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Abstract

The conditions of structural dynamical similarity of two special class of posi-

tive polynomial nonlinear systems, the class of Quasi-Polynomial systems [1]

and that of reaction kinetic networks with mass action kinetics [2] are investi-

gated in this Letter. It is shown that both system classes have an underlying

reduced linear dynamics. By applying the theory of X-factorable systems

[3], it can be shown that the reduced linear dynamics is qualitatively similar

to the original one within the positive orthant when the original nonlinear

system has a unique positive equilibrium point.
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1. Introduction

The class of nonnegative dynamic systems, where the state variables re-

main in the nonnegative orthant while the dynamics evolves, appear naturally

in many physical systems, such as thermodynamical, transportation, chemi-

cal or nuclear systems [4]. Within this class the systems that have or that are

transformable to polynomial right-hand sides are of great importance: the

sub-class of quasi-polynomial (QP) systems [1] and that of reaction kinetic

networks with mass action kinetics [2] (reaction kinetic systems in short),

the formal relationship of which is the subject of this paper.

QP systems admit an equivalence transformation, the so called quasi-

monomial transformation, that splits them into equivalence classes, where

a Lotka-Volterra (LV) system represents the members of the class. The

dynamics of the corresponding LV system of the members of an equivalence

class is the same and it is invariant under the quasi-monomial transformation.

This makes the stability analysis of QP systems feasible with a Lyapunov

function expressed in the variables and parameters of the LV representant

member [5], [6].

Reaction kinetic systems can be seen as special QP systems, therefore

they can be represented that way [7], but this results in a gross increase

in the dimension of the system, while many of the important characteristic

structural properties are lost. At the same time, reaction kinetic systems are
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invariant at most under a variable re-scaling (and possibly variable permuta-

tion) transformation, and the analysis of their dynamical properties is quite

difficult in the general case [8].

Therefore, the aim of our work was to explore the apparent similarities in

the two above mentioned positive polynomial systems, the QP and reaction

kinetic systems, to find formal methods to examine their dynamical similarity.

2. Basic notions

2.1. Translated X-factorable transformation and structurally similar dynam-

ics

Assume that the following set of ordinary differential equations

dX

dt
= F (X) (1)

is defined on the positive orthant Pn. The singular solutions of Eq. (1)

are defined by F (X) = 0. Consider the following nonlinear translated X-

factorable transformation of Eq. (1)

dX

dt
= XF (X − C) (2)

where X = diag(x1, ..., xn), the elements of C = [c1, . . . , cn]T are positive real

numbers, and X = [x1, ..., xn]T .

Assume that F (X) is composed of polynomial-type functions with a finite

number of singular solutions. It can be shown [3] that the above transfor-

mation can move the singular solutions into the positive orthant, and leaves

the geometry of the state (or phase) space unchanged within it (but not at

or near the boundary). Therefore, the dynamics of the solutions of Eqs. (1)

and (2) will be called structurally similar.
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2.2. Reduced form of linear ODEs

Assume we have two full rank rectangular matrices G ∈ R
m×n and H ∈

R
n×m with m ≥ n, and a set of linear ODEs

dZ

dt
= G · H · Z (3)

with Z ∈ R
m. Using their full rank property, the matrices G, H and their

product can be decomposed as

G =











G∗

−−−−

NGG∗











, H = [ H∗ | H∗NH ] , G·H =











G∗H∗ | G∗H∗NH

−−−− + −−−−−

NGG∗H∗ | NGG∗H∗NH











,

(4)

where G∗ and H∗ are nonsingular n × n matrices. Clearly, because of the

rank-deficiency of the product G · H , the solution of (3) will evolve on an

n-dimesional linear manifold (translated subspace) of R
m.

Furthermore, let us decompose the variable vector Z in (3) into two parts

Z = [ Zx | Z+ ]T such that dim(Zx) = n. Then the decomposition of G · H

in (4) gives rise to the following two set of linear equations

dZx

dt
= G∗H∗Zx + G∗H∗NHZ+ (5)

dZ+

dt
= NGG∗H∗Zx + NGG∗H∗NHZ+ = NG

dZx

dt
(6)

Eq. (6) implies Z+ = NGZx +Z0
+ (with Z0

+ = const) that can be substituted

into (5) to obtain

dZx

dt
= (G∗H∗ + G∗H∗NHNG) · (Zx − Z∗

x) = M∗ · (Zx − Z∗

x) (7)

where the square (n × n) matrix M∗ = G∗H∗ + G∗H∗NHNG determines the

underlying reduced minimal linear dynamics when M∗ is invertible and Z∗
x

is an appropriate constant vector.
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A relaxed reduction of the original dynamics (3) is still possible, when

only G is of full rank, and H admits a decomposition H = [Hx | H+]. Then

the reduced linear dynamics is in the form

dZx

dt
= G∗ (Hx + H+NG) · (Zx − Z∗

x) = M ′∗ · (Zx − Z∗

x) (8)

where the square determining matrix M ′∗ = G∗ (Hx + H+NG) is not neces-

sarily of full rank.

It is important to note that both the number of equations and the number

of variables are reduced during the above reduction, that can be seen as a

projection of the original linear mapping charaterized by M = G · H to an

invertible one described by M∗.

3. QP systems

QP systems form a class of nonnegative polynomial systems [1]. It can

be shown that smooth nonlinear systems defined in the positive orthant and

containing a wide range of non-QP functions, can be embedded into a QP

system by introducing new variables [9].

The system dynamics of QP systems can be described by a set of DAEs,

where the ordinary differential equations

dxi

dt
= xi

(

λi +
m
∑

j=1

αijqj

)

, i = 1, ..., n (9)

are equiped by the so called quasi-monomial (QM) relationships

qj =

m
∏

i=1

x
βji

i (10)
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that are apparently nonlinear (monomial-type) algebraic equations. Two sets

of variables are defined, that are (i) the differential variables xi, i = 1, ..., n,

and (ii) the quasi-monomials (QMs) qj, j = 1, ..., m. The parameters of the

above model are collected in two rectangular matrices [A]ij = αij , [B]ji = βji

and a vector [Λ]i = λi.

In order to avoid degenerate cases, we assume m ≥ n. Furhermore, the

rectangular matrices A and B are assumed to have full rank. Therefore, they

admit a a decomposition in the form

A = [ A∗ | A∗NA] , B =











B∗

−−−−

NBB∗











(11)

by possibly permuting the columns of A and the rows of B such that both

A∗ and B∗ is a square (n × n) invertible matrix.

3.1. The log-linear form

In order to develop the matrix-vector form of the describing equations,

we define to each differential variable xi, i = 1, ..., n a log-variable ln xi, i =

1, ..., n, and form the following vectors form them:

X = [x1, ..., nn]T , ln X = [ln x1, ..., ln xn]T (12)

Now the system dynamics is written in the following form

dln X

dt
= Λ + A · Q (13)

with the algebraic QM relationships

ln Q = B · ln X (14)
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This can be used to show that there exists m − n nonlinear algebraic rela-

tionships (in the m > n case) between the elements of Q in (13)

ln Q =











B∗

−−−−

NBB∗











· ln X =











ln QX

−−−−

ln Q+











(15)

with ln Q+ = NBln QX . By inverting the upper block of the above equation

we obtain

ln X = (B∗)−1 · ln QX (16)

Steady-state (SS) points. The essential (i.e. non-zero) steady-state point(s)

of the dynamic equations (13) are obtained by setting the left-hand sides

equal to zero, and solve the equations

0 = Λ + A · Q∗ (17)

for Q∗. Generally, this equation has a unique solution if A is quadratic and

invertible. Otherwise, if m > n, then (15) shows that the set of equations

(17) is properly determined and has generally a single solution tha is not

necessarily positive. The existence of strictly positive solutions can be tested

by various algorithms [10] or through simple linear programming [11].

Transformed log-linear form. We can use any positive steady state point Q∗

from (17) - if such exists - for expressing

Λ = −A · Q∗

7



to the dynamic model. Thus we obtain the following form of the differential

equations
dln X

dt
= A · (Q − Q∗) (18)

3.2. The log-linear LV form

The LV form can be obtained from any QP-model (Λ, B, A) by multi-

plying the matrix-vector dynamic equation (13) with B and considering the

algebraic equation (14). This gives rise to

dln Q

dt
= B · λ + M · Q =











B∗λ

−−−−

NBB∗λ











+ M · Q (19)

Assume we have a unique positive steady-state point Q∗, then

dln Q

dt
= M · (Q − Q∗) or

dQ

dt
= Q · M · (Q − Q∗) (20)

with Λ = B · λ and Q = diag(q1, ..., qm).

3.3. The undelying reduced linear dynamics

The log-linear form (20) gives rise to the following underlying linear dy-

namics
dZ

dt
= M · Z (21)

that can be transformed back to the original Q-space by translation and a

nonlinear transformation using Eq. (20).

The reduced linear dynamics. This can be obtained the same way as de-

scribed in subsection 2.2 using the correspondence G ∼ B and H ∼ A. Then

Eq. (7) implies that the square (n × n) matrix M∗ = B∗A∗ + B∗A∗NANB

determines the underlying reduced linear dynamics.
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4. CRNs with mass action law

Consider a set of (irreversible) chemical reactions

K
∑

i=1

αℓiAi

kℓ,pGGGGGGGA K
∑

i=1

αpiAi , ℓ = 1, ..., r (22)

where the above equations define the ”macro-kinetics” that obey the mass

action law (MAL), and kℓ,p > 0.

First two sets of variables are introduced, that are (i) the concentration

of the components Ai xi, i = 1, ..., n denoted by xi, i = 1, ..., n, and (ii) the

reaction-monomials (RMs) qj , j = 1, ..., m and assume that n ≤ m.

The polynomial dynamics of this systems is described by the following

DAE
dxi

dt
=

m
∑

j=1

αijkijqj (23)

with the reaction monomial relationships

qj =

m
∏

i=1

x
αij

i (24)

The parameters of the dynamics are collected to the matrices

[Y ]ij = αij , [Ak]ij =







−
∑m

l=1 kil if i = j

kji if i 6= j
(25)

with Ak ∈ R
m×m being a Kirchhoff matrix (i.e. a square matrix with nonpos-

itive diagonal and nonnegative off-diagonal elements and zero column sums).

4.1. The log-linear model

In order to develop the matrix-vector form of Eqs. (23) the vector vari-

ables defined in Eq. (12) can be used to obtain

dX

dt
= Y · Ak · Q (26)
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with the reaction monomial (RM) relationships

ln Q = Y T · ln X (27)

Matrix decomposition. Assume that Y is of full rank, and m ≥ n. Then

we can decompose Y T ∈ R
m×n by possibly permuting its rows to get its

block-matrix form

Y T =











Y ∗T

−−−−

NT
Y Y ∗T











(28)

where Y ∗ is a square (n × n) invertible matrix.

Similarity transformation. In order to obtain a similar form to the QP case,

we first apply an X-factorable transformation of Eq. (26) according to (1)

and (2) with F (X) being Y AkQ(x), and then multiply the result with Y T .

Making use of Eq. (27) we obtain

dln Q

dt
= Y T · Y · Ak · Q = M · Q (29)

Therefore, the generating matrix of the underlying linear dynamics is M =

Y T · Y · Ak.

4.2. Conservation equations in the monomial space

Because of the Kirchoff conservation matrix property of Ak, it is rank-

deficient, i.e. rank(Ak) ≤ m−1, and the sum of all but the last rows of matrix

Ak equals to the last row. This enables us to write Ak in the following form

Ãk = Im · Ak =











A′
k | A′

kNAk

−−− + −−−

0...0 | 0











(30)
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where

Im =











I | 0

−− + −−

1 | 1











, I−1
m =











I | 0

−− + −−

−1 | 1











(31)

is an invertible square matrix with 0m−1 = [0, ..., 0]T and 1m−1 = [1, ..., 1].

Note that the variable transformation Z = IQ implements the replacement

of the last coordinate by the sum of all coordinates.

The dynamics driven by Ak. In order to analyze this dynamics, we multiply

the dynamic equation dU
dt

= AkU by Im in (31) and denote the resulting

transformed vector ImU by ζ to obtain

dζ

dt
=











A′
k | A′

kNAk

−−−− + −−−−

0m−1 | 0











· I−1 · ζ =











A∗
k | A′

kNAk

−−−− + −−−−

0m−1 | 0











· ζ

(32)

with

A∗

k = A′

k − A′

kNAk
· 1m−1 (33)

The last block in Eq. (32) implies ζm = const, therefore the rest of Eq. (32)

determines a linear dynamics with the generating matrix A∗
k of (33) in the

form
dζ̃

dt
= A∗

kζ̃ + A′

kNAk
ζm = A∗

k(ζ̃ − ζ̃∗) (34)

with ζ̃ = [ζ1, ..., ζm−1]
T = [u1, ..., um−1]

T This reduced linear dynamic sys-

tem has a unique equilibrium point ζ̃∗ = −A∗−1
k A′

kNAk
ζm in R

m−1 if A∗
k is

invertible. In this case this reduced linear dynamics is minimal.
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Steady states in the monomial space. We use the column conservation prop-

erty of matrix Ak in (30) to find the steady state points of (29), i.e. to find the

solution of the equation Y T Y AkQ = 0. Clearly, the solution of AkQ = 0 will

be a solution, so we can try to solve ImAkQ = ÃkQ = 0. Let us decompose

the variable vector Q into two parts as Q = [Q̃|qm]T and use the algebraic

form of Ãk in (30) to obtain

A′

k

(

Q̃ + NAk
q∗m

)

= A′

k

(

Q̃ + Q̃∗

)

= 0

This shows that by suitably fixing q∗m we can have a positive steady state

point Q̃∗ = NAk
q∗m ∈ R

(m−1).

4.3. Conservation equations in the variable space

As it will be shown below, the conservation in the monomial space to-

gether with a physically plausible set of chemical reactions that obey the

mass conservation law implies a conservation in the variable space, as well.

Mass conservative chemical reactions. Let us assume that the given set of

chemical reactions (22) is chemically plausible, i.e. each reaction obeys the

mass conservation. This means, that for each reaction, the following equality

holds
K
∑

i=1

αℓiMi =
K
∑

i=1

αpiMi = cs, ℓ = 1, ..., r (35)

where Mi is the molecular weight of the component Ai. A set of reactions

with the above property will be called mass conservative reaction set.

Conservation in the variable space. The column conservation property of Ak

can be expressed algebraically as 1m · Ak = 0m. In addition, equation (35)

12



states that the weighted column-sum of any column in Y is the same (cs),

where the weights are the molecular weights Mi. Therefore, we can form a

weighted colunm-summation vector s such that

s · Y = 1m ⇒ s · Y · Ak = 0m (36)

with s = [M1

cs
, ..., M1

cs
]T . that is the weighted mass conservation property in

the variable space.

The dynamics driven by Y Ak. In order to derive the rank of the generating

matrix Y Ak, we multiply the dynamic equation dU
dt

= Y AkU by J , where

J =











I | 0

−−− + −−

s1, ..., sn−1 | sn











, J −1 =











I | 0

−−− + −−

− s1

sn
, ...,−sn−1

sn
| 1

sn











(37)

By using the conservation properties of the matrices Y in Eq. (36) and Ak

in Eq. (30) we obtain

J Y Ak =











(Y Ak)
′

−−−−

0m











(38)

The above transformation shows that the linear mapping Y Ak is not of full

rank, but rank(Y Ak) ≤ n − 1.

4.4. The underlying reduced linear dynamics

The reduction of the underlying linear dynamics of Eq. (29) will be

performed in two consecutive steps. First the linear transformation Y T ·

(Y Ak) is reduced, that is followed by further reducing it using the results

from subsection 4.3 to construct the reduced minimal model.
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Reduction of the mapping Y T (Y Ak). Here we proceed the same way as de-

scribed in subsection 2.2 using the correspondence G ∼ Y T and H ∼ (Y Ak),

and observe that now Y Ak is not of full rank. Let us decompose the rectan-

gular matrix into two blocks as Y Ak = [ Wx | W+]. Then Eq. (8) implies

that the square (n × n) matrix

M∗

Y = Y ∗T
(

Wx + W+NT
Y

)

(39)

determines the reduced linear mapping. However, this matrix is not of full

rank, because its second factor, (Wx + W+NT
Y ) is rank-deficient.

Similarly to the reduction of the dynamics driven by Ak, we can further

reduce the dynamics driven by (Wx + W+NT
Y ) by multiplying the dynamic

equation dU
dt

= (Wx+W+NT
Y )·U by J and introduce the transformed variable

ν = JU to obtain

dν

dt
= J (Wx + W+NT

Y )J −1ν =











W̃ − W̃+s̃ | 1
sn

W̃+

−−− + −−

0n−1 | 0











·











ν̃

−−

ν̃n











(40)

with s̃ = [ s1

sn
, ...,

sn−1

sn
] The above equation shows that dνn

dt
= 0 and thus

νn = ν∗
n = const. This allows to write (40) in a reduced form as

dν̃

dt
= (W̃ − W̃+s̃)ν̃ +

ν∗
n

sn

W̃+ = W̃ ∗(ν̃ − ν̃∗) (41)

with the generating square matrix W̃ ∗ = (W̃ − W̃+s̃) ∈ R
n−1×n−1 and the

equilibrium point ν̃∗ = (W̃ ∗)−1 ν∗

n

sn
W̃+ if W̃ ∗ is invertible. In this case the

reduced (n − 1)-dimensional linear dynamics is minimal.

The reduced minimal model. The final step in the reduction is to apply the

above to the dynamics dZ
dt

= Y ∗T
(

Wx + W+NT
Y

)

Z, i.e. to the reduced linear

14



rank-deficient dynamics. Here we can use the fact that the matrix Y ∗T is

invertible, and multipy the dynamic equation by (Y ∗T )−1. By introducing

the transformed variable χ = (Y ∗T )−1Z the following transformed dynamics

is obtained
dχ

dt
=
(

Wx + W+NT
Y

)

Y ∗T χ (42)

Similarly to the previous dynamics we can again introduce a further trans-

formed variable µ = J χ = J (Y ∗T )−1Z and proceed as for Eq. (41) using

the derivation in Eq. (40) analogously.

5. Dynamic similarity of reaction kinetic and QP systems

5.1. Dynamic similarity criteria

A QP system is fully described by its structural paramaters n and m and

by its parameters (Λ, B, A). We recall ([1], [9]) that any positive polynomial

system, including reaction kinetic ones, can be written in a QP form.

Two QP systems will be called strictly dynamically similar, if both their

structural parameters and their reduced linear dynamics is the same.

Because of the rank-deficient nature of the reduced linear dynamics of a

reaction kinetic system (Y, Ak) in (39), it can only be strictly dinamically

similar to a non-minimal QP system is such a way that their structural

parameters (n and m) are the same, and the parameters of the QP system

are λ = 0T
n , B = Y T and A = Y Ak.

Finally we note that the simplest QP system with a given a reduced min-

imal dynamics (M∗, Q∗) is a Lotka-Volterra system with m = n and param-

eters (M∗, Q∗).
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5.2. Illustrative example

Consider a set of chemical reactions

A2 + A3

k1,2GGGGGGGBFGGGGGGG
k2,1

2A1 , A1 + A3

k1,3GGGGGGGBFGGGGGGG
k3,1

2A2 , 2A1

k2,3GGGGGGGBFGGGGGGG
k3,2

2A3 (43)

Reaction kinetic model. For the sake of simplicity, let us assume that all

reaction rate constants are equal and ki,j = 1. Then the dynamic equations

are as follows.

dx1

dt
= −4x2

1 + x2
2 + 2x2

3 − x1x3 + 2x2x3

dx2

dt
= x2

1 − 2x2
2 + 2x1x3 − x2x3

dx3

dt
= 3x2

1 + x2
2 − 2x2

3 − x1x3 − x2x3

The following matrices correspond to the reaction kinetic description

Y =











2 0 0 1 0

0 2 0 0 1

0 0 2 1 1











, Ak =























−2 0 1 0 1

0 −1 0 1 0

1 0 −1 0 0

0 1 0 −1 0

1 0 0 0 −1























(44)

with the reaction monomial vector QR = [x2
1, x

2
2, x

2
3, x1x3, x2x3]

T , i.e. mR =

5, nR = 3.

The time evolution of the variables of the reaction kinetic model starting

from different initial conditions and with a given total mass are shown in

the left sub-figure of Fig. 1. It is visible, that the trajectories move on a

2-dimensional linear manifold of the state space.
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Figure 1: The phase plane of the two models with similar dynamics: CRN model (left)

and reduced minimal model (right)

Strictly dynamically similar QP systems. The structural parameters of the

two systems are the same, i.e. mQP = mR = 5, nQP = nR = 3, and the

parameters of the QP systems are

A = Y Ak =











−4 1 2 −1 2

1 −2 0 2 −1

3 1 −2 −1 −1











, B =























2 0 0

0 2 0

0 0 2

1 0 1

0 1 1























, Λ =











0

0

0











(45)

Reduced linear dynamics. The parameter matrices of the reaction kinetic

system in (44) can be used to determine the generating matrix (39) of the

reduced linear dynamics

M∗

R = Y ∗T
(

Wx + W+NT
Y

)

= 2 ·











−5 3 3

3 −3 1

2 0 −4











(46)
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The above matrix is a Kirchoff conservation matrix, therefore we have ob-

tained that the simplest reaction kinetic system that is dynamically similar

to the one in Eq. (43) has the following parameters: m = n = nR = 3,

Y = I, Ak = M∗
R, and it consists of linear reaction rates only.

Reduced minimal dynamics. Repeating the derivations in sub-section 4.4 in

Eq. (34) the following 2-dimensional reduced minimal linear dynamics is

obtained:

dζ̃

dt
=





−8 0

2 −4



 ·



ζ̃ −





0.3750

0.4375







 (47)

with ζ3 = 1.

The trajectories of the reduced minimal model obtained from the reaction

kinetic one are shown in the right sub-figure of Fig. 1. Now the state spce is

only two-dimensional, but the phase portrait is clearly similar with the one

of the original model on its 2-dimensional linear sub-space.
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