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Abstract. Complex chemical reaction networks often exhibit different dynamic behaviour on
different time scales. A combined approach is proposed in this work for determining physically
meaningful mass action realizations of complex chemical reaction networks that describe its
dynamic behaviour on different time scales. This is achieved by appropriately reducing the
detailed overall mass action kinetic scheme using quasi steady state assumptions fit to the
particular time scale, and then searching for an optimal realization using mixed integer linear
programing.

Furthermore, the relationship between the properties (reversibility, deficiency, stability) of
the obtained realizations of the same system on different time scales are also investigated and
related to the same properties of the detailed overall model. It is shown that the reduced
models obtained by quasi steady state assumptions may show exotic nonlinear behaviour, such as
oscillations, when the original detailed is globally asymptotically stable. The proposed methods
are illustrated by using a simple Michaelis-Menten type reaction kinetic example. The simplified
versions of the well known Brusselator model have also been investigated and presented as a
case study.

1. Introduction

Chemical Reaction Networks (CRNs) form an important and wide class of positive (or non-
negative) systems attracting significant attention not only among chemists but in numerous
other fields such as physics, or even pure and applied mathematics where nonlinear dynamical
systems are considered [1]. Beside pure chemical reactions, CRNs are often used to model the
dynamics of intracellular processes, metabolic or cell signalling pathways [2]. The increasing
interest towards reaction networks as a well defined special class of positive nonlinear systems is
clearly shown by recent tutorial and survey papers [3], [4], [5].

Most of the complex CRNs exhibit dynamic behaviour that spans a wide range in the time
scale, i.e. they are multi scale by nature. A model that describes the behaviour at a particular
time scale is often obtained from a detailed overall model by model reduction. There are various
popular engineering model reduction transformations, such as the quasi steady state and quasi
equilibrium assumptions or the variable lumping that are widely applied for this purpose [6] but
their effect on the dynamic properties of reaction kinetic models is not very well known. Some
earlier investigations about biochemical reaction networks indicate that approximate reduced
dynamic models can only be applied if certain parametric and/or state-dependent conditions are
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met, see e.g. [7], [8]. At the same time, quite different dynamic properties (e.g. special nonlinear
effects like oscillatory or chaotic behaviour) have been detected for different simplified versions
of the same model. A recent paper [9] even warns against applying "inconsistent assumptions"
in mathematical models of protein interaction networks.

Therefore, the aim of this paper is to identify the reason for the above spurious dynamical
properties with a view to later propose ways to overcome them.

2. Chemical reaction networks and their properties

A brief summary of the most important properties of reaction kinetic networks obeying the mass
action law is given in this section based largely on [10].

2.1. Mass action law, physical and chemical background
The origin of the reaction kinetic models is found in the molecular collision picture of gas phase
chemical reactions, where the reaction rate is proportional to the number of collisions, i.e. to the
concentration of the reactants. Here each elementary reaction step is irreversible in the form of

n∑

i=1

αijXi →
n∑

i=1

βijXi j = 1, ..., r (1)

where Xi are the components, and the stoichiometric coefficients αij and βij are always non-
negative integers, while n is the number of components, and r is the number of reactions.

It is also assumed in classical reaction kinetics that the system is closed and evolves under
isotherm conditions.

The so called complexes Ck =
∑n

i=1
αijXi or Ck =

∑n
i=1

βijXi (k = 1, ...,m) are associated
to the left- and right-hand sides of the reaction steps.

When the reaction kinetic system obeys the mass action law, then the reaction rate of the
jth irreversible reaction step has the following form

ρj = kj

n∏

i=1

[Xi]
αij = kj

n∏

i=1

x
αij

i , j = 1, ..., r (2)

where [Xi] = xi is the concentration of the ith component, and kj > 0 is the reaction rate
constant of the jth reaction, that is always positive.

Note that reversible reactions

n∑

i=1

α′

ijXi ⇄

n∑

i=1

β′

ijXi j = 1, ..., r′

are regarded as two irreversible steps that share the two complexes but have different reaction
rates.

2.2. Algebraic characterization
A set of irreversible reaction steps with MAL kinetics can be characterized by the following model
elements. The stoichiometric matrix Y and the reaction monomials ϕj(x) are in the form of

[Y ]ij = yij , ϕj(x) =

n∏

i=1

x
yij

i , j = 1, ..,m; i = 1, ..., n (3)

where the matrix elements are the stoichiometric coefficients of the reactans, i.e. yij = αij .
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Algebraically, the so-called Kirchhoff matrix of the reaction graph Ak ∈ R
m×m characterizes

the reaction structure

[Ak]ij =

{
−
∑m

l=1
kil if i = j

kji if i 6= j
(4)

that is a column-convservation matrix with non-positive diagonal and non-negative off-diagonal
entries.

The dynamic model equations The dynamic state equation for the ith component is in the form

dxi

dt
= −

r∑

j=1

αijϕj(x) +

n∑

i=1

βijϕj(x) (5)

The above equations for all components can be descibed in vector-matrix form

dx

dt
= Y · Ak · ϕ(x) = M · ϕ(x) (6)

that forms the dynamic model of the reaction kinetic system with M = Y Ak.

2.3. Open systems and the zero complex
The zero complex will play an important role in analyzing the dynamical implications of model
reduction. It is a special complex with zero stoichiometric coefficients, i.e. C0 = 0. This appears
in the reaction schemes where one considers either an external source or sink of some components,
i.e. elementary reaction steps of the form

∅ →
n∑

i=1

βijXi or

n∑

i=1

αijXi → ∅

In both cases the systems is thermodynamically not closed, therefore the conservation of the total
mass in the system generally does not hold.

2.4. Structural and dynamic properties
Positive (nonnegative) systems The concepts and basic results in this paragraph are mostly
taken from [5]. A function f = [f1 . . . fn]T : [0,∞)n → R

n is called essentially nonnegative
if, for all i = 1, . . . , n, fi(x) ≥ 0 for all x ∈ [0,∞)n, whenever xi = 0. In the linear case,
when f(x) = Ax, the necessary and sufficient condition for essential nonnegativity is that the
off-diagonal entries of A ∈ R

n×n are nonnegative (such a matrix is often called a Metzler-matrix).
Consider an autonomous nonlinear system

ẋ = f(x), x(0) = x0 (7)

where f : X → R
n is locally Lipschitz, X is an open subset of R

n and x0 ∈ X . Suppose that
the nonnegative orthant [0,∞)n = R̄

n
+ ⊂ X . Then the nonnegative orthant is invariant for the

dynamics (7) if and only if f is essentially nonnegative.

Kinetic realizability of nonnegative polynomial systems An autonomous polynomial nonlinear
system of the form (7) is called kinetically realizable or simply kinetic, if a mass action reaction
mechanism given by equation (6) can be associated to it that exactly realizes its dynamics,
i.e. f(x) = Y · Ak · ϕ(x) where ϕ contains the monomials, matrix Y has nonnegative integer
elements and Ak is a valid Kirchhoff matrix. In such a case, the pair (Y,Ak) will be called
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a realization of the polynomial system (7) (note that Y contains all information about the
composition of the monomials in ϕ in the case of mass-action dynamics). As it is expected from
linear algebra, the same polynomial system may have many parametrically and/or structurally
different realizations, and this is particularly true for kinetic systems coming from application
domains other than chemistry. The problem of kinetic realizability of polynomial vector fields was
first examined and solved in [11] where the constructive proof contains a realization algorithm
that produces the directed graph of a possible associated mass action mechanism. According to
[11], the necessary and sufficient condition for kinetic realizability is that all coordinates functions
of the right hand side of (7) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (8)

where gi and hi are polynomials with nonnegative coefficients. The very short description of the
realization algorithm presented in [11] is the following. Let us write the polynomial coordinate
functions of the right hand side of a kinetic system (7) as

fi(x) =

ri∑

j=1

mij

n∏

k=1

xbjk (9)

where ri is the number of monomial terms in fi. Let us denote the transpose of the ith standard
basis vector in R

n as ei and let Bj = [bj1 . . . bjn].

Algorithm 1 from [11]
For each i = 1, . . . , n and for each j =
1, . . . , ri do:

(i) Cj = Bj + sign(mij) · ei

(ii) Add the following reaction to the
graph of the realization

n∑

k=1

bjkXk −→
n∑

k=1

cjkXk

with reaction rate coefficient |mij |,
where Cj = [cj1 . . . cjn].

Roughly speaking, condition (8) means that kinetic systems cannot contain negative cross-effects.
From this, it is easy to see that all nonnegative linear systems are kinetic, since a linear system
characterized by a Metzler matrix where only the diagonal elements can have negative coefficients
is obviously in the form of (8). Moreover, classical Lotka-Volterra (LV) systems are always kinetic.
However, there are many essentially nonnegative polynomial systems that are not directly kinetic,
since some of the monomials in fi that do not contain xi may have negative coefficients. To
circumvent this problem, one possible way is the application of a state-dependent time-rescaling
[12] with a monomial function (see subsection 3.1).

Deficiency and stability Similarly to [13], we can assign the following directed graph (see, e.g.
[14]) to the reaction network (1) in a straightforward way. The directed graph D = (Vd, Ed) of
a reaction network consists of a finite nonempty set Vd of vertices and a finite set Ed of ordered
pairs of distinct vertices called directed edges. The vertices correspond to the complexes, i.e.
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Vd = {C1, C2, . . . Cm}, while the directed edges represent the reactions, i.e. (Ci, Cj) ∈ Ed if
complex Ci is transformed to Cj in the reaction network. The reaction rate coefficients kj for
j = 1, . . . , r in (2) are assigned as positive weights to the corresponding directed edges in the
graph. Where it is more convenient, the notation k′

ij will be used for denoting the reaction rate
coefficient corresponding to the reaction Ci → Cj. A set of complexes {C1, C2, . . . , Ck} is a
linkage class of a reaction network if the complexes of the set are linked to each other in the
reaction graph but not to any other complex [15].

We can associate an n-dimensional vector with each reaction in the following way. For the
reaction Ci → Cj, the corresponding reaction vector denoted by hk is given by

hk = [Y ]·,j − [Y ]·,i (10)

where [Y ]·,i denotes the ith column of Y . Similarly to reaction rate coefficients, whenever it is
more practical, h′

ij denotes the reaction vector corresponding to the reaction Ci → Cj.
The rank of a reaction network denoted by s is defined as the rank of the vector set

{h1, h2 . . . , hr} where r is the number of reactions.
The positive stoichiometric compatibility class containing a concentration x0 is the following

set [15]:
(x0 + S) ∩ R

n
+

where R
n
+ denotes the positive orthant in R

n, and S = span{h1, h2 . . . , hr}.
The deficiency d of a reaction network is defined as [13], [15]

d = m − l − s (11)

where m is the number of complexes in the network, l is the number of linkage classes and s is
the rank of the reaction network.

A reaction network is called reversible, if each of its reactions is a reversible reaction. A
reaction network is called weakly reversible, if each complex in the reaction graph lies on at least
one directed cycle (i.e. if complex Cj is reachable from complex Ci on a directed path in the
reaction graph, then Ci is reachable from Cj on a directed path).

The well-known Deficiency Zero Theorem [15] says that the ODEs of a weakly reversible
deficiency zero CRN are globally stable with a known logarithmic Lyapunov function for all
positive values of the reaction rate coefficients. Furthermore, these CRNs have a unique steady-
state point in each positive stoichiometric compatibility class. Therefore (among other realization
problems) it is of interest whether we can find a weakly reversible deficiency zero kinetic
realization of a nonnegative polynomial system.

Computing preferred realizations of CRNs using mixed integer programming Mixed integer
linear programming (MILP) is a powerful tool for combining discrete (boolean or integer) and
continuous variables within an optmization framework where the objective function, equality and
inequality constraints are linear [16]. It was shown that qualitative knowledge about the modeled
system that can be expressed in propositional logic form has an equivalent representation as linear
equations and inequalities [17]. Using this computational approach, it is possible to rewrite and
solve certain CRN synthesis problems as MILP problems [10]. So far, the following problems have
been solved: (a) computing the realizations containing the minimal/maximal number of reactions
(called sparse and dense realizations, respectively), (b) computing the realization containing
the minimal/maximal number of complexes (from within a given set), (c) computing reversible
realizations (if they exist) [18]. These tools will be used to compute different realizations of
kinetic systems in sections 3 and 4.
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Conservation equations Assuming irreversible reaction equations (1) the conservation of
component masses associated to the jth reaction is

n∑

i=1

αijMi =

n∑

i=1

βijMi

where Mi is the molecular weight of the ith component. This can be written in the following
homogeneous form

n∑

i=1

(αij − βij) Mi = 0 (12)

with the matrix [N ]ij = αij − βij and vector M composed of the molecular weights. In order to
have valid component mass conservation it should be required that the homogeneous equation
NM = 0 has at least one positive solution.

In order to develop a conservation equation for the component masses, one should take the
reaction equation for the ith component in equation (5) and multiply it by its molar weight Mi,
because the reaction equations refer to concentrations in molar units, e.g. in mol/m3:

Mi

dxi

dt
=

r∑

j=1

(αij − βij)Miϕj(x)

Summing up the above reaction equations (both of their left and right hand sides), and performing
some algebraic manipulations we obtain:

d

dt

n∑

i=1

(xiMi) =

r∑

j=1

(
n∑

i=1

(αij − βij)Mi

)

ϕj(x) (13)

Because of the mass conservation of the jth reaction in equation (12), the factor in the bracket
on the right hand side in equation (13) is zero, therefore we obtain d

dt

∑n
i=1

(xiMi) = 0. This
proves the lemma below.

Lemma 1 A closed reaction kinetic system with MAL kinetics and component mass conservation
for every reaction has a linear first integral corresponding to the total component mass
conservation in the form

∑n
i=1

Mixi = const if the equation NM = 0 has at least one positive
solution.

2.5. An example: The Michaelis-Menten reaction scheme
The Michaelis-Menten reaction scheme describes a simple enzyme-kinetic reaction with the
following reaction and dynamic model equations

E + S ⇄ ES ES ⇄ E + P ES + S ⇄ ESS

E :
dx1

dt
= −k+

1
x1x2 + k−

1
x3 − k−

2
x1x5 + k+

2
x3

S :
dx2

dt
= −k+

1
x1x2 + k−

1
x3 − k+

3
x2x3 + k−

3
x4

ES :
dx3

dt
= +k+

1
x1x2 − k−

1
x3 + k−

2
x1x5 − k+

2
x3 −

−k+
3

x2x3 + k−

3
x4

ESS :
dx4

dt
= +k+

3
x2x3 − k−

3
x4

P :
dx5

dt
= −k−

2
x1x5 + k+

2
x3
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where the concentration state vector x is formed as

x1 = [E], x2 = [S], x3 = [ES], x4 = [ESS], x5 = [P ]

from the components E for the enzyme, S for the substrate, P for the product, and ES and
ESS being intermediate complexes.

The dynamical behaviour of the concentration variables and the reaction graph that consists
of two reversible connected components are seen in figure 1, with the following model parameters
used for the simulations:

k+

1
= 1, k−

1
= 0.8, k+

2
= 1.1, k−

2
= 0.75, k+

3
= 2, k−

3
= 1.8

E + S
k1

+

k1
-

k2
+

k2
-

ES E + P

ES + S
k3

+

k3
-

ESS
0 1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time

[X
]

x1
x2
x3
x4
x5

(a) (b)

Figure 1. The Michaelis-Menten reaction scheme (a) structure graph (b) system dynamics

The deficiency of this reversible model is zero, therefore its equilibrium points are globally
stable because of the deficiency zero theorem.

3. Transformation of reaction kinetic models

The different transformations that are used here are described as formal mathematical
transformations applied to the reaction kinetic model equations with MAL.

3.1. Time-reparametrization transformation
The time reparametrization transformation is an equivalence transformation where only the
algebraic form but not the structural properties of the model are changed. It is performed by
introducing a new time variable dt = xν1

1
· ... · xνn

n · dt′ with νi ∈ {0, 1}. The transformed model
equations are

dx

dt′
= Mϕ′(x)

where only the reaction monomials change to

ϕ′

j(x) =

n∏

i=1

x
yij+νi

i

It immediately follows from the definition that the transformed model remains in the MAL
reaction kinetic class with the same structural properties.

The time reparametrization transformation will be used later for the elimination of negative
cross-effects that may arise during the model reduction.

5th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS 2010) IOP Publishing
Journal of Physics: Conference Series 268 (2011) 012009 doi:10.1088/1742-6596/268/1/012009

7



3.2. Model simplification by steady state assumption transformation
The model reduction using quasi steady state (QSS) assumption(s) is the most popular method
of obtaining dynamic models with lower dimension (i.e. with less differential state variables). If
the jth component is considered to be in quasi steady state, formally this is written as

dxj

dt
= Fj(x) = 0 , xj = x∗

j = const (14)

The formal model reduction transformation is performed in two consecutive formal steps:

SS1 eliminating the component Xj by setting its concentration xj to a constant x∗

j whenever it
appears,

SS2 substituting the resulting algebraic equation from equation (14), e.g. Fj(x) = 0 into the
differential ones.

The first step decreases the number of state variables by one, and then step SS2 reduces it
further by one.

It is important to note that the algebraic equation from equation (14) is not considered
further, i.e. step SS2 is not performed, if the component assumed to be in QSS has formed
a complex in itself. In this case this complex is replaced by the zero complex in the reduced
model indicating that the reduced system became open. Then the resulting constant terms in
the individual reaction kinetic equations may serve as input variables with a help of which the
algebraic equation can be enforced.

The steady state assumption transformation is a projection in mathematical sense, therefore
the structural properties of the model may change. It is important to note that even the
reaction kinetic form may be lost during this transformation. For a more detailed analysis
of this transformation we refer to [6].

3.3. Simplified Michaelis-Menten reaction schemes and their realizations
This section shows how the steady state assumption transformation changes the structural
properties of a reaction kinetic system model and identifies conditions when the dynamic
properties of the reduced model may be different from the original one.

The constant values x∗
1 and x∗

3 in the following subsections were chosen from the steady state
simulation results of the original model described in section 2.5.

3.3.1. Quasi steady state for the component ES (x3) Here only the first SS1 step of the steady
state transformation is performed, because the component ES forms a complex in itself.

E :
dx1

dt
= −k+

1
x1x2 + k

−

1 − k−

2
x1x5 + k

+

2

S :
dx2

dt
= −k+

1
x1x2 + k

−

1 − k
+

3 x2 + k−

3
x4

ESS :
dx4

dt
= k

+

3 x2 − k−

3
x4

P :
dx5

dt
= −k−

2
x1x5 + k

+

2

where the new reaction rate constants are k
±

i = k±

i x∗
3.

The model remains reaction kinetic (in generalized sense) with the reaction graph seen in
figure 2(a).
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We can eliminate the resulting zero complex through a time reparametrization transformation
by introducing a new time variable dt = x1dt′ to obtain

E :
dx1

dt′
= −k+

1
x2

1x2 − k−

2
x2

1x5 + (k−

1
+ k+

2
)x∗

3x1

S :
dx2

dt′
= −k+

1
x2

1x2 − k+
3

x∗

3x1x2 + k−

3
x1x4 + k−

1
x∗

3x1

ESS :
dx4

dt′
= k+

3
x∗

3x1x2 − k−

3
x1x4

P :
dx5

dt′
= −k−

2
x2

1x5 + k+

2
x∗

3x1

The resulting model equations are kinetic with the corresponding reaction structure seen in figure
2(b). This structure is fully reversible and of deficiency 0, thus the model is stable.

E + S
k1

+

k1
-

k2
+

k2
-

Ø E + P

S
k3

+

k3
-

ESS

2E + S
k1

+

k1
-

k2
+

k2
-

E 2E + P

S+E
k3

+

k3
-

ESS+E

(a) (b)

Figure 2. The simplified Michaelis-Menten reaction scheme with ES in QSS (a) reduced reaction
graph (b) after time reparametrization

The dynamics of the reduced model is seen in figure 3 with x∗
3 = 1.21. By comparing figures

1(b) and 3 we can say that even the details of the dynamics are fairly similar.

0 1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time

[X
]

x1
x2
x4
x5

Figure 3. The dynamics of the simplified Michaelis-Menten reaction scheme with ES in QSS

3.3.2. Quasi steady state for the component E
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The first step SS1 of this transformation is to set x1 = x∗
1 without substituting the resulting

first integral that results in a model

S :
dx2

dt
= −k+

1
x∗

1x2 + k−

1
x3 − k+

3
x2x3 + k−

3
x4

ES :
dx3

dt
= k+

1
x∗

1x2 + (−k−

1
− k+

2
)x3 + k−

2
x∗

1x5 − k+

3
x2x3 + k−

3
x4

ESS :
dx4

dt
= k+

3
x2x3 − k−

3
x4

P :
dx5

dt
= k+

2
x3 − k−

2
x∗

1x5

The obtained reaction graph is seen in figure 4(a), which is a reversible deficiency 0 structure,
and thus structurally stable. The dynamics of the state variables is shown in figure 4(b), that is
fairly similar to the original dynamics for the remaining state variables with x∗

1 = 1.246.

S
k1

+x1
*

k1
-

k2
+

k2
-x1

*

ES P

S+ES
k3

+

k3
-

ESS
0 1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time

[X
]

x2
x3
x4
x5

(a) (b)

Figure 4. The simplified Michaelis-Menten reaction scheme E in QSS without substituting the
algebraic equation (a) structure graph (b) system dynamics

The second step SS2 requires to substitute the resulting algebraic equation from the first
differential equation with x1 = x∗

1, i.e.

−k+

1
x∗

1x2 + (k−

1
+ k+

2
)x3 − k−

2
x∗

1x5 = 0

into the model. This can be performed by expressing x5 and substituting it to all of the remaining
equations to obtain

S :
dx2

dt
= −k+

1
x∗

1x2 + k−

1
x3 − k+

3
x2x3 + k−

3
x4

ES :
dx3

dt
= (k+

1
x∗

1 − k−

2
x∗

1l2)
︸ ︷︷ ︸

0

x2 + (k−

2
x∗

1l3 − k−

1
− k+

2
)

︸ ︷︷ ︸

0

x3 − k+
3

x2x3 + k−

3
x4

ESS :
dx4

dt
= k+

3
x2x3 − k−

3
x4

where l2 =
k
+

1

k
−

2

and l3 =
k
−

1
+k

+

2

k
−

2
x∗

1

. It is important to note that the polynomial form of the equations

remained.
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We can now search for a reaction kinetic realization of the above reduced model using MILP.
It is obtained that there exists no reversible realization, therefore a realization with the minimum
number of reactions has been searched for. The resulting irreversible reaction kinetic network is
shown in figure 5(a) that does not fulfill the conditions of the deficiency zero theorem. Moreover,
the dynamics of the remaining state variables (see figure 5(b)) is rather different from the original
ones.
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Figure 5. The simplified Michaelis-Menten reaction scheme E in QSS with substituting the
algebraic equation (a) structure graph (b) system dynamics

In conclusion one can observe that the second step SS2 is the one that may drastically modify
the structure and the dynamics of the system, and this is the one that may bring out the model
from the polynomial system class.

Without this step, however, there is no guarantee, that the component assumed to be in
QSS is indeed constant, this implies that the pseudo reaction rate coefficients will vary in time.
At the same time it is known, that as long as the structure of a deficiency zero CRN remains
such that the deficiency zero weakly reversible property is preserved in each time instant, the
time-variation of the reaction rate coefficients cannot destroy stability [19].

4. The Brusselator case study

In this section, the effect of QSS assumptions will be shown on the reversible and irreversible
versions of the well-known Brusselator example. In order to have polynomial reduced models,
only the first step SS1 of the QSS assumption transformation is performed in this case. Thereafter
the latest results of optimization based reaction mechanism generation [10, 18] will be used to
compute kinetic realizations of the simplified models.

4.1. The irreversible and reversible full models and their properties
The starting point is the most frequently used reaction scheme for the irreversible and reversible
Brusselator model that are shown in figure 6 (a) and (b), respectively. The kinetic differential
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equations of the irreversible model are the following:

ẋ1 = − k12x1 (15)

ẋ2 =k12x1 − k23x2 + k45x
2
2x4 − k67x2x5 (16)

ẋ3 =k23x2 (17)

ẋ4 = − k45x
2
2x4 + k67x2x5 (18)

ẋ5 = − k67x2x5 (19)

ẋ6 =k67x2x5 (20)

The parameter values used for the numerical computations (resulting in oscillatory behaviour in
the reduced model) were the following:

k12 = 1.2, k23 = 2.1, k45 = 4.2, k67 = 6.5 (21)

The equations corresponding to the reversible Brusselator model version can be written as

(a) (b)

Figure 6. Brusselator reaction schemes: (a) irreversible case, (b) reversible version

ẋ1 = − k12x1 + k21x2 (22)

ẋ2 =k12x1 − (k21 + k23)x2 + k32x3 + k45x
2
2x4 − k54x

3
2 − k67x2x5 + k76x4x6 (23)

ẋ3 =k23x2 − k32x3 (24)

ẋ4 = − k45x
2
2x4 + k54x

3
2 + k67x2x5 − k76x4x6 (25)

ẋ5 = − k67x2x5 + k76x4x6 (26)

ẋ6 =k67x2x5 − k76x4x6 (27)

The parameter values (also causing oscillatory behaviour in the reduced model) were the
following:

kij = 1, ∀i, j (28)

It can be easily computed that the deficiency is zero for both of the above models. This
means that there is no equilibrium point in the interior of the positive orthant in the case of
the irreversible Brusselator, and there is exactly one equilibrium point in each stoichiometric
compatibility class of the reversible model. Moreover, the dynamics of the reversible model is
globally stable with a known Lyapunov function, and it cannot produce complex behaviour such
as oscillations in its original closed form.
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4.2. Simplified versions of the irreversible variant
To produce oscillations, two concentrations, namely x1 and x5, must be kept constant. This
practically means opening the originally closed network and feeding in the necessary amount of
these species. From the modeling point of view, this is a QSS assumption where x1 = x∗

1 and
x5 = x∗

5 is assumed. The resulting dynamical equations are then the following:

ẋ2 =k12x
∗

1 − (k23 + k67x
∗

5)x2 + k45x
2
2x4 (29)

ẋ3 =k23x2 (30)

ẋ4 = − k45x
2
2x4 + k67x

∗

5x2 (31)

ẋ6 =k67x
∗

5x2 (32)

The numerical values of the chosen steady states were x∗
1 = x∗

5 = 1. It is easy to check that the
polynomial system (29) - (32) is kinetic. Using the methodology described in [10], the sparse
realization of the model can be determined which is shown in figure 7. Equations (30) and (32)

Figure 7. Sparse reaction scheme corresponding to the kinetic system (29) - (32)

can be omitted from the model if we are not interested in the dynamics of product composition.
In this case, the remaining equations are

ẋ2 =k12x
∗

1 − (k23 + k67x
∗

5)x2 + k45x
2
2x4 (33)

ẋ4 = − k45x
2
2x4 + k67x

∗

5x2 (34)

Naturally, the above equations are still kinetic, and the corresponding sparse reaction network
can also be determined. This structure can be seen in figure 8. It is immediately visible that the
network in figure 8 is a proper subgraph of the one shown in figure 7. The deficiency of both
CRNs are 2, and with proper parametrization (for example the one in equation (21)), both are
able to produce stable limit cycles. Moreover, it can also be shown through optimization, that
no reversible CRN realization exists either for equations (29)-(32) or for (33)-(34) which is not
very surprising, since the orignal closed CRN shown in figure 6 (a) was completely irreversible
(although one reversible reaction pair appears between the zero complex and X2).

In summary, we can observe that the deficiency and even the minimal number of reactions in
a kinetic system may increase as a result of a QSS assumption. This might be contrary to our
expectations, since the dynamics is seemingly simplified by the elimination of certain differential
equations. Additionally, the physical opening of the system (needed to keep the appropriate
concentrations constant) appears in the violation of component mass conservation (zero complex
and autocatalytic reactions). Then, these factors can result in complex dynamical behaviour
such as a limit cycle that is not observable in the original closed system.
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4.3. Simplified versions of the reversible model
Let us consider now the reversible Brusselator variant given by equations (22)-(27). The following
QSS assumptions have to be made for oscillating behaviour:

xi = x∗

i , i = 1, 3, 5, 6 (35)

The remaining dynamics is then given by

ẋ2 = (k12x
∗

1 + k32x
∗

3) + (−k21 − k23 − k67x
∗

5)x2 − k54x
3
2 + k45x

2
2x4 + (k76x

∗

6)x4 (36)

ẋ4 = −k45x
2
2x4 + k54x

3
2 + k67x

∗

5x2 − k76x
∗

6x4 (37)

The values of the steady states were chosen as follows: x∗
1 = 1, x∗

3 = 1, x∗
5 = 16, x∗

6 = 0.5. It is
immediately visible that equations (36) - (36) are kinetic, therefore we can run Algorithm 1 to
compute a CRN realization which is shown in figure 9. It can be seen from the figure that this
realization of deficiency 4 contains 8 reactions and none of the two linkage classes is (at least
weakly) reversible.

However, an attempt to compute a fully reversible realization is successful in this case and
gives the CRN that is depicted in figure 10. We remark that this CRN is also a sparse realization
of the dynamics (36) - (37), since the MILP optimization method tells us that the minimal
number of reactions needed to realize that dynamics is 6. The deficiency of the obtained
reversible network is 1, therefore we can apply the Deficiency one theorem [15] which says that the
differential equations of the CRN admit precisely one steady-state in each positive stoichiometric
compatibility class. This fact, however, does not exclude the possibility of oscillating behaviour,
that is to have a stable limit cycle around this steady-state. The stable limit cycle produced by
the CRN with parameters in equation (28) started from the initial state x(0) = [2 2.5]T can be
seen in figure 11.

5. Conclusion and future work

The models relevant on a given time scale of a CNR are constructed by using QSS assumption(s)
in this paper, that are defined as formal model transformations consisting of two steps. A MILP

Figure 8. Sparse reaction scheme corresponding to the kinetic system (33) - (34)

Figure 9. Reaction network produced by Algorithm 1 corresponding to the kinetic system
(36) - (37)
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approach is proposed further for determining physically meaningful mass action realizations of
these reduced models.

The relationship between the properties (reversibility, deficiency, stability) of the obtained
realizations of the same system on different time scales were also investigated and related to the
same properties of the detailed overall model. It has been shown that the QSS assumption can
cause the inrease of the deficiency and that of the minimal number of reaction in the realization,
as well as the appearence of the zero complex. This implies that spurious exotic nonlinear
behaviour, such as multiple steady-states and oscillations can appear in the reduced models that
were not present in the oroginal detailed ones.

The proposed methods are illustrated by using a simple Michaelis-Menten type reaction kinetic
example. The simplified versions of the well known Brusselator model have also been investigated
and presented as a case study.

Figure 10. Sparse reversible realization corresponding to the kinetic system (36) - (37)
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Figure 11. Time-domain behaviour of the CRN shown in Fig 10
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