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Abstract— A previously developed simple dynamic model of
an industrial size synchronous generator operating in a nuclear
power plant is analyzed in this paper. The constructed state-
space model consists of a nonlinear state equation and a bi-
linear output equation. It has been shown that the model is
locally asymptotically stable with parameters obtained from
the literature for a similar generator.

The effect of load disturbances on the partially controlled
generator has been analyzed by simulation using a PI controller.
It has been found that the controlled system is stable and
can follow the set-point changes in the effective power well.
The sensitivity of the model for its parameters has also been
investigated and parameter groups have been defined according
to the system’s degree of sensitivity to them. This groups
form the different candidates of parameters for a subsequent
parameter estimation.

I. INTRODUCTION

Nuclear power plants generate electrical power from nu-
clear energy, where the final stage of the power production
includes a synchronous generator that is driven by a turbine.
Similarly to other power plants, both the effective and
reactive components of the generated power depend on the
need of the consumers and on their own operability criteria.
This consumer generated time-varying load is the major
disturbance that should be taken care of by the generator
controller.

The turbo generator, the subject of our study, is a specific
synchronous generator with a special cooling system. The
armature has been cooled by water and the rotor has been
cooled by hydrogen. In the examined nuclear power station
the exciter field regulator of the synchronous generator cur-
rently does not control the reactive power, only the effective
power. The final aim of our study is to design a controller
that can control the reactive power such that its generation
is minimized in such a way that the quality of the control of
the effective power remains (nearly) unchanged.

Because of the specialities and great practical importance
of the synchronous generators in power plants, their model-
ing for control purposes is well investigated in the literature.
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Besides of the basic textbooks (see e.g. [1] and [2]), there
are papers that describe the modeling and use the developed
models for the design of various controllers [3], [4]. These
papers, however, do not take the special circumstances found
in nuclear power plants into account that may result in special
generator models.

The aim of this paper is to perform model verification and
parameter sensitivity analysis of a simple dynamic model
of a synchronous generator proposed in [5]. The result of
this analysis will be the basis of a subsequent parameter
estimation step.

II. THE MODEL OF THE SYNCHRONOUS GENERATOR

In this section the bilinear state-space model for a syn-
chronous generator is presented [5] that will be used for
local stability analysis and parameter sensitivity analysis.

A. Modeling assumptions

For constructing the synchronous generator model, let us
make the following assumptions:
• a symmetrical tri-phase stator winding system is as-

sumed,
• one field winding is considered to be in the machine,
• there are two amortisseur or damper windings in the

machine,
• all of the windings are magnetically coupled,
• the flux linkage of the windings is a function of the

rotor position,
• the copper losses and the slots in the machine are

neglected,
• the spatial distribution of the stator fluxes and apertures

wave are considered to be sinusoidal,
• stator and rotor permeability are assumed to be infinite.

It is also assumed that all the losses due to wiring, saturation,
and slots can be neglected.

The six windings (three stators, one rotor and two damper)
are magnetically coupled. Since the magnetic coupling be-
tween the windings is a function of the rotor position, the
flux linking of the windings is also a function of the rotor
position. The actual terminal voltage v of the windings can
be written in the form

v = ±
J∑
j=1

(rj · ij)±
J∑
j=1

(λ̇j),

where ij are the currents, rj are the winding resistances, and
λj are the flux linkages. The positive directions of the stator
currents point out of the synchronous generator terminals.

Thereafter, the two stator electromagnetic fields, both
traveling at rotor speed, were identified by decomposing each



stator phase current under steady state into two components,
one in phase with the electromagnetic field and an other
phase shifted by 90o. With the aboves, one can construct
an airgap field with its maxima aligned to the rotor poles (d
axis), while the other is aligned to the q axis (between poles)
(see Fig. 1).

Fig. 1. The abc and 0dq frames of the generator

This method is called the Park’s transformation that gives
the following relationship:

i0dq = P · iabc

iabc = P−1 · i0dq
(1)

where the current vectors are i0dq =
[
i0 id iq

]T
and iabc =

[
ia ib ic

]T
and the Park’s transformation

matrix is:

P =

√
2

3

[ 1√
2

1√
2

1√
2

ia cos(Θ) ib cos(Θ − 2π
3 ) ic cos(Θ − 4π

3 )

ia sin(Θ) ib sin(Θ − 2π
3 ) ic sin(Θ − 4π

3 )

]
where ia, ib and ic are the phase currents and Θ [rad] is the

angle between the phase current ia and the current id. Park’s
transformation uses three variables: d and q axis components
(id and iq) and stationary current component (i0), which is
proportional to the zero-sequence current.

All flux components correspond to an electromagnetic
field (EMF), the generator EMF is primarily along the rotor
q axis. The angle between this EMF and the output voltage
is the machine torque angle δ, where the phase a is the
reference voltage of the output voltage. The position of the
d axis (in radian) is Θ = ωrt + δ + π/2, where ωr is the
rated synchronous angular frequency. Finally, the the voltage
and linkage equations are v0dq = P · vabc and λ0dq = P ·
λabc, where the vectors are v0dq =

[
v0 vd vq

]T
and

vabc =
[
va vb vc

]T
, and the linkage flux vectors are

λ0dq =
[
λ0 λd λq

]T
and λabc =

[
λa λb λc

]T
.

The value of the active power can be written (using (1))
in both coordinate systems:

p = vT
abciabc = vT

0dqPP−1i0dq = vT
0dqi0dq (2)

B. Flux linkage equations

The generator consists of six coupled coils referred to with
indices a, b, c (the stator phases coils), F , D, and Q (the
field coil, the d-axis amortisseur and the q-axis amortisseur).
The linkage equations are in the following form:[

λa λb λc λF λD λQ

]T
=

Laa Lab Lac LaF LaD LaQ
Lba Lbb Lbc LbF LbD LbQ
Lca Lcb Lcc LcF LcD LcQ
LFa LFb LFc LFF LFD LFQ
LDa LDb LDc LDF LDD LDQ
LQa LQb LQc LQF LQD LQQ


 ia

ib
ic
iF
iD
iQ

 (3)

where Lxy is the coupling inductance of the coils. It is
important to note that the inductances are time varying since
Θ is a function of time. The time varying inductances can
be simplified by referring all quantities to a rotor frame of
reference through Park’s transformation:[

P 0
0 I3

][
λabc
λFDQ

]
=
[

P 0
0 I3

]
·

·
[

Laa LaR
LRa LRR

][
P−1 0

0 I3

][
P 0
0 I3

][
iabc
iFDQ

]
,

(4)

where LRR is the rotor-rotor, Laa is the stator-stator, LaR

and LRa are the stator-rotor inductance matrices. P is the
Park’s transformation matrix, I3 is the 3×3 unit matrix. The
obtained transformed flux linkage equations are as follows:[

λ0 λd λq λF λD λQ

]T
= L0 0 0 0 0 0

0 Ld 0 kMF kMD 0
0 0 Lq 0 0 kMQ
0 kMF 0 LF MR 0
0 kMD 0 MR LD 0
0 0 kMQ 0 0 LQ

 i0
id
iq
iF
iD
iQ

 (5)

where:
Ld = Ls +Ms + 3

2Lm Lq = Ls +Ms − 3
2Lm

L0 = Ls − 2Ms k =
√

2
3

(6)

C. Voltage equations

The schematic equivalent circuit of the synchronous ma-
chine can be seen in Fig. 2, and the voltage equations (7)
can be derived from it.

Fig. 2. The simplified schema of the synchronous machine

[
vabc
vFDQ

]
= −

[
Rabc 0

0 RFDQ

][
iabc
iFDQ

]
−

−

[
λ̇abc
λ̇FDQ

]
+
[

vn
0

]
,

(7)



where Rabc = diag(
[
ra rb rc

]
), and RFDQ =

diag(
[
rF rD rQ

]
).

The neutral voltage vn can also be deduced from Fig. 2
as follows:

vn = −Rniabc − Lnmi̇abc, (8)

where Lnm = LnU3, and Rn = rnU3, and U3 denotes
the 3× 3 matrix of full ones.

The direct, quadratic, field and amortisseur component of
the voltage using Park’s transformation:[

P 0
0 I3

][
vabc
vFDQ

]
=

[
v0dq
vFDQ

]
(9)

Using (1), it is possible to expand the voltages of the
resistances from (9) as[

P 0
0 I3

][
Rabc 0

0 RFDQ

][
iabc
iFDQ

]
=

=

[
PRabcP−1 0

0 RFDQ

][
i0dq
iFDQ

]
=

=

[
R̂abc 0

0 RFDQ

][
i0dq
iFDQ

]
.

Fig. 3. The simplified equivalent circuit of the transformed stator and rotor
circuits

Using the initial assumption of symmetrical tri-phase
stator windings (i.e. ra = rb = rc = r), we obtain
R̂abc = Rabc = diag(

[
r r r

]
).

The time derivatives of the fluxes can be computed simi-
larly [

P 0
0 I3

][
λ̇abc
λ̇FDQ

]
=

[
Pλ̇abc
λ̇FDQ

]
, (10)

where
Pλ̇abc = λ̇0dq − Ṗλabc = λ̇0dq − ṖP

−1
λ0dq,

and the last term is

ṖP
−1

λ0dq = ω

[
0 0 0
0 0 −1
0 1 0

][
λ0
λd
λq

]
=

[
0

−ωλq
ωλd

]

Finally, the neutral voltage is derived as[
v0dq
vFDQ

]
= −

[
R0dq 0

0 RFDQ

][
i0dq
iFDQ

]
−

[
λ̇0dq
λ̇FDQ

]
+

[
ṖP−1λ0dq

0

]
+
[

n0dq
0

]
(11)

where n0dq is the voltage drop from the neutral network.
n0dq = Pvn = −PRnP

−1
Piabc − PLnmP

−1
Pi̇abc =

−PRnP
−1

i0dq − PLnmP
−1

i̇0dq =

[
−3rni0

0
0

]
−

[
−3Lni̇0

0
0

]
(12)

In balanced condition the v0 voltage is 0. The above
equation can be written in the following form:[

vdq vFDQ

]T
=

−
[
R 0
0 RR

][
idq

iFDQ

]
−

[
λ̇dq
λ̇FDQ

]
+
[
S
0

]
+
[

n0dq
0

]
(13)

where R = diag(
[
r r

]
), RR =

diag(
[
rF rD rQ

]
), and S =

[
−ωλq ωλd

]T
We can write the voltage equation in simplified matrix

form as
vdFDqQ = −RRSωidFDqQ − Li̇dFDqQ, (14)

where vdFDqQ =
[
vd −vF vD = 0 vq vQ = 0

]T
,

idFDqQ =
[
id iF iD iq iQ

]T
while RRSω and L

are the following expressions

RRSω =

[
r 0 0 ωLq ωkMQ
0 rF 0 0 0
0 0 rD 0 0

−ωLd −ωkMF −ωkMD r 0
0 0 0 0 rQ

]

L =

[
Ld kMF kMD 0 0
kMF LF MR 0 0
kMD MR LD 0 0

0 0 0 Lq kMQ
0 0 0 kMQ LQ

]
The state-space model for the currents is obtained by

expressing i̇dFDqQ from (14), i.e.

i̇dFDqQ = −L−1 ·RRSω · idFDqQ − L−1 · vdFDqQ (15)

D. Mechanical equation

The next step is to derive the mechanical part of the model
[2]. The energy balance is written in the form

dWout = dWMech − dWField + dWΩ, (16)

where WΩ is the energy losses in the resistance of the
machine, WField is the energy of the field, WMech is the
mechanical energy and Wout is the output energy of the
synchronous generator. The time derivative of (16) is the
power equation:

dWout

dt
=
dWMech

dt
− dWField

dt
− dWΩ

dt
(17)

pout = pMech − pField − pΩ (18)

On the other hand, using (2), the output power of tri-phase
system is:

pout = vT
abciabc = vT

0dqi0dq (19)



The mechanical torque (TMech) is obtained by dividing
power by the angular velocity ω = dθ

dt , i.e. TMech = PMech
ω .

This gives
TMech = λdiq − λqid (20)

From Newton’s second law the equation of motion is
2H
ωB

ω̇ = TMech − TElectr − TDump, (21)

where TMech is the mechanical torque, TElectr is the elec-
trical torque per phase, H is the inertia constant and TDump
is the dumping torque. The time and the rotation speed
using per units i.e. dimensionless variables is tu = ωBt and
ωu = ω/ωB . Afterwards the normalized swing equation can
be written as

2HωB
dωu
dtu

= TMech − TElectr − TDump, (22)

where 2HωB = τj , where τj is a time-like quantity coming
from per unit notation not detailed here.

The electrical torque can be expressed from the flux and
the current of the machine

TElectr =
1
3

(λdiq − λqid) (23)

It is often convenient to write the damping torque as
TDump = Dω, where D is a damping constant.

The electrical torque expressed using the state vector of
model (15) is then

3 · TElect =

[
Ldiq
kMF iq
kMDiq
−Lqid
−kMQid

]T
·

[
id
iF
iD
iq
iQ

]
(24)

Since the variables have a few orders of magnitude dif-
ference in their values in natural units, the equations are
normalized with respect to a base value (corresponding to
the normal range of the variables). This way all signals
are measured in normalized units (p.u.). Using (22) and the
definition of τj , the speed of the synchronous machine is

ω̇ =



−
Ldiq
3τj

−
kMF iq

3τj

−
kMDiq

3τj
Lqid
3τj

kMQid
3τj
− D
τj



T

·

 id
iF
iD
iq
iQ
ω

 +
TMech

τj

(25)

Note, that (25) can be used as an additional state equation
for state space model (15).
The loading angle (δ) of the synchronous generator is

δ = δ0 +
∫ t

t0

(ω − ωr)dt

that we can differentiate to obtain the time derivative of the
δ in per unit notation

δ̇ = ω − 1, (26)
so the loading angle (δ) can also be regarded as a state
variable in the state space model (15, 25). Altogether, there
are 6 state variables: id , iF , iD , iq , iQ , ω and δ. The
input variables (i.e. manipulatable inputs and disturbances)
are: TMech, vF , vd and vq . Observe, that the state equations
(15, 25, 26) are bilinear in the state variables because matrix
RRSω in (15) depends linearly on ω.

E. Output equations

The output active power equation can be written in the
following form:

pout = vdid + vqiq + v0i0 (27)

Assuming steady-state for the stationary components (v0 =
i0 = 0), (27) simplifies to

pout = vdid + vqiq, (28)
and the reactive power is

qout = vdiq − vqid. (29)

Equations (28-29) are the output equations of the generator’s
state-space model. Observe, that these equations are bi-linear
in the state and input variables.

F. Connecting the synchronous generator to an infinite huge
network

Since every synchronous machine is connected to an
infinite bus (shown in Fig. 4.) the next task is to extend the
previous models with an infinite bus. In Fig. 4, resistance
Re and inductance Le represent the output transformer of
the synchronous generator and the transmission-line.

Fig. 4. Synchronous machine connected to an infinite bus

The matrix form of the modified voltage equation is as
follows:

vabc = v∞abc + Re I3iabc + Le I3i̇abc (30)

Equation (30) can be transformed to the 0dq coordinate
system as

v0dq = Pvabc = Pv∞abc + Re I3i0dq + Le I3i̇0dq (31)

The tri-phase voltage of the bus in the 0dq coordinate system
is then

v∞0dq = Pv∞abc =
√

3V∞

[
0

− sin(δ − α)
cos(δ − α)

]
(32)

Afterwards, one can express the current vector i0dq and
voltage vector v0dq as

Pi̇abc = i̇0dq − Ṗiabc = i̇0dq − ṖP
−1

i0dq (33)

and

v0dq = v∞
√

3

[
0

− sin(δ − α)
cos(δ − α)

]
+ Rei0dq + Lei̇0dq − ωLe

[
0
−iq
id

]
(34)

The integration of resistance Re and inductance Le into
voltage equation (14) can be done by a simple change in
matrices RRSω and L.
The obtained voltage equation is:

vdFDqQ = R̃RSω idFDqQ + L̃i̇dFDqQ, (35)

where vdFDqQ, idFDqQ, i̇dFDqQ RRSω and L̃ are

vdFDqQ =
[
vd −vF vD = 0 vq vQ = 0

]T
idFDqQ =

[
id iF iD iq iQ

]T
R̃RSω = RRSω + diag(

[
Re 0 0 Re 0

]
)

L̃ = L + diag(
[
Le 0 0 Le 0

]
)



From (35) it is possible to express i̇dFDqQ as

i̇dFDqQ = −L̃−1R̃RSωidFDqQ − L̃−1vdFDqQ (36)

Now the extended state space model consists of Equations
(36, 25, 26).

III. MODEL ANALYSIS

The above model has been verified by simulation against
engineering intuition using parameter values of a similar
generator taken from the literature. After the basic dynamical
analysis, the set of model parameters is partitioned based on
the model’s sensitivity on them.

A. Generator parameters

The parameters are described only for phase a since the
machine is assumed to have symmetrical tri-phase stator
windings system. The stator mutual inductances for phase
a are

Lab = Lba = −Ms − Lm cos(2(Θ− π

6
)) (37)

where Ms is a given constant. The rotor mutual inductances
are

LFD = LDF = MR,
LFQ = LQF = 0
LDQ = LQD = 0

The phase a stator to rotor mutual inductances are given by:
(from phase windings to the field windings)

LaF = LFa = MF cos(Θ) (38)

where the parameter MF is given.
The stator to rotor mutual inductance for phase a (from

phase windings to the direct axis of the damper windings) is

LaD = LDa = MD cos(Θ) (39)

with a given parameter MD.
The phase a stator to rotor mutual inductances are given

by: (From phase windings to the damper quadratic direct
axis)

LaQ = LQa = MQ cos(Θ) (40)

Parameters Ld, Lq , MD, MF , MR and MD used by the
state space model (15, 25, 26, 28,29) are defined as

Ld = Ls +Ms + 3
2Lm

Lq = Ls +Ms − 3
2Lm

MD = LAD
k

MF = LAD
k

MR = LAD
MQ = LAQ

k

k =
√

2
3

(41)

Figure 3 shows the position of the following (inductance
and resistance) parameters in the simplified electrical circuit
model:
LF , LD, LQ, Ld, Lq , MF , MD, MQ, rF , rD, rQ,

Using the initial assumption of symmetrical tri-phase
stator windings (i.e. ra = rb = rc = r) we get the resistance

of stator windings of the generator. The rF represent the
resistance of the rotor windings. The rD and rQ represent
the resistance of the d and q axis circuit.

The resistance Re and inductance Le represent the
output transformer of the synchronous generator and the
transmission-line.

The parameters of the synchronous generator were ob-
tained from the literature [1]. The stator base quantities, the
rated power, output voltage, output current and the angular
frequency are:

SB = 160 MVA/3 = 53.333 MVA
VB = 15 kV/

√
3 = 8.66 kV

IB = 6158 A
ωe = 2πf rad/s

The parameters of the synchronous machine and the
external network in per units are:

Ld = 1.700 ld = 0.150 LMD = 0.02838
Lq = 1.640 lq = 0.150 LMQ = 0.2836
LD = 1.605 lF = 0.101 r = 0.001096
LQ = 1.526 lD = −0.055 rF = 0.00074
LAD = 1.550 lQ = 0.036 rD = 0.0131
LAQ = 1.490 rQ = 0.054 Re = 0.2
V∞ = 0.828 Le = 1.640 D = 2.004

B. Local stability analysis

The steady-state values of the state variables can be
obtained from the steady-state version of state equations (36,
25, 26) using the above parameters. Equation (14) implies
that the expected value to iD and iQ are 0, that coincide
with the engineering intuition. The equilibrium point of the
system is:

ω = 0.9990691
id = −1.9132609
iq = 0.66750001
iF = 2.97899982
iD = −8.6242856 · 10−9

iQ = −5.3334899 · 10−10

The state matrix A of the locally linearized state-space
model ẋ = Ax + Bu has the following numerical value in
this equilibrium: −0.0361 0.0004 0.0142 −3.4851 −2.5455 −2.3285

0.0124 −0.0049 0.0772 1.2011 0.8773 0.8025
0.0228 0.0044 −0.0964 2.2057 1.6110 1.4737
3.5855 2.6464 2.6464 −0.0361 0.0901 1.0247
−3.5009 −2.5839 −2.5839 0.0352 −0.1234 −1.0005
−8 · 10−6 −0.0002 −0.0002 −0.0008 −0.0005 −0.0011


The eigenvalues of the state matrix are:

λ1,2 = −3.619088 · 10−2± j0.997704
λ3 = −0.100024 λ4 = −1.67235 · 10−3

λ5 = −4.724291e · 10−4 λ6 = −0.123426

It is apparent that the real part of the eigenvalues are
negative but their magnitudes are small, thus the system is
on the boundary of the stability domain.



Fig. 5. The controller for the nonlinear model implemented in Matlab/Simulink

C. PI controller

The control scheme of the synchronous machine is a
classical PI controller (Fig 5) that ensures stability of the
equilibrium point under small perturbations [4]. The con-
trolled output is the speed (ω), the manipulated input is the
mechanical torque TMech. The proportional parameter of the
PI controller of the speed is 0.05 and the integrator time is
0.1 in per units.

D. Model validation

The dynamic properties of the generator have been inves-
tigated in such a way that a single synchronous machine
was connected to an infinite bus that models the electrical
network (see Fig. 4). The response of the speed controlled
generator has been tested under step-like changes of the
exciter voltage. The simulation results are shown in Fig.
6, where the exciter voltage vF and the torque angle δ are
shown.

When the exciter voltage is increased the loading angle
must be decreased as it can be seen in the Fig. 6.

E. Sensitivity analysis

The aim of this section define parameter groups according
to the system’s sensitivity on them.

Linkage inductances ld, lq , lD, lQ, LMD and LMQ are not
used by the current model, only by the flux model [5]. It is
not expected that the output and the state variables of system
change when these parameters are perturbed, see Fig. 7. As it
was expected, the model is insensitive for these parameters.
Note, that the linkage inductance parameters are only used
for calculating the fluxes of the generator.

Fig. 6. Response to the exciter voltage step change of the controlled
generator (∆ means the deviation form the steady-state value)

Sensitivity of the model to the controller parameters P and
I and the dumping constant D has also been investigated.
Since the PI controller controls for ω modifying the value
of D the controller keeps ω at synchronous speed. This is
why the output and the steady state value of the system
variables do not change (as it is apparent in Fig 8) even



Fig. 7. The model states and outputs for a ±20% change of ld

for a considerably large change of D.
Sensitivity analysis of the resistance of the stator and the

resistance of the transmission line led to the same result.
A ±20% perturbation in them resulted a small change in
currents id, iq and iF , this causes the change of the effective
and the reactive power of the generator, as it is shown in
Fig. 9.

The analysis of the rotor resistance rF showed, that the
±20% perturbation of rF kept the quadratic component of
the stator current (iq) constant, but currents id and iF were
changed. The output of the generator also changed, as it is
shown in Fig. 10.

The sensitivity of the model states and outputs to the
inductance of the rotor (LF ) and the inductance of the
direct axis (LD) has also been analyzed. The results shows
only a moderate reaction in id and iF to the parameter
perturbations, and the equilibrium state of the system kept
unchanged. However, decreasing the value of the parameters
to the 90 percent of their nominal value destabilized the
system. The results of a ±9% perturbation in LF are shown
in Fig. 11. A small perturbation of the outputs is noticeable.

Finally, the sensitivity of the model (15, 25, 26, 28,29)

Fig. 8. The model states and outputs for a ±90% change of D

to the linkage inductance LAD has been examined. When
the parameter has been changed ±5%, currents id and iF
changed only a little. On the other hand, the steady-state
of the system has shifted as it can be seen in Fig. 12. A
parameter variation of 5% destabilized the system.

As a result of the sensitivity analysis, it is possible to
define the following groups of parameters:

• Not sensitive
inductances ld, lq , lD, lQ, LMD, LMQ, LAQ, LQ,
damping constant D and the controller parameters P
and I . Since the state space model of interest is insen-
sitive for them, the values of these parameters cannot be
determined from measurement data using any parameter
estimation method.

• Sensitive

– Less: resistances of the stator r and the
transmission-line Re.

– More: resistance rF of the rotor and the inductance
of transmission-line Le. These parameters are can-
didates for parameter estimation.

• Critically sensitive
linkage inductance LAD, inductances LD and LF .
These parameters can be estimated very well.



Fig. 9. The model states and outputs for a ±20% change of rresist

IV. CONCLUSION AND FURTHER WORK

The simple bilinear dynamic model of an industrial size
synchronous generator operating in a nuclear power plant
described in [5] has been investigated in this paper.

It has been shown that the model is locally asymptotically
stable around a physically meaningful equilibrium state
with parameters obtained from the literature for a similar
generator. The effect of load disturbances on the partially
controlled generator has been analyzed by simulation by
using a traditional PI controller. It has been found that
the controlled system is stable and can follow the setpoint
changes in the effective power well.

Eighteen parameters of the system has been selected for
sensitivity analysis, and the sensitivity of the state variables
and outputs has been investigated for all of them. As a result,
the parameters has been partitioned to four groups.

Based on the results presented here, the further aim of
the authors is to estimate the parameters of the model for
a real system from measurements. The sensitivity analysis
enables us to select the candidates for estimation that are
rF , Le, LAD, LD and LF .
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Fig. 11. The model states and outputs for a ±9% change of LF Fig. 12. The model states and outputs for a ±4% change of LAD


