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Abstract The class of reaction kinetic systems as a special sub-classof positive
systems is investigated in this paper. The original notion based on the kinetical
equations obeying mass action law has been generalized to cover the cases with
real exponents in the reaction monomials. It has been shown that the generalized
class still possesses the same stability property under theusual Lyapunov function.
Thereafter the relationship between the reaction kinetic and the quasi-polynomial
(QP) systems classes is established based on their algebraic characterization, and a
method is proposed to test if a QP system has a generalized reaction kinetic realiza-
tion. Simple algebraic conditions are also given for general Lotka-Volterra systems
that guarantee the existence of theeir reaction kinetic model form.

1 Introduction

Positive systems form an important class of nonlinear systems [4, 3] where the state
variables are positive (i.e. the positive orthant denoted by R

n
+ is invariant for the

dynamics). In some application areas, such as process systems or transportation
systems the underlying physics and chemistry ensures and atthe same times requires
that the variables (such as masses and component masses in a holdup, temperatures,
pressures and alike) are positive.

Reaction kinetic systems form a special class of positive systems with smooth
nonlinearities where advantageous dynamic properties, such as global asymptotic
stability may be ensured thanks to the special structure of the system model. In the
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classical case, these systems are descibed by a set of ordinary differential equations
(ODEs) with polynomial right-hand sides. The dynamical properties of reaction ki-
netic systems have been investigated by many authors, mainly the number and local
stability of steady state solutions and conditions for global stability (see, e.g. [6],
[5], [2], [16] and [8]) have been dealt with.

There is another, related class of special nonlinear systems, the class of quasi-
polynomial (QP) or generalized Lotka-Volterra (GLV) systems (see e.g. [12], [10]),
that are generalizations of the classical Lotka-Volterra system model described by
a set of ODEs with second-order polynomial right-hand sides. QP systems have a
special algebraic structure and a simple Lyapunov functioncandidate [7], [9] that
enables the test of global asymptotic stability by using LMIs. It is very easy to see
that reaction kinetic systems are special sub-classes of QPsystems, but the exact
relationship and its consequences are not characterized well enough.

Despite of the above mentioned results, not much have been done, however, to
use the above special strong results in the area of nonlinearsystems and control the-
ory. As a first step, the ideas on description and stability ofreaction kinetic systems
were recalled, extended and put into a control theoretic framework in [16].

The aim of this paper is to investigate the relationship between the reaction ki-
netic and QP systems classes in order to generalize the reaction kinetic class in such
a way that the generalized class preserves the advantageousproperties and extends
its descriptive power.

2 The reaction kinetic system class

The original physical picture underlying the reaction kinetic system class is a
closed system under isothermal and isobaric conditions, where chemical species
Xi , i = 1, ...,n take part inr chemical reactions. The systems is perfectly stirred, i.e.
concentrated parameter in the simplest case. The concentrationsxi , i = 1, ...,n form
the state vector the elements of which are positive by nature.

For the sake of simplicity, physico-chemical properties and the total mass (vol-
ume) of the system are assumed to be constant.

2.1 Reaction systems obeying the mass action law (MAL)

The origin of mass action law lies in themolecular collision pictureof chemical
reactions. Here the reaction occurs when either two reactant molecules collide, or
a reactant molecule collides with an inactive (e.g. solvent) molecule. Clearly, the
probability of having a reaction is proportional to the probability of collisions, that
is proportional to the concentration of the reactant(s). Itis important to note that
the probability of having a three molecular collision is negligible compared to the
two molecular collisions, therefore at most second order reaction kinetic models are
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fully compatible with the molecular collision picture. It is also emphasized however,
that many important dynamic properties of reaction systemsas a system class do not
depend on their order.

2.1.1 Irreversible reactions obeying the mass action law

A straightforward generalization of the above molecular collision picture is when
we allow to have multi-molecule collisions to haveelementary reaction stepsin the
following form:

n

∑
i=1

αi j Xi →
n

∑
i=1

βi j Xi j = 1, ..., r ′ (1)

whereαi j is the so-calledstoichiometric coefficientof componentXi in the jth
reaction, i.e. the number of collidingXi molecules, andβiℓ is the stoichiometric
coefficient of the productXℓ. Note thatthe stoichiometric coefficients are always
non-negative integers in classical reaction kinetic systems.

According to the extended molecular picture, the reaction rate of the above reac-
tions can be described as

ρ j = k j

n

∏
i=1

[Xi ]
αi j = k j

n

∏
i=1

x
αi j
i , j = 1, ..., r ′ (2)

where[Xi ] = xi is the concentration of the componentXi , andk j > 0 is thereaction
rate constantof the jth reaction, that is always positive.

2.1.2 Reversible reactions obeying the mass action law

A special class of reaction kinetic systems is the case of reversible reactions the rate
equations of which obey the mass action law (MAL) (see [5]).

The reaction scheme consists ofr reversible reactions of the form

n

∑
i=1

αi j Xi ⇄

n

∑
i=1

βi j Xi j = 1, ..., r (3)

The set of components with non-zero stoichiometric coefficientsαi j or βi j on a
side of a reaction form a so called complexCk. Therefore we have 2r complexes
from which there can be identical complexes, i.e.k = 1, ...,m, m≤ 2r. Note that the
reversible equations (3) can be realized asr ′ = 2r irreversible reaction steps (1).

The mass action law type reaction rates can also be applied tothis reversible case
by considering the rate of thejth reversible step in the form:

Wj(x) = W+
j (x)−W−

j (x) = k+
j

n

∏
i=1

x
αi j
i −k−j

n

∏
x=1

x
βi j
i (4)
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with xi being the concentration of the componentXi . Here bothreaction rate con-
stants k+j > 0 andk−j > 0 are strictly positive. The termsW+

j (x) andW−
j (x) are the

reaction rates of the forward and backward directed reaction steps, respectively.

2.1.3 Generalized reaction kinetic systems with MAL kinetics

One can generalize the above reaction kinetic system modelswith MAL kinetics
in both the reversible and irreversible cases, ifreal stoichiometric coefficientsare
allowed. This means thatthe stoichiometric coefficientsαi j or βi j can have real
values, but the reaction rate constants remain strictly positive.

It can be shown that both the realization properties (see later in section 3) and
the stability properties will remain the same if the internal relationships between the
algebraic realization matrices (see in subsection 2.2) hold.

2.2 Algebraic characterization

The parameters of the above introduced reaction kinetic system class and their struc-
tural relationships are investigated here to find properties that ensure that a set of
ordinary differential equations with polynomial right-hand side enables a reaction
kinetic system interpretation.

2.2.1 The Gorban description

The case when the reaction kinetic system consists of only reversible reactions that
obey the mass action lawwas first investigated by Gorban [2], therefore we shall
call the description of this caseGorban description.

The reaction rate equations originate from the component mass balances, and
they are in the form

dx
dt

= N W(x) (5)

wherex∈ R
n is the state vector are constructed from the concentrationsof the com-

ponents (species).N ∈R
n×r is the stoichiometric matrix, andW∈R

r is the reaction
rate vector described in Eq. (4).

Thestoichiometric matrixN is constructed form the stoichiometric coefficients
αi j andβi j in the following way. To each complexCk a column vectorν(k) ∈ R

n is

associated such thatν(k)
i = αik, in other wordsν(k)

i = αik stores the stoichiometric
coefficient of the componentXi in the complex. Note that precisely two complexes
take part in a reaction (see Eq. (3)) thus one can form two matricesN (α) from the
complexes of the left hand sides of ther reactions, andN (β ) from that of the right
hand sides by collecting the column vectorsν(k) of the corresponding complexes.
ThusN is simply the difference of the two, i.e.N = N (β ) −N (α) where the
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jth column vector ofN , µ ( j) ∈ R
n contains the difference of the stoichiometric

coefficients of thejth reaction.
Note that the parameters that describe a reaction kinetic system with reversible

MAL kinetics in its Gorban form are given by the stoichiometric matrix N and
the reaction rate coefficientsk+ = [k+

1 ...k+
r ]T andk− = [k−1 ...k−r ]T . However, one

cannot uniquely determine the stoichiometric coefficientsfrom the stoichiometric
matrixN whenαi j ·βi j 6= 0, i.e. when a component is present on both the righ and
the left hand side of a reaction. Unfortunately, an important reaction type, the so
calledcatalytic reactionsbelong to this category.

2.2.2 The Feinberg description

Another way of representing a reaction kinetic system with MAL kinetics is to re-
lax the assumption of reversible reaction steps and consider each irreversible steps
individually. We shall name this description the Feinberg description after Feinberg
[5], who first investigated this case. Then the reaction rates are described using the
so-calledreaction monomialsassociated to the complexes in the form

ϕ j(x) =
n

∏
i=1

x
yi j
i (6)

where the elements of the matrixY are the stoichiometric coefficients of the com-
ponentsi, i = 1, ...,n in the complexesj, j = 1, ...,m

[Y]i j = yi j

Note that the stoichiometric coefficientsαi j of the reactants in the irreversible reac-
tion steps (1) appear in the matrixY, while the reaction monomials are the principal
factors in the MAL reaction rate expression (2). In the general case, however, one
may have less complexes than reactions when some of the reactions have the same
reactant complex.

It is important to observe, that the stoichiometric coefficientsαi j andβi j in the
Gorban description (3) both appear in matrixY in different columns.

The structure of the set of reactions is usually depicted in agraphical form using
the so-called reaction graph.

The reaction graph

The verticesV of the reaction graphG = (V,E) correspond to the complexes, and
the edgesE to the reactions. Two complexesCk andCℓ are connected by a directed
edge, if a reaction in the form of

Ck →Cℓ (7)

exists. Edge weights can be associated to the edges that are the reaction rate con-
stantskkℓ > 0, thus he reaction graph is a weighted directed graph. In this case the
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set ofreaction vectorscan be defined as:R = {η(l)−η(k) | CkCl ∈ E in G}, where
η(i) denotes theith column ofY.

The Kirchhoff matrix of the reaction graph Ak ∈ R
m×m uniquely describes the

reaction graph with

[Ak]i j =

{

−∑m
l=1kil if i = j
k ji if i 6= j

(8)

Because of construction,the Kirchhoff matrix of the reaction graph is a column con-
servation matrixwith non-positive diagonal and non-negative off-diagonal, where
the sum of the elements in a column is equal to zero. (We remarkthat the Kirchhoff
matrix of weighted directed graphs is often defined as the negative transpose ofAk

in the literature.)
Note, however, that the Kirchhoff matrix of the reaction graph does not uniquely

determine the reaction kinetic system, since the information on the composition of
the complexes is missing from the graph. A remedy of this situation is to associate
weights to the vertices of the graph, as well. As vertices areassociated to complexes,
the corresponding columnη( j) is associated to the vertexCj .

The reaction equations

In order to construct the dynamic state equations of a reaction kinetic system, the
information on the composition of the complexes that are coded in the stoichiometic
matrix Y is also needed. The dynamic model that describes the evolution of the
reaction kinetic system in its state spece is given by

dx
dt

= Y ·Ak ·ϕ(x) = N ·ϕ(x) (9)

It is important to note that the matricesY andAk uniquely determine the reaction
kinetic system, because the stoichiometric coefficients inY determine the reaction
monomials inϕ(x).

2.2.3 The reaction simplex: positivity and linear invariants

Given the dynamic state equations of a reaction kinetic system in its Feinberg rep-
resentation form (9), it is easy to show that the solution of it remains on a linear
manifold, on the so-calledreaction simplexdetermined by the initial conditions,
assuming that all stoichiometric coefficients are non-negative (but not necessarily
integers). Each vectore∈ ker(NT) generates a linear invariant for the system (5)
since

eTN = 0 ⇒ eT dx
dt

= 0 ⇒ eTx(t) = const= eTx0

In order to show the positivity of the system, let us separatethe production terms
P(x) from the desctruction termsD(x) in Eq. (9) [14] by introducing the vector of
reaction velocitiesωi(x) = kiϕi(x) to obtain:
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P(x) = Y(β )ω(x) , D(x) = diag

(

[Y(α)ω(x)]1
x1

...
[Y(α)ω(x)]n

xn

)

whereY(α) is the sub-stochimetric matrix composed only from theαi j coefficients
of Eq. (1) whileY(β ) is its correspondingβ -pair. With the above notation, the dy-
namic state equations (9) become:

dx
dt

= P(x)−D(x)x (10)

where all non-zero entries of the diagonal matrixDii are polynomials (or generalized
polynomials in the real stoichiometric coefficients case) in x because of the MAL
kinetics.Recall that all stochimetric coefficients and reaction rateconstants are
positive.Then, if at a time momentτ all concentrations are non-negative (x(τ) ≥ 0)
and the concentration of the speciesi is zero (xi(τ) = 0) then the corresponding time
derivative will be non-negative, because the production term is non-negative, and the
destruction term is zero which implies positivity of any state evolution starting from
a positive initial point.

2.2.4 Example: A simple linear kinetics

Let us consider a simple reaction kinetic system shown in Fig. 1 consisting of two
reversible first order steps and three components.

Fig. 1 Weighted reaction
graph of a linear system

A
k1

k2

k3

B C
k4

The dynamic state equations are as follows.

dx1
dt = −k1x1 +k2x2

dx2
dt = k1x1−k2x2−k3x2 +k4x3

dx3
dt = k3x2−k4x3

(11)

¿From this the Feinberg representation matrices and vectors are easy to derive

ϕ(x) =





x1

x2

x3



 , Y =





1 0 0
0 1 0
0 0 1



 , N = Ak =





−k1 k2 0
k1 −(k2 +k3) k4

0 k3 −k4



 (12)

The system consists of only reversible reactions, thus the Gorban representation
form also exists withr = 2 and
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W(x) =

[

−k1x1 +k2x2

−k3x2 +k4x3

]

, N =





−1 0
1 −1
0 1



 (13)

2.3 Stability

If the reaction kinetic system obeys the mass action law, then there exist easy-to-
check necessary conditions of its global asymptotic stability.

2.3.1 Feinberg’s approach

One of the most significant achievements in the study of the dynamical properties
of complex chemical reaction systems is [6], where (among other important results)
the global stability of so-called ’deficiency zero’ reaction networks is proved with a
given Lyapunov function.

The stability of reaction networks (5) can be examined usingthe notion of de-
ficiency (see [6, 16]). It is an integer number which depends on the properties of
matrixY, and on the structure of the reaction graphG. Thedeficiencyδ is defined
as:

δ = m− ℓ−s (14)

wherem is the number of complexes andℓ is the number of connected components
in the reaction graph, whiles is the dimension of the stoichiometric sub-space, i.e.
s= rank(R).

The deficiency zero theorem

If the reaction network is (weakly) reversible then there exists within each reaction
simplex precisely one equilibrium, and that equilibrium isasymptotically stable if
the dynamics is restricted to the reaction simplex to which the equilibrium point
belongs. Consequently, the original system in the concentration space is globally
stable in the positive orthant. Therefore, having zero deficiency is a very strong
structural property.

It is important to note that the deficiency zero property is a structural feature of
a certain class of reaction networks, therefore their stability does not depend on the
system parameters.

2.3.2 Gorban’s approach

In agreement with [6] (as they fall into the deficiency zero class) the closed and re-
versible reaction networks are proved to be globally stable([2]). Here we generalize
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this result for the class of reversible reaction kinetic systems with extended MAL
kinetics, i.e. with real stochimetric coefficients.

Theorem 1. Let the the dynamic state equation of a reaction kinetic system with
reversible reactions be given in the form of (5), wheredimker(N ) = 0. Then the
equilibrium point x∗ of this system is globally stable with the Lyapunov function

Bx∗(x) =
n

∑
i=1

xi

(

ln

(

xi

x∗i

)

−1

)

+x∗i (15)

Proof. Define the auxiliary vectorµ as

µ(x) = [ln(x1), ..., ln(x1)]
T

and let us denote thejth column of the stociometric matricesN (α) by α( j) and
N (β ) by β ( j), respectively. Let us use the following relations:

µTβ ( j) = β ( j)
1 ln(x1)+ ...+ β ( j)

n ln(xn) = ln

(

1

k−j
x

β ( j)
1

1 ...xβ ( j)
n

n

)

= ln

(

1

k−j
W−

j (x)

)

µTα( j) = ln

(

1

k+
j

W+
j (x)

)

(16)

Then the time-derivative ofBx∗ can be computed as

dBx∗

dt
=

∂Bx∗

∂x
N W(x) = (µ − µ∗)T

r

∑
j=1

(β ( j)−α( j))(W+
j (x)−W−

j (x)) (17)

=
r

∑
j=1

(

µTβ ( j)− µTα( j)− µ∗Tβ ( j) + µ∗Tα( j)
)

(W+
j (x)−W−

j (x)) (18)

=
r

∑
j=1

ln

(

W−
j

W+
j

)

(W+
j (x)−W−

j (x)) ≤ 0 (19)

and this completes the proof.⊓⊔

2.3.3 Example of stability analysis: the simple linear kinetics

The simple reaction kinetic system with linear kinetics (see sub-section 2.2.4) is
used here to illustrate the above method.

For the forthcoming calculations, let us assign the following values to the kinetic
constants:

k1 = 1, k2 = 2, k3 = 0.5, k4 = 1

It can be easily checked that a basis vector for the equilibrium manifold isv =
[4 2 1]T . From this manifold, let us choosex∗ = [2 1 0.5]T as an equilibrium
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point of interest. Then, a quadratic and a logarithmic Lyapunov function can be
constructed for the stability analysis of the system.

It can be computed thatP= diag([1
4

1
2 1]) is a solution for the following nonstrict

linear matrix inequality (LMI):

AT
k P+PAk ≤ 0

ThereforeV(x) = 1
4x2

1+ 1
2x2

2 +x2
3 is nonincreasing along the solutions of the system

and proves stability in the linear sense.
UsingTheorem 1 we can construct the entropy-like Lyapunov function as

Bx∗ = x1 ln
(x1

2

)

−x1+x2 ln(x2)−x2 +x3 ln(2x3)−x3+3.5

which is bounded from below, zero atx∗, convex in the positive orthant and non-
increasing along the trajectories of the system. It’s worthmentioning that we can
define a dissipative-Hamiltonian structure [15] for the system in both the original
coordinates (since it is a stable linear system) and, using anonlinear coordinates
transformation, in the ”reaction space” [13].

3 Reaction kinetic systems as quasi-polynomial systems

The quasi-polynomial system class has been introduced as a general representation
form of autonomous nonlinear systems with smooth nonlinearities (see e.g.[11],
[12]).

Quasi-polynomial (QP) systems are systems of ODEs of the following form

ẋi = xi

(

l i +
m

∑
j=1

[M]i j
n

∏
k=1

x
[B] jk
k

)

, i = 1, . . . ,n. (20)

wherex ∈ int(Rn
+), M ∈ R

n×m, B ∈ R
m×n, l i ∈ R, i = 1, . . . ,n. Furthermore,l =

[l1 . . . ln]T . Without the loss of generality we can assume that Rank(B) = n and
m≥ n (see [12]).

It is also known that the class of QP systems is closed onder the so-calledquasi-
monomial (QM) transformation:

x′i =
n

∏
k=1

xCik
k (21)

whereC∈ R
n×n is an invertible matrix. The transformed system matrices are M′ =

C−1 ·M, B′ = B·C, l ′ = C−1 · l , and the productA = BM = B′M′ is invariant under
the QM transformation.



Special Positive Systems: the QP and the Reaction Kinetic System Class 11

3.1 The Lotka-Volterra canonical form

Let us denote themonomialsof (20) as

zj =
n

∏
k=1

x
[B] jk
k , j = 1, . . . ,m. (22)

Let z= [z1 z2 . . . zm]T . It can be easily calculated that the time derivatives of the
monomials form a Lotka-Volterra (LV) system i.e.

żi = zi(λi +
m

∑
j=1

[A ]i j ·zj), i = 1, . . . ,m (23)

whereA = B ·M ∈ R
m×m, λ = B · l ∈ R

m×1, λi = [λ ]i , andzi > 0, i=1,. . . , m.
We note that the matrixA of an LV system originating from a QP system is

often rank deficient since the number of monomials is larger than the number of QP
variables in many cases. It is visible that LV systems form a proper subset of QP
systems withB being the unit matrix of sizem×mand the matrixA is the invariant
of the QP system class.

It is often useful to represent (23) in itshomogeneousform. This form can be
obtained by introducing a new variablezm+1, such that ˙zm+1 = 0 andzm+1(0) = 1.
Using the new variable, (23) can be written as

żi = zi

(

m+1

∑
j=1

[E]i j zj

)

, i = 1, . . . ,m+1 (24)

with

E =

[

A λ
0 0

]

(25)

3.2 QP and LV realization of reaction kinetic systems with MAL
kinetics illustrated by the simple linear kinetics example

It has already been shown [11] that the reaction kinetic system class is a special
case of the QP system class, so every reaction kinetic systemmodel has its QP
form, and consequently, it can be transformed to a LV form. The properties of such
transformations are illustrated here using the siple linear kinetics example given in
sub-section 2.2.4.

The QP-ODEs are derived from the dynamic state equations (11)

dx1
dt = x1 ·

(

−k1 +k2x−1
1 x2

)

dx2
dt = x2 ·

(

−(k2 +k3)+k1x−1
2 x1 +k4x

−1
2 x3

)

dx3
dt = x3 ·

(

−k4 +k3x2x−1
3

)

(26)
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Thus we have four quasi-monomials

x−1
1 x2,x1x−1

2 ,x−1
2 x3,x2x−1

3

This gives rise to the following QP representation matricesand vectors

l =





−k1

−(k2 +k3)
−k4



 , M =





k2 0 0 0
0 k1 k4 0
0 0 0 k3



 , B =









−1 1 0
1 −1 0
0 −1 1
0 1 −1









(27)

Finally, the following LV representation vector and matrixare resulted

λ =









−k1 +(k2 +k3)
k1− (k2+k3)
(k2 +k3)−k4

−(k2 +k3)+k4









, A =









−k2 k1 k4 0
k2 −k1 −k4 0
0 −k1 −k4 k3

0 k1 k4 −k3









(28)

3.3 Reaction kinetic realization of QP systems

The reaction kinetic realization of a QP system can be developed and its existence
checked following the steps that are described in this sub-section.

Transformation into a pre-Feinberg form

dx
dt

= M ϕ(x) (29)

First the reaction monomials can be determined form the multi-set

S ϕ = {x1, ...,xn, x1 ·z1, ...,x1 ·zm, ..., xn ·z1, ...,xn ·zm} (30)

such that the identical elements should only be taken once, and the monomials with
zero coefficients (either inl i or in [M]i j ) should be omitted. ¿From this normalized
set of reaction monomials the Feinberg stoichiometric matrix Y can be easily deter-
mined.

The coefficient matrixM can thereafter be computed by rearranging the original
QP model coefficients in the vectorl and matrixM. If one puts the linear reaction
monomialsxi first in the vectorϕ(x), then there will be ann×n diagonal block in
M :

M = [Diag(l i, i = 1, ...,n) | MM] (31)
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Computing the reaction kinetic realization matrices

The feasibility of the reaction kinetic realization and thecomputation of the miss-
ing Ak coefficient matrix is performed using the dynamic state equation form of the
Feinberg realization in Eq. (9). According to this, the above determined QP coeffi-
cient matrixM and stochimetric matrixY is in the following relationship:

M = Y · Âk (32)

from which the unknown coefficient matrix̂Ak can be determined by using the
pseudo-inverse ofY if the columns ofY are linearly independent:

Âk = Y+ ·M (33)

If the number of complexes are greater than the number of species and therefore
the columns ofY cannot be linearly independent, then (32) becomes an underde-
termined system of linear equations for which such anÂk solution might be sought
that is a column conservation matrix.

Theorem 2. A reaction kinetic realization exists, if the resulting coefficient matrix
Âk is a column conservation matrix, i.e. a matrix with non-positive diagonal and
non-negative off-diagonal elements and with column sum equal to zero.

3.4 Reaction kinetic realization of LV systems

As an LV system is a canonical representation form of a QP one,the question of
the existence of a reaction kinetic realization of a LV system is of great theoretical
importance. In addition, some of the parameter estimation methods for infererring
reation mechanisms from measured data use the possible reaction monomials of all
possible second order reaction steps as basis functions, see [1].

The structure of the pre-Feinberg representation

Assume to have a LV model given in its homogeneous form (24). Then the reaction
monomials, i.e. the entries of the vectorϕ(z) are in the form ofzizj with i, j =
1, ...,m+ 1 and with the(m+ 1)th variable being a constant 1. We can arrange the
reaction monomials in their lexicographical order with identifying the (m+ 1)th
element to the 0th one to create the following ordering

z1,z2, ...,zm, z1z1,z1z2, ...,z1zm, ...

then the stoichiometric matrixY has a following simple structure
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Y =













1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
.. .. .. ... 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 1 ... 1
0 1 0 ... 0
0 0 1 ... 0
.. .. .. ... 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 ... 0
2 1 1 ... 1
0 1 0 ... 0
.. .. .. ... 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

...

...

...

...

...













(34)

The coefficient matrixN has a similar structure but it contains the elements of the
matrixA and the vectorλ

N =













λ1 0 0 ... 0
0 λ2 0 ... 0
0 0 1 ... 0
.. .. .. ... 0
0 0 0 0 λm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 ... a1m

0 a21 0 ... 0
0 0 a31 ... 0
.. .. .. ... 0
0 0 0 0 am1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 ... 0
a22 a23 a24 ... a2m

0 a32 0 ... 0
.. .. .. ... 0
0 0 0 0 am2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

...

...

...

...

...













(35)

where the notation[Ai j ] = ai j is applied.

The existence of reaction kinetic realization of 2nd order LV systems

Let us consider the simplest non-trivial case of LV systems whenn = 2 and the
model is in the following form

ż1 = λ1z1 +a11z
2
1 +a12z1z2

ż2 = λ2z2 +a22z
2
2 +a21z1z2 (36)

Then the pre-Feinberg realization matrices are

Y =

[

1 0 2 1 0
0 1 0 1 2

]

, N =

[

λ1 0 a11 a12 0
0 λ2 0 a21 a22

]

(37)

Instead of solving Eq. (33) that has multiple solutions in this case, let us use the
physical picture behind the terms in the reaction equationsto find possible com-
plexes and reaction steps compatible with the terms in Eq. (36).

Admissible complexesIf we denote byA andB the components the concentration
of which is denoted byz1 andz2, respectively, then the following complexes can
appear in the reaction system corresponding to Eq. (36):

A, B, 2A, A+B, 2B (38)

Incompatible reaction typesNext we observe that any reaction in the form of

αiXi → β jX j (i 6= j)

with αi ,β j ∈ {1,2} andXi ,X j ∈ {A,B} gives rise to a term in

dzj

dt
= ...+ki j z

αi
i + ...
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that is not compatible with the right-hand side structure ofEq. (36), where every

term on the right-hand side of
dzj
dt should contain a factorzj . Because of the same

reason, any reaction in the form

αA→ A+B or αB→ A+B

with α ∈ {1,2} cannot appear in any reaction kinetic realization of LV models.
Reaction graph superstructure¿From the remaining reaction types defined over

the set of possible complexes in Eq. (38), the reaction graphsuperstructure seen in
Fig. 2 can be obained. The Kirchhoff matrix of the reaction graph in Fig. 2 (follow-

Fig. 2 Weighted reaction
graph superstructure for the
2nd order LV model

A+B

k1
(2)

k21
(B)

A

2A

k2

2B

B

k2
(2)

k1

k21
(A)

k21
(2B)

k21
(2A)

ing the order of complexes in (38)) is:

Ak =















−k(2)
1 0 k1 k(A)

12 0

0 −k(2)
2 0 k(B)

12 k2

k(2)
1 0 −k1 k(2A)

12 0
0 0 0 −K 0

0 k(2)
2 0 k(2A)

12 −k2















(39)

whereK = k(A)
12 + k(B)

12 + k(2A)
12 + k(2B)

12 . Multiplying the above matrixAk with the
stoichiometric matrixY in Eq. (37), we obtain the following coefficient matrix:

N =

[

k(2)
1 0 −k1 −k(B)

12 +k(2A)
12 −k(2B)

12 0

0 k(2)
2 0 −k(A)

12 −k(2A)
12 +k(2B)

12 −k2

]

(40)

Comparing the matrix elements of the coefficient matrices inEqs. (40) and (37), the
following necessary conditions for the existence of a reaction kinetic realization are
obtained:

λ1 ≥ 0 , λ2 ≥ 0 , a11≤ 0 , a22 ≤ 0 (41)

There are no restrictions for the coefficientsa12 anda21.
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In addition we can see, thatthe reaction kinetic realization is not unique, because

the coefficientsa12 anda21 determine four reaction rate constantsk(A)
12 , k(2A)

12 , k(2B)
12

andk(B)
12 .

Positivity of the equilibrium point of 2nd order LV systems with reaction kinetic
realization

The positivity of any second order LV system that admits a reaction kinetic realiza-
tion is guaranteed by the positivity property of reaction kinetic systems [14]. How-
ever, the uniqueness and the strict positivity of the equilibrium point of the system
is also of interest, that will be investigated here.

Let us denote the determinant of the LV coefficient matrixA by

d = detA = det

[

a11 a12

a21 a22

]

= a11a22−a12a21 (42)

¿From Eq. (36) the following equilibrium point is obtained whend 6= 0

z∗1 =
a12λ2−a22λ1

d
, z∗2 =

a21λ1−a11λ2

d
(43)

It can be seen that anecessary condition for having a positive equilibrium point is
to have eitherλ1 6= 0 or λ2 6= 0 or none of them equal to zero.

If in addition the LV coefficient matrixA is a column conservation matrix, i.e.

a12 ≥ 0 , a21≥ 0 , |a11| ≥ a21 , |a22| ≥ a12

then the equilibrium point(z∗1,z
∗
2) is strictly positive keeping in mind the conditions

of having a reaction kinetic realization given in Eq. (41).

Reaction kinetic realization of general LV systems

Now we are ready to generalize the results presented before to the general,mth order
case.

Admissible complexesIt can be seen from the general LV equation form (23),
that the following complexes can appear in the reaction system:

{Xi , i = 1, ...,m}, {2Xi, i = 1, ...,m}, {Xi + X j , i, j = 1, ...,m, i 6= j} (44)

¿From this we construct the reaction monomial vectorϕ(z) as follows:

ϕ(z) =
[

z1, ...,zm, z2
1, ...,z

2
m, z1z2, ...,zm−1zm

]T
(45)

Incompatible reaction typesBesides of the incompatible reaction types described
before, one also has to consider the reaction type

Xi + Xk → X j + Xℓ
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This reaction gives rise to a term in

dzj

dt
= ...+kik, jℓzizk + ...

that is not compatible with the right-hand side structure ofEq. (23), where every

term on the right-hand side of
dzj
dt should contain a factorzj .

Therefore, only the following reaction types are admissible in the reaction graph
of an LV model:

Xi → 2Xi (46)

2Xi → Xi

Xi + Xk → Xi , Xi + Xk → 2Xi , Xi + Xk → Xk , Xi + Xk → 2Xk

Reaction graph superstructure¿From the above possible reaction types it fol-
lows, that both the verticesXi and 2Xi have out-degree equal to one, while the
verticesXi +Xk have out-degree equals four. This implies that the column-structure
of the Kirchhoff matrix of the reaction graph follows that ofthe 2-dimensional case
(see Eq. (39)), but now we have to fill all elements of a column with zeros except
of two non-zero elements corresponding to the outward directed edges from the
complexesXi and 2Xi or four non-zero elements for the complexesXi + Xk.

As an example, the weighted reaction graph superstructure for the 3rd order LV
model in Fig. 3 shows that the graph is the union of the 2-dimensional superstruc-
tures (seen in Fig. 2).

A+B

k1
(2)

k21
(B)

A2A k2 2BB
k2

(2)

k1

k21
(A) k21

(2B)

k21
(2A)

k3

k3
(2)

C 2C

B+C

k32
(2C)k32

(C)k32
(2B)

k32
(B)

A+C
k31

(A)k31
(2A)

k31
(C)

k31
(2C)

Fig. 3 Weighted reaction graph superstructure for the 3rd order LVmodel

Therefore, similarly to the two-dimensional case, the following necessary condi-
tions can be given for a LV model to have a reaction kinetic realization:

λi ≥ 0, Aii ≤ 0, i = 1, ...,m (47)

There are no restrictions for the coefficientsAi j wheni 6= j.
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In addition we can see, thatthe reaction kinetic realization is not unique, because

the coefficientsAi j andA ji determine four reaction rate constantsk(Xi)
i j , k(2Xi)

i j , k
(2X j )
i j

andk
(X j )
i j .

4 Conclusion

The algebraic and stability properties of the reaction kinetic system class, being
a special sub-class of positive systems have been investigated in this paper. The
original notion based on the kinetical equations obeying mass action law has been
generalized to cover the cases with real exponents in the reaction monomials. It
has been shown that the generalized class still possesses the same stability property
under the usual Lyapunov function.

Thereafter the relationship between the reaction kinetic and the quasi-polynomial
(QP) systems classes is established based on their algebraic characterization, and a
method is proposed to test if a QP system has a generalized reaction kinetic realiza-
tion. Simple algebraic conditions are also given for general Lotka-Volterra systems
that guarantee the existence of theeir reaction kinetic model form.
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