, if it

can be written in the form (3). A necessary and sufficient
condition for the kinetic property was first given in [12].
According to this result, a set of polynomial ODEs of the
form ẋ = f(x), where x ∈ Rn, is kinetic if and only if all
coordinates functions of f can be written in the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (5)

where gi and hi are polynomials with nonnegative coeffi-
cients. Naturally, the kinetic property guarantees that the
nonnegative orthant is invariant for the dynamics (3), i.e.
kinetic systems are nonnegative systems [13].

Let us associate monomial-variables q ∈ Rm+ to the
above equation such that qi(x) = ϕi(x). (For simplicity,
most often we will suppress the x argument in qi.) The
monomial space Q ⊆ Rm+ is composed of the monomial
variables q.

The variable transformation

ln q = Y T · ln x (6)

shows the nonlinear dependence q(x), where the ln oper-
ator applies the natural logarithm function element-wise
to a positive vector. This variable transformation defines
a mapping Y from X to Q that is an injective (but
not necessarily surjective and thus invertible) phase space
transformation because of the full rank property of the
matrix Y and the inequality m ≥ n.



1) Dynamical equivalence: Let us consider two MAL-
CRN models with the same coefficient matrix M and com-
plex composition matrix Y but with different Kirchhoff
matrices Ak and A′k. The two so-called realizations (Y,Ak)
and (Y,A′k) are called dynamically equivalent, if they give
rise to the same ODE model (3), i.e. Y Ak = Y A′k. A
realization (Y,Ak) is unique, if there is no other, different
dynamically equivalent realization to the ODE (3).

2) Nonlinear translated X-factorable transformation:
Assume that the following set of ordinary differential
equations

dX

dt
= F(X) (7)

is defined on the positive orthant Rn+. The steady state
solutions of Eq. (7) are defined by F(X) = 0. Consider
the following nonlinear translated X-factorable phase (or
state) space transformation of Eq. (7)

dX

dt
= F̂(X) = diag(X1, ..., Xn)F(X − C) (8)

where the elements of C = [c1, . . . , cn]T are positive real
numbers, and X = [X1, ..., Xn]T .

The original motivation of the application of the trans-
formation (8) in [14] was to represent non-positive dy-
namical systems as kinetic systems. Clearly, the trans-
lation parameterized by C can be chosen such that the
equilibrium points (or operating domain) of interest are
moved to the strictly positive orthant, while the multipli-
cation by diag(X) ensures the nonnegativity and the so-
called geometrical separability of the transformed system.
Moreover, it is easy to see that models of the form (8)
are always kinetic, since they trivially fulfil the condition
(5). It is shown in [14] that due to the transformation
(8), a substantial compression of trajectories occurs close
to the boundary of the positive orthant, however, this
distortion is weak or negligible for trajectories far from
the boundaries. Therefore, the dynamics of the solutions
of Eqs. (7) and (8) will be called dynamically similar.

3) Linear diagonal (LD) transformation: It is known
that under a positive diagonal state transformation, the
kinetic property of a model (3) is preserved [15], [16].
Consider a positive diagonal matrix T = diag(c), where
c ∈ Rn+ is an element-wise positive vector. Then one
can transform eq. (3) that brings the MAL-CRN model
(Y,Ak) to another MAL-CRN model (Y,A′k) with (i.e. this
transformation does not lead out of the MAL-CRN model
class) [17] such that

Y Ak = TY A′k(diag(ϕ(c)))−1 (9)

It is important to note that the LD transformation is an
invertible variable transformation. Therefore, the qualita-
tive properties of the dynamics of the original and the
transformed system (e.g. number and stability of equi-
libria, boundedness of solutions, existence of limit cycles,
chaotic behavior etc.) are identical.

III. Linear MAL-CRNs

Assume that every reaction in the MAL-CRN system
is linear, i.e. ϕi(x) = xi. This case forms the simplest
class of MAL-CRNs, with interesting structural dynamic
properties that are easy to investigate.

A. Basic structural properties

The basic structural elements of linear MAL-CRNs are
in the following special form.

• The complexes are the species, i.e. n = m and Ci =
Xi. Therefore the complex composition matrix is the
unit matrix, i.e. Y = I, and the state variable vector
x is identical to the monomial variable vector q, i.e.
x = q.

• The ODE model in Eq. (3) that describes the dynam-
ics in the phase space X specializes to

dx

dt
= Akx (10)

that is a linear ODE with constant coefficients that
are collected in the Kirchhoff matrix Ak. The dynam-
ics in the monomial space Q is identical to the one in
Eq. (10).

It is very easy to see that the realization (Y = I,Ak)
of a linear MAL-CRN is unique, since Y · Ak = Y · A′k
trivially implies Ak = A′k in this case.

Moreover, in the case of a linear diagonal transforma-
tion described above, Ak = TA′k(diag(ψc))−1. Therefore,
Ak and A′k encode the same reaction graph structure
(only the edge weights are scaled), which means that the
(unweighted) reaction graph structure and its dynamical
consequences are system properties in the linear MAL case.

B. Properties related to weak reversibility

The zero column-sums within the Kirchhoff property of
Ak (see in Eq. (1)) can be expressed as

1Ak = 0

where 1 = [1, 1, ..., 1] and 0 = [0, 0, ..., 0] [18], that shows
the rank-deficient nature of Ak, i.e. rank(Ak) ≤ m− 1.

It is well-known from the literature that a CRN is
weakly reversible if and only if there is a strictly (ele-
mentwise) positive vector q∗ in the kernel of Ak. Then,
the intersection of this kernel and the positive orthant
contains (infinitely many) positive equilibrium points for
the dynamics (10). It is important to remark that the
stoichiometric compatibility class (4) can be fixed by
selecting the equilibrium point x∗ = q∗.

It is also known that in the weakly reversible case
rank(Ak) = m−`, where ` is the number of linkage classes.

Additionally, it is easy to see that weakly reversible
linear CRNs have always zero deficiency : since the columns
of Y are the standard basis vectors of Rn, the rank of
the reaction vectors in any strongly connected component
of the reaction graph containing mk complexes is exactly
mk − 1 (that is equal to the number of the edges in the



spanning tree corresponding to the connected component).
Therefore, the rank of the stoichiometric space with `
strongly connected components is s = m − ` resulting in
zero deficiency.

C. Stability and Lyapunov functions

To show the stability of weakly reversible linear CRN
models, we use results from the theory of nonnegative and
compartmental systems using mainly Chapter 2 of [19].
The review paper [20] is also devoted to the qualitative
analysis of compartmental systems.

An n× n matrix F is called a compartmental matrix if
it satisfies the following conditions

1) Fij ≥ 0, for i, j = 1, . . . , n, i 6= j

2)
∑n
i=1 Fij ≤ 0, for j = 1, . . . , n

Clearly, the Kirchhoff matrix is a compartmental matrix
and thus a special type of Metzler matrix. We will use the
following properties of compartmental matrices. Consider
a compartmental matrix F

P1 The eigenvalues of F are either zero, or they have
negative real parts. (In other words, compartmental
matrices cannot have unstable or purely imaginary
eigenvalues.)

P2 If F is the Kirchhoff matrix of a weakly reversible
CRN, then the number of zero eigenvalues of F is
equal to the number of linkage classes (i.e. to the
number of connected components of the reaction
graph).

P3 If zero is an eigenvalue of F with algebraic multiplic-
ity κ, then its geometric multiplicity is also κ (i.e.
the eigenvectors corresponding to zero eigenvalues
are always linearly independent).

1) The quadratic Lyapunov function: It follows from
the theory of linear time-invariant systems and P1 – P3
that weakly reversible linear CRNs of the form (10) are
globally stable with a quadratic Lyapunov function. Of
course, the stability cannot be asymptotic, since weak
reversibility guarantees that the intersection of the positive
orthant and the kernel of Ak is non-empty (i.e. there exist
infinitely many equilibrium points in the positive orthant).
Therefore, we can use the following quadratic Lyapunov
function: V2(x) = (x−x∗)TP (x−x∗) with an appropriate
positive definite symmetric P . Taking the derivative of V2
along the solution of (10), we obtain the classical non-
strict Lyapunov inequality as the stability condition:

ATk P + PAk � 0, (11)

where ‘� 0’ means negative semi-definiteness.

A nice property of stable Metzler matrices (and there-
fore of Kirchhoff matrices) is that they are diagonally
stable, i.e. there exists a positive definite diagonal P that
satisfies (11) [21].

2) The logarithmic Lyapunov function: The zero defi-
ciency property of weakly reversible linear CRNs implies
that the logarithmic Lyapunov function (12) proposed e.g.
in [22] can also be used for proving the stability of such
CRNs. It is important to remark that the stability of any
equilibrium point x∗ is asymptotic if we restrict the dy-
namics to the corresponding stoichiometric compatibility
class.

[23] lists various entropy-motivated Lyapunov functions
for linear systems with positive equilibrium points, that in-
clude the above quadratic one with P ∗ and the logarithmic
one in the form

Vln(x) = −
n∑
i=1

x∗i ln

(
xi
x∗i

)
. (12)

IV. Nonlinear square MAL-CRNs

Inspired by the simple and advantageous dynamic prop-
erties of weakly reversible linear MAL-CRNs, we general-
ize these results for certain nonlinear CRNs using variable
and phase space transformations such that these trans-
formations ensure invertibility and dynamic similarity, as
well. For this we assume that the MAL-CRN system
described by the dynamics (3) has the same number of
species and complexes, i.e. m = n holds. Such nonlinear
MAL-CRNs will be called square MAL-CRNs.

A. Realizations, weak reversibility and deficiency

There is a strong similarity between linear MAL-CRNs
and square MAL-CRNs because of the equal dimension of
their phase and monomial spaces m = n, and the invertible
property of the complex composition matrix Y ∈ Zn×n0+ .

This implies that square MAL-CRNs have a unique
realization, since the equation M = Y Ak has a unique
solution for Ak if M and an invertible Y are given.
Therefore, all realization properties (e.g. weak reversibility,
deficiency) are system properties in this case, too.

1) Deficiency: Because of the full rank property of Y ,
its columns form a basis in Rn, similarly to the linear
MAL-CRN case. Therefore, we can repeat the arguments
in subsection III-C to show that weakly reversible square
MAL-CRNs have zero deficiency. This implies that within
each stoichiometric compatibility class, there exists a
unique and asymptotically stable equilibrium point x∗.

B. Dynamics in the state space and in the monomial space

Let us fix the structure graph of the square MAL-CRNs,
and assume that we have a given Kirchhoff matrix Ak that
admits a weakly reversible realization. Now we investigate
the effect of a nonlinear but invertible mapping Y : X 7→
X generated by the matrix Y in Eq. (6) on the linear and
globally asymptotically stable dynamics (10).

The nonlinear dynamics is described in the state space
with Eq. (3), that we now write in the form

dx

dt
= Y Akq = Mq (13)



Using the fact that m = n, we have a nonlinear invert-
ible transformation between the state (x) and monomial
(q) variables in Eq. (6) Because of the weak reversibility
assumption the nonlinear MAL-CRN system has a posi-
tive equilibrium point x∗ in the state space, that can be
transformed into a positive equilibrium point q∗ in the
monomial space.

In order to establish a dynamically similar linear system
to the nonlinear dynamics (13), first we apply the nonlin-
ear X-factorable phase space transformation (8) to obtain
a dynamically similar form

dx

dt
= diag(x1, ..., xn)Mq or

dln x

dt
= Mq (14)

Multiplying both sides by Y T we can apply the variable
transformation (6) to form the transformed

dln q

dt
= Y TMq (15)

Finally, the inverse of the nonlinear X-factorable transfor-
mation is applied to obtain the dynamically similar linear
dynamics

dq

dt
= Y TMq = (Y TY )Akq (16)

It is important to note that the above transformation
sequence contains invertible steps in the case of square
nonlinear CRNs, thus establishing a one-to-one relation-
ship between the original nonlinear dynamics (13) and its
linear counterpart (16), that are dynamically similar.

The coefficient matrix M = (Y TY )Ak in the linear
dynamics (16) has the following properties.

• M is generally not a Kirchhoff matrix, so (16)
does not correspond in general to a linear MAL-CRN.

• The first factor Y TY is a positive definite sym-
metric matrix with nonnegative integer elements.

• The second factor Ak is a Kirchhoff matrix obeying
eq. (11) for some diagonal P , therefore it is a diago-
nally semistable matrix [21].

C. Stability

As we have seen before in subsection IV-A1, weakly
reversible square MAL-CRNs have always deficiency zero.
Therefore, the asymptotic stability of the unique equi-
librium point of weakly reversible square MAL-CRNs (of
course, within the appropriate stoichiometric compatibil-
ity class) follows from the Deficiency Zero Theorem [4].

Stability of the dynamically similar linear ODE: Since
Y TY is a positive definite symmetric matrix and Ak is
a diagonally semistable Metzler matrix, it is clear that
ker(Ak)=ker(M). Therefore, M has as many zero eigen-
values as Ak has. Thus, if the the rest of the eigenvalues
of M is negative, then the dynamics (16) will be stable.

D. A simple example

Consider the simple nonlinear square CRN encoding
a weakly reversible triangle structure with the following
parameters

Y =

 1 1 2
2 1 1
0 2 2

 , Ak =

 −k12 0 k31
k12 −k23 0
0 k23 −k31

 (17)

First, we examine the diagonal stability of Ak. Let us
choose P in (11) as follows:

P = diag([k12 k23 k31]T ) (18)

Then

W := ATk P + PAk =

 −2k212 k12k23 k12k31
k12k23 −2k223 k23k31
k12k31 k23k31 −2k231]

 (19)

The minors of W denoted by m1, . . . ,m3 are:

m1 = −2k212, m2 = 3k212k
2
23, m3 = 0 (20)

Therefore, W is negative semidefinite considering that the
rate coeficcients kij are always positive.

Let us use the following values for the rate coefficients:
k12 = 1, k23 = 3, k31 = 2. The trajectories of the system
characterized by (17) from different initial conditions be-
longing to the same stoichiometric compatibility class con-
taining the equilibrium point x∗ = [1.5000 1.1855 0.6290]T

are shown in Fig. 1. Moreover, the coefficient matrix M of

Figure 1. Solutions of the kinetic system characterized by Y and Ak

in Eq. (17).

the monomial dynamics is given by

(Y TY )Ak =

 −2 3 2
3 3 −8
3 6 −10

 (21)

the eigenvalues of which are λ1 = −6.3028, λ2 = 0 and
λ3 = −2.6972 showing that the linear dynamics (16) is
indeed stable.

V. Conclusions

First the uniqueness of the realizations of a linear weakly
reversible MAL-CRNs were shown together with their zero
deficiency property. This implies the asymptotic stability
of their unique positive steady state point. As they have a



single unique realization, all of their realization properties
are system properties.

Based on the definition of square MAL-CRNs with
square invertible complex composition matrix Y it is
shown that weakly reversible square MAL-CRNs have
also zero deficiency and a unique realization. Moreover,
dynamically similar stable linear ODE model has been
associated to them by using translated X-factorable trans-
formations and nonlinear variable transformations. This
way it is shown that the unique (within the appropriate
compatibility class) steady-state point of weakly reversible
nonlinear square MAL-CRNs is asymptotically stable.

Further work will be focused on conditions of the appli-
cability of the dynamically similar linear dynamics when
m > n.
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[1] P. Érdi and J. Tóth, Mathematical Models of Chemical Reac-
tions. Theory and Applications of Deterministic and Stochastic
Models. Manchester, Princeton: Manchester University Press,
Princeton University Press, 1989.

[2] V. Chellaboina, S. P. Bhat, W. M. Haddad, and D. S. Bernstein,
“Modeling and analysis of mass-action kinetics – nonnegativity,
realizability, reducibility, and semistability,” IEEE Control Sys-
tems Magazine, vol. 29, pp. 60–78, 2009.

[3] D. Angeli,“A tutorial on chemical network dynamics,”European
Journal of Control, vol. 15, pp. 398–406, 2009.

[4] M. Feinberg, “Chemical reaction network structure and the
stability of complex isothermal reactors - I. The deficiency zero
and deficiency one theorems,” Chemical Engineering Science,
vol. 42 (10), pp. 2229–2268, 1987.

[5] ——, “Necessary and sufficient conditions for detailed balanc-
ing in mass action systems of arbitrary complexity,” Chemical
Engineering Science, vol. 44, pp. 1819–1827, 1989.
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