Special Positive Systems: the QP and the
Reaction Kinetic System Class

Katalin M. Hangos and Gabor Szederkényi

Abstract The class of reaction kinetic systems as a special sub-ofagssitive
systems is investigated in this paper. The original notiasell on the kinetical
equations obeying mass action law has been generalizedves tiee cases with
real exponents in the reaction monomials. It has been shbatrthie generalized
class still possesses the same stability property undersih@ Lyapunov function.
Thereafter the relationship between the reaction kinetit the quasi-polynomial
(QP) systems classes is established based on their algeheaicterization, and a
method is proposed to test if a QP system has a generalizetibrekinetic realiza-
tion. Simple algebraic conditions are also given for gehlentka-\olterra systems
that guarantee the existence of theeir reaction kineticaifodm.

1 Introduction

Positive systems form an important class of nonlinear sys{d, 3] where the state
variables are positive (i.e. the positive orthant denotedb is invariant for the
dynamics). In some application areas, such as processrsyste transportation
systems the underlying physics and chemistry ensures dinel same times requires
that the variables (such as masses and component massesdup, lemperatures,
pressures and alike) are positive.

Reaction kinetic systems form a special class of positigtesgs with smooth
nonlinearities where advantageous dynamic properties$) as global asymptotic
stability may be ensured thanks to the special structureeogystem model. In the
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classical case, these systems are descibed by a set ofrgrdifierential equations
(ODESs) with polynomial right-hand sides. The dynamicalg@udies of reaction ki-
netic systems have been investigated by many authors,yrhenhumber and local
stability of steady state solutions and conditions for glagtability (see, e.g. [6],
[5], [2], [16] and [8]) have been dealt with.

There is another, related class of special nonlinear systdm class of quasi-
polynomial (QP) or generalized Lotka-Volterra (GLV) syste(see e.g. [12], [10]),
that are generalizations of the classical Lotka-\Volteystean model described by
a set of ODEs with second-order polynomial right-hand sid#2 systems have a
special algebraic structure and a simple Lyapunov funatenmdidate [7], [9] that
enables the test of global asymptotic stability by using EMt is very easy to see
that reaction kinetic systems are special sub-classes afy®tems, but the exact
relationship and its consequences are not characterizédmweaigh.

Despite of the above mentioned results, not much have bess, towever, to
use the above special strong results in the area of nonkystgms and control the-
ory. As a first step, the ideas on description and stabilityeattion kinetic systems
were recalled, extended and put into a control theoretioémwaork in [16].

The aim of this paper is to investigate the relationship leetwthe reaction ki-
netic and QP systems classes in order to generalize théom&itetic class in such
a way that the generalized class preserves the advantagerpesties and extends
its descriptive power.

2 Thereaction kinetic system class

The original physical picture underlying the reaction kinesystem class is a
closed system under isothermal and isobaric conditiongrevichemical species
Xi, i=1,...,ntake partinr chemical reactions. The systems is perfectly stirred, i.e.
concentrated parameter in the simplest case. The contientng, i = 1,...,nform
the state vector the elements of which are positive by nature

For the sake of simplicity, physico-chemical propertied #re total mass (vol-
ume) of the system are assumed to be constant.

2.1 Reaction systems obeying the mass action law (MAL)

The origin of mass action law lies in thraolecular collision pictureof chemical

reactions. Here the reaction occurs when either two retintatecules collide, or
a reactant molecule collides with an inactive (e.g. solverdlecule. Clearly, the
probability of having a reaction is proportional to the pabBbity of collisions, that

is proportional to the concentration of the reactant(s)s important to note that
the probability of having a three molecular collision is hgiple compared to the
two molecular collisions, therefore at most second ordectien kinetic models are



Special Positive Systems: the QP and the Reaction Kinette8yClass 3

fully compatible with the molecular collision picture. #also emphasized however,
that many important dynamic properties of reaction systesressystem class do not
depend on their order.

2.1.1 Irreversiblereactionsobeying the mass action law

A straightforward generalization of the above moleculdlision picture is when
we allow to have multi-molecule collisions to hagkementary reaction stefis the
following form:

n n

zaijxi — leini j= 1,...,I'/ Q)

i= i=
where ajj is the so-calledstoichiometric coefficiendof componentX; in the jth
reaction, i.e. the number of colliding; molecules, angj, is the stoichiometric
coefficient of the produck,. Note thatthe stoichiometric coefficients are always
non-negative integers in classical reaction kinetic syste

According to the extended molecular picture, the reactide of the above reac-
tions can be described as
n

n
pj =k [1Xi% =k X" . j=1,...r 2
J Ji|_| ! Jil:! i

where[X;] = x; is the concentration of the componefit andk; > 0 is thereaction
rate constanbf the jth reaction, that is always positive.

2.1.2 Reversible reactionsobeying the mass action law

A special class of reaction kinetic systems is the case @frséie reactions the rate
equations of which obey the mass action law (MAL) (see [5]).
The reaction scheme consistsrakversible reactions of the form

n n
GiXi= S BiXi j=1,..r 3)
; ijANi i; ijANi

The set of components with non-zero stoichiometric coeifits aj; or §j; on a
side of a reaction form a so called compléx Therefore we haver2complexes
from which there can be identical complexes,ke: 1,...,m, m< 2r. Note that the
reversible equations (3) can be realized’as 2r irreversible reaction steps (1).

The mass action law type reaction rates can also be appltbiteversible case
by considering the rate of thigh reversible step in the form:

n n

W09 =W () =Wy (09 =k []%" ~k; %" @
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with x; being the concentration of the compon&nt Here bothreaction rate con-
stants I{ > 0 andk; > 0 are strictly positive. The term&’fr (x) andW;" (x) are the
reaction rates of the forward and backward directed reastieps, respectively.

2.1.3 Generalized reaction kinetic systemswith MAL kinetics

One can generalize the above reaction kinetic system madgisMAL kinetics
in both the reversible and irreversible casesgdl stoichiometric coefficientre
allowed. This means thahe stoichiometric coefficients; or §; can have real
values, but the reaction rate constants remain strictlyifpees

It can be shown that both the realization properties (s latsection 3) and
the stability properties will remain the same if the intdmedationships between the
algebraic realization matrices (see in subsection 2.2).hol

2.2 Algebraic characterization

The parameters of the above introduced reaction kinetiesyslass and their struc-
tural relationships are investigated here to find propettiat ensure that a set of
ordinary differential equations with polynomial rightsihside enables a reaction
kinetic system interpretation.

2.2.1 The Gorban description

The case when the reaction kinetic system consists of ordysible reactions that
obey the mass action lawas first investigated by Gorban [2], therefore we shall
call the description of this caggorban description

The reaction rate equations originate from the componessrbalances, and

they are in the form

dx
Fr AW(X) (5)

wherex € R" is the state vector are constructed from the concentratibige com-
ponents (species)y” € R™" is the stoichiometric matrix, anlf € R" is the reaction
rate vector described in Eq. (4).

Thestoichiometric matrix 4~ is constructed form the stoichiometric coefficients
aij and;j in the following way. To each comple® a column vectov® € R" is

associated such thafk) = Ok, in other wordsvi(k) = aj stores the stoichiometric
coefficient of the componedq; in the complex. Note that precisely two complexes
take part in a reaction (see Eq. (3)) thus one can form twoicestr/ (%) from the
complexes of the left hand sides of theeactions, and# (8) from that of the right
hand sides by collecting the column vectorf of the corresponding complexes.
Thus.# is simply the difference of the two, i.es” = .4 (B) — _4(@) where the
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jth column vector of 4, u()) € R" contains the difference of the stoichiometric
coefficients of theth reaction.

Note that the parameters that describe a reaction kinesiesywith reversible
MAL kinetics in its Gorban form are given by the stoichiometmatrix .4~ and
the reaction rate coefficients” = [k{...k"]T andk~ = [k ...k;]T. However, one
cannot uniquely determine the stoichiometric coefficidrdsn the stoichiometric
matrix.#” whenaij - Bjj # 0, i.e. when a component is present on both the righ and
the left hand side of a reaction. Unfortunately, an impdrtaaction type, the so
calledcatalytic reaction$elong to this category.

2.2.2 TheFeinberg description

Another way of representing a reaction kinetic system withLMKinetics isto re-
lax the assumption of reversible reaction steps and consideh irreversible steps
individually. We shall name this description the Feinberg descriptiter &einberg
[5], who first investigated this case. Then the reactionsrate described using the
so-calledreaction monomialassociated to the complexes in the form

mw=ﬂ% (6)

where the elements of the matixare the stoichiometric coefficients of the com-
ponents, i=1,....nin the complexeg, j =1,...,m

[Ylij = ¥ij

Note that the stoichiometric coefficierdy of the reactants in the irreversible reac-
tion steps (1) appear in the mathix while the reaction monomials are the principal
factors in the MAL reaction rate expression (2). In the gahease, however, one
may have less complexes than reactions when some of théoreahave the same
reactant complex.

It is important to observe, that the stoichiometric coedintsaj; andf;; in the
Gorban description (3) both appear in matfiin different columns.

The structure of the set of reactions is usually depictedgraahical form using
the so-called reaction graph.

The reaction graph

The verticed/ of the reaction grapls = (V,E) correspond to the complexes, and
the edge£ to the reactions. Two complex€g andC, are connected by a directed
edge, if a reaction in the form of

Ck—Cy (7)

exists. Edge weights can be associated to the edges thdtearedction rate con-
stantsky, > 0, thus he reaction graph is a weighted directed graph. sncise the
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set ofreaction vectorgan be defined asz = {n") —n | GG € E in G}, where
n denotes théth column ofY.
The Kirchhoff matrix of the reaction graph, & R™™ uniquely describes the

reaction graph with
sk if i =]

[Ak]lj - { kji if i # J (8)
Because of constructiothe Kirchhoff matrix of the reaction graph is a column con-
servation matrixwith non-positive diagonal and non-negative off-diagomdiere
the sum of the elements in a column is equal to zero. (We rethatkhe Kirchhoff
matrix of weighted directed graphs is often defined as thathegtranspose ofy
in the literature.)

Note, however, that the Kirchhoff matrix of the reactiongtaloes not uniquely
determine the reaction kinetic system, since the inforomadin the composition of
the complexes is missing from the graph. A remedy of thisasitum is to associate
weights to the vertices of the graph, as well. As verticemaseciated to complexes,
the corresponding columm(}) is associated to the verté.

The reaction equations

In order to construct the dynamic state equations of a @adinetic system, the
information on the composition of the complexes that areedad the stoichiometic
matrix Y is also needed. The dynamic model that describes the ewolofi the
reaction kinetic system in its state spece is given by

dx

Gt =Y AP =N-$(x) (9)
It is important to note that the matricksandAy uniquely determine the reaction

kinetic system, because the stoichiometric coefficiend determine the reaction

monomials ing (x).

2.2.3 Thereaction simplex: positivity and linear invariants

Given the dynamic state equations of a reaction kineticesysh its Feinberg rep-
resentation form (9), it is easy to show that the solutiont@&mains on a linear
manifold, on the so-calleceaction simplexdetermined by the initial conditions,
assuming that all stoichiometric coefficients are non-tiegdbut not necessarily
integers). Each vecta ¢ ker(NT) generates a linear invariant for the system (5)
since

d
e'N=0 = er—i(:O = e'x(t) = const=e'xg

In order to show the positivity of the system, let us sepategroduction terms
P(x) from the desctruction termi3(x) in Eq. (9) [14] by introducing the vector of
reaction velocitiesy (X) = ki ¢;(X) to obtain:
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PX)=YPw(x) , D(x):diag(w(a)w(x)]lw[Y(“)w(x)]n>

Xl Xn

whereY (@) is the sub-stochimetric matrix composed only from thecoefficients

of Eq. (1) whileY® is its corresponding-pair. With the above notation, the dy-
namic state equations (9) become:

i P(x) — D(x)x (20)
where all non-zero entries of the diagonal majxare polynomials (or generalized
polynomials in the real stoichiometric coefficients case} because of the MAL
kinetics. Recall that all stochimetric coefficients and reaction ratsstants are
positive.Then, if at a time moment all concentrations are non-negatix¢r() > 0)
and the concentration of the spediészero (1) = 0) then the corresponding time
derivative will be non-negative, because the productionis non-negative, and the
destruction term is zero which implies positivity of anytstavolution starting from
a positive initial point.

2.2.4 Example: A ssimplelinear kinetics

Let us consider a simple reaction kinetic system shown in Figpnsisting of two
reversible first order steps and three components.

Ky k3
Fig. 1 Weighted reaction o <_®
k:

graph of a linear system 2 ke

The dynamic state equations are as follows.

d—ﬁl = —kiX1 + koXo
€2 = kX1 — koXo — KXo + Kaxa (11)

Tt = Kexo —Kaxs

¢ From this the Feinberg representation matrices and weatereasy to derive

X1 100 —ka ko 0
¢X)=|%|,Y=]010| ,N=A=| ki —(kxt+ks) ke (12)
X3 001 0 ks —Kka

The system consists of only reversible reactions, thus tho@h representation
form also exists withr = 2 and
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Kyx1 + kox -10
| —kaxXg 4 koxo -~ B
W(X)_{—kgxz+k4x3]”/y_ é 11 (13)

2.3 Stability

If the reaction kinetic system obeys the mass action law) there exist easy-to-
check necessary conditions of its global asymptotic stgbil

2.3.1 Feinberg'sapproach

One of the most significant achievements in the study of threadhjcal properties
of complex chemical reaction systems is [6], where (amohgrdtnportant results)
the global stability of so-called 'deficiency zero’ reactioetworks is proved with a
given Lyapunov function.

The stability of reaction networks (5) can be examined ugiregnotion of de-
ficiency (see [6, 16]). It is an integer number which depenushe properties of
matrix Y, and on the structure of the reaction graphThedeficiencyd is defined
as:

o=m—-/{-—s (14)

wheremis the number of complexes aids the number of connected components
in the reaction graph, whileis the dimension of the stoichiometric sub-space, i.e.
s=rank(#%).

The deficiency zero theorem

If the reaction network is (weakly) reversible then theresesxwithin each reaction
simplex precisely one equilibrium, and that equilibriuma&/mptotically stable if
the dynamics is restricted to the reaction simplex to whigh équilibrium point
belongs. Consequently, the original system in the conaBair space is globally
stable in the positive orthant. Therefore, having zero aafy is a very strong
structural property.

It is important to note that the deficiency zero property isractural feature of
a certain class of reaction networks, therefore their ktpllioes not depend on the
system parameters.

2.3.2 Gorban’sapproach

In agreement with [6] (as they fall into the deficiency zerass)) the closed and re-
versible reaction networks are proved to be globally stgBlg. Here we generalize
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this result for the class of reversible reaction kinetictegss with extended MAL
kinetics, i.e. with real stochimetric coefficients.

Theorem 1. Let the the dynamic state equation of a reaction kineticesgsivith
reversible reactions be given in the form of (5), whémaker(.4") = 0. Then the
equilibrium point X of this system is globally stable with the Lyapunov function

By (X) = iilXi <In (f—l) - 1) X (15)

Proof. Define the auxiliary vectou as

H(X) = [I(x0), ..., In(x0)]"

and let us denote thith column of the stociometric matrices” (@) by al)) and
(B) by B, respectively. Let us use the following relations:

HTB(j) B()|H(X1)+ +Bn In(x,) = < xﬁl xBn>_ <%Vw‘(x)>
i

utah =n <kiw+( )) (16)

Then the time-derivative @y can be computed as

dBy: 0By . r ) . B
dt = ax JVW(X) = (I’l —u )T JZ:L(B(D _ a(]))(\/\/j+(x) _ij (X)) (17)

(WTB - pTal) TR Tal ) (W 00 - (0) (1)

[
- TM-

. B
I { G | 50 -Wi00) <0 (19)

1

J

and this completes the proofd

2.3.3 Example of stability analysis: thesimplelinear kinetics

The simple reaction kinetic system with linear kineticse(seib-section 2.2.4) is
used here to illustrate the above method.
For the forthcoming calculations, let us assign the follaywalues to the kinetic
constants:
ki=1 k=2 k3=05ks=1

It can be easily checked that a basis vector for the equilibrmanifold isv =
[4 2 1T. From this manifold, let us choosé = [2 1 05]" as an equilibrium
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point of interest. Then, a quadratic and a logarithmic Lyapufunction can be
constructed for the stability analysis of the system.

It can be computed th&= diag([%1 % 1]) is a solution for the following nonstrict
linear matrix inequality (LMI):

AlP+PA<0

ThereforeV/ (x) = %x§+ %x% +x§ is nonincreasing along the solutions of the system
and proves stability in the linear sense.
Using Theorem 1 we can construct the entropy-like Lyapunov function as

By = x1In (X—Zl) —X1+X2In (X2) — X2+ X3In (2x3) — X3+ 3.5

which is bounded from below, zero #&t, convex in the positive orthant and non-
increasing along the trajectories of the system. It's wondmtioning that we can
define a dissipative-Hamiltonian structure [15] for thetegsin both the original
coordinates (since it is a stable linear system) and, usingrdinear coordinates
transformation, in the "reaction space” [13].

3 Reaction kinetic systems as quasi-polynomial systems

The quasi-polynomial system class has been introduced eseaa representation
form of autonomous nonlinear systems with smooth nonlitiear(see e.g.[11],
[12]).

Quasi-polynomial (QP) systems are systems of ODEs of theWaig form

% = % I-+§[M]-- ﬁx[B“k i=1...n (20)
i = A i i K ) — el
=1 k=1
wherex € int(R} ), M € R™™ B e R™" |; e R, i =1,...,n. Furthermore| =
ll1 ... In]T. Without the loss of generality we can assume that R&nk- n and
m>n (see [12]).
Itis also known that the class of QP systems is closed onéesdfcalledjuasi-
monomial (QM) transformatian

n
Cix
X =% (21)
1
whereC € R™" is an invertible matrix. The transformed system matricedviir=

C1.M, B =B-C,I"=C1.1, and the producty = BM = B'M’ is invariant under
the QM transformation.
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3.1 The Lotka-Volterra canonical form
Let us denote thenonomialf (20) as
=[x " i=1,....m (22)

Letz= [z 2 ... zn. It can be easily calculated that the time derivatives of the
monomials form a Lotka-Volterra (LV) system i.e.

3

=1

where” =B-M € R™M A =B-1 ¢ R™? A = [A];, andz >0, i=1,..., m.

We note that the matrixy of an LV system originating from a QP system is
often rank deficient since the number of monomials is largan the number of QP
variables in many cases. It is visible that LV systems fornra@ppr subset of QP
systems wittB being the unit matrix of sizen x mand the matrixe is the invariant
of the QP system class.

It is often useful to represent (23) in itmogeneoutrm. This form can be
obtained by introducing a new varial#g, 1, such thatzn 1 = 0 andz,.1(0) = 1.
Using the new variable, (23) can be written as

m1

Z =1 Z[E]iij ,i=1,....m+1 (24)
j=1

with

E— %g] (25)

3.2 QP and LV realization of reaction kinetic systemswith MAL
kineticsillustrated by the smplelinear kinetics example

It has already been shown [11] that the reaction kineticesystlass is a special
case of the QP system class, so every reaction kinetic systedel has its QP
form, and consequently, it can be transformed to a LV forne properties of such
transformations are illustrated here using the siple lik@zetics example given in
sub-section 2.2.4.

The QP-ODEs are derived from the dynamic state equations (11

% = X1- (—k1+ k2XIlX2> 9 9

CP—E = X2+ (—(ko+ k3) 4 kaX; "X1 + KaX; *X3) (26)
@ =% (—ka+kexxg?)
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Thus we have four quasi-monomials
-1 —1 1 —1
Xq TX2, X1 X5 75 Xy TX3, X0 X3

This gives rise to the following QP representation matrenes vectors

K ke 0 0 0 P
| = —(k2+|(3) ,M=]0k ks O|,B= 27)
Tk 00 0k 0-11
3 0 1 -1
Finally, the following LV representation vector and matabe resulted
—k1+ (ko +ks) —ko ki ks O
ki — (k2 +ka) ko —ky —k4 O
_ of = 28
(ko+ka)— kg |° 0 ki —ky ks (28)
—(k2+ka) +ka 0 ki ki —ks

3.3 Reaction kinetic realization of QP systems

The reaction kinetic realization of a QP system can be deeel@and its existence
checked following the steps that are described in this sahien.

Transformation into a pre-Feinberg form

dx
Gt =) (29)

First the reaction monomials can be determined form theiraett
Lo = {Xt, s X0y XU Z0y e X1 Zmy vy Xn* 2, ey X0+ Zm} (30)

such that the identical elements should only be taken omckthee monomials with
zero coefficients (either ik or in [M];j) should be omitted. ¢ From this normalized
set of reaction monomials the Feinberg stoichiometric inatrcan be easily deter-
mined.

The coefficient matrix# can thereafter be computed by rearranging the original
QP model coefficients in the vectband matrixM. If one puts the linear reaction
monomialsx; first in the vectorp (x), then there will be am x n diagonal block in
M

A = [Diag(li,i =1,...,n) | .4\] (31)
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Computing the reaction kinetic realization matrices

The feasibility of the reaction kinetic realization and twmputation of the miss-
ing Ay coefficient matrix is performed using the dynamic state &qodorm of the
Feinberg realization in Eq. (9). According to this, the abdetermined QP coeffi-
cient matrix.# and stochimetric matri¥ is in the following relationship:

M=Y A (32)

from which the unknown coefficient matri& can be determined by using the
pseudo-inverse of if the columns ofY are linearly independent:

Ac=Y"-u (33)

If the number of complexes are greater than the number ofiepend therefore
the columns ofY cannot be linearly independent, then (32) becomes an uederd
termined system of linear equations for which suchAaisolution might be sought
that is a column conservation matrix.

Theorem 2. A reaction kinetic realization exists, if the resulting Hagent matrix
Ay is a column conservation matrix, i.e. a matrix with non-pigsi diagonal and
non-negative off-diagonal elements and with column suraléqero.

3.4 Reaction kinetic realization of LV systems

As an LV system is a canonical representation form of a QP threeguestion of
the existence of a reaction kinetic realization of a LV sgsie of great theoretical
importance. In addition, some of the parameter estimatiethous for infererring
reation mechanisms from measured data use the possibt®reaonomials of all
possible second order reaction steps as basis functiaflJse

The structure of the pre-Feinberg representation

Assume to have a LV model given in its homogeneous form (24¢nTthe reaction
monomials, i.e. the entries of the vec(z) are in the form ofzz; with i,j =
1,...,m+ 1 and with the(m+ 1)th variable being a constant 1. We can arrange the
reaction monomials in their lexicographical order withndging the (m+ 1)th
element to the Oth one to create the following ordering

21,2, ... 7m, 242,222, ... ZiZm, ...

then the stoichiometric matrix has a following simple structure
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100..0{211..1/000...0

010..0/010..0/211...1
Y=|001..0{001..0{010..0] ... (34)

0000100001 00001

The coefficient matriN has a similar structure but it contains the elements of the
matrix o7 and the vectoA

/\1 00.. 0|ajgapa13...aqm| 0 0O O ... O

0 )\20... 0 0 ap; O ... O | agpagzags... agm| ...
N=|{001..0| 0 Oag.. 0| 0Oagp0.. 0].. (35)
o .. .. . .. 0 e e e 0] ..

0000An O O O Oam| O O O Oamw

where the notatione;] = a;j is applied.

The existence of reaction kinetic realization of 2nd ordérslystems

Let us consider the simplest non-trivial case of LV systenmemn = 2 and the
model is in the following form

2 = Mz +auZ +auz
7 = hozo +apB +annzn (36)

Then the pre-Feinberg realization matrices are
_ 10210 _ A 0O ag1a2 O
Y—[01012] ’N_[0A20a21a22 37)

Instead of solving Eq. (33) that has multiple solutions iis ttase, let us use the
physical picture behind the terms in the reaction equatiorftnd possible com-
plexes and reaction steps compatible with the terms in Ej. (3

Admissible complexdbwe denote byA andB the components the concentration
of which is denoted by; andz, respectively, then the following complexes can
appear in the reaction system corresponding to Eqg. (36):

A B, 2A, A+B, 2B (38)
Incompatible reaction typddext we observe that any reaction in the form of
aiXi — BiXj (i #])
with aj, Bj € {1,2} andX;,X; € {A,B} gives rise to a term in

dz i
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that is not compatible with the right-hand side structurd=qf (36), where every

term on the right-hand side é‘ft—j should contain a factarj. Because of the same
reason, any reaction in the form

aA— A+Bor aB—A+B

with a € {1,2} cannot appear in any reaction kinetic realization of LV nisde
Reaction graph superstructugf=rom the remaining reaction types defined over

the set of possible complexes in Eq. (38), the reaction gsaplerstructure seen in

Fig. 2 can be obained. The Kirchhoff matrix of the reacticagrin Fig. 2 (follow-

Fig. 2 Weighted reaction
graph superstructure for the
2nd order LV model

ing the order of complexes in (38)) is:

K7 0 Kk K o
0o K o kY Kk

A= K2 0 —qKP 0 (39)
0 0 0 -K O

0o k2 o K -k
whereK = k<l/2> + k@ + k<122A) + k(1225>. Multiplying the above matrixA, with the
stoichiometric matrixy in Eq. (37), we obtain the following coefficient matrix:
2 B 2A 2B
s R w
Comparing the matrix elements of the coefficient matricdsge. (40) and (37), the
following necessary conditions for the existence of a lieadtinetic realization are
obtained:
A1>0, 2220, a11<0, a3 <0 (41)

There are no restrictions for the coefficieats anday;.



16 Katalin M. Hangos and Gabor Szederkényi

In addition we can see, thtte reaction Kinetic realization is not unigusecause
the coefficients;, anday; determine four reaction rate constah@, k<122A), k(lzzB)
andk(lg).

Positivity of the equilibrium point of 2nd order LV systemthweaction kinetic
realization

The positivity of any second order LV system that admits atiea kinetic realiza-
tion is guaranteed by the positivity property of reactiondtic systems [14]. How-
ever, the uniqueness and the strict positivity of the elguilm point of the system
is also of interest, that will be investigated here.

Let us denote the determinant of the LV coefficient matrixoy

d=dets = det[all alz] = aj1ax2 — 412821 (42)
a1 az2

¢ From Eq. (36) the following equilibrium point is obtainetdend # 0

Ao — anoA
Z>£:<’:112 2d822 1 -

1A —agiAr

. (43)

It can be seen that@ecessary condition for having a positive equilibrium pasn
to have eitheir; £ 0 or A2 # 0 or none of them equal to zero
If in addition the LV coefficient matri/ is a column conservation matrike.

a2>0, a1>0, [ag1| > ap1 , |ax2 > arw
then the equilibrium poinz;, z) is strictly positive keeping in mind the conditions

of having a reaction kinetic realization given in Eq. (41).

Reaction kinetic realization of general LV systems

Now we are ready to generalize the results presented beftire generalnth order
case.

Admissible complexds can be seen from the general LV equation form (23),
that the following complexes can appear in the reactioresyst

{Xi,i=1,...m}, {2X;,i=1,....m}, Xi+Xj, L,j=1,...m i#j} (44)
¢ From this we construct the reaction monomial vegt@) as follows:
T
¢(Z) = [Zla'“yzf‘r'lv Zi"'aztznv 2122,~~~7Zm712m] (45)

Incompatible reaction typeBesides of the incompatible reaction types described
before, one also has to consider the reaction type

Xi+Xk—>Xj—|—Xg
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This reaction gives rise to a termin
dz _
dt
that is not compatible with the right-hand side structurd=qf (23), where every

term on the right-hand side é’(ﬁ should contain a factag;.
Therefore, only the following reaction types are admissihlthe reaction graph
of an LV model:

oK jezize+

Xij — 2X| (46)
2Xi — X
Xi4+ Xk = Xi, Xj+ X — 2Xj, Xi+ Xy — Xg, Xj+ X — 2Xi

Reaction graph superstructugfFrom the above possible reaction types it fol-
lows, that both the verticeX; and 2(; have out-degree equal to one, while the
verticesX; + Xy have out-degree equals four. This implies that the colutmreture
of the Kirchhoff matrix of the reaction graph follows thattbe 2-dimensional case
(see Eq. (39)), but now we have to fill all elements of a colunith &eros except
of two non-zero elements corresponding to the outward @ickedges from the
complexesXj and 2(; or four non-zero elements for the complexgs+ Xy.

As an example, the weighted reaction graph superstructutéé 3rd order LV
model in Fig. 3 shows that the graph is the union of the 2-dsiwaral superstruc-
tures (seen in Fig. 2).

Fig. 3 Weighted reaction graph superstructure for the 3rd ordemiodel

Therefore, similarly to the two-dimensional case, thedwlhg necessary condi-
tions can be given for a LV model to have a reaction kinetitization:

A >0, A <0, i=1,..m (47)

There are no restrictions for the coefficieAiswheni # j.
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In addition we can see, thtte reaction Kinetic realization is not unigusecause
the coefficientg\j andAj; determine four reaction rate constakffg), kszxi), ki(jZXj)

andki(j)(j).

4 Conclusion

The algebraic and stability properties of the reaction tkinsystem class, being
a special sub-class of positive systems have been investiga this paper. The
original notion based on the kinetical equations obeyingsraction law has been
generalized to cover the cases with real exponents in tr@isaamonomials. It
has been shown that the generalized class still possesssartie stability property
under the usual Lyapunov function.

Thereafter the relationship between the reaction kinetitthe quasi-polynomial
(QP) systems classes is established based on their algebheaacterization, and a
method is proposed to test if a QP system has a generalizetibrekinetic realiza-
tion. Simple algebraic conditions are also given for geleotka-Volterra systems
that guarantee the existence of theeir reaction kineticatfodm.
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