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Abstract—This paper presents the modeling and identification
procedure for a VVER-type pressurized water reactor. The
modeling goal is to produce a mathematical description in
nonlinear state-space form that is suitable for control-oriented
model analysis and preliminary controller design experiments.
The proposed model takes temperature effects and Xenon poi-
soning into consideration and thus it is an extension of formerly
published simpler model structures. Real transient measurement
data from the plant has been used for the identification that is
based on standard prediction error minimization. It is shown
that the model is fairly well identifiable and the newly inserted
model components significantly improve the quality of fit be-
tween the measured and computed model outputs. Furthermore,
the estimated parameter values fall into physically meaningful
ranges.

I. INTRODUCTION

The requirement for the continuous improvement of process
safety and effectivity often necessitates the dynamic analysis
and/or re-design of certain subsystems in complex plants. The
need for continuous development is particularly true for such
a safety-critical application like a nuclear power plant. For
the dynamic analysis or controller synthesis, reliable dynamic
models are needed where the level of detail and descriptive
capability very much depend on the exact modeling goal [9].

Most modern controller design methods and the correspond-
ing analysis techniques require that the mathematical model
of the system is in the form of (a preferably low number
of) ordinary differential equations [10]. Unfortunately, the
traditionally available and commonly used dynamic models
for nuclear power plants are much too complex and detailed
for control purposes [8], [13].

Earlier, we developed different versions of a dynamic model
for the primary circuit of a VVER-type nuclear power plants
[5], [6], [7]. The domain of these former models included
the dynamic behavior in normal operating mode together with
the load changes between the day and night periods, which
is approximately the 80 − 100% thermal power range. The
reactor sub-model of our primary circuit model was a time-
dependent, point kinetic model with a single type of delayed
neutron emitting nuclei whose concentration was in a quasi
steady-state [4], [11]. The effect of the control rod position
on the reactivity was approximated by a quadratic function,
i.e. the original simple reactor model was the following:

dN

dt
=
p1v

2 + p2v + p3

Λ
N + S (1)

where N [%] is the neutronflux, v [m] is the control rod posi-
tion, S [%/s] is a virtual neutron source and pi, i = 1, 2, 3 are
estimated parameters. This model suffers from the following
shortcomings.

• The neutron flux is independent from the temperatures,
i.e. it does not contain a temperature feedback from the
temperature of the moderator and/or the fuel.

• To be able to reproduce steady-states correctly with only
one differential equation, a virtual neutron source term
S has been included. This is accepted and used in the
literature, but in a more detailed model the introduction
of other elements with clear physical meaning would be
desirable.

• The concentrations of the delayed neutron emitting nuclei
are assumed to be in quasi steady-state, that is far from
being realistic.

• The model does not describe the measured trends in the
neutron flux in the neighborhood of the steady states and
it has some inaccuracies when simulating load increase
following a load decrease transient (see, Fig. 2).

Process knowledge suggests that taking into consideration
some additional physical details, a more accurate model could
be obtained with a bit more but still manageable number of
state variables. Therefore, the aim of this paper is to extend the
simple reactor model in Eq. (1) with temperature feedbacks,
the dynamics of delayed neutron emitting nuclei and xenon
poisoning. Beside the new model structure, the parameter
estimation procedure is also presented in this paper using
measured plant data.

The paper is organized as follows. In the second section,
the extended model in state space form is presented. The third
section describes the parameter estimation method and the
measurements. The fourth section contains the results of the
parameter estimation, while the conclusions can be found in
the fifth section.

II. REACTOR MODEL

A. Modeling Assumptions

In order to have a low order dynamic model of the reactor
the following simplification assumptions have been made.
R1 The reactor is considered as a spatially homogeneous

lumped parameter system. Therefore, the reactor model
is a time-dependent, non-linear single-group model [11].



R2 The dynamic model of the reactor is derived from the
point kinetic equations.

R3 Only a single "average" group of the delayed neutron
emitting nuclei is assumed.

R4 The reactor is composed of the fuel, the moderator and
the control rod as modelling elements (balance volumes).

R5 The reactivity dependence on the rod position is assumed
to be quadratic.

R6 The reactivity dependence on the temperatures is assumed
to be linear.

R7 The reactivity dependence on the xenon concentration is
assumed to be linear.

R8 The boron concentration is regarded to be constant during
the simulation together with the reactivity coefficients.

R9 The mass flow rate of the moderator is assumed to be
constant.

R10 The heat loss of the reactor is neglected.

The input of the model is the control rod position z [m] and
the temperature of the water entering the reactor Tin [◦C].
The outputs of the model are the neutron flux N [%] and the
average temperature of the moderator Tm [◦C]. It is important
to note that both the inputs and the outputs are measured
variables.

The applied variables and the parameters with their units
and definitions can be found in Table I. The nominal values
of the variables at the 100% operation mode are denoted by
a subscript 0.

We have to note that the structure of the fuel rod is assumed
to be homogenous, i.e. the mass and the specific heat of the
revetment of the fuel rod are taken into account in the mass
and the specific heat of the fuel, respectively. The reason of
this simplification is that the change of temperature of the
revetment is proportional to the changes of the temperature of
the fuel.

The rod effect has been modeled by a quadratic function. A
nonlinear, e.g. a sinusoidal rod effect function could be more
accurate but it makes the model nonlinear in its parameters,
that could cause problems during the parameter estimation.

Only a single averaged group of delayed neutron emitting
nuclei has been assumed after our preliminary analysis of a
model version with six groups [5], where we have found that
their effects were negligible. The effective decay constant have
been calculated as follows [4]:

λC =
∑6
i=1 βi∑6
i=1

βi
λC,i

(2)

B. Model Equations

The state equations are derived from the dynamic conser-
vation balances for the neutron and delayed neutron emitting
nuclei, as well as for the internal energy of the fuel and the
moderator.

1) Neutron Dynamics: According to the assumptions R1,
R2 and R3, the neutron dynamics and the delayed neutron
emitting nuclei dynamics are described by the following

TABLE I
VARIABLES AND PARAMETERS

Identifier M. u. Definition
z(t) m Rod position
N(t) % Neutron concentration
nC(t) % Concentration of the delayed

neutron emitting nuclei
nI(t) cm−3 Iodine concentration
nX(t) cm−3 Xenon concentration
ρ(t) $ Reactivity
Tf (t) ◦C Temperature of the fuel
Tm(t) ◦C Average temperature of the moderator
Tout(t) ◦C Temperature of the water leaving the reactor
Tin(t) ◦C Temperature of the water entering the reactor

φ0 cm−3s−1 Initial equilibrium neutron flux
Λ s Average generation time
Σf cm−1 Macroscopic fission cross section
β - Fraction of delayed neutron group
λC s−1 Decay constant of the

delayed neutron emitting nuclei
λI s−1 Decay constant of Iodine
λX s−1 Decay constant of Xenon
σX cm2 Microscopic absorption cross section
YI - Iodine yield
YX - Xenon yield
αf $/◦C Temperature coefficient of the fuel
αm $/◦C Temperature coefficient of the moderator
A m2 Area of a fuel rod
U Jm−2K−1 Heat transfer coefficient between the fuel

and the moderator
Mf cpf J/K Heat capacity of the fuel
Mmcpm J/K Heat capacity of the moderator
mp kg/s Mass flow rate of the moderator
F J/% Reactor heat power per 1% of neutron flux
p0, p1, p2 $, $

m
, $
m2 Rod parameters

equations [11]:

dN

dt
=β

N

Λ

(
ρ− 1

)
+ nC

β

Λ

dnC
dt

=λC(N − nC) (3)

The reactivity depends on the temperatures, the control rod
position and the xenon concentration (assumptions R5, R6 and
R7) [3]:

ρ = αf (Tf − Tf0) + αm(Tm − Tm0)
+ p2z

2 + p1z + p0

+
σX
βΣf

(nX − nX0) (4)

where αf (Tf − Tf0) describes the temperature feedback of
the fuel, αm(Tm − Tm0) describes the temperature feedback
of the moderator, p2z

2 + p1z + p0 is the effect of the rod to
the reactivity and σX

βΣf
(nX −nX0) is the effect of the Xenon.



2) Equations of Thermodynamics: Energy balances are
constructed for the fuel and the moderator (assumption R4).
The energy balance for the fuel is

MfcpfdTf = −UA(Tf − Tm)dt+ FNdt (5)

where MfcpfdTf is the inner energy change of the fuel due to
the temperature change, −UA(Tf − Tm)dt is the transferred
heat to the moderator and FNdt is the heat power of the
reactor per unit time. To describe the temperature of the fuel
Eq. (5) is transformed to the

dTf
dt

= − UA

Mfcpf
(Tf − Tm) +

F

Mfcpf
N (6)

form.
The energy balance for the moderator is

MmcpmdTm = UA(Tf − Tm)dt+mpcpmTindt−
−mpcpmToutdt (7)

where MmcpmdTm is the inner energy change of the modera-
tor due to the temperature change, mpcpmTindt is the energy
of the inlet mass flow of the moderator and mpcpmToutdt
is the energy of the outlet mass flow of the moderator
(assumption R9). Applying a similar transformation as before
we obtain that

dTm
dt

=
UA

Mmcpm
(Tf − Tm)− mp

Mm
(Tout − Tin) (8)

Let us group the parameters and introduce the following
notations

A1 =
UA

Mfcpf
A2 =

F

Mfcpf
(9)

A3 =
UA

Mmcpm
A4 =

mp

Mm
(10)

With this we can transform (6) and (8) into the following form

dTf
dt

= −A1(Tf − Tm) +A2N (11)

dTm
dt

= A3(Tf − Tm)−A4(Tout − Tin) (12)

However, the steady state determines the following relation-
ships among these parameters:

0 = −A1(Tf0 − Tm0) +A2N0

0 = A3(Tf0 − Tm0)−A4(Tout0 − Tin0)

From these we can express A2 and A4 as:

A2 =
A1(Tf0 − Tm0)

N0

A4 =
A3(Tf0 − Tm0)
(Tout0 − Tin0)

Furthermore, the expression Tout0−Tin0 in the denominator of
A4 can be transformed into 2 (Tm0 − Tin0) using the equation
Tm0 = Tout0+Tin0

2 .

3) Equations of Poisoning: In power reactors we cannot
neglect the xenon poisoning, because the duration of load
changes (4-6 hours) between the day and night is close to
the half life times of the Xenon (9 hours) and the Iodine (6
hours). The concentration change of Xenon is also relevant
in shorter terms, because it has great microscopic absorption
cross section. To describe the concentration change of Xenon
we also have to describe the Iodine concentration [4], [11]:

dnI
dt

= YIΣf
N

N0
φ0 − λInI (13)

dnX
dt

= YXΣf
N

N0
φ0 + λInI − λXnX

− σXnX
N

N0
φ0 (14)

where YIΣf N
N0
φ0 and YXΣf N

N0
φ0 is the effect of the Uranium

fission, λInI is the Iodine atoms decay to xenon in one cm3

per time unit,−λXnX−σXnX N
N0
φ0 is the decrease the Xenon

concentration because of the decay and neutron absorption.
We use the following simplifications in the notations: X =
nX/Σf and I = nI/Σf .

C. State Space Form

In order to be able to apply standard identification and con-
troller design methods, the above engineering model equations
have been transformed into a state-space model form.
State equations

dN

dt
= β

N

Λ

 
αf (Tf − Tf0) + αm(Tm − Tm0) + (15)

+ p2z
2 + p1z + p0 +

σX

β
(X −X0) − 1

!
+ nC

β

Λ

dnC

dt
= λC (N − nC ) (16)

dTf

dt
= −A1(Tf − Tm) + A1

Tf0 − Tm0

N0
N (17)

dTm

dt
= A3(Tf − Tm) − A3

Tf0 − Tm0

Tm0 − Tin0
(Tm − Tin) (18)

dI

dt
= YI

N

N0
φ0 − λII (19)

dX

dt
= YX

N

N0
φ0 + λII − λXX − σXX

N

N0
φ0 (20)

Output equation
y = [N,Tm]T (21)

III. PARAMETER IDENTIFICATION

A. Measurements

Measured data from unit 1 of the Paks Nuclear Power Plant
in Hungary were collected for parameter estimation purposes.
To extract as much dynamic information as possible, load
change periods were selected for identification.

The measured data that are needed for the identification
included the neutron flux N , and the average temperature of
the moderator Tm as outputs and the rod position z as input.
The data source was the Verona system (see [2]) that is a
reactor monitoring system storing also reactor data. Stored
values are uniformly sampled, the sampling time is 10 s.

The time-span of the raw measurements was between 2 and
72 hours. The selected data sequences had to contain steady



state values together with power increase/decrease without any
significant disturbances and operating mode changes. After the
investigation of the measured data a time interval of 9.5 hours
was chosen for parameter estimation.

It is important to note that these data are passive measured
data from the nuclear power plant under closed-loop control
where the excitation was provided by the load changes.

B. Identification Method

First, the parameters of the model have been grouped based
on the knowledge of their values.

• Known parameters. They are the parameters of nuclear
processes, Λ, β, λI , λX , YI , YX , and λC .

• Partially known parameters. A reliability domain is given
to their value, they are φ0, σX , αm, αf , and the rod
parameters. The value of these parameters is in principle
known from the literature, but because of the model
simplification, the estimated value can be different from
the literature value.

• Unknown parameters: A1, A3. We can only give an initial
estimate of them from the geometry and thermohidraulic
data of the reactor.

The value of partially known and unknown parameters have
been estimated from measurements using a constraint during
the estimation: the estimated value of partially known parame-
ters must be in their reliability (physically meaningful) domain.

The above parameter estimation problem is basically an
optimization problem with objective function fobj which is
bound constrained to keep some estimated parameter values
in a physically meaningful range. Because of the existence
of these constraints, the classical least squares (LS) method
cannot be applied for identification. For the evaluation of fobj ,
the simulation of the system dynamics with some parameter
vector θ is required which is a computationally expensive
operation. This means that the numerical approximation and
evaluation of the gradient of fobj requires much computational
effort and moreover, it can often be unreliable because of
the noise of some measurements. These facts motivated us to
choose a simple yet effective numerical optimization method
that does not need the computation of the gradient of the
objective function.

The Parameter Estimation Tool of the Matlab is applied to
implement the identification algorithm. The applied identifica-
tion method is the Pattern search/Nelder-Mead search method.
It is an optimization-based parameter estimation method based
on the Nelder-Mead simplex method [12]. The objective
function is the SSE (sum of square of error) which measures
the data fit in terms of the 2-norm between the measured and
the model-computed output signals.

The brief operational principle of the Nelder-Mead algo-
rithm is the following (for details, see [12]). A simplex is
the convex hull of n + 1 vertices in an n-dimensional space.
The method starts from an initial working simplex which is
created using the given initial parameter value. The algorithm
then performs a sequence of transformations (that can be
reflection, expansion, contraction or shrink) of the working

simplex, to decrease the objective function values at the
vertices. The algorithm is terminated when the size of the
simplex is sufficiently small, or when the function values at
the vertices are close to each other in some norm. In each
iteration step, the algorithm typically needs only one or two
objective function evaluations which is quite low compared to
most other methods.

It is important to note that the simplex search algorithm
(similarly to many nonlinear optimization techniques) does
not guarantee that the obtained point is a global minimum on
the whole parameter domain. Therefore it is very important
to use as much prior information about the modeled process
as possible to choose proper initial parameter values for the
method.

To use the simplex method, suitable initial values are
needed. They are given from [1] and from the discussion with
nuclear power plant experts.

IV. RESULTS

The parameter estimation was based on the state-space
model equations (15)-(20). The input variable to the model
was the rod position z(t) and the input temperature Tin(t),
the model output variables were the neutron flux N(t) and the
moderator temperature Tm(t). The values of the parameters Λ,
β, λI ,λX , YI , YX , and λC were assumed to be known from the
literature, while A1, A3, αf , αm, φ0 and σX were estimated
using Nelder-Mead simplex algorithm. The applied measured
signals can be seen in Fig. 1. We have to note that the rod
position is measured as the difference between the nominal
position of the rod and the current rod position. If the rod is
inserted from there, then the rod position becomes positive.

The estimated parameter values can be seen in Table II,
while the neutron flux and the temperature of the moderator
fitting can be seen in Fig. 2 and Fig. 3, respectively.

The quality of the parameter estimation is investigated by
the analysis of normalized error function as a function of each
parameter, and by the analysis of the normalized error function
as a function of some pairs of parameters. The normalized
error function is defined as the SSE divided by the 2-norm of
the measured signal. Some typical results can be seen in Figs.
4 and 5. The circle shows the estimated values in Fig. 4.

A. Discussion

The analysis of the fit: In Fig. 2 one can see the measured
neutron flux, together with the simulated one of the original
reactor model [5] and the neutron flux simulated by our new
model.

The steady states are reproduced much better by the new
model than by the original one. The dynamics of the mea-
surements are also described better by our new model than the
original one. This is particularly visible at the end of the power
increase, where the original model shows a high overshot
while the new mode fits well. In addition, the time constants
of both the new and the original model correspond well to the
dynamics of the real system shown by the measurements.



Fig. 1. The measured signals in unit 1.

TABLE II
VALUES OF ESTIMATED PARAMETERS AND KNOWN CONSTANTS

Identifier Value
φ0 7.5 · 1012

σX 2.85 · 10−18

αf −4.436 · 10−3

αm −2.317 · 10−2

A1 0.3

A3 0.141

p0 7.519 · 10−3

p1 −0.37811

p2 −0.73374

YI 0.0639

YX 0.0022

Λ 2.6 · 10−5

β 0.0065

λC 7.728 · 10−2

λI 2.9306 · 10−5

λX 2.1066 · 10−5

However, at the end of the measured signal time-span the
netron flux is increasing slowly as seen in Fig. 2. Unfortu-
nately, none of our models can reproduce this slow change
.

We have to note that application of six groups of delayed
neutron emitting nuclei in the original model did not give
better result, therefore we decided to apply only a single group
of average delayed neutron emitting nuclei.

The analysis of the estimated values: The estimated
values are acceptable, they are in their physically meaningful
reliability domains.

Fig. 2. The measured and the model computed neutron flux in unit 1.

Fig. 3. The measured and the model computed temperature of the moderator
in unit 1.

The parameters can be classified based on the shape of the
error function as follows.

• p0, p1, p2 (Fig. 4 a,).
The error value as a function of the parameter is similar to
a quadratic function, therefore a unique minimum exists.
One can see that the estimated parameter values are close
to the minimum value.

• A1, A3 (Fig. 4 b,).
The error value function as a function of the parameter is
close to a constant. It contains a lot of local minima but
their values are similar. This means that these parameters
cannot be estimated properly.

• αf , αm and σX (Fig. 4 c, and d,).
The error value function is asymmetric. On one side its
gradient is high, while in the other side it is close to
zero. A unique minimum exist, but its determination can
be problematic.

Based on the analysis of the error function as a function of
two parameters (see Fig. 5) one can see that the estimation of
some variable pairs are strongly correlated. For example, one
can see from Fig. 5 a, that there is unique minimum of the
error function as a function of p1 and p2 but there is a linear
correlation between these two parameters, i.e. they cannot be



a, b,

c, d,

Fig. 4. Normalized error values vs. parameter. Circles show the estimated
values.

a,

b,

Fig. 5. Normalized error values vs. two parameters and their contours.

estimated totally independently. Similar, but stronger linear
correlation exists between parameters p2 and αm, see Fig. 5
b, therefore, only one of them can be estimated and this value
determines the value of the other parameter.

V. CONCLUSION

A new extended reactor model for the control oriented mod-
eling of the primary circuit of a nuclear power plant has been
presented in this paper In the new reactor model, the reactivity
depends on the control rod position, the average temperature of
the moderator, the temperature of the fuel, and on the poison
processes. The introduction of previously unmodeled effects

resulted in the fact that this more detailed model describes
the system dynamics more precisely than before, and a good
fit has been achieved even for the load changing transients.
The model is not suitable (and not intended) for describing
dynamics under non-standard operating conditions, such as
faults.

The model parameters have been classified appropriately,
and the partially known and the unknown model parameters
have been estimated using a quadratic objective function and
a nonlinear optimization algorithm, namely, the Nelder-Mead
simplex search method. The necessary measurement data were
collected from a unit of the Paks Nuclear Power Plant, located
in Hungary. The quality of estimates has also been investigated
by the analysis of the objective function.
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