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Abstract— In this paper, a model reduction procedure is
proposed for the simplification of biochemical reaction network
models. The approach is capable of reducing ODE models
where the right hand side of the equations contains polynomial
and/or rational function terms. The method is based on a finite
number of mixed integer quadratic programming (MIQP) steps
where the objective function effectively measures the fit between
the time functions of the selected concentrations of the original
and the reduced models, and the integer variables keep track
of the presence of individual reactions. The procedure also
contains the re-estimation of rate coefficients in the reduced
model to minimize the defined model error. Two examples taken
from the literature illustrate the operation of the method.

I. INTRODUCTION

The dynamic models of bio-chemical kinetic systems pos-
sess important distinctive properties within the class of non-
linear state space models. They are smooth positive systems,
where the right-hand side functions contain polynomial,
quasi-polynomial and rational function type non-linearities
in the deterministic isotherm case [1].

Model reduction in chemical and biological systems is
a well studied field in system theory. Some well known
techniques used for model reduction are balanced truncation
for linear systems [2] and model lumping [3] methods. For
biological and physical systems, where the state variables
have physical meaning and the reduction should preserve this
property, singular perturbation based reduction can be used.
This approach takes advantage of the fact that different states
can evolve on different time-scales. Time scale separation
[4], [5] can divide the system into a fast and a slow part,
then quasi steady state assumption can be used for the fast
reactions in order to transform the corresponding differential
equations into algebraic equations. If one considers the con-
centrations of the key important species as output variables,
then the reaction kinetic model can be written in the form of
a non-linear state-space model, for which recent extensions
to balanced truncation are available for the reduction [6].
This approach, however, applies a non-linear coordinates
transformation and thus both the physical meaning of the
variables and the characteristic kinetic structure may be lost.

The simplest models within the class of reaction kinetic
systems form the sub-class of reaction kinetic networks that
obey the mass action law [7], [8]. Here one assumes constant
reaction rate coefficients and polynomial dependence of the

reaction rate on the species concentrations that corresponds
to closed, isotherm and isobaric conditions.

The model reduction methods applied to bio-chemical
reaction systems exhibit a few important specialities com-
pared to the general case [9]. These reactions have also
constant reaction rate coefficients, but one should assume
complex nonlinear dependence of the reaction rates on the
species concentration. The inherent relationship between
model reduction and model parameter estimation has also
been realized recently (see e.g. [10] and [11] in the area
of bio-chemical reaction networks), where the need to re-
estimate the parameters of the reduced model has arisen.

The general formulation of a model reduction problem
for reaction kinetic systems leads to a mixed integer non-
linear program (MINLP) problem, see e.g. [12], that present
computational complexity challenges in realistic problem
sizes. Therefore, the specialities of the system and/or the
model reduction problem can be used to develop efficient
solution heuristics. Therefore, the overall aim of our work
was to propose a robust, numerically stable yet feasible
method for reducing the number of reactions in a bio-
chemical reaction network, that is also able to re-estimate
the reaction rate coefficients and produce a sub-set of the
original detailed reaction kinetic scheme as a result, but with
suitably adjusted coefficients.

Instead of the general MINLP formulation of the problem,
we use our approach developed for reaction kinetic systems
with mass action kinetics (MAK) [13] that leads to a convex
mixed integer quadratic problem (MIQP) formulation for
which efficient solvers exist. A special embedding method is
then applied for representing bio-chemical reaction systems
in this form that enables efficient model reduction.

II. MODEL REDUCTION

A. The studied model class

The parametric model class for which the model reduction
technique is applied can generally be written as

ẋ(t) = f(x(t), k), t ∈ [t0, tf ], (1)
x(t0) = x0, (2)

where the right-hand side function f : Rn × Rm → Rn,
x0 is the initial value, and t0 and tf determine the time
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interval of interest. In this paper, we address the reduction
of biochemical reaction models of the form (1) – (2). These
models consist of three characteristic sets: the set of chemical
species, the set of complexes, and the set of chemical
reactions. Chemical species are formed into complexes (that
are represented as the non-negative linear combinations of
species), and complexes are transformed to each other via
reactions. For example, the reaction network shown in Fig.
1 contains the species set {A,B,C,D,E}, the complex set
(represented as the vertices of the directed graph of the
reaction) {A, 2B,A + C,D,B + E}, and 20 elementary
reactions depicted as directed edges on the reaction graph
weighted by positive values kij , called the reaction rate
coefficients. The state variables in such models are the
species concentrations denoted by [A], [B], [C], [D], [E] in
the case of Fig. 1.

For the dynamical description of biochemical reaction
networks, we apply the classical structure using the stoichio-
metric matrix [14]. According to this notation, considering
n species and m elementary reactions, the species concen-
trations xi = [Xi], for i = 1, . . . , n can be described as

ẋ = N · r(x), (3)

where r ∈ Rm is the vector of reaction rates and N ∈
Rn×m is the stoichiometric matrix, the columns and rows of
which correspond to reactions and species, respectively. Nij

is a real (most often integer) number denoting how many
atoms/molecules of species Xi is produced or consumed in
the jth elementary reaction, where a positive value corre-
sponds to overall production and a negative value to overall
consumption. To easily track the presence of individual
reactions, we give the reaction rates in the form

ri(x) = ki · qi(x), i = 1 . . . ,m, (4)

where k = [k1 . . . km]T is the vector of reaction rate
coefficients and qi-s are typically monomial or rational
functions of x.

B. Model reduction approach

The ultimate goal of the model reduction is to eliminate
as many reactions as possible from the original model (3)
while maintaining a sufficiently good fit in a predefined
time interval between (a subset of) the state variables of the
original and the reduced model. When measuring the fit be-
tween the original and the reduced model, we only take into
consideration a subset of the state variables (corresponding to
the so-called important species). These variables are given by
the set I := {i1, i2, . . . , inI}, where ij ∈ {1, 2, . . . , n}, j =
1, 2, . . . , nI , and nI is the number of important variables.
Note that the choice of important variables is partially
determined by physical considerations (e.g. measurability),
but the observability/identifiability constraints should also be
respected.

Let us denote the state variables and reaction rate coef-
ficients of the reduced model by x̃ ∈ Rn and k̃ ∈ Rm,
respectively. Clearly, reaction no. i is eliminated from the
reduced model if k̃i = 0. Let us choose the same least-square

functional as in [12] for quantifying the error between the
original and the reduced model, namely

Φ(x̃, x) :=

N∑
l=0

∑
i∈I

wil
2 (x̃i(tl)− xi(tl))2 , (5)

where t0 < t1 < · · · < tN are selected time instants, and
wil, i ∈ I, 0 ≤ l ≤ N are appropriate weights, e.g. to take
into account the magnitude of xi(tl). For further information
about time point selection and weighting factors see [13].
Moreover, in the case of the solution of (1) – (2) exists, the
following nonlinear function is well-defined

φ(k̃, k) := Φ(x̃(·, k̃), x(·, k)). (6)

Then, the model reduction objective can be written into the
following general MINLP form in a straightforward way:

min
k̃∈[k,k]

NNZ(k̃) (7)

s.t. φ(k̃, k) ≤ δ, (8)

where NNZ(k̃) denotes the number of non-zero elements in
k̃, k is the original fixed parameter vector, k, k ∈ Rm (0 ≤
k ≤ k) are the lower and upper bounds on k̃, and δ > 0 is the
user-specified tolerance for the model error. It is important
to emphasize, that – in contrast to many model reduction
approaches – our primary aim is not the elimination of states
form the system, i.e. generally, dim(x) = dim(x̃).

To avoid the general MINLP solution of the problem and
the integration of the dynamical equations required by the
evaluation of the generally non-convex constraint (8), we will
approximate (7) – (8) by a finite sequence of convex mixed
integer quadratic programs (MIQPs) that are much more
advantageous from a computational point of view. Using the
fact that our kinetic models (3) are linear in the parameter
vector k or k̃, the final form of the parametrized MIQP
problem used for the approximation is the following:

mink̃,y
1
2 (k̃ − k)TH(k̃ − k)

s.t. yi ∈ {0, 1}, i = 1, . . . ,m

k̃i ≥ 0, i = 1, . . . ,m

k̃i − ki yi ≤ 0, i = 1, . . . ,m

k̃i − ki yi ≥ 0, i = 1, . . . ,m∑m
i=1 yi ≤ m̃.


,

(MIQP(m̃))

where parameter m̃ gives the maximal number of non-zero
reaction rate coefficients, and

H =

N∑
l=0

∑
i∈I

(
w∗ilG̃i(tl)

)T (
w∗ilG̃i(tl)

)
(9)

with weighting factors w∗il, i ∈ I, 0 ≤ l ≤ N depending
on the original weights wil and the length of the intervals
[tl−1, tl], and

G̃i(t) =
∂fi(x(t), k)

∂x

∂x(t)

∂k
+
∂fi(x(t), k)

∂k
. (10)
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It is easy to see that by solving MIQP(m̃) for m̃ = 1, . . . ,m,
the associated objective function value is monotonically
decreasing. Note that, some model properties e.g. stability,
may be lost during the reduction, however one can check
them in every reduction step m̃. More details about the
derivation and properties of MIQP(m̃) can be found in [13].

C. Embedding bio-chemical models into polynomial form

Bio-chemical reaction rate functions are usually in the
form of a rational function, i.e. r(x) = P1(x)

P2(x)
where P1(x)

and P2(x) are polynomials. One can embed r(x) into a
polynomial form by a new pseudo-state variable for the non-
polynomial factor 1

P2(x)
in the rate function r and find an

ODE, the solution of which is the new variable.
a) Michaelis-Menten kinetic rate function: A widely

accepted rate function in the biochemical area is the so called
Michaelis-Menten kinetics, that is in the form of a simple
rational function

dx

dt
=

p1x

p2 + x
= p1r(x) (11)

with two parameters p1 and p2. The following new variable
z is introduced

z =
1

p2 + x
. (12)

Let us differentiate Eq. (12) to obtain

dx

dt
= p1xz and

dz

dt
= −p1xz3 (13)

with initial conditions:

x(0) = x0 and z(0) =
1

p2 + x0
. (14)

Thus, the embedded polynomial ODE consists of Eqs. (13).
It is important to note that the parameter p2 appears

only in the initial values, therefore the model reduction will
only consider to leave out p1 as a reaction rate coefficient
that corresponds to the rate function r(x) = x

p2+x . The
new equation and variable is used only temporarily for the
reduction procedure, so the reduced model will have the
original state equations possibly without the term p1r(x).

III. SIMPLE EXAMPLES

The described procedure was implemented in MATLAB.
The numerical sensitivities in Eq. (10) were computed by
NIXE [15], while we used CPLEX to solve the MIQP
optimization problem (MIQP(m̃)).

A. An introductory example
The model reduction procedure is shown using an example

model from [16]. The reaction network of the 5 species and
5 complexes, can be seen in Fig. 1. Assuming MAK the
corresponding ODE model has the form:
dx1

dt
= (k21 + k23)x

2
2 + x5(k51 + k53)x2 + x4(k41 + k43)

− x1(k12 + k14 + k15)− x1x3(k32 + k34 + k35) (15)
dx2

dt
= (−2k21 − 2k23 − 2k24 − k25)x

2
2 − x5x2(k51 − k52 + k53

+k54) + x1(2k12 + k15) + x4(2k42 + k45) + x1x3(2k32 + k35)
(16)

dx3

dt
= k23x

2
2 + k53x5x2 + k13x1 + k43x4 − x1x3(k31 + k32

+ k34 + k35) (17)
dx4

dt
= k24x

2
2 + k54x5x2 + k14x1 − x4(k41 + k42 + k43 + k45)

+ k34x1x3 (18)
dx5

dt
= k25x

2
2 − x5(k51 + k52 + k53 + k54)x2 + k15x1 + k45x4

+ k35x1x3 (19)

where the concentrations of species A, B, C, D and E are
denoted by x1, x2, . . .x5, respectively. For simplicity assume
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k15
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Fig. 1. Simple system [16]

that each initial concentration equals 1, i.e. xi(0) = 1.
The solution of the system can be seen in Fig. 2 denoted
by continuous lines. Applying the reduction method the
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Fig. 2. Trajectories in the original and in the reduced systems

algorithm reduced the number of reactions to 7, that is the
same as in [16], but with different parameter values. See the
3rd column of Table I for the parameters. Fig. 2 also contains
the very good fitting reduced model with dashed lines.

B. Introductory example extended with Michaelis-Menten
terms

For simplicity we consider the reaction network in Fig.
1, but assume that the reaction between B + E (Complex
5) obeys the Michaelis-Menten kinetics (MMK) instead of
MAK. This can be described using the term

k5ix2
x5

p+ x5
instead of k5ix2x5, for i ∈ {1 . . . 5}
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TABLE I
RATE COEFFICIENTS OF THE ORIGINAL SYSTEM AND THE RELATIVE

RATE COEFFICIENTS IN THE REDUCED SYSTEMS.

Parameters Original MAK 7 MMK 10
k1 0.1 0 0
k2 1 1.1402 1.2323
k3 0.1 0 0
k4 1 0 1.2771
k5 1 0 0.5773
k6 0.8 2.2187 1.9894
k7 0.2 0 0
k8 1 1.1431 1.3625
k9 1 1.1916 1.3169
k10 0.6 0 0
k11 1 0.7453 1.2105
k12 0.9 1.7446 1.4564
k13 0.1 0 0
k14 0.8 2.4146 0.9158
k15 0.9 0 1.1228
k16 0 0 0
k17 1 0 0
k18 0.9 0 0
k19 1 0 0
k20 0.9 0 0

The reduced model parameters are in relative unit
(1/k), where k is the original parameter value.
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Fig. 3. Trajectories in the original and in the reduced systems assuming
Michaelis-Menten Kinetics

First each k5ix2x5 MAK terms are replaced in Equations
(15)-(19) by MMK terms, which results in ODEs having
rational polynomial terms in the right hand side.

dx1

dt
= (k21 + k23)x

2
2 + (k51 + k53)x2

x5

p + x5

+ x4(k41 + k43)

− x1(k12 + k14 + k15) − x1x3(k32 + k34 + k35)

dx2

dt
= (−2k21 − 2k23 − 2k24 − k25)x

2
2 + x1x3(2k32 + k35) − (k51−

− k52 + k53 + k54)x2
x5

p + x5

+ x1(2k12 + k15) + x4(2k42 + k45)

dx3

dt
= k23x

2
2 + k53x2

x5

p + x5

+ k13x1 + k43x4 − x1x3(k31 + k32 + k34 + k35)

dx4

dt
= k24x

2
2 + k54x2

x5

p + x5

+ k14x1 − x4(k41 + k42 + k43 + k45) + k34x1x3

dx5

dt
= k25x

2
2 − (k51 + k52 + k53 + k54)x2

x5

p + x5

+ k15x1 + k45x4 + k35x1x3

Applying the embedding method we obtain the following
ODEs which are linear in their parameters:

dx1

dt
= (k21 + k23)x

2
2 + x5(k51 + k53)x2z1 + x4(k41 + k43)

− x1(k12 + k14 + k15) − x1x3(k32 + k34 + k35)

dx2

dt
= (−2k21 − 2k23 − 2k24 − k25)x

2
2 + x1x3(2k32 + k35)

− x5(k51 − k52 + k53 + k54)x2z1 + x1(2k12 + k15) + x4(2k42 + k45)

dx3

dt
= k23x

2
2 + k53x5x2z1 + k13x1 + k43x4 − x1x3(k31 + k32 + k34 + k35)

dx4

dt
= k24x

2
2 + k54x5x2z1 + k14x1 − x4(k41 + k42 + k43 + k45) + k34x1x3

dx5

dt
= k25x

2
2 − x5(k51 + k52 + k53 + k54)x2z1 + k15x1 + k45x4 + k35x1x3

dz1

dt
= −z

2
1

dx5

dt

Note that parameter p is transformed to the initial condi-
tion of the ODE of the z1 state variable: z1(0) = 1

p+x5(0)
.

However, this has no effect on the reduction method because
a Michaelis-Menten term is omitted if the corresponding k5i
parameter is 0.

Using the model reduction method we were able to re-
duce this reaction network by 10 parameters. The obtained
parameters can be found in the 4th column of Table I and
the concentration trajectories in Fig. 3. The trajectories of
the original and reduced models are in very good agreement.
Finally, the embedded Michaelis-Menten functions have to
be transformed into the original form, by inverting the
embedding procedure. This results the original number of
state variables but much simpler right hand side functions in
the ODEs.
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Fig. 4. Trajectories in the original and in the reduced systems (16
parameters) assuming zero input.

IV. CASE STUDY

A. Model reduction of Arabidopsis circadian

Arabidopsis circadian is a well known example of systems
biology [17]. This model is often used in the literature
for testing parameter identification methods. In [18] the
author showed that, if the system is not well excited, then
some parameters are not identifiable. This usually ruins the
parameter estimation of the system i.e. results in infinite
variances of some parameters. We will show that our method
can find the reactions which should be removed in case of the
poorly excited system. However, there are other approaches
which can be used for the same purpose, e.g. in [19].
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The reaction network of Arabidopsis circadian [17] con-
sists of 7 species, 27 parameters and 1 input variable. The
corresponding system of equations is

dx1

dt
= q1x7u+ n1

x6

g1 + x6
−m1

x1

k1 + x1
(20)

dx2

dt
= p1x1 − r1x2 + r2x3 −m2

x2

k2 + x2
(21)

dx3

dt
= r1x2 − r2x3 −m3

x3

k3 + x3
(22)

dx4

dt
= n2

g22
g22 + x2

3

−m4
x4

k4 + x4
(23)

dx5

dt
= p2x4 − r3x5 + r4x6 −m5

x5

k5 + x5
(24)

dx6

dt
= r3x5 − r4x6 −m6

x6

k6 + x6
(25)

dx7

dt
= (1− u)p3 −m7

x7

k7 + x7
− q2ux7. (26)
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Fig. 5. Trajectories in the original and in the reduced systems (15
parameters) assuming zero input

Here the state variable xi denotes the concentrations of
the species, the input variable u represents the light and
it is a time dependent, binary valued (light is on or off)
function. After embedding the rational functions as showed
above the system has 16 state variables (the 7 original states:
x1 – x7, and an additional 9 because of the embedding). The
parameters k1, . . . , k7 occur only in the initial conditions. In
Eq. (23) the parameter g22 appears both in the nominator and
in the denominator. It is clear, after the transformation the
g22 will be transformed from the denominator to the initial
condition and the first term in Eq. (23) will depend only on
the product of n2 and g22 , so the value of g22 can be fixed to
the original value and excluded from the estimation without
the loss of generality.

In the model reduction we considered 3 different cases. In
Case I we assume no light i.e. u(t) = 0, in Case II the light
is turned on (u(t) = 1), while in Case III the input follows
a pulse-like profile. The original (continuous lines) and the
reduced model (denoted by stars) trajectories can be seen in
Figures 4, 5, 6 and 7, while the resulted parameters can be

0 20 40 60 80 100 120
0

0.5
1

 

 
light (u)

0 20 40 60 80 100 120
0

1

2

3

4

C
on

ce
nt

r.

 

 
x1

x3

x4

x6

x7

0 20 40 60 80 100 120
0

10

20

30

Time (h)

C
on

ce
nt

r.

 

 
x2

x5

Fig. 6. Trajectories in the original and in the reduced systems assuming
(13 parameters) constant light.
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Fig. 7. Trajectories in the original and in the reduced systems (17
parameters) assuming pulsed light.

found in Table II. In the lower part of Table II one can find
the relative error of the reductions i.e. the average deviation
of the reduced model trajectories. The results are as follows

Case I.: from the reduction error in 3rd and 4th columns
of Table II, it is clear that the model can be reduced by
2 parameters (q1 and q2) without any error and one more
parameter (m6) can be omitted if we tolerate less than 10 %
error for each species or 6% in average. The former result is
obvious from the structure of the system because q1 and q2
are multiplied by the input u which is 0. However the latter
result cannot be obtained so easily. The trajectories are in
Fig. 4 and 5, the fitting is very good in both cases.

Case II.: the 5th and 6th columns of Table II tell that
in case of constant light, 4 parameters (m7, p3, q1 and q2)
can be omitted without any error. To see this from structural
information one has to find out that each term in Eq. (26)
depends either on x7 or on (1 − u) = 0. As the initial
condition for x7 is 0, the right hand side will be zero, thus p3,
m7 and q2 can be omitted. q1 appears only in (20) multiplied
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by x7, which is zero. This is not obvious without the results
of the algorithm. The parameter m6 can be omitted from the
model for almost the same cost as in Case I.

Case III.: the pulsed input signal excites the system
well, which results in more informative dynamics (see the
small peaks in Fig. 7 appearing in almost every concentra-
tions triggered by the switching of the input). In this case our
algorithm can omit only one parameter if we tolerate some
error (4.5% in average).

Note that, after the model reduction one can transform the
system back to the original ODE form and omit the reactions
found in the reduction procedure.

TABLE II
RATE COEFFICIENTS OF THE ORIGINAL AND OF THE REDUCED SYSTEMS

TOGETHER WITH THE RELATIVE, AVERAGE DEVIATION OF THE STATES.

Param. Original Case1 Case1 Case2 Case2 Case3
values (16)∗ (15)∗ (14)∗ (13)∗ (17)∗

n1 7.5038 1.0000 1.0000 1.0000 1.0000 1.0000
n2 0.6801 1.0000 1.0000 1.0000 1.0000 1.0000
m1 10.0980 1.0000 1.0000 1.0000 1.0000 1.0000
m2 1.9685 1.0000 1.0000 1.0000 1.0000 1.0000
m3 3.7511 1.0000 1.0000 1.0000 1.0000 1.0000
m4 2.3422 1.0000 1.0000 1.0000 1.0000 1.0000
m5 7.2482 1.0000 1.0415 1.0000 1.0415 1.0399
m6 1.8981 1.0000 0 1.0000 0 0
m7 1.2000 1.0000 1.0000 0 0 1.0000
p1 2.1994 1.0000 1.0000 1.0000 1.0000 1.0000
p2 9.4440 1.0000 1.0046 1.0000 1.0046 1.0039
p3 0.5000 1.0000 1.0000 0 0 1.0000
r1 0.2817 1.0000 1.0000 1.0000 1.0000 1.0000
r2 0.7676 1.0000 1.0000 1.0000 1.0000 1.0000
r3 0.4364 1.0000 0.9732 1.0000 0.9732 0.9729
r4 7.3021 1.0000 1.0167 1.0000 1.0167 1.0165
q1 4.5703 0 0 0 0 1.0000
q2 1.0000 0 0 0 0 1.0000

States Deviation per specie (%)
x1 0 7.6024 0 7.6024 6.2025
x2 0 5.1350 0 5.1350 3.9287
x3 0 5.6781 0 5.6781 4.3989
x4 0 3.1621 0 3.1621 2.5787
x5 0 8.5746 0 8.5746 7.2411
x6 0 8.4928 0 8.4928 7.0963
x7 0 0.0007 0 0.0000 0.0023

Average deviation: 0 5.52 0.0 5.52 4.49
∗The values in the second line shows the number of non-zero parameters.
The reduced model parameters are in relative unit (1/k), where k is the

original parameter value.

V. CONCLUSION

An optimization based model reduction procedure has
been presented in this paper for biochemical reaction network
models. The original MINLP problem with a non-convex
constraint set was approximated by a series of MIQP steps
using the fact that the reaction network models are linear
in the reaction rate coefficients that can be used to keep
track of the presence of individual reactions. This way, a
significant improvement of computational efficacy has been
achieved. The novel technical contribution of the approach
compared to [13] is the handling of rational functions in
the ODEs through the embedding of rational function terms
into polynomial form. Two examples taken from the related

literature illustrate the operation of the method: a purely
polynomial mass-action model, and a more complex circa-
dian clock model with Michaelis-Menten kinetics.
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