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Abstract— In this paper, the design of a two-level controller
is proposed for active suspension systems. The required control
force is computed by applying a high-level controller, which
is designed using a linear parameter varying (LPV) method.
The suspension structure contains nonlinear components, i.e.
the dynamics of the dampers, the springs and the actuator
dynamics. The actuator generating the necessary control force is
a nonlinear state dependent switching system, for which a low-
level backstepping-based force-tracking controller is designed.
The low-level controller is designed by both the backstepping
and the feedback linearization methods. The operation of the
two-level controller is illustrated through simulation examples.

I. INTRODUCTION

Active suspensions are used to provide good handling

characteristics and to improve ride comfort while harmful

vibrations caused by road irregularities and on-board exci-

tation sources act upon the vehicle. One of the difficulties

in the control design is that the different control goals are

usually in conflict and a trade-off must be achieved between

them. The suspension problem is analyzed in fundamental

papers such as [5], [7].

Several methods have been proposed to design active sus-

pension systems. The vast majority of the papers assume that

the suspension system can be approximated by a linear model

and the control system is designed by linear methods, see e.g.

[11], [17]. Another and smaller part of the papers assume that

nonlinearity in suspension systems is dominant and the lin-

earity assumption is not valid in the entire operation domain.

The dynamic characteristics of suspension components, i.e.

dampers and springs, have nonlinear properties, and they

are not time-invariant, but change during the vehicle life

cycles, see e.g. [1], [9], [12]. Some of the papers assume

that the nonlinearities of suspension systems can be hidden

by scheduling signals, which are assumed to be measured

or achieved, and a Linear Parameter Varying (LPV) model-

based control design is proposed, see [4], [6].

In this paper, the design of a two-level controller is

proposed for active suspension systems. In the design of

a high-level controller passenger comfort, road holding and

tire deflection are taken into consideration as performance

outputs and the control input designed is the control force.
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The designed control force is a required force, which must

be created by the hydraulic actuator. The required force is

tracked by a lower-level controller by setting the valve of the

actuator. The advantage of this method is that the actuator

dynamics and the suspension dynamics are handled in two

independent control design steps. The design of the high-

level controller is based on the parameter-dependent LPV

method. Nonlinear methods are proposed for the design of

the low-level controller, with which the output tracking prob-

lem is solved. The operation of the backstepping controller is

compared with the controller which is based on the feedback-

linearization method.

The structure of the paper is as follows. In Section II

the modeling of the active suspension system for control

design is presented. In Section III the model is augmented

with the performance specifications and the design of the

high-level controller. In Section IV the design of a lower-

level controller, which is based on the backstepping method

and the feedback-linearization method is also presented.

In Section V the operation of the two-level controller is

demonstrated through simulation examples.

II. THE CONTROL-ORIENTED MODELING OF THE

SUSPENSION SYSTEMS

In Figure 1 a two-degree-of-freedom quarter-car model is

shown. The body mass ms represents the sprung mass, which

corresponds to one of the corners of the vehicle, and the

unsprung mass mu represents the wheel at one corner. The

parameters kt, ks, bs are the tyre stiffness, the suspension

stiffness, and the damping rate of the suspension, respec-

tively. The control signal F is generated by the actuator. x1

and x2 denote the vertical displacement of the sprung mass

and the unsprung mass, respectively. The disturbance d is

caused by road irregularities.

ms

mu x2

d

ks bs

kt
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x1

Fig. 1. Quarter-car model

In the modeling phase of the control design several speci-

fications are used. The suspension structure is defined by the
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dynamics of the nonlinear components. The performance de-

mands for ride comfort, road holding, suspension deflection,

and input force are taken into consideration. The trade-off

between performance specifications is defined by a nonlinear

function. The model uncertainty is assumed to be in an output

multiplicative structure.

The force equations of the quarter-car model are:

Fms
= Fks

+ Fbs
− F, (1)

Fmu
= −Fks

− Fbs
− Fkt

+ F, (2)

where the forces from the sprung mass acceleration and the

unsprung mass acceleration, the suspension damping force,

the suspension spring force, the tire force, respectively, are

as follows:

Fms
= msẍ1, (3)

Fmu
= muẍ2, (4)

Fbs
= bl

s(ẋ2 − ẋ1) − bsym
s |ẋ2 − ẋ1|

+ bnl
s

√

|ẋ2 − ẋ1| sgn(ẋ2 − ẋ1), (5)

Fks
= kl

s(x2 − x1) + knl
s (x2 − x1)

3, (6)

Fkt
= kt(x2 − d), (7)

and F is the force of the actuator. Here, parts of the

nonlinear suspension damping bs are bl
s, bnl

s and bsym
s . The

bl
s coefficient affects the damping force linearly while bnl

s

has a nonlinear impact on the damping characteristics. bsym
s

describes the asymmetric behavior of the characteristics.

Parts of the nonlinear suspension stiffness ks are a linear

coefficient kl
s and a nonlinear one, knl

s .

The state vector x is selected as follows:

x =
[

x1 x2 x3 x4

]T
, (8)

in which the components of the state vector x are the

vertical displacement of the sprung mass x1, the vertical

displacement of the unsprung mass x2, their derivatives

x3 = ẋ1, x4 = ẋ2.

In the LPV modeling ρ parameters, which are directly

measured or can be calculated from the measured signals,

must be selected. In the LPV model of the active suspension

system two parameters are selected. The relative velocity

and the relative displacement are selected as scheduling

parameters:

ρb = sgn(x4 − x3), (9)

ρk = (x2 − x1)
2. (10)

Parameter ρb depends on the relative velocity, parameter ρk

is equal to the relative displacement. In practice, the relative

displacement is a measured signal. The relative velocity

is then determined by numerical differentiation from the

measured relative displacement.

The nonlinear spring force in (6) can be reformulated in

the following way:

Fks
(ρk) = kl

s(x2 − x1) + knl
s ρk(x2 − x1). (11)

This force can be expressed by a linear combination of states

allowing the force to have nonlinear ρ dependence. Similarly,

the nonlinear damping force in (5) can be partitioned in the

following way:

Fbs
(ρb) = bl

s(x4 − x3) − bsym
s ρb(x4 − x3)

+ bnl
s ρb

√

ρb(x4 − x3), (12)

where the first and the second terms are the linear parts and

the third term is the nonlinear part of the damping force.

The state space representation of the LPV model is as

follows:

ẋ = A(ρ)x + hd + gu, (13)

where ρ =
[

ρ1 ρ2

]T
with ρ1 = ρk, ρ2 = ρb and u = F .

The actuator which generates the necessary force for

the suspension system is a four-way valve-piston system.

The force balance of the actuator can be modeled by the

equations: F = AP PL, where AP is the area of the piston

and PL is the pressure drop across the piston with respect to

the front and rear suspensions. The derivative of PL is given

by

ṖL = −βPL + αAP (ẋ2 − ẋ1) + γQ, (14)

in which Q is the hydraulic load flow, α, β, γ are constants

and Q = sgn [PS − sgn(xv)PL] xv

√

|PS − sgn(xv)PL|,
with the supply pressure PS and the displacement of the

spool valve xv . The cylinder velocity acts as a coupling from

the position output of the cylinder to the pressure differential

across the piston. The displacement of the spool valve is

controlled by the input to the servo-valve u:

ẋv =
1

τ
(−xv + u) . (15)

where τ is a time constant. It is assumed that during the

operation PS > PL, which leads to the following equation:

Q =

{

xv

√
PS − PL, xv ≥ 0

xv

√
PS + PL, xv < 0

(16)

which defines a state-dependent bimodal switching system

for the actuator dynamics, see e.g. [2].

Let x5 and x6 denote PL and xv, respectively. Then, the

actuator model can be written separately as

ẋ5 = −βx5 + αAP (x4 − x3) + γQ, (17)

ẋ6 = −1

τ
x6 +

1

τ
ua. (18)

It is clear that x3 and x4 appear as external disturbances in

the above equations.

III. THE DESIGN OF A HIGH-LEVEL CONTROLLER BASED

ON AN LPV METHOD

The performance signals in the control design problem

are the passenger comfort (heave acceleration) (za = ẍ1),

the suspension deflection (zs = xs − xu), the wheel relative

displacement (zt = xu) and the control force (F ). Weighting

functions Wp,az , Wp,sd, Wp,td and Wp,F are applied in order

to keep the heave acceleration, suspension deflection, wheel

travel, and control input, respectively, small over the desired

operation range. These weighting functions chosen for per-

formance outputs can be considered as penalty functions,
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i.e. weights should be large in a frequency range where

small signals are desired and small where larger performance

outputs can be tolerated. Thus, Wp,az and Wp,sd are selected

as

Wp,az(ρk) = φaz(ρk) · 0.5
s

350 + 1
s
10 + 1

, (19)

Wp,sd(ρk) = φsd(ρk) ·
s

350 + 1
s
10 + 1

. (20)

Here, it is assumed that in the low frequency domain

disturbances at the heave accelerations of the body should

be rejected by a factor of φa and at the suspension deflection

by a factor of φd. The other weighting functions are selected

as Wp,td = 1 and Wp,F = 1 · 10−3.

The trade-off between passengers comfort and suspension

deflection is due to the fact that is not possible to keep

them together simultaneously. A large gain φaz and a small

gain φsd correspond to a design that emphasizes passenger

comfort. On the other hand, choosing φaz small and φsd

large corresponds to a design that focuses on suspension

deflection. In the LPV controller ρk is the relative displace-

ment between the sprung and the unsprung masses: ρk =
x1−x2. ρk is used to focus on minimizing either the vertical

acceleration or the suspension deflection response, depending

on the magnitude of the vertical suspension deflection.
The parameter dependence of the gains is characterized

by the constants ρ1 and ρ2 in the following way:

φaz(ρk) =







1 if |ρk| < ρ1

1

ρ1−ρ2
(|ρk| − ρ2) if ρ1 ≤ |ρk| ≤ ρ2

0 otherwise

, (21)

φsd(ρk) =







0 if |ρk| < ρ1

1

ρ2−ρ1
(|ρk| − ρ1) if ρ1 ≤ |ρk| ≤ ρ2

1 otherwise

. (22)

The purpose of the control design is to minimize the the

induced L2 norm of the weighted LPV system GFP , with

zero initial conditions, is defined as

‖GFP‖∞ = sup
ρ∈FP

sup
‖w‖

2
6=0,w∈L2

‖z‖2

‖w‖2

. (23)

The solution of an LPV problem is based on the set of infinite

dimensional LMIs being satisfied for all ρ ∈ FP , thus it is a

convex problem, [3], [10], [16]. In practice, this problem is

set up by gridding the parameter space and solving the set

of LMIs that hold on the subset of FP . The number of grid

points depends on the nonlinearity and the operation range of

the system. For the interconnection structure, H∞ controllers

are synthesized for 5 values of ρ1 in a range [−2, 2] and 5
values of ρ2 in a range [0, 1].

IV. THE DESIGN OF A LOW-LEVEL CONTROLLER BASED

ON NONLINEAR METHODS

We assume that the reference for F (which is a linear

function of x5) is given by the linear controller. The goal

is to asymptotically track this reference with the actuator

dynamics. Two solutions are proposed to solve this problem.

Since the actuator subsystem and the suspension subsystem

form a cascade of a nonlinear and a linear system, the

backstepping methodology is an appropriate choice for our

control goal. Backstepping is a control Lyapunov function-

based nonlinear controller design method [14]. We will

use the notations of [15] where backstepping is presented

from the viewpoint of the theory of interconnected passive

systems. As a second alternative, the reference tracking will

be solved by the exact linearization of the actuator dynamics.

For this part, the notations of [8] will be used.

A. Backstepping design for the actuator subsystem

The model of the whole suspension and actuator system

with zero disturbance is written in the following form

ż = Az + Bξ1, (24)

ξ̇1 = a1(z, ξ1) + b1(ξ1)ξ2, (25)

ξ̇2 = a2(ξ2) + b2ua, (26)

where z = [x1 x2 x3 x4]
T , ξ1 = x5, ξ2 = x6, and

a1(z, ξ1) = −βx5 + αAP (x4 − x3), (27)

b1(ξ1) =

{

γ
√

PS − x5, ξ2 = x6 ≥ 0
γ
√

PS + x5, ξ2 = x6 < 0
, (28)

a2(ξ2) = −1

τ
x6, b2 =

1

τ
. (29)

Let us assume that there exists a smooth feedback function

K(z) (possibly in LPV form) such that the closed loop

system

ż = Az + BK(z) (30)

is asymptotically stable with control Lyapunov function

V (z).
The backstepping design for the actuator subsystem can be

performed in two steps. In the first step, let us consider ξ2 as

a virtual input and y1 = ξ1−K(z) as a virtual output. Since

ξ1 is not a manipulable input, we would like to construct a

feedback that guarantees the tracking of K(z) with ξ1. It is

reasonable therefore to define the tracking error to be linear

and stable, i.e., ẏ1 = −k1y1, k1 > 0. From this (using eqs.

(24)–(25)), the desired time-function for ξ2 can be computed

as a nonlinear feedback of the form

ξ2,des = α1(z, ξ1) =
1

b1(ξ1)
[−a1(z, ξ1)

+
∂K

∂z
· (Az + Bξ1) − k1(ξ1 − K(z))]. (31)

In the second step, the following virtual output is defined:

y2 = ξ2 − α1(z, ξ1). For the tracking error, a stable linear

dynamics is also prescribed in this case: ẏ2 = −k2y2, k2 >
0. Using eqs. (24)–(26), we can now express the physically

manipulable actuator input ua as a function of z and ξ in

the following form

ua = α2(z, ξ1, ξ2) =
1

b2
· [−a2(ξ2) +

∂α1

∂z
· (Az + Bξ1)+

∂α1

∂ξ1
(a1(z, ξ1) + b1(ξ1)ξ2) − k2(ξ2 − α1(z, ξ1))]. (32)
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By applying the above design, the closed loop system will be

asymptotically stable with control Lyapunov function S(z) =
V (z)+ 1

2y2
1 + 1

2y2
2 (see [14]). It is important to note that the

obtained feedback law (32) is a state-dependent switching

function because of the switching term b1(ξ1) (see (28)).

Since the actual feedback law generated by the LPV con-

troller is a rather complicated function of the state variables,

and we do not know the road excitation disturbances in

advance, the above controller design procedure cannot be

implemented in its original theoretical form. Therefore in the

next section we will consider the more realistic assumption,

when the reference for x5 is computed by the high level LPV

controller, and for the trajectory tracking, the time derivatives

of the reference signals are computed numerically.

The reference for x5 computed by the LPV controller is

denoted by x5,ref . To simplify the forthcoming calculations,

let us use the following notations

ga1(x) = −βx5 + αAp(x4 − x3), (33)

fa1(x5) =
√

PS − x5, (34)

fa2(x5) =
√

PS + x5. (35)

This way, (17) can be written as

ẋ5 = ga1(x) + γQ. (36)

The required tracking error dynamics is defined as

ẋ5 − ẋ5,ref = −k1(x5 − x5,ref ) with k1 > 0. (37)

From (37) yield the following form:

γx6fa1,2(x5) = −ga1(x) + ẋ5,ref − k1(x5 − x5,ref ). (38)

The reference for x6 is given by

x6,ref =

{

−ga1(x)+ẋ5,ref−k1(x5−x5,ref )
γfa1(x5)

if x6 ≥ 0
−ga1(x)+ẋ5,ref−k1(x5−x5,ref )

γfa2(x5)
if x6 < 0

.

(39)

The tracking error dynamics for x6,ref is written as

ẋ6 − ẋ6,ref = −k2(x6 − x6,ref ) if k2 > 0. (40)

This gives

−1

τ
x6 +

1

τ
ua − ẋv,ref = −k2(x6 − x6,ref ), (41)

from which the following expression for the physical input

ua is deduced:

ua =
1
τ
x6 + ẋv,ref − k2(x6 − x6,ref )

1/τ
. (42)

In order to practically implement the control law, we need

to compute the time derivatives of x5,ref and x6,ref , which

can be done in a number of ways depending on the mea-

surement noise conditions and the required precision. In this

method the controller parameters k1 and k2 determine the

convergence speed of the virtual outputs.

B. Feedback linearization method

The purpose of feedback linearization is to transform a

nonlinear input-affine system through a nonlinear coordinates

transformation and a nonlinear state feedback to a linear and

controllable system (see [8]). It is easy to see from eqs (17)-

(18) that the relative degree of the actuator subsystem with

input ua and output x5 is 2 around any point in the state

space, since ua appears explicitely only in the second deriva-

tive of x5. Therefore, the system can be exactly linearized

by applying an appropriate nonlinear state feedback.

Let f5(x) denote the right-hand side of (17) (i.e. ẋ5 =
f5(x)). Furthermore, let us use the following notations

ξ1 = x5, ξ2 = ξ̇1 = ẋ5

Then the time derivative of ξ2 can be written as

ξ̇2 = −βẋ5 + αA(ẋ4 − ẋ3) + γQ̇

= −βf5(x) + αA(ẋ4 − ẋ3) + γQ̇. (43)

Note that f5 is a switching function, since it contains the

hybrid dynamics of the actuator.

In case x6 ≥ 0 the time-derivative of Q with f5(x) is

calculated as

Q̇ = −x6(−βx5 + αA(x4 − x3) + γx6

√
PS − x5)

2
√

PS − x5

− x6

√
PS − x5

τ
+

√
PS − x5

τ
ua (44)

Using (44) the time derivative of ξ2 can be computed as

ξ̇2 = −β(−βx5 + αA(x4 − x3) + γx6

√
PS − x5)

+ αA(ẋ4 − ẋ3)

+ γ

(

−x6(−βx5 + αA(x4 − x3) + γx6

√
PS − x5)

2
√

PS − x5

−x6

√
PS − x5

τ
+

√
PS − x5

τ
ua

)

. (45)

The linearizing feedback can be calculated from (45) as

ua =
(

−2β2
√

PS − x5τx5 + 2β
√

PS − x5ταAx4 (46)

−2β
√

PS − x5ταAx3 + 2βτγx6PS − 3γx6τβx5

− 2αA
√

PS − x5τ ẋ4 + 2αA
√

PS − x5τ ẋ3

+ γx6ταAx4 − γx6ταAx3 + x2

6τγ2
√

PS − x5

+2γx6PS − 2γx6x5 + +2τ
√

PS − x5v
)

/(2γ(PS − x5)).

Similarly, the linearizing feedback can be calculated in case
x6 < 0 case as the following form:

ua =
(

−2β2
√

PS + x5τx5 + 2β
√

PS + x5ταAx4 (47)

−2β
√

PS + x5ταAx3 + 2βτγx6PS + 3γx6τβx5

− 2αA
√

PS + x5τ ẋ4 + 2αA
√

PS + x5τ ẋ3

− γx6ταAx4 + γx6ταAx3 − x2

6τγ2
√

PS + x5

+2γx6PS + 2γx6x5 + 2τ
√

PS + x5v
)

/(2γ(PS + x5)).

Assuming that we exactly know the disturbance variables

x3, x4 and their derivatives, the linearized actuator dynamics

reads ξ̇1 = ξ2 and ξ̇2 = v, where ξ1 is the controlled output
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x5 in the subsystem. With the linearizing feedback, the

dynamics of the whole system is linear, where the actuator

dynamics is a simple double integrator. It can be seen from

(46)-(47) that the derivative of x3 and x4 is needed for the

computation of the linearizing feedback.

Let us again denote the reference for x5 by x5,ref . Then

the output tracking can be solved by the following linear

feedback

v = ẍ5,ref − kf1(ξ2 − ẋ5,ref ) − kf2(ξ1 − x5,ref ), (48)

where the controller parameters are kf1, kf2 > 0.

C. Controller implementation and tuning

As it has been mentioned before, the derivatives of refer-

ence signals and state variables have to be computed for the

implementation of the controllers described above. Know-

ing the open-loop and the desired closed-loop frequency

response of the suspension system, it is a straightforward

choice to use proper transfer functions of the form

Hd(s) =
s

kds + 1
(49)

where kd is a sufficiently small positive number. The effect of

the approximation of derivatives and the choice of kd in (49)

for the reference tracking performance is not straightforward

to quantify. The asymptotic stability of the closed loop

system in the original theoretical case follows from the

structure of the controller and the control Lyapunov function

can be easily determined [15].

The first solution is to write an LPV state-space realization

of the whole closed loop system and find a parameter-

dependent or a parameter-independent Lyapunov function by

trying to solve the corresponding set of LMIs (see, e.g. [13]).

The second (more conservative) method uses the fact that the

closed loop system is a standard feedback interconnection of

two systems: the mechanical suspension subsystem together

with the LPV controller and the linearized actuator subsys-

tem together with the reference tracking controller. In this

case, we can apply the well-known small-gain theorem (see,

e.g. [15]) to prove the overall stability of the closed loop

system.

The computation of the L2-gain of the controlled actua-

tor subsystem is straightforward. Because of the reference

tracking configuration, this L2-gain is expected to be around

1. The controller parameters in the feedback linearization

method were kd = 10−3, kf1 = 80 and kf2 = 1600. In the

backstepping method the controller parameters were set to

k1 = k2 = 20.

V. SIMULATION EXAMPLES

In this section the operation of the two-level controller is

presented. The controlled systems are tested on a bad-quality

road, on which four bumps disturb the vehicle motion: the

bumps are 8 cm, 6 cm, 2 cm and 4 cm. The time responses

of the wheel travel with the control force are illustrated in

Figure 2. The solid line corresponds to the force required by

the LPV controller in which the performance specifications

are taken into consideration. The dashed lines illustrate the

result of the controllers designed by feedback linearization

and backstepping methods. The relative error of the tracking

is below 5 % in these methods as it is shown in Figure 2.
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Fig. 2. Time responses of the required force

The realization of the control force by using feedback

linearization method is illustrated in Figure 3. The figure

shows the pressure drop across the piston, the displacement

of the spool valve and the control signal, see equation (15).

The realization of the control force by using backsteping

method is illustrated in Figure 4.
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Fig. 3. Time responses of the actuator based on feedback linearization
method

In the second example the tracking properties are tested

in an uncertain case, i.e., when the parameters bl
s, kl

s and

kt are assumed to be uncertain and the percentage of the

variation around their nominal value is 10 %. The solid

line corresponds to the force required by the LPV controller

in Figure 5. The dashed line illustrates the force of the

controller designed by the backstepping method, while the

dashed-dotted line illustrates the force of the controller

designed by the feedback linearization method. As a result of

the uncertainty the controller designed by the feedback lin-

earization method generates an error relative to the required

force. Although theoretically the linearization-based actuator
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Fig. 4. Time responses of the actuator based on backstepping method

is able to handle the approximate derivatives of signals, it

is sensitive in model uncertainties. The controller designed

by the backstepping method is able to generate the required

force even in uncertain cases, i.e., it is also able to handle

the parametric uncertainties. As the handling of uncertainty is

an important consideration we recommend the backstepping

control method for carrying out the low-level task.

0 1 2 3 4
−1000

−500

0

500

1000

fr
o

n
t 

fo
rc

e
 (

N
)

Time (sec)

Fig. 5. Time responses of the controlled system with parametric uncer-
tainties

VI. CONCLUSIONS

In this paper a two-level controller is proposed for the

design of active suspension systems, one for the suspension

and the other for the actuator. It is advantageous for several

reasons. First, the the fast dynamics of the actuator and the

relatively slow dynamics of the suspension can be handled

independently. The performance requirements guaranteed by

the controller in the upper level can be achieved by solving

tracking task with the low level controller. Second, the com-

plexity of the model does not increase significantly. Only the

complexity of the upper level controller increases if the full-

car model is applied and all of the performance specifications

are taken into consideration such as minimization of the

rolling during cornering, or minimization of the pitching

during braking. At the same time the complexity of the low-

level controllers is the same since they are designed by using

the quarter-car model. The main advantage of the proposed

solution is its ability to meet complex control performance

criteria together with the handling of switching nonlinear

actuator dynamics.
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