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Abstract In this paper we show that the model form of a wide class of kinetic
systems with rational terms in the reaction rates is invariant under a positive linear
diagonal transformation. Thus, the concept of linear conjugacy defined originally
for mass action systems is extended to rational biochemical models. The general-
ized Kirchhoff matrix and the kinetic weighting matrix of the linearly conjugate
models are given as functions of the computed transformation parameters. It is
shown through the illustrative examples that the dense realization of a linearly
conjugate rational model may contain more reactions than that of a dynamically
equivalent one due to the additional degrees of freedom introduced by the linear
transformation. The proposed matrix-based representation is suitable for the com-
putational search of preferred graph structures corresponding to linearly conjugate
realizations of rational kinetic models.
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Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083
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1 Introduction

Kinetic systems obeying the mass action law are nonlinear polynomial models
with a relatively simple algebraic structure but possessing advantageous dynam-
ical descriptive properties [11]. Therefore, they are used not only to describe
(bio)chemical processes but also non-negative systems from other application fields
such as disease or population dynamics, and even transportation systems [5]. More-
over, it is possible to transform or embed originally non-kinetic systems into kinetic
form [29,17]. Since the 1970’s, the development of graph based analysis of dynami-
cal systems [34], and of reaction network has been continuous, where an important
aim is to characterize the qualitative dynamical behaviour of the network, prefer-
ably without precisely knowing its rate coefficients [18]. A few of the numerous
important achievements in this area are the definition of deficiency and the corre-
sponding Deficiency Zero and Deficiency One Theorems [13,14], a graph-theoretic
approach for the analysis of stability and oscillations [25,26], the consequences
of injectivity properties [8], the notion and conditions of absolute concentration
robustness [30], and recently, as a major breakthrough, the proof of the Global
Attractor Conjecture for the one linkage class and possibly for the general case,
respectively [2,6].

One of the first mentioning of the possible non-uniqueness of the reaction
graphs corresponding to a given kinetic dynamics is by Horn and Jackson [18].
This phenomenon is often called macro-equivalence, dynamical equivalence or con-
foundability [7]. The notion of dynamical equivalence was extended by introducing
linear conjugacy by Johnston and Siegel allowing a linear diagonal state transfor-
mation between linearly conjugate networks [20]. It was shown that the compu-
tation of dynamically equivalent and linearly conjugate reaction graph structures
having preferred properties such as (weak) reversibility, complex or detailed bal-
ance, minimal or zero deficiency corresponding to a set of kinetic ordinary differen-
tial equations can be solved efficiently in an appropriate optimization framework
[32,19,22,23].

The research field on the relation between the qualitative dynamics and the
reaction graph structure of kinetic systems with non-mass-action kinetics has also
showed considerable development recently. The increasing interest in this area is
largely motivated by possible biological applications. Conditions for the persitence
of chemical reaction networks with reaction rates satisfying monotonicity proper-
ties were given in [3] using the theory of Petri nets. The stability of a wide class of
systems having general kinetics and strongly connected directed species-reaction
(DSR) graphs was analyzed in [10]. New results on the injectivity and multista-
tionarity of chemical reaction networks with general kinetics were given in [4]. The
notion of generalized mass action (GMAK) systems was introduced in [27]. It was
shown that deficiency zero weakly reversible GMAK systems with additional sign
conditions have a unique positive steady state for arbitrary choice of rate constants
and initial conditions. In [33] a realization procedure generalizing the result of [16]
was given for kinetic models containing arbitrary reaction rates for constructing
the so-called canonical reaction graph. In [15] the notion of dynamical equivalence
was shown for systems with rational reaction rates using a representation based on
the generalization of the Kirchhoff-matrix encoding the reaction graph structure.
In the same paper, the computation of dense and sparse structures, i.e. network
realizations containing the maximum and minimum possible number of reactions,
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respectively, was also described. These results clearly motivate the research of dy-
namical equivalence and the extension of previous graph structure computation
methods for reaction network models with more general kinetics.

Based on the above results and motivating facts, the goal of this paper is
to introduce linear conjugacy for rational kinetic systems and to show that the
computation of linearly conjugate reaction graph structures can be handled in a
computation framework that is similar to the one that was previously developed
for mass action models [19].

2 Background

In this section, we briefly summarize the description of the studied class of reaction
networks based on [15], where more details can be found.

We will denote the positive and non-negative orthant of the n-dimensional
coordinates system with Rn+ and R̄n+, respectively. For any c ∈ Rn, diag(c) denotes
an n×n diagonal matrix, where the i-th diagonal entry is ci. Moreover, the set of
non-negative integers is denoted by N0.

2.1 Basic components of reaction networks

We consider closed thermodynamic systems under ideal conditions (isobar and
isotherm), where chemical species X1, X2, . . . Xn take part in chemical reactions
of the form

n∑
k=1

νkiXk
rijl−−−−→

n∑
k=1

νkjXk, (1)

The notations used in Eq. (1) are the following. The indices of the source and
product complexes are denoted by i and j, respectively. The stoichiometric coef-
ficients of the reactants are denoted by ν1i, . . . , νni and that of the products by
ν1j , . . . , νnj . The concentrations of the species Xi are denoted by xi for i = 1, . . . n,
and these are the coordinates of the non-negative state vector x. The non-negative
integer linear combinations of the species Ci =

∑n
k=1 νkiXk and Cj =

∑n
k=1 νkjXk

in (1) are called the complexes and are denoted by C1, . . . Cm. The coefficients of
the complexes are stored in the complex composition matrix Y ∈ Rn×m such that
[Y ]ij = νij , i.e. the i-th column of the matrix stores the stoichiometric coefficients
in the complex Ci.

The reaction rate function rijk : R̄n+ 7→ R̄+ describes how much product is
generated in a unit time and it is often a non-linear function of the concentration
vector. The indices i, j, and k correspond to the source complex, product complex,
and kinetics, respectively. In general, it is possible that the species in a complex
give rise to multiple reaction paths, thus multiple different reaction rate functions
can be assigned to each complex. These reaction rates are categorized based on
their mathematical formulations. Using the notations of complexes and kinetics,

Eq. (1) can be equivalently written as Ci
kijl,gil−−−−→ Cj , where the reaction rate rijl

of the reaction is decomposed as

rijl(x) = kijl · gil(x), (2)
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where kijl ∈ R+ is a constant, non-negative principal reaction rate coefficient and
gil is a function of the species concentrations. Assuming the law of mass action the
form of the kinetics is gil(x) =

∏n
k=1 x

νki . However, in biological applications the
reaction rates are often not limited to mass action kinetics (MAK), but we assume
that they can be sorted to a finite set of biochemical kinetics Gi = {G1, G2, . . . Gdi}
in the case of each complex Ci. Here di is the cardinality of Gi, for i = 1 . . .m. Each
of these kinetics defines a relationship among the species of the complex, for exam-
ple G1 = ‘Mass action kinetics’, G2 = ‘Michelis Menten kinetics’, G3 =
‘Hill kinetics’ etc. With this notation gil(x) is associated with the kinetics Gl
of the complex Ci.

In most kinetic biochemical ODE models the reaction rate functions have poly-
nomial or rational function form. Thus, from now on we assume that the reaction
rate can be written as a ratio of two terms as

gil(x) =
Ψi(x)

Dil(x)
, (3)

where Ψi(x) is a monomial function (Ψi(x) =
∏
k x

νki

k ) and Dil(x) is a positive
polynomial function of the concentration vector, i.e. it has non-negative coeffi-
cients and a positive zero-order term. To make the decomposition (2) unique,
gil(x) must not contain any linear scaling constant and thus we fix the zero-
order term in the denominator polynomial to 1, i.e. Dil(x) is written as Dil(x) =
1 +

∑
αm1,m2,...mnx

m1
1 xm2

2 . . . xmn
n where α ∈ R0,+ and m1, m2, . . . ,mn are non-

negative integers.
Since many of the kinetic biochemical ODE models can be represented in this

form, we call these models biochemical reaction networks, or shortly, bio-CRNs
[15]. Then we can characterize the bio-CRNs with the following four sets:
1. S = {X1, . . .Xn} is the set of species or chemical substances.
2. C = {C1 . . . Cm} is the set of complexes.
3. G = ∪mi=1Gi the set of reaction rates (kinetics).
4. The set of biochemical reactions is

R = {(Ci, Cj , Gl) | Ci, Cj ∈ C, Gl ∈ Gi and Ci is transformed to

Cj with the kinetics Gl}.

The set of species, complexes and reactions with the kinetics uniquely determines
the biochemical reaction network which is denoted by Σ = (S, C, G, R).

2.2 Reaction graph

The set of complexes together with the set of reactions give rise to the following
directed, weighted graph representation of the bio-CRNs. The reaction graph D =
(Vd;Ed) consists of a finite non-empty set Vd of vertices (nodes), which represent
the complexes Vd = {C1, . . . Cm}, and a finite set of directed edges Ed, which
represent the reactions. The edges are defined by triplets of the form e(i,j,l) =
(Ci, Cj , Gl) for i, j = 1, . . . ,m, i 6= j, l = 1, . . . , di, where i, j and l are the
indices of the source complex, product complex and the kinetics of the reaction,
respectively. Furthermore, the principal reaction rate coefficients and the reaction
kinetics are also used as weights on the edges.
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Note that the introduced description allows multiple directed edges with differ-
ent kinetics converting Ci to Cj for any i, j = 1, . . . ,m, i 6= j, which is a significant
difference from the reaction graph of mass action systems, where multi-edges are
naturally not allowed. However, similarly to mass action CRNs, bio-CRNs also
cannot contain loop-edges.

2.3 Dynamical equations of bio-CRNs

In bio-CRNs the reactions are consuming species of the source complexes while
producing species in the product complexes. The corresponding equations give
rise to a dynamic ODE model which describes the concentration trajectories of
the species. These models have a special structure, which allows us to read out
the structure of the reaction graph from the equations. Motivated by the ODE
structure of CRNs with MAKs [13], the dynamics of the bio-CRN is written in the
following form

ẋ = Y ·Ak · P (x) · Ψ(x), (4)

where x ∈ R̄n+ is the concentration vector of the species, Y ∈ Nn×m0 is the complex
composition matrix and Ψ : R̄n+ → R̄m+ is a vector function such that each element
is a monomial

Ψi(x) =
n∏
j=1

x
Yji

j , i = 1, . . . ,m (5)

The generalized Kirchhoff matrix Ak ∈ Rm×κ stores the principal reaction rate
coefficients and it is a matrix with zero column sums. When only one kinetics is
associated to each complex, for example in mass action networks, Ak is a square
matrix, such that [Ak]ij = kji (i 6= j) is the reaction rate coefficient of the reaction
from complex Cj to complex Ci, and each diagonal element is the negative column-
sum of corresponding off-diagonal elements, i.e. [Ak]ii = −

∑m
j=1,j 6=i [Ak]ji.

In the general bio-CRN case, maybe more than one kinetics is associated to
each complex. In this case let us denote the number of kinetics corresponding to
complex Ci by di. Then Ak ∈ Rm×κ (where the total number of kinetics is denoted
by κ =

∑m
i=1 di) can be written as a block matrix composed of m blocks of size

m× di as

Ak =
[
A

(1)
k . . . A

(i)
k . . . A

(m)
k

]
. (6)

The j-th row of the block A
(i)
k (i 6= j) contains the di principal reaction rate

coefficients of the reactions from the complex Ci to complex Cj with kinetics

index l ∈ {1, . . . , di} i.e., [A
(i)
k ]jl = kijl. Furthermore, the elements of the i-th

row contain the negative sum of the other column elements of the same column as

follows: [A
(i)
k ]il = −

∑m
j=1,j 6=i[A

(i)
k ]jl. Thus, Ak is a column conservation matrix

(the sum of each column is 0). Naturally, [A
(i)
k ]jl = 0 means that there is no

reaction in the network from complex Ci to Cj with kinetics index l. Due to this
construction, the generalized Kirchhoff matrix has a close relationship with the
graph of the reaction network: the non-zero elements correspond to the edges of
the reaction graph and the location of the non-zero elements together with the
numerical values defines the weights of the edges of the graph. The locations of
the non-zero elements will be referred to as the structure of the matrix Ak.
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The kinetic weighting mapping P : Rn → Rκ×m arranges the denominator
terms of the reaction rate functions (c.f. (2)) into a matrix form as follows

P (x) =


P (1)(x) 0 . . . 0

0 P (2)(x) . . . 0
...

0 0 . . . P (m)(x)

 . (7)

Here each block P (i) (for i = 1 . . .m) is of size di×1 and contains the denominators

of the kinetics gi1, gi2, . . . gidi , for example
[
P (i)

]
l

= 1
Dil(x)

. The value of P at any

x will be called a kinetic weighting matrix. Note that for MAL-CRNs the matrix
P (x) is the m-dimensional identity matrix.

From the above, it is clear that the bio-CRN Σ can be equivalently character-
ized either by Σ = (S, C, G, R) or by the set Σ = (Y,Ak, P ). While the former
can primarily be used for the analysis of the network, the latter is more suitable
for computational purposes.

2.4 Network realization and dynamical equivalence

Given a set of ordinary differential equations, the realization problem is to find a
possible bio-CRN with dynamics that is identical to the given equations. When
the ODEs are given in the form

ẋ = Mg(x), (8)

where M ∈ Rn×κ is a coefficient matrix and g : Rn → Rκ is a kinetic vector
function with each of its elements being in the rational form (3). Gábor et al in
[15] provided necessary and sufficient conditions for the existence of such a network
Σ = (Y,Ak, P ). If these conditions are fulfilled, we can write the right hand side
of (8) as

Mg(x) = Y AkP (x)Ψ(x) for all x ∈ Rn+ , (9)

where M = Y · Ak and g(x) = P (x)Ψ(x). Moreover, Y , Ak, P , and Ψ have the
properties described in subsection 2.3. If (9) holds, then Σ = (Y,Ak, P ) is called
a dynamically equivalent realization of the kinetic system (8).

Similarly to the mass action case, it is easy to show that the realization problem
does not have a unique solution in general, but one can find many possible different
structures (simple examples can be found in [15]). Therefore, we say that the bio-
CRNs Σ′ = (Y ′, A′k, P

′) and Σ′′ = (Y ′′, A′′k , P
′′) are dynamically equivalent, if

they give rise to the same dynamic equations of the form (8), i.e.

Mg(x) = Y ′A′kP
′(x)Ψ ′(x) = Y ′′A′′kP

′′(x)Ψ ′′(x) for ∀x ∈ Rn+ , (10)

where Y ′, Y ′′ are non-negative integer type matrices, A′k, A
′′
k are generalized Kirch-

hoff matrices, P ′, P ′′ are rate weighting functions and Ψ ′, Ψ ′′ are computed from
Y ′ and Y ′′, respectively, according to (5).

Many structural (graph) properties of the network are realization dependent,
thus it is of significant interest to find dynamically equivalent realizations with
given properties (for example reversible, complex balanced or weakly reversible
realization) as formulated in [15].
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3 Linearly conjugate biochemical reaction networks

Johnston and Siegel [20] introduced the notion of linearly conjugate networks for
mass action systems. Two networks are said to be linearly conjugate if the solutions
of their dynamic equations can be transformed into each other by a positive linear
transformation. In general, the kinetic property of polynomial models (forming a
subset of bioCRNs studied in this paper) is preserved at most under the positive
scaling and/or re-ordering of the state variables [12,20]. It is easy to see that the
original and linearly transformed networks share qualitative dynamical proper-
ties. Thus, if there is a network with known properties, for example the known
number of equilibrium points and the stability properties of these equilibria, these
properties are naturally transferred to all of its linearly conjugate networks.

The structure of biochemical reaction networks summarized in the previous
section let us extend the linear conjugacy concept to bio-CRNs, i.e. to a wide class
of non-mass-action kinetic systems.

We need the following three short lemmas to proceed to the linear conjugate
biochemical reaction networks. The first lemma considers the positive linear scaling
of a generalized Kirchhoff matrix. The second and third lemmas show results about
the behaviour of the kinetic weighting matrix under the considered linear diagonal
transformation, and in the case of a multiplication by a diagonal matrix from the
right, respectively.

Lemma 1 Let Ak ∈ Rm×κ be a generalized Kirchhoff matrix corresponding to a
network of m complexes and d1, d2 . . . dm kinetics (κ =

∑m
i=1 di) which belong to

the complexes. Further on, let H be a positive diagonal matrix H = diag(c), where
c ∈ Rκ+. Then, A′k = Ak ·H is also a generalized Kirchhoff matrix with the same
structure (same locations of the non-zero elements) as Ak.

Proof The i-th column of Ak is multiplied by ci, which do not alter the location
of the zero and non-zero elements of the column and the column-sum remains
zero. ut

Since the generalized Kirchhoff matrix has a strong relationship to the reaction
graph, this means that, a linear scaling can change the weights of the directed
edges, but not the structure of the reaction graph. The following lemma considers
the linear transformation of the variables in the kinetic weighting function P as
defined in (7).

Lemma 2 Let P : Rn → Rκ×m be a kinetic weighting mapping corresponding to
a network of m complexes and d1, d2 . . . dm kinetics (κ =

∑m
i=1 di) corresponding

to the complexes. Furthermore, let T be a positive diagonal matrix T = diag(c),
where c ∈ Rn+. Then P̂ (x) = P (Tx) is also a kinetic weighting mapping with the
same structure as P .

Proof The invariance of the structure (the position of the non-zero entries) under
a linear scaling is straightforward from the construction of P , see (7). However,
the coefficients of the polynomials in the denominators will change. Recall that,

the l-th element of the i-th block in (7) is
[
P (i)

]
l
(x) = 1

Dil(x)
, where Dil(x) is a

polynomial with positive coefficients (αm1,m2,...mn > 0) and constant term equal
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to 1, i.e. Dil(x) = 1+
∑
αm1,m2,...mnx

m1
1 xm2

2 . . . xmn
n . The linear scaling alters the

elements as

Dil(Tx) = 1 +
∑

αm1,m2,...mnc
m1
1 xm1

1 cm2
2 xm2

2 . . . cmn
n xmn

n

= 1 +
∑

α̃m1,m2,...mnx
m1
1 xm2

2 . . . xmn
n

= D̃il(x),

where the new coefficients are α̃m1,m2,...mn = αm1,m2,...mnc
m1
1 cm2

2 . . . cmn
n . Since

D̃il(x) is also a positive polynomial with constant term 1,
[
P̃ (i)

]
l
(x) = 1

D̃il(x)

fulfills the requirements to be a proper weighting matrix element. ut

Therefore, the linear transformation of the variable of the kinetic weighting func-
tion influences the kinetic constant parameters of the biochemical reaction rates
except for the mass action case, where the denominator terms are constant ones.
The transformation, however, does not change the number of kinetics of the com-
plexes.

Lemma 3 Let P : Rn → Rκ×m be a kinetic weighting function corresponding to
a network of m complexes and d1, d2 . . . dm kinetics (κ =

∑m
i=1 di) belonging to

the complexes. Let S be a positive diagonal matrix S = diag(s), where s ∈ Rm+ and
let the block-diagonal matrix H constructed as

H =



[
diag( 1

s1
)
]
d1

0d1×d2 . . .

0d2×d1

[
diag( 1

s2
)
]
d2

. . .

...
. . . . . .

0dm×d1 . . .
[
diag( 1

sm
)
]
dm


, (11)

where
[
diag( 1

si
)
]
di

denotes a diagonal block of size di × di, which contains the

constant 1
si

in its diagonal and 0di×dj denotes a block of zeros of size di × dj. As
above, di is the number of kinetics corresponding to complex Ci. Then

P (x)S = H−1P (x), i.e. P (x) = HP (x)S for all x ∈ Rn+. (12)

Proof

P (x)S =


s1P

(1)(x) 0 . . . 0

0 s2P
(2)(x) . . . 0

...

0 0 . . . smP
(m)(x)

 = H−1P (x) (13)

ut

The above lemma technically allows us to ‘propagate’ a diagonal right multiplier
through the kinetic weighting matrix P (x).

The following theorem is the extension for the biochemical reaction networks of
the linear conjugacy theorem presented by [21, Theorem 2]. The original statement
of the theorem for mass action systems can be found in [20].
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Theorem 1 Consider a kinetic system of the form (8) with M = Y · Ak and
g(x) = P (x)·Ψ(x), where Y ∈ Rn×m is a complex composition matrix, Ak ∈ Rm×κ
is a generalized Kirchhoff matrix, P (x) ∈ Rκ×m is a kinetic weighting matrix, and

Ψj(x) =
∏n
i=1 x

Yij

i for j = 1, . . . ,m. Assume that there exists an n × n positive
definite diagonal matrix T such that

Y ·Ab = T−1 ·M, (14)

where Ab ∈ Rm×κ is a generalized Kirchhoff matrix. Then the realization (Y, Āk, P̄ )
is linearly conjugate to (8) with

Āk = Ab · Φ̄T (15)

P̄ (x) = P (Tx), (16)

and

Φ̄T =


[diag(Ψ1(c))]d1 0d1×d2 . . .

0d2×d1 [diag(Ψ2(c))]d2 . . .
...

. . . . . .
0dm×d1 . . . [diag(Ψm(c))]dm

 ∈ Rκ×κ, (17)

where [diag(Ψi(c))]di denotes a diagonal block of size di × di, which contains the
constant Ψi(c) in its diagonal, 0di×dj denotes a block of zeros of size di×dj, and c
is the vector containing diagonal elements of T . As before, di denotes the number
of kinetics corresponding to complex Ci.

Proof Let us transform the solution of (8) using a positive diagonal transformation
T as follows:

x̄ = T−1x, i.e. x = T x̄ (18)

Then we can write

˙̄x = T−1ẋ = T−1 ·M · P (x) · Ψ(x) = T−1 ·M · P (T x̄) · Ψ(T x̄)

= T−1 ·M · P (T x̄) · ΦT · Ψ(x̄) = T−1 ·M · P̄ (x̄) · ΦT · Ψ(x̄), (19)

where ΦT is a diagonal matrix given by

ΦT = diag(Ψ(T · 1n)) = diag(Ψ(c)), (20)

and 1n denotes the n-dimensional vector with all coordinates equal to one. Ac-
cording to Lemma 2, P̄ (x̄) is a kinetic weighting matrix, and therefore we can
apply Lemma 3 as

P̄ (x̄) · ΦT = Φ̄T · P̄ (x̄), (21)

where Φ̄T is given by Eq. (17). Therefore, using (21) we can write (19) as

˙̄x = T−1 ·M · Φ̄T · P̄ (x̄) · Ψ(x̄). (22)

Clearly, if (14) holds, then

˙̄x = Y ·Ab · Φ̄T · P̄ (x̄) · Ψ(x̄) (23)

that is a kinetic system characterized by (Y, Āk, P̄ ), since, according to Lemma 1,
Āk given in Eq. (15) is a generalized Kirchhoff matrix. ut
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3.1 Computing linearly conjugate realizations for biochemical systems

In Theorem 1 we assume that the set of complexes and possible kinetics corre-
sponding to the studied kinetic model are known. If the model is given in the
ODE form (8) by matrix M and function g, one can use the realization algorithm
described in [15] which gives a possible realization (Y,Ak, P ) of the dynamics.
The number of found complexes and the number of kinetics corresponding to each
complex determine the size of the blocks of the Kirchhoff matrix (6).

Based on the above, without the loss of generality we can assume that the
kinetic model contains n species, m complexes, di kinetics (i = 1 . . .m) for each
complex and let

∑m
i=1 di = κ. Therefore Y ∈ Rn×m and Ak ∈ Rm×κ, further the

p-th block of Ak (see (6)) is of size m× dp.
In order to find a linearly conjugate realization, according to Theorem 1, we

have to find the generalized Kirchhoff matrix Ab ∈ Rm×κ and a diagonal matrix
T = diag(c), c ∈ Rn+ such that Eq. (14) is fulfilled. We formulate below a lin-
ear optimization problem, which constitutes a possible framework for computing
linearly conjugate realizations.

It is easy to see that Eq. (14) is a standard linear constraint for the elements
of Ab and T−1, since it can be rewritten as

T−1M − Y Ab = 0 . (24)

Thus, instead of finding the diagonal matrix T = diag(c), we are searching for its
inverse, which always exists because all the elements of vector c are assumed to
be strictly positive. Let us use the following notation

T−1 = T̃ = diag(c̃). (25)

Additionally, let us denote the elements of the Kirchhoff matrix [Ab]ij by aij for
i = 1 . . .m, j = 1 . . . κ. Then Eq. (24) with the positivity constraint on T can be
written as

c̃i > 0 for i = 1 . . . n

c̃i[M ]ij −
m∑
k=1

[Y ]ikakj = 0 for i = 1 . . . n, j = 1 . . . κ (26)

We know that Ab is a column conservation matrix. This requirement can be formu-
lated as additional linear equality constraints. For convenience, these constraints
are given for each block (p = 1 . . .m) of the Kirchhoff matrix (6) as follows

adpj = −
m∑

i=1, i 6=dp

aij for j = 1 . . . dp, p = 1 . . .m (27)

Equations (26) and (27) represent n× κ+ κ equality constrains to find n+m× κ
variables.

For practical reasons, it might be required to consider bound constraints on
the continuous variables as

albij ≤ aij ≤ aubij for i = 1 . . .m, j = 1 . . . κ

c̃lbi ≤ c̃i ≤ c̃ubi for i = 1 . . . n (28)
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where albij , a
ub
ij , ãlbij , c̃

ub
ij represent lower and upper bounds for the entries of the

Kirchhoff matrix and the scaling parameters, respectively.
Sparse and dense realizations, containing the minimum and maximum number

of reactions (directed edges), respectively, can be defined analogously to the mass
action case studied in [31,19]. To keep track of the presence of individual reactions
in the network, binary variables w ∈ {0, 1}m×κ can be introduced for each edge
as follows: wij = 1 ⇐⇒ aij > ε for i = 1 . . .m, j = 1 . . . κ, where ‘⇐⇒ ’ denotes
‘if and only if’ relationship, and ε is a small positive threshold for distinguishing
zero and non-zero rate coefficients. This logical relationship can be formulated in
terms of inequality constraints [31] as

0 ≤ aij − εwij for i = 1 . . .m, j = 1 . . . κ

0 ≤ −aij + aubij wij for i = 1 . . .m, j = 1 . . . κ (29)

Therefore, the task of finding a sparse network can be given as the following mixed
integer linear programming problem:

minimize
w,a,c̃

m∑
i=1

κ∑
j=1

wij (30)

subject to the constraints (26), (27), (28), and (29), where the continuous decision
variables are c̃i for i = 1, . . . , n, and akj for k = 1, . . . ,m, j = 1, . . . , κ. The integer
(binary) decision variables are wkj for k = 1, . . . ,m, and j = 1, . . . , κ. Dense real-
izations can be determined by modifying the objective function in (30) to maximize
the sum of the wij variables. We note that alternatively, dense realizations can
be computed efficiently in polynomial time without integer variables and bound
constraints [1]. Additionally, for large enough networks, the sparse realizations can
also be determined in polynomial time using standard linear programming [28].

By solving the above outlined optimization problem using an appropriate
solver, we obtain the matrix Ab and the vector c̃. Then the linearly conjugate
network is computed as follows. Inverting the components of the vector c̃ results
in c and then T = diag(c). Finally, the generalized Kirchhoff matrix Āk and the
kinetic weighting matrix P̄ (x) of the linearly conjugate network are computed ac-
cording to Eqs. (15) and (16), respectively, using (17). The above procedures are
illustrated by examples in the following section.

4 Examples

4.1 Example 1: A kinetic system with limit cycle

First, consider the following dynamical ODE model, which is a modified version
of the mass action system corresponding to example A1 in [9]

dx1
dt

= 0.05x2 + 0.1x21x2 −
0.2x21

1 + 2x1
− x1

1 + 1
2x1

dx2
dt

= 1− 0.05x2 − 0.1x21x2 +
0.1x21

1 + 2x1
.

(31)



12 Attila Gábor et al.
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Fig. 1: Sub-figures 1a-1c contain dynamically equivalent sparse and dense realiza-
tions together with the solutions versus time and in the phase space. In sub-figures
1d–1e a linearly conjugate dense realization is depicted with its solution versus time
and also in the phase space.
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The above set of dynamic equations give rise to a stable limit cycle solution, as
depicted in Figure 1a for zero initial condition.

A biochemical reaction network realization, which corresponds to the above
dynamic equations can be constructed in the following way. First, we assume the
complex set C = {0, X1, X2, 2X1, 2X1+X2, 3X1} as in [9], where 0 denotes the so-
called zero complex (see, e.g. [13]). Then, for each complex C1, . . . C6, a kinetic rate

function is derived as g11 = 1, g21 = x1

1+x1/2
, g31 = x2, g41 =

x2
1

1+2x1
, g51 = x21x2

and g61 = x31, respectively. This means mass action type rate laws for complexes
C1, C3 and C5, and Michaelis-Menten type reaction kinetics for the complexes C2

and C4. Then the matrix representation of this bio-CRN realization reads:

Y =

(
0 1 0 2 2 3
0 0 1 0 1 0

)
, Ak =


−k1 k2 0 0 0 0

0 −k2 k3 0 0 0
k1 0 −k3 k4 0 0
0 0 0 −k4 0 0
0 0 0 0 −k5 0
0 0 0 0 k5 0

 ,

P (x) =



1 0 0 0 0 0
0 1

1+x1/2
0 0 0 0

0 0 1 0 0 0
0 0 0 1

1+2x1
0 0

0 0 0 0 1 0
0 0 0 0 0 1

 , Ψ(x) =



1
x1
x2
x21
x21x2
x31


where the parameter values are k1 = 1, k2 = 1, k3 = 0.05, k4 = 0.1 and k5 = 0.1.
This is a sparse realization of the dynamical equations with 5 reactions (i.e., it
contains the minimum number of reactions), and its reaction graph is shown in
Figure 1b.

A dynamically equivalent dense realization of the above can be found with 15
reactions using the optimization framework in [15]. This reaction graph is depicted
in Figure 1c, its generalized Kirchhoff matrix is given by

Adense
k =



−1.00 1.003 0.033 10−3 0 0
0 −1.005 10−3 10−3 0 0

1.00 0 −0.051 0.099 0 0
0 10−3 10−3 −0.103 0 0
0 0 10−3 10−3 −0.10 0
0 10−3 0.015 10−3 0.10 0

 .

It was shown in [15] that the dense dynamically equivalent realization has a unique
structure and further that, any dynamically equivalent realization contains a subset
of the reactions of the dense realization, i.e. the reactions which are not included in
the dense reaction cannot appear in any other dynamically equivalent realization.

A linearly conjugate realization Now we compute a dense linearly conjugate
realization of the dynamic system (31). First, we solve the optimization problem
described in subsection 3.1 with the following tuning parameters:

– threshold value ε = 10−6
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– bound constraints for Ab: a
lb
ij = 0 and aubij = 100 for i = 1 . . .m and j = 1 . . . κ,

– bound constraints for c̃: c̃lbi = 0.01 and c̃ubi = 1000 for i = 1 . . .m and j =
1 . . . κ.

We used GLPK (GNU Linear Programming Kit) through the YALMIP interface
[24] in MATLAB 2012b.

The solution of the optimization resulted in the following Kirchhoff and scaling
matrices

Ab =



−0.24 0.163 9.0 · 10−3 10−3 10−3 0
0 −0.165 10−3 10−3 10−3 0

0.24 0 −0.013 0.015 10−3 0
0 10−3 10−3 −0.027 10−3 0
0 0 10−3 9.000 · 10−3 −0.025 0
0 10−3 10−3 10−3 0.021 0


T (x)−1 =

(
0.16 0

0 0.24

)
.

Then, following the procedure described in subsection 3.1, first we obtain T and
matrix Φ̄T by (17), as

T =

(
6.25 0

0 4.1667

)
,

Φ̄T = diag

([
1, 0.16, 0.24, 0.0256, 6.144 · 10−3, 4.096 · 10−3

]T)
.

Finally, Equations (15) and (16) give the dense generalized Kirchhoff matrix of
the linearly conjugate network

Ādense
k =



−0.2400 1.019 0.03750 0.03906 0.1628 0
0 −1.031 4.167 · 10−3 0.03906 0.1628 0

0.2400 0 −0.05417 0.5859 0.1628 0
0 6.250 · 10−3 4.167 · 10−3 −1.055 0.1628 0
0 0 4.167 · 10−3 0.3516 −4.069 0
0 6.250 · 10−3 4.167 · 10−3 0.03906 3.418 0

 ,

and in its transformed kinetic weighting function

P̄ (x) =



1 0 0 0 0 0
0 1

1+6.25·0.5x1
0 0 0 0

0 0 1 0 0 0
0 0 0 1

1+6.25·2x1
0 0

0 0 0 0 1 0
0 0 0 0 0 1

 .

The reaction graph of the resulted linearly conjugate network (Y, Ādense
k , P̄ ) is

depicted in Figure 1d. It can be seen that there are 4 edges, i.e. 4 reactions,
highlighted in red color, which do not appear in the dense dynamically equivalent
realization (see Figure 1c).

For the comparison of the dynamics of the original and the linearly conjugate
network, the solutions corresponding to the zero initial condition is depicted in
the time domain and in the phase space, see Figure 1e, where we can see the effect
if scaling and the qualitative similarities with the original solutions in Figure 1a.
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4.2 Example 2: searching for a reversible linearly conjugate realization

Johnston and Siegel considered the following case study as Example 1 in [20]:

dx1
dt

= 2k3x1x2 − 2k4x
2
1

dx2
dt

= k4x
2
1 − 2k2x1x

3
2 + k1x1x

2
2 − k3x1x2.

(32)

with the complex set {C1 = X1 + 2X2, C2 = X1 + 3X2, C3 = X1 + X2, C4 =
3X1, C5 = 2X1, C6 = X2}. They showed that this dynamical system does not have
a weakly reversible realization, but has a linearly conjugate reversible realization
with zero deficiency.

Let us consider the modified dynamical equations with some non mass action
reaction rates and fixed constants (ki = 1 for i = 1 . . . 4) as follows:

dx1
dt

= 2x1x2 −
2x21

1 + 0.5x21

dx2
dt

=
x21

1 + 0.5x21
− 2x1x

3
2 − x1x2 +

x1x
2
2

1 + x1x22
.

(33)

Then the above kinetic system has the following sparse realization with 4 reactions

Y =

(
1 1 1 3 2 0
2 3 1 0 0 1

)
, Ak =


−1 0 0 0 0 0

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 0 1 0

 ,

P (x) =



1
1+x1x

2
2

0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

1+0.5x2
1

0 0

0 0 0 0 0 1


, Ψ(x) =


x1x

2
2

x1x
3
2

x1x2
x31
x21
x2


We are also interested in finding weakly reversible realization for the system. A
similar analysis that was derived in [20] shows that this network does not have a
weakly reversible dynamically equivalent realization with the given complex set.

A linearly conjugate realization However, there exists a linearly conjugate re-
versible realization with the following matrices

Āk =


−2.0 4.0 0 0 0 0
2.0 −4.0 0 0 0 0
0 0 −2.0 0 4.0 0
0 0 0 0 0 0
0 0 2.0 0 −4.0 0
0 0 0 0 0 0


T−1 =

(
0.5 0
0 1.0

)
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Fig. 2: Illustration of Example 2. The reaction graphs for a sparse realization of
the dynamic equations and a linearly conjugate reversible realization are depicted
in 2a and 2c. The solutions of the corresponding equations are shown in figures 2b
and 2d, respectively.

The reaction graphs of the original and the linearly conjugate system and the
corresponding trajectories are depicted in Figure 2.

5 Summary

Linear conjugacy was introduced in this paper for a wide class of kinetic models
containing rational terms in the reaction rates, which is a common property of
biochemical models. The reaction graph of these models allow multiple directed
edges corresponding to different types of kinetics. It is assumed that the set of
complexes and the set of possible kinetics corresponding to source complexes are
either known or determined by the realization algorithm [15], and then these two
sets are fixed during the computation.
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It was shown that the generalized Kirchhoff matrix and the rate weighting
matrix of the linearly conjugate network can be computed using the parameters of
the applied diagonal transformation. This fact allows us to apply efficient compu-
tation methods to find linearly conjugate realizations corresponding to the ODEs
of a given kinetic system.

Two illustrative examples show that similarly to the mass action case, the
set of possible linearly conjugate realizations may contain more reaction graph
structures than the set of dynamically equivalent realizations. Furthermore, it
was also shown that the applied matrix-based model structure is suitable for the
optimization-based search of linearly conjugate reaction networks having preferred
properties like density/sparsity or reversibility.
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