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such as dense - or sparse realizations. The introduced concepts are illustrated by
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1 Introduction

The fundamentals of chemical reaction network theory (CRNT) were established
back in the 1970s by [17] and [8]. This theory aims to consider complex reaction
systems from a general perspective, linking the structure of the reaction network
with its possible dynamics (such as unstable and/or multiple steady states, oscil-
lations or chaotic behaviour). CRNT uses powerful descriptors, like the reaction
graph and its properties. For example the deficiency concept is used to characterize
structural, (i.e. parameter independent) dynamic properties (such as stability) of
the network. The dynamic model of a CRN is considered in the form of a positive
polynomial ordinary differential equation (ODE) that is assumed to be kinetic,
and then an algorithm can be used to construct the so called canonical realization
of the CRN [15]. Later, the notion of dynamic equivalence has appeared and it
became apparent that possibly several equivalent reaction kinetic schemes, i.e. re-
action network realizations can be constructed to a given dynamic ODE model by
using optimization, see e.g. [30,32]. These realizations offer the possibility to anal-
yse or ensure advantageous dynamic property to a CRN if a suitable realization
with desirable structural properties (e.g. zero deficiency and weak reversibility) is
found.

It is worth highlighting that although Horn and Jackson [17] already mentioned
complex reactions in biological systems as one of the general situations they wanted
to embrace with their theory, its applications in biology did not appear until Bailey
[1] rescued it, highlighting its potential for the analysis of biochemical networks
without calibrating the model with experimental data (“complex biology with no
parameters”). In other words, CRNT can be used to characterize kinetic models
(multi-stability, oscillations, etc.) without knowing the precise values of the kinetic
parameters.

Several important applications regarding the characterization of the dynamics
of biochemical reaction networks have appeared since then, including the works of
e.g. [3,4,34,24,28,29,21,27,22].

Furthermore, the theory has also been applied to the identification of biological
systems. For example, Craciun and Pantea [5] used CRNT to show that, given a
(mass action) reaction network and its dynamic equations, it might be impossible
to identify its rate constants uniquely (even with perfect measurements of all
species). Furthermore, they also concluded that, given the dynamics, it might be
impossible to identify the reaction network uniquely.

In [30,32] and [31], CRNT principles were used to pinpoint inherent limita-
tions in the inference of biological networks. These works show that, in addition
to the obstacles identified by [25] (lack of data and deficiencies in the inference
algorithms), there are fundamental problems related to the uniqueness and dis-
tinguishability of these networks. Further, these problems are present even for the
utopian case of fully observed networks with noiseless measurements.

Despite of the above mentioned works in the area of biochemical reaction net-
works (bio-CRNs), no systematic attempt has been made to construct and analyse
the structure of bio-CRNs, to characterize their canonical structure as a subset of
positive rational ODEs [23], and to link their structural properties to the dynamic
properties of the underlying biochemical system.

Therefore, our general aim is to extend the well-known formalism of the chem-
ical reaction networks obeying the mass action law (MAL-CRN) for general bio-
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chemical networks where the reaction rate functions often account for more com-
plex mechanism than the simple mass action law, such as the Michaelis-Menten
kinetics, Hill kinetics, activating or inhibiting mechanisms. A canonical decom-
position of these reaction rate functions being in rational function form lets us
define the main structural elements of the reaction network and the complex – re-
action graph. The MAL-CRN case then becomes a special case of this biochemical
reaction network.

This way the basic structural (i.e. parameter-independent) properties of a bio-
CRN structure are easy to define and understand, that include reversibility, weak
reversibility, and deficiency. The ordinary differential equations describing the dy-
namics of the biochemical reaction network (i.e. the concentrations of the species
in the network) can be stated in a form that is similar to the MAL-CRN formal-
ism. This new form of the equations let us easily analyse certain properties of the
network, for example to prove the non-negativity of the solutions. Furthermore,
the proposed structure allows to algorithmically infer a network from the ODEs,
and determine alternative bio-CRN structures that are dynamically equivalent to
the original network, i.e. although different reactions exist in the networks, the
concentrations of the compounds evolve along exactly the same trajectories.

The paper is organised as follows. In Section 2 the structural elements of the
biochemical reaction networks are defined and some properties are shown. In Sec-
tion 3 the kinetic realizability conditions and a canonical realization algorithm
is presented for ODEs in rational polynomial form. Section 4 is devoted to find
dynamically equivalent realizations with preferred structure of a given network.
Finally, Section 5 summarizes and concludes the work.

2 The basic structure of biochemical reaction networks

The classical theory of reaction networks assumes a closed thermodynamic system
with constant physico-chemical properties under isothermal and isobaric condi-
tions, where chemical species Xi, i = 1, . . . n take part in chemical reactions of the
form

n∑
k=1

νkiXk
rij−−−→

n∑
k=1

µkjXk (1)

with stoichiometric coefficients of reactants ν1i, . . . , νni and of products µ1j , . . . , µnj .
Then the specie concentrations xi = [Xi], i = 1, . . . n form the state vector, the
elements of which are non-negative.

The non-negative integer linear combinations of the species
∑n
k=1 νkiXk and∑n

k=1 µkjXk in (1) are called the complexes and are denoted by C1, . . . Cm, e.g.
C1 = 2X1 +X3.

A finite set of biochemical kinetics Gi = {G1, G2, . . . Gdi} is assigned to each
complex Ci. A biochemical kinetics is a description that specifies the way the
species in the complex can react, for exampleG1 = ‘Mass action’,G2 = ‘Michelis

Meten kinetics’, etc.

The reaction rate r(·) : Rn+ 7→ R+ corresponding to the reaction Ci
kijl,gil−−−−→ Cj

is described by

rijl(x) = kijl · gil(x), (2)
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where k ∈ R+
0 is the non-negative principal reaction rate coefficient and gil(·) is

a function associated with the kinetics Gl of the complex Ci. The possible forms
and properties of this rate function are described below in subsection 2.1.

To further formalize the above description, similarly to the formalism of MAL-
CRNs [9], we characterize bio-CRNs with the following three sets.

1. S = {X1, . . . Xn} is the set of species or chemical substances.
2. C = {C1 . . . Cm} is the set of complexes.
3. The set of biochemical reactions is

R = {(Ci, Cj , Gl) | Ci, Cj ∈ C, Gl ∈ Gi and Ci is transformed to

Cj by the kinetics Gl}. (3)

The relation (Ci, Cj , Gl) ∈ R is denoted by Ci
Gl−−→ Cj . In this case, Ci is called

the reactant or source complex, and Cj is the product complex. Further, a non-
negative principal reaction rate coefficient is also assigned to each reaction,

which will be indicated as Ci
kijl,gil−−−−→ Cj . kijl = 0 means that Ci

Gl−−→ Cj /∈ R.

The set of species, complexes and reactions with the kinetics uniquely determines
the biochemical reaction network which is denoted by Σ = (S, C, G, R).

In the special case, when the chemical reaction network contains only mass-
action type kinetics, the set of kinetics becomes meaningless and the traditional
ΣMA = (S, C, R) is obtained.

2.1 Biochemical kinetics associated functional forms

The species in each complex Ci for i = 1 . . .m, may react in different ways that
is described by the concept of kinetics. A set of kinetics Gi = {G1, . . . Gdi} is
defined for each complex, and a function gil(·) is associated to each kinetics. This
kinetic function characterizes the rate of the reaction (2) and can depend on a
set of species. Species can be classified as dominant species and modifiers. The
dominant species of a kinetics are the species, the concentration of which strongly
effects the reaction rate, i.e. if any of the dominant species concentration is zero,
the reaction rate is also zero. On the other hand, the positive concentration of
modifier species of a given kinetics is not required for a strictly positive reaction
rate. We assume that the species in the source complexes are the dominant species
with respect to all the kinetics assigned to that complex. In other words, if any
of the species has zero concentration in a complex all the corresponding reaction
rate functions are also zero. Further, we make the following assumptions:

(KA1) any kinetic function gil(·) is always non-negative,
(KA2) any kinetic function gil(·) is zero if and only if the concentration of any of its

source species is zero.

Due to (KA1) the reversible reactions are represented by two reactions.
We further assume that

(KA3) the elementary reaction rate corresponding to the source complex Ci =
∑n
l=1 νliXl

can be stated as a ratio of two functions:

r(x) = k · g(x) = k
Mi(x)

D(x)
, (4)
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where

Mi(x) =
n∏
l=1

xνlil ≥ 0 (5)

is a monomial with non-negative integers coefficients νli of the source complex;
k is the principal reaction rate coefficient. Here D(x) is an element of a set P
of multivariate polynomials with the following form

D(x) = 1 +
∑

αm1,m2,...mnx
m1
1 xm2

2 . . . xmn
n > 0 (6)

where α ∈ R+ and m1, m2, . . . ,mn are non-negative integers.

Similar decomposition of the reaction rates (4) was used for example in [20] for
the verification of biochemical dynamic models and in [26] for model reduction.

2.2 Differential equations of the biochemical system

Motivated by the formalism of the MAL-CRNs dynamics (see, e.g. [9]), let us
define the dynamics of the bio-CRNs with the following form

ẋ = Y · Ãk · P (x) · Ψ(x), (7)

where Y ∈ Rn×m is the complex composition matrix; the matrix Ãk ∈ Rm×κ stores
the principal reaction rate coefficients and its structure has a close relationship
with the graph of the network, the mapping P : Rn 7→ Rκ×m is the rate-weighting
matrix valued function that contains the information regarding the kinetics of the
reactions and Ψ : Rn → Rm is the monomial vector function

Ψi(x) =
∏
j

x
Yji

j . (8)

The ith column of Y denoted by η(i) contains the composition of complex Ci, i.e.
Yji is the stoichiometric coefficient of Ci corresponding to the specie Xj . As the
stoichiometric coefficients are non-negative, it may happen that all of them are
equal to zero for a certain complex C0, i.e. the corresponding column in Y is the
zero vector (η(i) = 0). Such a complex C0 is called the zero complex, and it can
be used to describe the case when the system is not closed but has in-/outflow
from/to the environment, as it is a usual situation in biochemical models.

The rate-weighting matrix.The kinetic function g(x) in (4) can be seen as state-
dependent weighted form of the monomial function Mi(x) = Ψi(x) using the
weights 1/D(x). For each monomial Ψ1(x), Ψ2(x), . . . Ψm(x), define a Pi(x) ∈ Rdi
vector function component-wise, in such a way, that Pi l(x) · Ψi(x) = gil(x) for
l = 1, . . . di, where Pi l is the weight in the l-th kinetics and di is the number of
distinct kinetics associated to complex Ci. Obviously,

Pi l(x) =
1

Dil(x)
. (9)
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When the vector functions Pi(x) are arranged in a block matrix P ∈ Rκ×m
(where the total number of kinetics is κ =

∑m
i=1 di), this matrix is

P =


[P1] 0 . . . 0

0 [P2] . . . 0
...

0 0 . . . [Pm]

 , (10)

and the product

P (x) · Ψ(x) = [g11(x), g12(x), . . . gmdm(x)]T := ϕ(x) (11)

gives the vector of kinetic functions ϕ(·) : Rn+ 7→ Rκ+, which simply collects the
reaction rates without the principal reaction rate coefficients. This vector also fixes
the ordering of the complexes and also the ordering of kinetics in each complex, i.e.
the first d1 elements correspond to the kinetics of the first complex, the following
d2 elements correspond to the kinetics in the second complex and so on. To simplify
the indexing, let us define the index variable

zi =

i−1∑
k=1

dk for i = 1 . . .m, (12)

which denotes the sum of the number of kinetics originating from the first i − 1
complexes. Thus, the kinetic functions starting from complex Ci can be easily
indexed in the kinetic vector (11) as ϕzi+1, ϕzi+2 . . . ϕzi+di .

The modified Kirchhoff matrix.The matrix Ãk ∈ Rm×κ contains the principal
reaction rate coefficients of the reactions and encodes the structure of the reaction
graph. Each row of Ãk corresponds to a complex and each column corresponds to
a kinetic function.

The principal reaction rate coefficient kijl of the reaction (Cj , Ci, Gl) –for
i, j = 1, . . .m; i 6= j; l = 1, . . . dj– is located in Ãk,i zj+l, where zj is defined

as (12). Furthermore, the elements Ãk,i zi+l for i = 1, . . .m; l = 1, . . . di contain
the negative sum of the corresponding columns of Ãk, which makes Ãk a column-
conservation matrix. In short:

Ãk,i,zj+l =


kjil if i 6= j,

−
m∑

o=1,o 6=i

kjo,l if i = j
for i = 1 . . .m, j = 1 . . .m and l = 1 . . . di.

(13)

Using the notation Σ for a given bio-CRN, it is clear from the above descrip-
tion that the system’s reaction graph and the corresponding dynamics can be
characterized either by the sets (S, C,G,R) or equivalently by the matrix triplet
(Y, Ãk, P ), therefore we can use the notations Σ = (S, C,G,R) or Σ = (Y, Ãk, P )
and Equation (7) is called the normal form of the dynamic equations.
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The MAL-CRN case. Note that for the special case, in which only mass-action
kinetics is used, the P is the identity matrix and Ãk = Ak is a square matrix as
follows

Ak,ij =

−
m∑

l=1,l 6=i

kil if i = j

kji if i 6= j

. (14)

Using the notions of the reaction graph, the diagonal elements Ak,ii contain the
negative sum of the weights of the edges starting from the node Ci, while the off-
diagonal elements Ak,ij , i 6= j contain the weights of the directed edges (Cj , Ci)
going into Ci. In this case, the dynamics (7) is simplified to

ẋ = M · Ψ(x) = Y ·Ak · Ψ(x), (15)

where M ∈ Rn×m is the monomial coefficient matrix coding the reaction graph
weighting/structure.

2.3 Graph representation of biochemical reaction networks

The set of complexes together with the set of reactions give rise to the following
directed, weighted graph representation. The reaction graph D = (Vd;Ed) consists
of a finite non-empty set Vd of vertices and a finite set of Ed directed edges.
The directed edges representing reactions will be defined by triplets of the form
e(i,j,l) = (Ci, Cj , Gl) for i, j = 1, . . . ,m, i 6= j, l = 1, . . . , di, where i, j and l are
the indices of the source complex, product complex and the kinetics, respectively.
The positive real weight of the directed edge e(i,j,l) is denoted by kijl, and it is
the principal reaction rate coefficient (see (4)) of the reaction represented by the
directed edge. Based on the above description, we will graphically represent the
weighted directed edge e(i,j,l) in the reaction graph as

Ci
k,gil−−−−→ Cj , (16)

where k = kijl. Note that, two complexes Ci, Cj can be connected by multiple
edges if the species in Ci can produce the products in Cj by more than one kinetics.
When we refer to the structure of the biochemical reaction network, we mean the
unweighted directed graph.

2.4 The non-negativity of the solutions of bio-CRNs

The dynamic variables xk of any biochemical model are species concentrations,
which are naturally non-negative. Therefore, any plausible biochemical model [20,
12] should have this property, that is mathematically based on the notion of es-
sentially non-negative functions [13,14,2,11].

A function f = [f1 . . . fn]T : [0,∞)n 7→ Rn is called essentially non-negative if,
for all i = 1, . . . , n and x ∈ [0,∞)n, fi(x) ≥ 0, whenever xi = 0. Let us consider
an autonomous non-linear system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ [0, tf ) . (17)
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Haddad and Chellaboina [13] showed that for a locally Lipschitz f function, the
nonnegative orthant Rn+ is invariant under the system dynamics (17) (i.e. starting
from a nonnegative initial condition, all the state variables in x remain nonnegative
for all time) if and only if f is essentially nonnegative. For example, it is shown in
[2] and in [6] that MAL-CRNs of the form (15) are essentially non-negative, and
therefore all the solutions are non-negative.

Similar results can be obtained for the bio-CRN case, too as a consequence of
the properties (KA1)-(KA3) of the kinetic functions. As all of the kinetic functions
in a biochemical reaction network defined by (7) are locally Lipschitz and essen-
tially non-negative, therefore the concentrations remain non-negative. The proof
is given in Appendix C.

2.5 Structural properties of bio-CRNs

Some further properties of the bio-CRN structure are presented in this section
that are all simple extensions of the notions defined for MAL-CRNs.

Reversibility and weak reversibility.A reaction network is called reversible, if when-

ever the reaction Ci
k,gil−−−−→ Cj with any kinetics gil exists, then a reverse reaction

Cj
k′,gjl′−−−−→ Ci with any other kinetics gjl′ is also present in the network. A reac-

tion network is called weakly reversible, if whenever complex Cj is reachable from
complex Ci on a directed path in the reaction graph, then there exists a directed
path from Cj to Ci, too. In other words, each linkage class of the network forms
a strongly connected component in the reaction graph.

Deficiency. The notion of the deficiency [10] of a reaction kinetic system is built
on the set of reaction vectors (ρ(l,k)) forming the stoichiometric subspace S that
is defined as

S = {ρ(l,k) = η(j) − η(i) | (Ci, Cj , Gl) ∈ E for any l ∈ {1, . . . di}} (18)

where η(i) denotes the ith column of Y . The deficiency d of a reaction network is
defined as:

d = m− `− s (19)

where m is the number of complexes, ` is the number of linkage classes and s is
the rank of the stoichiometric subspace, i.e. s = rank(S).

Feinberg proved important properties of the solutions of kinetic systems with
mass action law related to the existence, uniqueness and stability of equilibria
based on the deficiency and weak reversibility of the network, particularly in the
Deficiency Zero and Deficiency One Theorems [10]. With biochemical kinetics,
one can apply those points of the Deficiency Zero Theorem that correspond to
arbitrary (not necessarily mass action) kinetics. For example, when the deficiency
of the network is zero, but the network is not weakly reversible, there is no strictly
positive steady state solution, and there cannot be exist a cyclic trajectory in
which all states remain positive [10].
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2.6 Simple biochemical reaction network examples

2.6.1 An example with rational kinetics

X
1
 + 2X

2
X

1
 + X

3

X
4

        r
5     

r
4

C
2

C
1

C
3

r
3

r
1

r
2

r
6

Fig. 1 Reaction graph of a simple bio-CRN

Consider the biochemical network in Figure 1. It is seen that three complexes

C1 = X1 + 2X2, C2 = X1 +X3, C3 = X4

are connected by six irreversible reaction steps. The reaction rate functions are
given as follows

r1 = k1
x1x

2
2

1 +K11x1
, r2 = k2

x1x
2
2

1 +K21x1 +K22x1x2
, r3 = k3

x1x3
1 +K31x3

r4 = k4
x1x

2
2

1 +K41x4
, r5 = k5x4 , r6 = k6

x1x3
1 +K31x3

.

The complex stoichiometric matrix and the corresponding nonlinear vector
function are :

Y =


1 1 0
2 0 0
0 1 0
0 0 1

 , Ψ(x) =

x1x22x1x3
x4

 . (20)

By the factorization of the principal reaction rate coefficients from the reaction
rate functions we construct the vector of kinetics ϕ(x). Note that the kinetics of
the reactions r3 and r6 are the same, therefore the corresponding kinetic function
appears only once in the vector

ϕ(x) =

[
x1x

2
2

1 +K11x1
,

x1x
2
2

1 +K21x1 +K22x1x2
,

x1x
2
2

1 +K41x4
,

x1x3
1 +K31x3

, x4

]T
.

The elements of the vector of kinetics above are ordered according to the complexes
from which the corresponding reactions are originating. Then we can decompose
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the vector of kinetics to a product ϕ(x) = P (x) ·Ψ(x) of the rate weighting matrix
P (x) and the monomial vector function Ψ(x) in (20), where

P (x) =



1
1+K11x1

0 0
1

1+K21x1+K22x1x2
0 0

1
1+K41x4

0 0

0 1
1+K31x3

0

0 0 1

 .

The modified Kirchoff matrix contains the principal reaction rate coefficients, in
our case

Ãk =

−k1 −k2 −k4 k3 k5
k1 k2 0 −(k3 + k6) 0
0 0 k4 k6 −k5

 .

Therefore the product f(x) = Y ÃkP (x)Ψ(x) results in the dynamics of the species
of the network:

ẋ1 = k5x4 − k4
x1x

2
2

1 +K41x4
− k6

x1x3
1 +K31x3

ẋ2 = −2k1
x1x

2
2

1 +K11x1
− 2k2

x1x
2
2

1 +K21x1 +K22x1x2
− 2k4

x1x
2
2

1 +K41x4
+ 2k3

x1x3
1 +K31x3

+ 2k5x4

ẋ3 = k1
x1x

2
2

1 +K11x1
+ k2

x1x
2
2

1 +K21x1 +K22x1x2
− (k3 + k6)

x1x3
1 +K31x3

ẋ4 = k4
x1x

2
2

1 +K41x4
+ k6

x1x3
1 +K31x3

− k5x4 .

The network example is a deficiency 0 network, it is not reversible, but weakly
reversible.

2.6.2 A structurally similar example with mass action kinetics.

Let us restrict each kinetics of the previous example to mass action type. Note
that, there were two reactions (r1 and r2) from C1 to C2 with different kinetics,
which are now represented by one edge as depicted in Figure 2.

The matrices and the non-linear vector function that characterizes the realiza-
tion is as follows

Y =


1 1 0
2 0 0
0 1 0
0 0 1

 , Ak =

−(k12 + k13) k21 k31
k12 −(k21 + k23) 0
k13 k23 −k31

 , Ψ(x) =

x1x22x1x3
x4

 .
The rate weighting matrix is the identity P = I3×3. The above elements – based
on (15) – define the following differential equation model

ẋ1 = −k13x1x22 − k23x1x3
ẋ2 = −2k13x1x

2
2 − 2k12x1x

2
2 + 2k21x1x3 + 2k31x4

ẋ3 = −k23x1x3 − k21x1x3 + k12x1x
2
2

ẋ4 = −k31x4 + k13x1x
2
2 + k23x1x3 .
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X
1
 + 2X

2
X

1
 + X

3

X
4

k
12

k
31

k
13

k
21

k
23

C
2

C
1

C
3

Fig. 2 Reaction graph of a simple MAL-CRN

3 Biochemical reaction network realizations of positive rational ODEs

The problem of constructing a so called reaction network realization to a given a
set of nonlinear ordinary differential equations with rational function right-hand
sides is considered in this section. This realization problem is different from the
realization problem commonly considered in systems theory, where equivalent dy-
namic models in a pre-specified canonical form, such as with a diagonal coefficient
matrix, are searched for.

The question, whether a given set of differential equations can be represented
by a biochemical reaction graph is of great interest, since the qualitative properties
of the underlying dynamics can possibly be determined based on the properties of
the graph. The problem of algorithmically constructing a reaction network real-
ization was first solved by Hárs and Tóth [15] for polynomial differential equations
using mass action chemical reaction networks realization.

Since that, many approaches have been developed for defining and investigating
realizations of broader classes of non-linear ODEs, that are recently overviewed by
the work of Nemcoá and Schuppen [23] (and the references therein) for realization
of rational polynomial systems. Recently, Fages et al. [7] considered the realization
of biochemical network from a set of ODEs such that each reaction is well-formed.
A main difference between that work and ours is the purpose of the methods, i.e.
our goal is to infer a complex-reaction graph for further computation, while the
work of Fages et al. aims at the construction of the differential influence graph
and stoichiometric influence graph (DIG and SIG, respectively).

3.1 Kinetic realizability

First a necessary and sufficient condition for kinetic realizability of a set of non-
linear ODEs with rational function right-hand sides are proposed that ensures the
successful completion of the canonical realization algorithm described in subsection
3.2 below. We follow the method presented by Chellaboina [2] in the derivation of
this condition for kinetic realizability.

Consider the following autonomous ordinary differential equations

ẋ(t) = f(x(t)), x(0) = x0, t ∈ [0, tf ),
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where f(x) : Rn → Rn and x ∈ Rn. Assume that the right hand side function f
is composed of the linear combination of biochemical reaction rate functions (4).
Then, there exists a bio-CRN with n species if and only if for each o = 1, . . . n
the fo([x1, x2, . . . , xo−1, 0, xo+1 . . . xn]) is a non-negative linear combination of the
biochemical reaction rate functions. The proof of sufficiency and necessity can be
found in Appendix D.

3.2 Canonical realization algorithm

Once the kinetic realizability condition is assured for the dynamical equations, the
goal is to find the components of the chemical reaction network, i.e. the sets of
species, complexes, reactions and kinetics. This is solved by Algorithm 1 that is
an extension of the canonical realization algorithm [15], also discussed in [2]. This
algorithm transforms the set of ODEs into a biochemical reaction network. The
algorithm processes each equation one-by-one and requires the rational function
terms on the right hand side of the equations. First, based on the exponents of
the monomials in the nominator the corresponding source complex is determined.
Then, a product complex is assigned to the reaction. In case of processing the ith
equation, the stoichiometric coefficients of the species in the product and source
complex are the same for all the species, except the species Xi. Thus, the inferred
reaction does not contribute to any other than the i-th equation. Finally, the
kinetics is determined by the functional form of the rational term.

The pseudo-code of the canonical realization algorithm for bio-CRNs are given
as Algorithm 1.

It is known, that the canonical realization algorithm generally results in a large
number of complexes. Further, the inferred biochemical reaction network does not
fulfil thermodynamic constraints and almost never fulfil the mass conservation due
to the way the product complex is created for each reaction. Therefore, the only
purpose of the presented algorithm is to generate a biochemical reaction network
for kinetic systems. Then, in section 4 optimization methods are formulated to
find dynamically equivalent realizations with desired properties starting from an
arbitrary reaction network realization.

3.3 An example for constructing the canonical realization for a biochemical
reaction network

Consider the following set of ordinary differential equations

ẋ1 = −k21x31 −
k22x

3
1

1 +K2x1
+ 3k11x

3
2 +

3k12x
3
2

1 +K1x2

ẋ2 = k21x
3
1 +

k22x
3
1

1 +K2x1
− 3k11x

3
2 −

3k12x
3
2

1 +K1x2
.

It is easy to check that the necessary and sufficient conditions hold for this sys-
tem, i.e. f1([0, x2]) and f1([x1, 0]) are positive linear combination of biochemical
reaction rate functions.

Table 1 contains the detailed realization procedure and the inferred reactions
in each step.
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Algorithm 1 Algorithm for realization of biochemical reaction network from
ODEs.
Require: a set of ODEs of n variables; each fi is a linear combination of elementary reaction

rate functions, i.e.

fi(x) =
∑m
l=1

(
cl

∏n
j=1 x

νjl
j

Dl(x)

)
=
∑m
l=1 clgl(x);

1: R = ∅; # set of reactions
2: C = ∅; # set of complexes
3: S = {X1 . . . Xn}; # set of species
4: for i = 1 to n do
5: for each clgl(x) do
6: Cs =

∑
νjlXj ; # source complex

7: if Cs 6∈ C then
8: add Cs to C;
9: end if

10: if νil ≥ 1 then
11: Cp = (νil + sign(ci))Xi +

∑n
j=1,j 6=i νjlXj ; # product complex

r = |ci|
∑n
j=1 x

νjl
j

Dl(x)
; # reaction rate

g =

∑n
j=1 x

νjl
j

Dl(x)
; # kinetics

12: else
13: Cp = Xi +

∑n
j=1,j 6=i νjlXj ; # product complex

r = ci

∑n
j=1 x

νjl
j

Dl(x)
; # reaction rate

g =

∑n
j=1 x

νjl
j

Dl(x)
; # kinetics

14: end if
15: if Cp 6∈ C then
16: add Cp to C;
17: end if
18: add reaction (Cs,Cp, g) to R;
19: end for
20: end for

In conclusion, Algorithm 1 created the complexes

C = {3X1, 2X1, 3X2, X1 + 3X2, 3X1 +X2, 3X2}

and the kinetics

g11 = x31 g12 =
x31

1 +K2x1

g31 = x32 g32 =
x32

1 +K1x2
.

The corresponding network can be seen in Figure 3.

4 Dynamically equivalent realizations

It has been known that different reaction graph structures in the mass-action case
may lead to the same kinetic differential equations. In other words, the reaction
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Table 1 Detailed procedure of the simple realization example. Each line of the table corre-
sponds to a realized reaction. The first column contains the right hand side component of the
ODEs, the second column shows a reaction term of the right hand side function. The third
column contains the assigned reaction: the source and the product complexes are written on
the sides of the arrow, the principal reaction rate coefficient and the reaction kinetic function
is written on the arrow.

Equation Term Realized reaction New complexes

f1(x) −k21x31 3X1

|−k21|

x31
1


−−−−−−−−−−→ (3 + sign(−k21))X1 C1 = 3X1, C2 = 2X1

f1(x) − k22x
3
1

1+K2x1
3X1

|−k22|

 x31
1 +K2x1


−−−−−−−−−−−−−−−−→ (3 + sign(−k22))X1 -

f1(x) 3k11x32 3X2

|3k11|

x32
1


−−−−−−−−−−→ X1 + 3X2 C3 = 3X2, C4 = X1 + 3X2

f1(x)
3k12x

3
2

1+K1x2
3X2

|3k12|

 x32
1 +K1x2


−−−−−−−−−−−−−−−→ X1 + 3X2 -

f2(x) k21x31 3X1

|k21|

x31
1


−−−−−−−−−→ X2 + 3X1 C5 = X2 + 3X1

f2(x)
k22x

3
1

1+K2x1
3X1

|k22|

 x31
1 +K2x1


−−−−−−−−−−−−−−−→ X2 + 3X1 -

f2(x) −3k11x32 3X2

|−3k11|

x32
1


−−−−−−−−−−−→ (3 + sign(−3k11))X2 C6 = 2X2

f2(x) − 3k12x
3
2

1+K1x2
3X2

|−3k12|

 x32
1 +K1x2


−−−−−−−−−−−−−−−−−→ (3 + sign(−3k12))X2 -

3X
1

2X
1

3X
1
+X

2

X
1
+3X

2
3X

2

2X
2

(k
21
,g
11
)

(k
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,g
12
)
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12
)
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11
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12
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Fig. 3 The reaction graph of the example constructed by the canonical realization algorithm.
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graph structure corresponding to a given kinetic ODE system is non-unique. This
phenomenon is called macro-equivalence, dynamical equivalence or confoundability
[5,17,30,18]. Since the mass action case is a special case of the generalized kinetic
description presented in this paper, dynamical equivalence necessarily emerges for
the bio-CRN structure, too.

4.1 Dynamic equivalence for MAL-CRNs

It is well-known that given a coefficient matrix M in (15) with a stoichiometric
matrix Y one may find more than one Kirchhoff matrix Ak satisfying M = Y Ak.
Thus, the reaction graph and its corresponding realization (Y,Ak) is not unique.
Two realizations (Y,Ak) and (Y,A′k) are called dynamically equivalent if they give
rise to the same M , i.e. M = Y Ak = Y A′k.

Important structural properties of chemical reaction networks, such as defi-
ciency, reversibility and weak-reversibility mentioned in subsection 2.5 are not
encoded uniquely in the differential equations of the chemical reaction networks,
i.e. they are realization dependent properties. Since some realizations –with specific
properties– are more suitable for the analysis of the solutions of the dynamic equa-
tions, the need for developing computational methods in order to find dynamically
equivalent realizations appeared and solved for MAL-CRNs [30,32,19].

4.2 Dynamical equivalence in bio-CRNs

Two biochemical reaction networksΣ1 = (Y 1, Ã1
k, P

1(x)) andΣ2 = (Y 2, Ã2
k, P

2(x))
are said to be dynamically equivalent, if the two networks give rise to the same
dynamic equations (7), i.e.

f(x) = Y 1Ã1
kP

1(x)Ψ1(x) = Y 2Ã2
kP

2(x)Ψ2(x) for ∀x ∈ Rn+ , (21)

where Y {1,2} are integer type matrices, Ã
{1,2}
k are modified Kirchoff matrices as

in (13), P (x){1,2} are rate weighting mappings as defined in (9-10) and Ψ{1,2} are
computed from Y {1,2} according to (8).

Let denote the complex composition matrix by Y , which stores the stoichio-
metric coefficients of the complexes of both networks and let P be the common rate
weighting matrix, which also contains the reaction kinetics of both networks by
forming the union of the two corresponding sets. In this case the modified Kirchhoff
matrix of each network will contain some zero rows and columns corresponding to

the other network kinetics and complexes. Further let Ψi(x) =
∏m
j=1 x

Yji

j . Using
the common matrices and the kinetic vector (11) the condition of dynamically
equivalent networks can also be written as

Y Ã1
kϕ(x) = Y Ã2

kϕ(x). (22)

It is easy to see that if two networks are dynamically equivalent but different,
then there are infinitely many equivalent networks. For this purpose let 0 ≥ a ≥ 1,
then

Y aÃ1
kϕ(x) + Y (1− a)Ã2

kϕ(x) = Y Ã1
kϕ(x) . (23)
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Let assume that the components of the kinetic vector ϕ(x) are linearly inde-
pendent, i.e.

κ∑
i=1

αiϕi(x) = 0, for all x > 0 if and only if αi = 0 for ∀i = 1, . . . κ. (24)

Then it is apparent that the kinetic coefficient matrix M̃ = Y Ã1
k = Y Ã2

k is an
invariant for all realizations.

4.3 Sparse and dense realizations

When the dynamic system has more than one realizations, it has infinitely many.
Some realizations show structural differences, i.e. the corresponding un-weighted
reaction graphs are different, while others are different only in the numerical
weights of the graph. When the complexes and their kinetics are fixed, the re-
action networks with the least number of edges are called the sparse realizations,
while the realizations with the highest number of edges are called the dense real-
izations.

Some interesting properties of these special realisations were shown in [33] for
the mass-action network case. These results are adapted for biochemical reaction
networks here.

Let Σ = (Y, Ãk, P ) be a kinetic system with fixed complexes Y and kinetics
P , and let Σs = (Y, Ãsk, P ) and Σd = (Y, Ãdk, P ) be the dynamically equivalent
sparse and dense realizations, respectively. Then

P1 the un-weighted graph of any dynamically equivalent realization of Σ is a sub-
graph of the dense realization Σd,

P2 the dense realisation Σd is structurally unique,
P3 a realization of the kinetic system is structurally unique if and only if the sparse

and the dense realizations are structurally identical.

The proof can be found in Appendix E. A simple implication of the theorems is
that the dense realization contains all the possible reactions.

4.4 Optimization methods for the computation of realizations with preferred
properties

There are many recent results on the optimization based computation of equivalent
reaction networks with given properties for the chemical reaction networks obeying
the mass action law. For example, in [30] the optimisation problem for the compu-
tation of sparse and dense realizations are stated as mixed integer linear problem,
which can be efficiently solved even for hundreds of chemical species. In [32] the
procedure is adapted for finding complex and detailed balance realizations. In [33]
the problem to find equivalent realizations with minimum or maximum number of
complexes are considered. In this section we show, how the mixed integer linear
programming procedure can be adapted for the biochemical reaction network case.

Given a realization invariant coefficient matrix M̃ ∈ Rm×κ, the set of com-
plexes Y ∈ Rn×m and the number of possible reaction kinetics in each complex
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(d1, . . . dm), such that the total number of kinetics κ =
∑m
i=1 di. The goal is to

find valid modified Kirchhoff matrix or matrices with properties in (13), which
fulfils the following matrix equation:

M̃ = Y Ãk. (25)

The only difference here, comparing to the existing optimization methods in [30,
32,33] is the properties of the matrix Ãk. In the MAL-CRN case Ãk is a square
matrix with negative diagonal elements such that the sum of each column is zero.
But matrix Ãk is typically rectangular in the bio-CRN case, and the location of
the negative elements depends on the number of kinetics in each complex.

The entries of the Ãk are written in the following way utilizing the indexing
zi =

∑i−1
k=1 dk, for i = 1 . . .m (z1 = 0 and zm + dm = κ) as in (12):

Ãk(a) =


−a1,1 . . . −a1,d1 a1,z2+1 . . . a1,z2+1 . . . a1,zm+dm

a2,1 . . . a2,d1 −a2,z2+1 . . . −a2,z2+d2 . . . a2,zm+dm
...

am−1,1 . . . am−1,zm+dm

am,1 . . . −am,zm+dm

 . (26)

With this explicit notation of the negative elements we can restrict the decision
variables (aij) of the optimization problem to the non-negative orthant. The col-
umn conservation property of Ãk can be expressed as κ number of equations as
1TmÃk,(·,i) = 0, for i = 1 . . . κ, where 1m is the m dimensional one vector and

Ãk,(·,i) is the ith column of the matrix.
The non-zero elements of the matrix, which do not have the negative sign, i.e.

ai,zj+l for i = 1 . . .m, j = 1 . . .m, l = 1 . . . di, i 6= j, define the reactions in the

network. When each complex has only one kinetics (all di = 1) then Ãk is a square
matrix and these are the off-diagonal elements. Let us introduce binary decision
variables wij for each entry of the matrix Ãk. This binary variable equals to one
if and only if the corresponding entry is larger than zero (in practice, larger than
some small threshold value ε). Furthermore, let aubij be practical upper bounds for
the elements of the matrix.

Then, the following mixed integer linear optimization problem finds a sparse
realization

minimize
y,a

m∑
i=1

κ∑
j=1

wij (27)

subject to: M̃ − Y Ãk(a) = 0 (28)

1TmÃk,(·,i) = 0 for i = 1 . . . κ (29)

0 ≤ aij ≤ aubij for i = 1 . . .m, j = 1 . . . κ (30)

0 ≤ aij − εwij for i = 1 . . .m, j = 1 . . . κ (31)

0 ≤ −aij + aubij wij for i = 1 . . .m, j = 1 . . . κ (32)

wij are binary variables, for i = 1 . . .m, j = 1 . . . κ (33)

where (27) defines the goal of finding the sparse realization by minimizing the num-
ber of edges, (29) are the constraints ensuring dynamic equivalence, (30) bounds
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the principal reaction rate coefficients, and (31) - (33) define the binary variables
associated to the reactions (edges). The dense realization can be simply found by
changing the sign of the objective function (27). One can provide further equality
constrains to incorporate a-priory knowledge about existing reactions or to exclude
possible reactions.

Note that, the exact form of the reaction kinetics does not appear in the op-
timization, thus the complexity of the reaction rate functions do not influence
the performance of the optimization framework for finding dynamic equivalent
networks. Further, the structural differences between the networks also have no
influence on the optimization problem, since the structural differences are encoded
by the values of the binary decision variables, the number of decision variables is
the same.

4.5 Example for dynamically equivalent realizations

Consider the networks depicted in Figure 4 with species S = {X1, X2, X3} and
complexes C1 = 3X2, C2 = 3X1 and C3 = 2X1 + X2. The complex composition
matrix and the corresponding monomial vector are

Y =

[
0 3 2
3 0 1

]
, Ψ(x) =

 x32
x31
x21x2

 .

The species in each complex can react with two different kinetics (d1 = d2 = d3 =
2):

g1 1 = x32, g1 2 =
x32

1 +K1x2
, g2 1 = x31,

g2 2 =
x31

1 +K2x1
, g3 1 = x21x2, g3 2 =

x21x2
1 +K3x1x2

,

where the first index indicates the source complex and the second index identifies
the kinetics. Thus, the vector of kinetics can be written as the product of the
monomial vector and the rate weighting matrix

ϕ(x) = P (x)Ψ(x) =



1 0 0
1

1+K1x2
0 0

0 1 0
0 1

1+K2x1
0

0 0 1
0 0 1

1+K3x1x2

 ·
 x32
x31
x21x2

 =



x32
x3
2

1+K1x2

x31
x3
1

1+K2x1

x21x2
x2
1x2

1+K3x1x2


.

Now we can solve the MILP optimization problem (27)-(33) to find all the
sparse realizations, and the other optimization problem with the changed objective
function but the same constraints (28)-(33) to obtain the dense realization. The six

Ãk matrices that correspond to the obtained six dynamically equivalent networks
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depicted in Figure 4 are

ÃAk =

−k11 −k12 0 0 0 0
k11 k12 −k21 −k22 0 0
0 0 k21 k22 0 0

 , ÃBk =

− 3
2
k11 −k12 1

3
k21 0 0 0

0 k12 − 1
3
k21 −k22 0 0

3
2
k11 0 0 k22 0 0


ÃCk =

−k11 − 3
2
k12 0 1

3
k22 0 0

k11 0 −k21 − 1
3
k22 0 0

0 3
2
k12 k21 0 0 0

 , ÃDk =

− 3
2
k11 − 1

2
3k12

1
3
k21

1
3
k22 0 0

0 0 − 1
3
k21 − 1

3
k22 0 0

3
2
k11

3
2
k12 0 0 0 0


ÃEk =

−k11 −k12 k21
3

k22
3

0 0

k11 k12 − k213 − k22
3

0 0
0 0 0 0 0 0

 ,
ÃFk =

(−k11 − l11
3

) (−k12 − l12
3

) 1
3

(k21 − l21) 1
3

(k22 − l22) l31 l32
(k11 − 2l11

3
) (k12 − 2l12

3
) (− k21

3
− 2l21

3
) (− k22

3
− 2l22

3
) 2l31 2l32

l11 l12 l21 l22 −3l31 −3l32

 .

One can easily check that all networks give rise to the same dynamics ẋ = Y ·
Ãik · ϕ(x) with i = A,B,C,D,E, F . The dynamic equations read as

ẋ1 = −k21x31 −
k22x

3
1

1 +K2x1
+ 3k11x

3
2 +

3k12x
3
2

1 +K1x2

ẋ2 = k21x
3
1 +

k22x
3
1

1 +K2x1
− 3k11x

3
2 −

3k12x
3
2

1 +K1x2
.

Note, that the networks A-E are all sparse realizations. Each of them contains
4 edges, which is the minimal number of reactions, that can represent the dynam-
ics. In network E, the complex 2X1 + X2 is isolated (no incoming nor outgoing
reaction), therefore it is not shown.

Realization F is the dense realization, which contains all the possible reactions.
The dense realisation is obviously structurally unique, since in this case it contains
all the possible edges. However, there are continuum many dense realizations, with
the following conditions on the weights: l11 <

3k11

2 , l12 <
3k12

2 , l21 < k21, l22 <

k22, l31 > 0, l32 > 0, which guarantees that the matrices Ãik, i = A,B,C,D,E, F
are proper modified Kirchoff matrices.

Further note, that network A,B,C,D are neither reversible nor weakly re-
versible, but networks E and F are reversible realizations.

5 Summary and conclusions

A canonical decomposition of biochemical reaction rate functions being in a ra-
tional function form is proposed in this paper that contains elementary reaction
rates with a reaction monomial in the nominator, and a positive polynomial in the
denominator. Such a decomposition is meaningful for the majority of known bio-
chemical reaction rate functions, and gives rise to a set of irreversible elementary
biochemical reactions in a biochemical reaction system.

Given such a set of elementary biochemical reactions, we have proposed a uni-
fied biochemical reaction network (bio-CRN) structure as a generalization of the
well established chemical reaction network structure by defining the complexes, the
complex composition matrix Y and the modified Kirchoff matrix Ãk of the struc-
ture that can be represented as a generalized reaction graph. It was proved that
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Fig. 4 Reaction graphs of dynamically equivalent biochemical reaction networks. The differ-
ences from the network A are depicted with green edges.

a bio-CRN model is essentially non-negative. The basic parameter-independent
structural properties, such as reversibility, weak reversibility and deficiency were
also illustrated using the bio-CRN structure.

The notion of dynamically equivalent biochemical networks was introduced as
a generalization of that defined for CRNs, and an algorithm was proposed for
constructing a realization of a biochemical reaction network from its ODE model.
Then the mixed integer linear optimization problem was formulated for comput-
ing dynamically equivalent alternative sparse and dense bio-CRN structures to a
given dynamics that enables to apply similar computational methods that were
developed for the CRN case by Szederkényi [30]. The methods and tools proposed
by the bio-CRN case were illustrated by simple examples.
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32. Szederkényi, G., Hangos, K.M.: Finding complex balanced and detailed balanced realiza-
tions of chemical reaction networks. Journal of Mathematical Chemistry 49(6), 1163–1179
(2011)
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A Nomenclature

Notation Description
Ak ∈ Rm×m Kirchhoff matrix containing the reaction rate coefficients

Ãk ∈ Rm×κ Kirchhoff matrix containing the principal reaction rate coefficients
C = {C1, . . . Cm} set of complexes
d1, . . . dm number of different kinetics from complexes C1, . . . Cm, respectively

D : x ∈ Rn+ → R+ positive multivariate polynomial with leading 1

ϕ : x ∈ Rn+ → Rκ+ vector of kinetics
gil the lth kinetics of the reaction in complex Ci
kijl reaction rate coefficient of the reaction Ci → Cj of the lth kinetics
κ number of different kinetics in the network
Ed edges of the weighted, directed reaction graph

η(i) complex composition vector of complex Ci
m number of complexes
M = Y Ak monomial coefficient matrix

M̃ = Y Ãk kinetic coefficient matrix
µij stoichiometric coefficient of specie Xi in (product) complex Cj
n number of species
νij stoichiometric coefficient of specie Xi in (source) complex Cj
P (x) ∈ Rκ×m rate weighting matrix

Ψ(x) ∈ Rn+ → Rm+ monomial vector function

r(x) ∈ Rn+ → R+ reaction rate function
Rn the space of n-dimensional real vectors

Rn+ = [0,∞)n n-dimensional non-negative orthant
Rn+ = (0,∞)n n-dimensional positive orthant
Rm×n the space of m × n dimensional real matrices
R set of reactions

ρ(l,k) = η(l) − η(k) reaction vector corresponding to the reaction Ck → Cl
S set of species
S stoichiometric subspace
Vd vertices of the weighted, directed reaction graph
X1, . . . Xn species
x ∈ Rn species concentration
Y complex composition (stoichiometric) matrix

Ỹ truncated complex composition (stoichiometric) matrix

B Further examples and decompositions of biochemical reaction rate
functions

In this section we show for a set of biochemical reaction rate functions –mostly from the well-
known modeling software COPASI [16, ]–, how to formulate them using elementary biochemical
reaction rate functions according to (4). We have to note that not every reaction rate function
can be formulated as (4).

Whenever a reaction rate function is reversible, two irreversible elementary reaction rate
functions are formulated, rf for the forward and rr for the reverse reaction. In what follows
S, P , I and A stand for the concentration of substrates, products, inhibitors and activators,
respectively. The notations used for the constant parameters of the reaction rate functions are
adapted from the COPASI software.

– Mass Action (reversible)

k1
∏
i

Sj − k2
∏
j

Pj =⇒ rf = k1
∏
i

Sj ; rr = k2
∏
i

Pj ,

– Michaelis-Menten (reversible)

Vf
S

Kms
− Vr P

Kmp

1 + S
Kms

+ P
Kmp

=⇒ rf = k1
S

1 + k3S + k4P
; rb = k2

P

1 + k3S + k4P
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where k1 =
Vf

Kms
, k2 = Vr

Kmp
, k3 = 1/Kms and k4 = 1/Kmp.

– Hill Cooperativity (irreversible)

V Sh

Kh + Sh
=

V ( S
K

)h

1 + ( S
K

)h
=⇒ r = k1

Sh

1 + k2Sh
,

where k1 = V/Kh and k2 = 1/Kh.
– Ordered Bi Uni

Vf (SaSb − P
Keq

)

SaSb +KmaSb +KmbSa +
Vf

VrKeq

(
Kmp + P

(
1 + Sa

Kia

)) =⇒

rf = kf
SaSb

1 + k1SaSb + k3Sb + k4Sa + k5P + k6PSa
;

rb = kr
P

1 + k1SaSb + k3Sb + k4Sa + k5P + k6PSa
,

where k1 =
VrKeq

VfKmp
, kf = Vfk1, kr = Vfk1/Keq , k3 = Kmak1, k4 = Kmbk1, k5 =

k1/Kmp and k6 = k1/(KmpKia).
– Allosteric inhibition (reversible)

Vf
S

Kms
− Vr P

Kmp

1 + S
Kms

+ P
Kmp

+ ( I
Ki

)n
=⇒

rf = kf
S

1 + k1S + k2P + k3In

rr = kr
P

1 + k1S + k2P + k3In
,

where kf = Vf/Kms, kr = Vr/Kmp, k1 = 1/Kms, k2 = 1/Kmp and k3 = 1/Kn
i .

– Mixed Inhibition (irreversible)

V S
Km

1 + I
kis

+ S
Km

+ S
Km

I
kic

=⇒ r = k1
S

1 + k2I + k3S + k4SI
,

where k1 = V/Km, k2 = 1/kis, k3 = 1/Km and k4 = 1/(Kmkic).
– Catalytic Activation (irreversible)

Vmax
S

KmS

A
KmA

1 + S
KmS

+ A
KmA

+ S
KmS

A
KmA

=⇒ r = k
SA

1 + k1S + k2A+ k3SA
,

where k = Vmax/(KmSKmA), k1 = 1/KmS , k2 = 1/KmA and , k3 = 1/(KmSKmA).
– Substrate inhibition (irreversible)

V S
Km

1 + S
Km

+ ( S
Ksi

)2
=⇒ r = k

S

1 + k1S + k2S2
,

where k = V/Km, k1 = 1/Km and k2 = 1/K2
si.

– Substrate activation (irreversible)

V ( S
Kms

)2

1 + S
Ksc

+ S
Ksa

+ ( S
Ksa

)2
=⇒ r = k

S2

1 + k1S + k2S2
,

where k = V/K2
ms, k1 = Ksa+Ksc

KsaKsc
and k2 = 1/K2

sa.
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C Non-negativity of the solutions of bio-CRNs

In order to prove the non-negativity of the solution, one need to check the Lipschitz condition
and the essential non-negativity of the right hand side of (7). It is easy to see, that the right
hand sides of the ODEs are continuously differentiable, therefore they are locally Lipschitz.

To show the essential non-negativity of the right hand side functions, insert (11) into (7),
for p = 1, . . . n, then the p-th equation reads as

fp(x) =
m∑
l=1

Ypl ·
κ∑
j=1

Ãk,lj · ϕj(x) (34)

Rewriting the sum over all the κ kinetics into two sums: over the reactant complexes and
over the kinetics in each of these complexes, one arrives to

fp(x) =

m∑
l=1

Ypl

m∑
j=1

di∑
i=1

Ãk,l zj+i · ϕzj+i(x), (35)

where zj =
∑j−1
k=1 dk. Using (11) and (4)

fp(x) =

m∑
l=1

Ypl

m∑
j=1

di∑
i=1

Ãk,l zj+i · gji(x) =

m∑
l=1

Ypl

m∑
j=1

di∑
i=1

Ãk,l zj+i ·
∏n
o=1 x

Yoj
o

Dji(x)
. (36)

From the definition of Ãk we know that the coefficients Ãk,l zj+i are negative when l = j and
non-negative otherwise. So we decompose the summation over j into the two cases

fp(x) =

m∑
l=1

Ypl

m∑
j=1,j 6=l

di∑
i=1

Ãk,l zj+i ·
∏n
o=1 x

Yo,j
o

Dji(x)
−

m∑
l=1

Ypl

di∑
i=1

|Ãk,l zj+i| ·
∏n
o=1 x

Yol
o

Dli(x)
. (37)

Notice that the first term is always non-negative and the second term contains the factor

Yplx
Ypl
p . If Ypl = 0, then limxp→0

0·x0p
D(x)

= 0. If Ypl > 0, since the denominator term (6) cannot

approach zero, limxp→0
Yplx

Ypl
p

D(x)
= 0 and fp is indeed essentially non-negative.

D Kinetic realizability

D.1 Dynamic equations with reaction vector formalism

The balance equations can also be written using the reaction rate functions and the reaction
vectors. Let denote the reaction rate corresponding to the reaction (Ci, Cj , Gl) ∈ R by rijl
and the set of all reaction rates by ∇ = {rijl} for i = 1, . . .m; i = 1, . . .m; l = 1, . . . di. Then,
the balance equation reads as

ẋ =
∑

rijl∈∇
rijl(x)

(
η(j) − η(i)

)
, (38)

where the reaction vector ηi is the i-th column of the complex composition matrix Y . Let {ωi}
be the standard basis on Rm, thus η(i) = Y ωi. Inserting above yields

ẋ = Y
∑

rijl∈∇
rijl(x) (ωj − ωi) .

Rewrite the sum for each source complex, product complex and each kinetics

ẋ = Y
m∑
i=1

m∑
j=1

di∑
l=1

rijl(x) (ωj − ωi) .
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Here we used the convention, that if the reaction (Ci, Cj , Gl) 6∈ R, then the corresponding
principal reaction rate coefficient kijl = 0, thus the reaction rate rijl(x) = 0. Let also use the
definition of the bio-chemical reaction rate functions from (4)

ẋ = Y

m∑
i=1

m∑
j=1

di∑
l=1

kijl
xη

(i)

Dil(x)
(ωj − ωi) (39)

D.2 The proof of kinetic realizability

Consider the following autonomous ordinary differential equations

ẋ(t) = f(x(t)), x(0) = x0, t ∈ [0, tf ),

where f(x) : Rn → Rn and x ∈ Rn. Assume that the right hand side function f is composed by
the linear combination of biochemical reaction rate functions (4). Then, there exists a bio-CRN
with n species included if and only if for each o = 1, . . . n the fo([x1, x2, . . . , xo−1, 0, xo+1 . . . xn])
is a non-negative linear combination of the biochemical reaction rate functions.

Proof: (Sufficiency) In the ith equation each term in fi(x) has the form

ai
xp11 xp22 . . . x

pi
i . . . xpnn

D(x)
, (40)

where the exponents pj ≥ 0 for j = 1 . . . n and specially pi > 0, or

bi
xq11 xq22 . . . x

qi−i
i−1 x

qi+i
i+1 . . . xqnn

D(x)
, (41)

where the bi > 0 and the xi is missing from the nominator, i.e. qi ≡ 0. Let

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

.

The following reaction

n∑
j=1

pjXj

|ai|,
∑n
j=1 x

pj
j

D(x)


−−−−−−−−−−−−−−−→ (pi + sign(ai))Xi +

n∑
j=1,j 6=i

pjXj ,

results the term (40) in fi, but does not contribute to any other fj , j = 1, . . . n, j 6= i, since the
stoichiometric coefficients for any other Xj are the same in the reactant and in the product
side. Further, the reaction

n∑
j=1

qjXj

bi,
∑n
j=1 x

qj
j

D(x)


−−−−−−−−−−−−−→ Xi +

n∑
j=1,j 6=i

qjXj ,

contributes (41) in fi, but nothing for the other fj .
Since all terms in f can be realized by a biochemical reaction with either the biochemical

rate |ai|
∑n
j=1 x

pj
j

D(x)
or bi

∑n
j=1 x

qj
j

D(x)
, we proved the sufficiency.
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Necessity. Let o = 1, . . . n and recall (38)

fo(x) =
∑

rijl∈∇
rijl(x)

(
η
(j)
o − η(i)o

)
.

Inserting the reaction rate functions (4) yields

fo(x) =
∑
∇

kijl

Dil(x)
xη

(i)
(
η
(j)
o − η(i)o

)
.

Let xo = 0. If η
(i)
o > 0, then the monomial xη

(i)
is zero and therefore, the corresponding terms

in the sum disappear. On the other hand, if η
(i)
o = 0, then the 00 is the problem, which is

treated as

kijl

Dil(x)
xη

(i)
(
η
(j)
o − η(i)o

)
= lim
xo→0+

kijl

Dil(x)
xη

(i)
1 xη

(i)
2 . . . x

η
(i)
o−1x0ox

η
(i)
o+1 . . . xη

(i)
n η

(j)
o =

=
kijl

Dil([x1, . . . , xo−1, 0, xo−1 . . . xn])
xη

(i)
1 xη

(i)
2 . . . x

η
(i)
o−11x

η
(i)
o+1 . . . xη

(i)
n η

(j)
o .

Let R = { terms in which η
(i)
o = 0} and so

fo([x1, x2, . . . , xo−1, 0, xo+1 . . . xn]) =
∑
R

η
(j)
o kijl

Dil(x)
xη

(i)
1 xη

(i)
2 . . . x

η
(i)
o−1x

η
(i)
o+1 . . . xη

(i)
n ,

which is indeed a non-negative linear combination of elementary biochemical reaction rate
functions.

E Properties of the realizations

In this section we prove the three claims from Section 4.3.

Indirect proof of P1 and P2. Let M = Y Ãk and assume that (Y, Ãk, P ) is a dense realiza-

tion of Σ and thus according to (13), Ãk has the most number of positive entries among the

possible solutions of M = Y Ãk. Further assume that Ã′k is also a valid modified Kirchhoff ma-

trix solution of M = Y Ã′k, but there is i, j, l, i 6= j such that Ãk,i,zj+l = 0 but Ã′k,i,zj+l > 0.

Then, it follows from (23) that Ã′′k = 1
2
Ã′k + 1

2
Ãk is also a valid dynamically equivalent real-

ization of Σ, but Ã′′k has more positive elements than Ãk, which is a contradiction.

Proof of P3. (⇒) If the sparse and the dense realizations are structurally identical, then all
the realizations are structurally the same, since the dense realisation is structurally unique.
Thus any realisation is structurally unique. (⇐) If the structure of the realization is unique
then the dense and the sparse realizations are trivially identical.


