Chapter 3

Analysis of Qualitative Dynamic
Properties of Positive Polynomial
Systems using Transformations

Katalin M. Hangos and Gébor Szederkényi

Abstract Two classes of positive polynomial systems, quasi-polynomial (QP)
systems and reaction kinetic networks with mass action law (MAL-CRN) are
considered. QP-systems are general descriptors of ODEs with smooth right-
hand sides, their stability properties can be checked by algebraic methods
(linear matrix inequalities). On the other hand, MAL-CRN systems possess
a combinatorial characterization of their structural stability properties using
their reaction graph.

Dynamic equivalence and similarity transformations applied either to the
variables (quasi-monomial and time-reparametrization transformations) or to
the phase state space (translated X-factorable transformation) will be applied
to construct a dynamically similar linear MAL-CRN model to certain given
QP system models. This way one can establish sufficient structural stability
conditions based on the underlying reaction graph properties for the subset
of QP system models that enable such a construction.
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3.1 Introduction

The class of positive polynomial ODEs plays an important role in describing
the dynamics of physical, chemical and ecological systems, where the posi-
tivity of the variables is dictated and ensured by the physical meaning, as
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certain quantities - such as concentrations, pressures, population numbers
etc. - cannot take negative values. The dynamic model of such systems may
often originate from first physical, chemical or engineering principles - such
as conservation - that implies a well defined structure to the right-hand sides
of the ODE models.

The notion of positive systems builds upon the essential nonnegativity of
a function f = [f; ... fu]T :[0,00)" — R", that holds if, for alli = 1,...,n,
fi(x) >0 for all z € [0,00)", whenever x; = 0 [6]. An autonomous nonlinear
system defined on the nonnegative orthant [0, c0)™ = Ri cX

b= = f(@), #(0) = 0, (3.1)
where f : X — R"™ is locally Lipschitz, X is an open subset of R™ and xq €
X is nonnegative (or positive) when the nonnegative (or positive) orthant
is invariant for the dynamics (3.1). This property holds if and only if f is
essentially nonnegative.

The sub-class of quasi-polynomial systems (QP systems in short), to which
the well-known Lotka-Volterra equations belong, form a general descriptor
class of dynamic systems with smooth nonlinearities in the sense that such
systems can be embedded into QP form by adding new auxiliary variables
to the system [4]. There exists a parameter-dependent sufficient condition
for a given QP system to be globally asymptotically stable [10], that can be
checked by solving a linear matrix inequality (LMI).

Deterministic kinetic systems with mass action kinetics or simply chemical
reaction networks (CRNs) form a wide class of nonnegative polynomial sys-
tems, that are able to produce all the important qualitative phenomena (e.g.
stable/unstable equilibria, oscillations, limit cycles, multiplicity of equilib-
rium points and even chaotic behavior) present in the dynamics of nonlinear
processes [2]. The importance of the CRN system class with mass action
law (abbreviated as MAL-CRNs) lies in the fact that strong structural (i.e.
parameter-independent) stability results exist for the deficiency zero weakly
reversible case [7], and recently for the detailed balanced case, when each of
the chemical reactions are assumed to be reversible (see [5], [11], [12], [16]
and recently [18]).

The aim of this paper is to try to establish a dynamic similarity relation-
ship between the Lotka-Volterra form of QP systems and the linear MAL-
CRNSs in order to obtain structural stability conditions for the former.

3.2 Quasi-polynomial (QP) systems

The most general class of positive polynomial systems is the class of quasi-
polynomial (QP) ones, that are time-dependent autonomous ODEs (3.1)
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evolving in the positive orthant R7, ie. z(t) > 0 (element-wise) for ¢ > 0
and xg > 0.

3.2.1 The ODE form

Two sets of variables are present in the ODE form of a QP system:

e the state variables z;,7 =1,...,n, and
e the quasi-monomials (QMs) ¢;,j=1,...,m

We assume m > n.
With these variables the system dynamics is described by an autonomous
ODE with quasi-polynomial right-hand sides defined on the positive orthant

dii
dt

m
=T )\Z+ZA”(]J s i = 1,...,’11, (32)
j=1
that is augmented by the following algebraic equations:
Bii .
qj:Hxi], j=1,...,m. (3.3)

The above equations (3.3) are the so called quasi-monomial (QM) relation-
ships.
The state space X C R} will also be called phase space in the paper.

Algebraic characterization

The real vector A € R™ and matrices B € R™*™ and A € R"*™ are the
parameters of a QP system model (3.2)-(3.3).

3.2.2 Quasi-monomial transformation and the
Lotka- Volterra canonical form

The so called quasi-monomial transformation is an equivalence transforma-
tion on the class of QP-systems that allows to form equivalence classes. These
classes can be represented by their member in Lotka-Volterra canonical form
3].
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3.2.2.1 The quasi-monomial transformation

The so called quasi-monomial transformation or QM-transformation in
short introduces new state variables

I;-:H.’L‘fji, j=1,...,n. (3.4)

The parameter of the QM-transformation is the real square invertable matrix
I e Rm*™,

The parameters A and B of a QP system model are transformed to A’ =
I''A and B’ = BT, therefore the product M = BA is invariant under the
QM-transformation.

3.2.2.2 Lotka-Volterra (LV) canonical form

Being an equivalence transformation, the QM-transformation splits the set
of QP models into equivalence classes. From any QP-model (3.2)-(3.3)
with parameters (A4, B, \) of an equivalence class, the LV model form can
be obtained by QM-transformation and variable extension such that
B’ = I with 2’ = ¢q. Then the transformed matrix A’ becomes

A'=M=B-A. (3.5)

The resulting transformed ODE in LV form

dg <
E:ql Al+zMiij , l:l,...,m (36)

j=1

is a homogeneous bi-linear ODE that describes the dynamics in the mono-
mial space Q C R’'. However, because of the variable extension and the
relationship m > n, the dynamics lives in a lower n-dimensional manifold of
the monomial space Q.

Steady state points

The non-trivial nonnegative steady state points of the original QP equation
(3.2) can be obtained (if they exist) by solving the equation

0=A+A-¢* (3.7)

for ¢*. It is important to not that the equilibrium point is determined in the
monomial space Q, and then it is transformed back to the state space.
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Eq. (3.7) is a linear under-determined equation for the vector ¢* € R™,
but Eq. (3.3) gives m — n algebraic relationships between the elements of ¢*,
therefore one may have a well posed solution (even if it is not unique). As
the monomial space is only a subset of R™ (Q C R'), it may occur that no
positive equilibrium point exists. Without further investigations, however, we
only consider here the case when a finite number of positive steady-state
points exist in the state space.

The vector-matrix form

In order to develop a compact vector-matrix form, the following notations
are introduced

In¢" =[ng ... Ing,]", diagg=|0 - ¢ - 0 |. (3.8)
00...0¢qm

Then the dynamics (3.6) of a Lotka-Volterra system with a positive steady
state point ¢* can be written in the following form:
dg

=M-(q—q") or a=diagq-M-(q—q*)- (3.9)

dln g
t

[}

3.2.3 The time-rescaling transformation

The so called time-rescaling transformation [9] maps a QP system model to
another QP system model in the following way. Let us introduce a transfor-
mation vector 2 = [2; ... 2,]7 € R", that is used to "rescale” the time in

a state-dependent way
n

dt = [ ] ar’.
k=1

Then the original QP model (3.2) with parameters (A, B, \) is transformed
to the model that is also in QP-form

dl‘i m+1 . n Bl .
= ST AL [T, i=1,.n, (3.10)
j=1 k=1

where the new parameters A € R**(m+1) and B € ROm+D*7 are
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Ajj=A;, i=1...mj=1..m
Ai,7n+1:)‘i7 7::1,...,”
Bi,j:Bi,j+Qj7 i:l,...,m;j:l,...,n

Bm+17j:-Qj _]:].,,n

Note that the number of monomials is increased by one, and the new
parameter vector ) is zero in the transformed system.

It is important to note that by assuming strictly positive state variables,
the time-rescaling transformation is a similarity transformation, that
leaves the equilibrium points and the stability properties unchanged [9].

3.2.4 Stability condition for QP systems

Thanks to the well characterized structure of QP systems with a positive
equilibrium point ¢*, an easy-to-check sufficient condition for their global
(asymptotic) stability exists [10].

A QP system (3.2)-(3.3) with a positive equilibrium point ¢* is globally
stable if the the linear matrix inequality

MTC+CM <0 (3.11)

is solvable for a positive diagonal matrix C, with M = BA. In this case,
the matrix M is called diagonally stable. (The stability is asymptotic, if
the inequality (3.11) is strict.) Given the parameter matrix M of the system,
the condition (3.11) can be checked effectively by solving a linear matrix
inequality (LMI) [19].

It is important to note that the above condition is derived using the fol-
lowing Lyapunov function candidate:

V=Y (qi g —g lnji) . (3.12)

i=1 K

Unfortunately, however, the condition (3.11) is rather conservative. There-
fore, one may use time-rescaling of the original QP system model to find a
dynamically similar QP system model such that it fulfills (3.11). This, how-
ever, requires to solve a bilinear matrix inequality (BMI) [14].
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3.3 Chemical Reaction Networks with mass action law

Chemical reaction networks with mass action law (MAL-CRNs in short) form
an important special sub-class of positive polynomial systems. Their spe-
cial structure, that will be described briefly in this section, enables to apply
parameter-independent robust conditions for their asymptotic stability.

3.3.1 Formal description

Chemical reaction networks [7] are abstract versions of reaction kinetic mod-
els in chemistry and bio-chemistry. They are composed of irreversible ele-
mentary reaction steps in the form

S oA 3 BuA. (3.13)
s=1 s=1

where A, s = 1,...,n are the chemical components, while a; and B are
the stoichiometric coefficients that are always non-negative integers.
The linear combinations of components present on each side of a reaction
step are called complexes, i.e. C; = > az;As (j = 1,...,m) form the
set of complexes.
The dynamics of a MAL-CRN is described by an autonomous ODE with
polynomial right-hand side on the positive orthant in the following form

d
P =0 =Y Ay px) (3.14)
at
pi(x) =[5, j=1.....m, (3.15)
s=1

where the state vector is composed of the concentrations (these are non-
negative quantities) of the components (x4 is the concentration of Ay). The
non-negative variables in the vector ¢ are called (reaction-)monomials,
they span the monomial space.

It should be emphasized, that - in contrast to the reversible reaction steps
traditionally considered in the applied mathematical literature (see [5], [11],
[12], [16] and recently [18]) we assume irreversible reactions in (3.13). This
implies that the reaction rate r; = kjp;(x) of the reaction (3.13) depends
only on the composition of the reactant complex, i.e. on the stoichiometric
coefficients aij, s =1,...,n but not on the coefficients 8, s=1,...,n.

The parameters of the model are the complex composition matrix Yy; =
as; and the reaction matrix Ay:
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- kg, ifl=j
[Aklij = ezgﬁ ! (3.16)
ki, if [ # 7,

where k;; > 0 is the reaction rate constant (a positive number) of the
reaction Cy — Cj.

It is important to note that Ay € R™*™ is a Kirchhoff matrix with zero
column sum. Therefore, Ay is rank-deficient.

The reaction structure of a MAL-CRN is described by the so-called reac-
tion graph, that is a weighted directed graph. The vertices of the reaction
graph correspond to the complexes, and the edges describe reactions that
connect the complexes. This means, that a directed edge from the vertex C;
to C exists, if there is a reaction C; — Cj in the CRN. The edge weight is the
corresponding reaction rate coefficient k;;. Therefore, the Kirchhoff-matrix
Ay, determines the reaction graph.

It is important to note that the dynamics of CRNs with (generalized)
mass conservation evolve in a lower dimensional sub-space of the state space
X C RY, that is determined by the initial conditions and is called the stoi-
chiometric compatibility class.

3.3.1.1 Example: a simple nonlinear MAL-CRN

Let us consider a simple MAL-CRN with the following three reversible reac-
tions

kl,g k4,5 ;
2A1, A+ A 2A2, 2A,

k2 ks 4 k32

Ay + A3

Because the elementary reaction steps are considered irreversible, we break
down these reactions into six irreversible steps connecting five complexes (i.e.
m =5 with C = {AQ + A3, 2A1, 2A3, A1 + A37 2A2}) with the fOHOWng
reaction-monomials:

2 2 21T
o(x) = woxs x7 3 x123 25 | .
k2‘1 k3,2
k
45
Fig. 3.1 The reaction K
54

graph of the example
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The dynamic model equations are as follows:

T = 2k172I2$3 — (2]{?2’1 + 2]42’3)I% + 2]6372%% — k4’51‘1x3 + k5,4$§
i‘g = 7]41172%2333 -+ kg)l.’[% + 2]434’53}1333 — 2]65’4:13%

T3 = —k172$2$3 + (k'271 + 2]{213)1‘% — 2]@372%% — k‘4’51‘1{L‘3 + k5,4$§.

Fig. 3.2 The dynamics
of the example evolving in

. . . . 22 7\\/\// X,
a stoichiometric compati- by 18

bility class

3.3.2 MAL-CRN structural stability

The structure of a MAL-CRN system is determined by the complex compo-
sition matrix Y and by its reaction graph (or equivalently its reaction matrix
Ay) without its weights, i.e. irrespectively of the actual values of the reaction
rate constants.

The structural stability of an ODE can also be defined following this idea.

Definition 3.1. An ODE % = F(z,P) with parameters P will be called
structurally stable with respect to a parameter set P, if it is stable for every
PeP.

3.3.2.1 MAL-CRN structural properties

The structural properties of a MAL-CRN model are defined based on the
graph structure of the reaction graph without its edge weights and on the
complex compositions.

A CRN is called weakly reversible if whenever there exists a directed
path from C; to Cj in its reaction graph, then there exists a directed path
from C; to C;. In graph theoretic terms, this means that all components of
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the reaction graph are strongly connected components. We shall use the fact
known from the literature that a CRN is weakly reversible if and only if there
exists a vector b with strictly positive elements in the kernel of Ay, i.e. there
exists b € R} such that Ay -b =0 [8]. This also implies that the CRN has a
positive equilibrium point in the monomial space.

The notion of the deficiency of a CRN is built on the set of reaction
vectors that are defined as: R = {p*) = n( — ) | Cy.C; € E in G},
where 7(*) denotes the ith column of Y. Then the deficiency § is an integer
number that is defined as:

d=m—4~4—s (3.17)

where m is the number of complexes and ¢ is the number of connected com-
ponents in the reaction graph, while s is the dimension of the stoichiometric
sub-space, i.e. s = rank(R). The zero deficiency property implies the stability
of equilibria in a weakly reversible MAL-CRN system.

Deficiency Zero theorem

The Deficiency Zero Theorem [7] shows a very robust stability property of
a certain class of kinetic systems. It says that deficiency zero weakly reversible
networks possess well-characterizable equilibrium points, and independently
of the weights of the reaction graph (i.e. that of the system parameters) they
are at least locally stable with a known logarithmic Lyapunov function that
is also independent of the system parameters. (According to the so-called
Global Attractor Conjecture that was proved for the single linkage class
case in [1], this stability is actually global.)

3.3.3 Linear CRN systems

A linear MAL-CRN is characterized by the equation Y = I, that is, m =n
and the components form the complexes (C; = A;, i = 1,...,m). Then the
dynamics is described by the following ODE

— = A 1
dt kT (3 8)

where Ay, is the reaction matrix, that is a Kirchhoff matrix (see Eq. (3.16)).
This implies

[Aplis < 0; [Aglij >0, i#5; 1-A,=0, (3.19)

where 1 =[1,...,1] is a row vector.
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Note that the state and monomial spaces of a linear CRN coincide, and
the dynamics is linear in this space.

Because of the Y = I equality, a linear CRN has always zero defi-
ciency.

3.4 Transforming LV models to a linear MAL-CRN form

Based on the notion of dynamic similarity and on model transformations
we alm at constructing a dynamically similar linear MAL-CRN model to a
given Lotka-Volterra model. If this is possible then we can use the structural
stability conditions of the linear MAL-CRN model to infer the structural
stability of the LV model.

3.4.1 The translated X-factorable transformation

Given an ODE d
z
—=F 3.20
= = F(2) (3:20)
on the positive orthant z € R} with F(z) = 0.
The nonlinear translated X-factorable transformation maps the
above ODE into
dz’ ) .
— =diag z- F(z — 2"), (3.21)
dt —=
where the elements of z* = [z],..., %
21y s 2]

If F(z) is composed of polynomial-type functions with a finite number
of singular solutions, then the above transformation can move the singular
solutions into the positive orthant, and leaves the geometry of the state (or
phase) space unchanged within it (but not at or near the boundary) [17].

The dynamics of the solutions of Egs. (3.20) and (3.21) are called struc-
turally similar.

*1T

*]* are positive real numbers, and z =

3.4.2 Constructing a dynamically similar linear CRN
form

Let us have a QP system model in its LV form defined on the positive orthant

i—f =diag T (A+ Mz) (3.22)
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with a positive steady state point T*. We want to construct a linear CRN
model of the form

dy -

—=A 3.23
o = Aex (3:23)
such that the two systems are dynamically similar and A is a Kirchhoff
matrix.

Definition 3.2. Two ODEs are called dynamically similar if they have topo-
logically equivalent state spaces (topologically equivalent phase spaces) [15],
and the stability properties of all of their steady state manifolds are the same.

The requirement of dynamic similarity implies that the linear CRN model
will also have a positive steady state point x* with the same stability property
(e.g. globally asymptotically stable).

The construction will be done in two steps. First a dynamically similar
linear homogeneous model will be constructed that will be transformed to a
CRN model in the second step - if possible.

3.4.2.1 Dynamically similar homogeneous linear system

We observe that MAL-CRN models in Eq. (3.14)-(3.15) form a homogeneous
set of equations where the equilibrium point does not appear in the equations.
Therefore, we augment the state vector T of the model (3.22) by a constant
element, then the homogeneous form is

dz ) M|A
dt—dzagx({o 0}1“), (3.24)

where n =n 4+ 1 and n € R" is the new state vector.
Next we follow the procedures described in [13] by using X-factorable
transformation to associate a dynamically similar linear ODE

dx_{M A

- 170 O}x:Mcc. (3.25)

3.4.2.2 Transforming the linear ODE to a potential CRN
In the second step we ensure the zero column sum property of the model by

applying a linear state transformation (that is an equivalence transformation
of the state spaces) using the invertible transformation matrix

T_{—l..l.—l H Tl_L.{.l 2] (3:26)

We apply T to Eq. (3.25) to have ?T’t‘ = Ay with x = Tz and
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M| A

T (3.27)

- | w il

}’ N = NIT-! = [M+/11 Ay
where m; = — > | [M];; and A, = = >, A
The column conservation property holds for both M and M.
Finally we obtain that M corresponds to the coefficient matrix A, of the
dynamically similar linear ODE (3.23) that can only be a CRN if M has
the required sign patterns in Eq. (3.19) besides of the column conservation

property.

3.4.83 Structural stability analysis

The sufficient conditions in the deficiency zero theorem will be used to estab-
lish conditions for robust structural stability using the transformed coefficient
matrix M in (3.27).

The following properties of the original LV parameter matrices (M, A) are
needed as sufficient conditions for the structural stability that originate from
the required sign pattern property of the CRN coefficient matrix A in Eq.
(3.19).

1. non-negativity of the parameter vector A, i.e.
A; >0, i=1,...,n (3.28)

2. the sign pattern and the strict dominant main diagonal property of M,
ie.

=1
i

3.5 Conclusion and Future Work

A sufficient condition for structural stability is established for QP systems
with a positive steady-state point by transforming it to a linear CRN. The re-
sulting conditions are simple inequalities (3.28) and (3.28) that represent sign
conditions of the LV parameter vector A and matrix M, and the dominant
main diagonal property of the latter.

Future work includes the use of time-rescaling to enlarge the possibility
of the LV parameters A and M to fulfill the above sufficient conditions, the
checking of which will lead to solving an LMI.



112 K. M. Hangos, G. Szederkényi

Acknowledgements This paper is dedicated to Prof. Istvdn Gydri on the occasion
of his 70th birthday. This research has been supported by the Hungarian National
Research Fund through grants NF104706 and K83440.

References

1. Anderson, D.F.: A proof of the Global Attractor Conjecture in the single linkage
class case. SIAM J. Appl. Math. 71, 1487-1508 (2011)

2. Angeli, D.: A tutorial on chemical network dynamics. Eur. J. Control 15, 398-406
(2009)

3. Brenig, L.: Complete factorisation and analytic solutions of generalized Lotka-
Volterra equations. Phys. Lett. A 133, 378-382 (1988)

4. Brenig, L., Goriely, A.: Universal canonical forms for the time-continuous dynam-
ical systems. Phys. Rev. A 40, 4119-4122 (1989)

5. Bykov, V., Gorban, A., Yablonskii, G., Elokhin, V.: Kinetic models of catalytic
reactions. In: R. Compton (ed.) Comprehensive Chemical Kinetics, vol. 32. El-
sevier, Amsterdam (1991)

6. Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analy-
sis of mass-action kinetics — nonnegativity, realizability, reducibility, and semista-
bility. IEEE Control Syst. Mag. 29, 60-78 (2009)

7. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactors - I. The deficiency zero and deficiency one theorems. Chem.
Eng. Sci. 42 (10), 2229-2268 (1987)

8. Feinberg, M., Horn, F.: Chemical mechanism structure and the coincidence of
the stoichiometric and kinetic subspaces. Arch. Ration. Mech. Anal. 66(1), 83—
97 (1977)

9. Figueiredo, A., Gleria, I.M., Filho, T.M.R.: Boundedness of solutions and Lya-
punov functions in quasi-polynomial systems. Phys. Lett. A 268, 335-341 (2000)

10. Gléria, 1., Figueiredo, A., Filho, T.R.: On the stability of a class of general non-
linear systems. Phys. Lett. A 291, 11-16 (2001)

11. Gorban, A., Karlin, 1., Zinovyev, A.: Invariant grids for reaction kinetics. Phys.
A 33, 106-154 (2004)

12. Halanay, A., Rasvan, V.: Applications of Liapunov methods in stability. Kluwer
Academic Publichers, Dordrecht (1993)

13. Hangos, K.M., G.Szederkényi: The underlying linear dynamics of some positive
polynomial systems. Phys. Lett. A 376, 3129-3134 (2012)

14. Magyar, A., Szederkényi, G., Hangos, K.: Globally stabilizing feedback control of
process systems in generalized Lotka-Volterra form. J. Process Control 18, 80-91
(2008)

15. Meiss, J.: Differential Dynamical Systems. STAM, Philadelphia (2007)

16. Rasvan, V.: Dynamical systems with several equilibria and natural Liapunov
functions. Arch. Math. (Brno) 34(1), 207-215 (1998)

17. Samardzija, N., Greller, L.D., Wassermann, E.: Nonlinear chemical kinetic
schemes derived from mechanical and electrical dynamical systems. J. Chem.
Phys. 90 (4), 22962304 (1989)

18. der Schaft, A.V., Rao, S., Jayawardhana, B.: On the mathematical structure of
balanced chemical reaction networks governed by mass action kinetics. STAM J.
Appl. Math. 73(2), 953-973 (2013)

19. Scherer, C., Weiland, S.: Linear Matrix Inequalities in Control. DISC, (2000)
http://www.er.ele.tue.nl/sweiland /lmi.pdf



