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Abstract— Using the results related to dynamically equivalent
realizations of reaction kinetic systems, we analyze the dynam-
ical properties of mass action reaction networks on which the
well known structure based theorems of reaction kinetics are
not directly applicable with respect to given range of certain
rate coefficients. We introduce a transformation matrix to
describe parametric changes, and show that if the appropriate
transformation matrix has been found, parameter ranges for
which certain dynamical properties can be ensured may be
determined via the solution of a linear programming problem.
The method is illustrated by numerical examples.

I. INTRODUCTION

Reaction kinetic systems [1] are widely used on both

macroscopic and microscopic scales, describing chemi-

cal/biotechnological and molecular biological phenomena re-

spectively. The theory of chemical reaction networks (CRNs)

or reaction kinetic networks (RKNs) has significant results

relating network structure and the qualitative properties of

the corresponding dynamics [2], [3]. It is well known that

the network structure corresponding to a given dynamics is

generally not unique [1], [4], in other words, structurally

different CRNs may correspond to the same polynomial

differential equations. In this context it is appropriate to call

a CRN a realization of the underlying dynamics. Recently,

optimization-based computational methods were proposed

for dynamically equivalent network structures with given

preferred properties [5], [6].

Since the theorems related to the qualitative dynamic

behavior of kinetic systems are formulated for the CRNs,

it is possible that for certain CRN realizations of a given

dynamics, structural properties can be proved. Therefore, a

possible approach for dynamical analysis is to determine

multiple possible structurally different realizations of a given

dynamics, to determine whether a realization exists for which

a stability related result is valid [7], [8]. The aim of this

paper is to extend this approach to CRNs where some rate

coefficients are uncertain.

II. KINETIC SYSTEMS: MODELS AND

PROPERTIES

The notations used in this introductory section are based

on [3], [2] and [5].
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University, H-1083 Práter utca 50/a, Budapest, Hungary
{csercsik},{szeder}@itk.ppke.hu

A. Basic components of reaction networks

Let us suppose Xi, i = 1, ...,m chemical species taking

part in r chemical reactions. The concentrations xi, i =
1, ...,m form the state vector the elements of which are

non-negative. Elementary reaction steps are defined in the

following form [9]:

m
∑

i=1

αijXi →

m
∑

i=1

βijXi, j = 1, ..., r (1)

where αij is the so-called stoichiometric coefficient of com-

ponent Xi in the jth reaction, i.e. the number of colliding

Xi molecules, and βiℓ is the stoichiometric coefficient of the

product Xℓ. The linear combinations of the species in eq. (1),

namely
∑m

i=1
αijXi and

∑m

i=1
βijXi for j = 1, . . . , r are

called the complexes and are denoted by C1, C2, . . . , Cn.

Note that the stoichiometric coefficients are always non-

negative integers in classical reaction kinetic systems.

According to the extended molecular picture, the reaction

rate of the above reactions can be described as

ρj = kj

m
∏

i=1

[Xi]
αij = kj

m
∏

i=1

x
αij

i , j = 1, ..., r (2)

where [Xi] = xi is the concentration of the component Xi,

and kj > 0 is the reaction rate constant of the jth reaction,

that is always positive.

If the reactions Ci → Cj and Cj → Ci take place at the

same time in a reaction network for some i, j then this pair

of reactions is called a reversible reaction (although it will

be treated as two separate elementary reactions).

B. Graph representation of mass-action systems

Similarly to [10], we can assign the following directed

graph (see, e.g. [11]) to the reaction network (1) in a

straightforward way. The directed graph D = (Vd, Ed) of

a reaction network consists of a finite nonempty set Vd
of vertices and a finite set Ed of ordered pairs of distinct

vertices called directed edges. The vertices correspond to the

complexes, i.e. Vd = {C1, C2, . . . Cn}, while the directed

edges represent the reactions, i.e. (Ci, Cj) ∈ Ed if complex

Ci is transformed to Cj in the reaction network. The reaction

rates kj for j = 1, . . . , r in (2) are assigned as positive

weights to the corresponding directed edges in the graph.

A set of complexes {C1, C2, . . . , Ck} is a linkage class of

a reaction network if the complexes of the set are linked to

each other in the reaction graph but not to any other complex

[3].
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C. Differential equations of mass-action systems

There are several possibilities to represent the dynamic

equations of mass action systems (see, e.g. [10], [12], or

[4]). For our computations, the following factorization is the

most practical one:

ẋ = Y Akψ(x) (3)

where x ∈ R
m is the concentration vector of the species,

Y ∈ R
m×n stores the stoichiometric composition of the com-

plexes, Ak ∈ R
n×n contains the information corresponding

to the weighted directed graph of the reaction network, and

ψ : Rm 7→ R
n is a monomial-type vector mapping defined

by

ψj(x) =
m
∏

i=1

x
yij

i , j = 1, . . . , n (4)

where yij = [Y ]ij . Y and Ak are characterized as follows.

The ith column of Y contains the composition of complex

Ci, i.e. Yji is the stoichiometric coefficient of Ci correspond-

ing to the specie Xj . Ak is a column conservation matrix

(i.e. the sum of the elements in each column is zero) defined

as

[Ak]ij =

{

−
∑m

l=1
kil, if i = j

kji, if i 6= j
(5)

In other words, the diagonal elements [Ak]ii contain the

negative sum of the weights of the edges starting from the

node Ci, while the off-diagonal elements [Ak]ij , i 6= j
contain the weights of the directed edges (Cj , Ci) coming

into Ci. Based on the above properties, it is appropriate to

call Ak the Kirchhoff matrix of a reaction network.

D. Important properties of kinetic systems

A CRN is called reversible, if for each reaction Ci → Cj ,

there exists the reverse reaction Cj → Ci, too. A CRN is

called weakly reversible, if whenever there exists a directed

path from Ci to Cj in the reaction graph, there also exists a

directed path from Cj to Ci. In such a case, all components

of the reaction graph are strongly connected. A complex set

is called terminal if there is no reaction leading out of it.

Using the notation

M = Y Ak, (6)

equation (3) can be written in the compact form

ẋ =Mψ(x) (7)

We can associate an n-dimensional vector with each

reaction in the following way. For the reaction Ci → Cj ,

the corresponding reaction vector denoted by ek is given by

ek = [Y ]·,j − [Y ]·,i, k = 1, . . . , r, (8)

where [Y ]·,i denotes the ith column of Y . The rank of a

reaction network denoted by s is defined as the rank of the

vector set H = {e1, e2 . . . , er} where r is the number of

reactions. The elements of H span the so-called stoichio-

metric subspace, denoted by S, i.e. S = span{e1, . . . , er}.

The positive stoichiometric compatibility class containing a

x0 ∈ R
n is the following set [3]:

(x0 + S) ∩ R
n
+,

where R
n
+ denotes the positive orthant in R

n. The deficiency

d of a reaction network is defined as [10], [3]

d = mni − l− s, (9)

where mni is the number of non-isolated vertices in the

reaction graph, l is the number of linkage classes and s is the

rank of the reaction network. The deficiency is a very useful

measure for studying the dynamical properties of reaction

networks and for establishing parameter-independent global

stability conditions.

E. Structural theorems of reaction kinetic systems

The following results and conjectures illustrate the poten-

tial of applying the theory of kinetic systems in nonlinear

control.

• The Deficiency Zero Theorem [3] shows a very robust

stability property of a certain class of kinetic systems.

It says that deficiency zero weakly reversible networks

possess well-characterizable equilibrium points, and in-

dependently of the weights of the reaction graph (i.e.

that of the system parameters) they are at least locally

stable with a known logarithmic Lyapunov function that

is also independent of the system parameters. Moreover,

they are input-to-state stable with respect to the off-

diagonal elements of Ak as inputs [13], it is straight-

forward to asymptotically stabilize them by additional

feedback [14].

• The Deficiency One Theorem [3] formulates a similar

statement. Consider a chemical reaction network with

deficiency d and l linkage classes. Let di, i = 1, . . . , l
denote the deficiencies of the individual linkage classes

considered as their own networks. Suppose the follow-

ing conditions:

– di ≤ 1 ∀i = 1, . . . , l
–

∑l

i=1
di = d

– Each linkage class contains a single terminal

strongly linked component (i.e. such strong com-

ponent in the reaction graph out of which there are

no outgoing directed edges).

Then, if a mass action system corresponding to the

network with a specified rate set admits a positive

equilibrium concentration, there exists precisely one

equilibrium concentration in each positive stoichiomet-

ric compatibility class. Furthermore, if the network is

weakly reversible, every mass action system permitted

by the network has a positive equilibrium.

To shortly summarize these dynamical properties, we say

that the CRNs for which the deficiency zero or the deficiency

one theorem is valid exhibit the def0- or def1-property,

respectively.

In [15], the authors give necessary and sufficient condi-

tions for a set of polynomial ODEs to be kinetic. The con-

structive proof contains a procedure that defines a possible
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(Y,Ak) pair (and thus ψ(x) as well) for realizing a kinetic

dynamics. In other words, it provides one realization from

the multiple possible ones that we often use as a starting

point for finding other structures.

F. Dynamical equivalence of mass-action networks

It is known [2] that CRNs with different structures and/or

parametrization can give rise to the same kinetic differential

equations. Therefore, we will call two CRNs given by the

matrix pairs (Y 1, A1
k) and (Y 2, A2

k) dynamically equivalent,

if

Y 1A1
kψ

1(x) = Y 2A2
kψ

2(x) = f(x) (10)

In this case, the (Y i, Ai
k) pairs for i = 1, 2 are called

realizations of a kinetic vector field f (see, e.g. [15] for more

details). It is also appropriate to call (Y 1, A1
k) a realization

of (Y 2, A2
k) and vice versa. We will assume throughout the

paper that the set of complexes (i.e. the stoichiometric matrix

Y ) is fixed and known before the computations. In this case

(since ψ(x) is determined by Y as well - see Eq. (4)), the

condition (10) for dynamical equivalence can be written as

Y A1
k = Y A2

k =M (11)

This implies that by fixing Y , the matrices Ai
k are in one

to one correspondence with the realizations, and it makes

sense to say that Ai
k is a realization of (Y,Ak). Furthermore,

we will say that the realizations A1
k and A2

k are structurally

equivalent, if

(A1
k)i,j = 0 ⇔ (A2

k)i,j = 0 ∀ (i, j)

III. RESULTS

To better highlight the applied transformation, firstly, an

example is shown.

Example 1: Let us consider the CRN depicted in Fig.

1

X1+2X2 X1 

2X1+X2 X1+X2 

X1+3X2 

3X2 

1.5

1

1

0.5
0.5

0.5

0.5

Fig. 1. The basic realization of the example network 1

which corresponds to the matrices

Y =

(

1 1 2 0 1 1
2 0 1 3 3 1

)

A
1

k =















−2.5 0 0 0 0 0
1.5 0 0 0 0 0
1 0 −1 0 0.5 0.5
0 0 1 0 0 0
0 0 0 0 −1 0.5
0 0 0 0 0.5 −1















Considering A1
k, the deficiency of the network is 3, this

means that none of the deficiency theorems apply.

On the other hand (e.g. with the algorithm described in

[8]), we can find the reversible structure described by A2
k

(depicted in Fig. 2). In this realization the complexes X1

and 3X2 do not take part in any reaction. In this case we

get that the deficiency of the system is equal to 1, and

reversibility ensures the one terminal strong linkage class,

so the deficiency one theorem applies. Furthermore, the

boundedness conjecture (proved for the one linkage class

case in [16]) ensures the boundedness of trajectories, and

one may also conclude persistence [17] for the network.

X1+2X2 

2X1+X2 X1+X2 

X1+3X2 

1

0.53.06

0.5

0.47 0.47

0.06

0.06
0.97

0.97

0.06

0.06

Fig. 2. The second realization of the example network 1

A
2

k =















−4.12 0 0.06 0 0.06 0.06
0 0 0 0 0 0
1 0 −2 0 0.5 0.5
0 0 0 0 0 0

0.06 0 0.97 0 −1.03 0.47
3.06 0 0.97 0 0.47 −1.03















We have to note that the deficiency one theorem applies not

for A1
k , but only for the reversible realization A2

k. In general,

If we change a parameter (a rate constant) in the CRN

depicted in fig. 1, it is not guaranteed that the dynamical

equivalence with a deficiency one reversible network will

still hold. However, as we will see, realization theory can

be used to analyze the parameter intervals in which the

original system described by Y and A1
k will be dynamically

equivalent to a reversible deficiency one network.

Let us consider a change of parameters in A1
k as follows,

described by the variable α.

Â
1

k =















−2.5 0 0 0 0 0
1.5 0 0 0 0 0
1 0 −1 0 0.5 0.5 + α

2

0 0 1 0 0 0
0 0 0 0 −1 0.5 − α

0 0 0 0 0.5 α

2
− 1















One may ask what is the minimal and maximal value of

α, for which we still may guarantee the existence of a
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dynamically equivalent reversible deficiency 1 CRN. We will

use the transformation below to address this question.

A. The transformation matrix

The Ak matrices are Kirchoff-matrices that have the

column conservation property. It is clear that multiplying a

Kirchoff matrix with any matrix from the right, the column-

conservation property remains unaffected (however, the sign

pattern of the elements is not guaranteed to remain). This

implies the following. Let us assume that we have two

structurally different realizations of the same CRN, namely

A1
k and A2

k. It is possible that for one of these realizations,

let’s say, for A2
k an important structural property applies (see

Example 1).
Consider a transformation matrix T ∈ R

n×n which leaves
the structures (i.e. the positions of zero and non-zero ele-
ments) and the sign-patterns of both A1

k and A2
k unaffected.

Since Y A1
kT = Y A2

kT , (Y, Â1
k) - where Â1

k = A1
kT -

will be also dynamically equivalent to (Y,A2
kT ) (which is

structurally equivalent to A2
k). A possible candidate for such

a T matrix is an identity matrix with one nonzero off-
diagonal element as follows.

T =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 α

0 0 0 0 0 1















(12)

Our aim is to determine the possible values of α, at which

T leaves the structure of both A1
k and A2

k unaffected.
The (i, j)th element, ith row and jth column of any

matrix A will be denoted by Ai,j , Ai,. and A.,j , respectively.
To keep the structure unaffected (keep the corresponding
elements positive, negative or zero) we shall consider the
following. Let us consider for example (A1

k)3,6 > 0. This
will imply that (A1

kT )3,6 should be also greater than zero.
We may write the element (A1

kT )3,6 as the product of the
corresponding columns/rows to derive the constraint

(A1

kT )3,6 = (A1

k)3,.T.,6 = (A1

k)3,.















0
0
0
0
α

1















which results in

(A1

k)3,6 + (A1

k)3,5α > 0

This way for positive and negative elements we derive

inequality type constraints, while for every zero element

we will have an equality type constraint. These constraints

secure the structure invariance of T forA1
k andA2

k. Since if α
is in the j-th column of T , it will affect only the j-th column

of the product. This means that altogether 2n constraints

may be derived (n for A1
k and n for A2

k). Following the

derivation of the constraints, the maximum and minimum

value of α can be determined via the solution of the linear

programming (LP) problem. In the case of our example this

is the following.

min/max α subject to:





















−0.5
1.
0.5

−0.06
−0.5
1.03
0.47





















α <





















0.5
0.5000
1.
0.06
0.5
0.47
1.03





















As mentioned, we would have 12 constraints, but because

of the position of the zero elements, the 5 equality constraints

corresponding to the zeros in the last column of A1
k and A2

k

in this example are trivial.

In the proposed example if α = T5,6, the structure of A1
k

and A2
k remains unaffected if α ∈ (−1, 0.4563). In other

words the CRN described by A1
k exhibits the def1-property

for the parameter values implied by the T transformation

matrix, if α is in the above range.

Since the deficiency zero and deficiency one theorems

depend only on structural properties, the generalization of

the proposed approach may be formulated as follows.

Let us have the matrices Y , A1
k and A2

k such that Y A1
k =

Y A2
k. Let us suppose that for A2

k a structural property (def0-

or def1-property) applies. If we can find a T such that

A1
k is structurally equivalent to A1

kT and A2
k is structurally

equivalent to A2
kT , (Y, Â1

k = A1
kT ) will be dynamically

equivalent to A2
k, and will hold the corresponding structural

property as well.
Example 2: Let us consider the CRN depicted in Fig.

3, described by the matrices

Y =

(

1 2 0 3
0 1 2 1

)

A
1

k =







−1 3 0 0
1 −7 0 0
0 1 −3 2
0 3 3 −2







2X1+X2 X1 

3X1+X2 2X2 

1

1

3

3

3

2

Fig. 3. The basic realization of the example network 2

In this case A1
k represents a network of deficiency 1,

however the deficiency one theorem does not hold, since

multiple terminal strongly connected components are present

in the reaction graph. On the other hand, another realization

of the network may be found with the Kirchhoff matrix
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A
2

k =







−1 2 0 0
1 −2 0 0
0 0 −3 2
0 0 3 −2







In this representation, depicted in Fig. 4, the system contains

two linkage classes instead of one, it is reversible (so weakly

reversible as well), and thus the deficiency zero theorem

holds. Furthermore, the global attractor conjecture ensures

the global stability of equilibria [17].

2X1+X2 X1 

3X1+X2 2X2 

1

2
3

2

Fig. 4. The two linkage class realization of the example network 2

Let us suppose the following transformation matrix:

T1 =







1 α 0 0
0 1 0 0
0 0 1 0
0 0 0 1






(13)

Similarly to the previous example, we may derive a LP
problem to determine the maximal range of α for which the
CRN described by

Â
1a
k = A

1

kT1







−1 3− α 0 0
1 α− 7 0 0
0 1 −3 2
0 3 3 −2







will exhibit the def0-property. In this case the result of the
optimization shows that 0 ≤ α < 2. Furthermore if we
consider the transformation matrices

T2 =







1 0 0 0
0 1 0 0
0 0 1 α

0 0 0 1






T3 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 α 1






(14)

we may similarly conclude that

Â
1b
k = A

1

kT2







−1 3 0 0
1 7 0 0
0 1 −3 2− 3α
0 3 3 3α− 2







and

Â
1c
k = A

1

kT3







−1 3 0 0
1 7 0 0
0 1 2α− 3 2
0 3 3− 2α −2







will show the def0-property for 0 ≤ α < 2

3
and 0 ≤ α < 3

2

respectively.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that if we consider dynamically equivalent

realizations of kinetic systems, and a structural property

(e.g. def0- or def1-property) holds for one of them, then

we may analyze the dynamical properties of the system

regarding some of its parameters with the help of parameter-

dependent transformation matrix T . If we are able to find

a post-multiplication transformation matrix, which leaves

the structure of both Kirchhoff matrices unaffected, then

Â1
k = A1

kT will exhibit the same structural property as A2
k.

The minimum and maximum value of the parameter can

be determined by solving a linear system of equalities and

inequalities that can be handled in the framework of linear

programming.

A. Future work

A possible straightforward generalization of the approach

may be if we do not look for one T transformation matrix,

but for T1 and T2 corresponding to A1
k and A2

k respectively.

If T1 is structure invariant for A1
k and T2 is structure invariant

for A2
k, (Y, Â1

k = A1
kT1) will be dynamically equivalent to

(Y, Â2
k = A2

kT2) where Â2
k = A2

kT2 will have the same

structure as A2
k, thus the same structural dynamical theories

will apply.

A further challenge is to extend the results to stability

related theorems which are not only structure, but also

parameter dependent, like balancedness [18].
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[1] P. Érdi and J. Tóth, Mathematical Models of Chemical Reactions.

Theory and Applications of Deterministic and Stochastic Models.
Manchester, Princeton: Manchester University Press, Princeton Uni-
versity Press, 1989.

[2] F. Horn and R. Jackson, “General mass action kinetics,” Archive for

Rational Mechanics and Analysis, vol. 47, pp. 81–116, 1972.
[3] M. Feinberg, “Chemical reaction network structure and the stability

of complex isothermal reactors - I. the deficiency zero and deficiency
one theorems,” Chemical Engineering Science, vol. 42 (10), pp. 2229–
2268, 1987.

[4] G. Craciun and C. Pantea, “Identifiability of chemical reaction net-
works,” Journal of Mathematical Chemistry, vol. 44, pp. 244–259,
2008.
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