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ABSTRACT

The theory of reaction kinetic networks provides powerful

theorems about the stability of such systems. It is known

however, that different reaction kinetic systems, called real-

izations, may induce the same differential equations. Since

the applicability of stability theorems of chemical reaction

network theory depend on the realization structure, for a

given dynamics, these theorems might be usable or not de-

pending on the actual realization. In this article we point

out that in some cases it may be necessary to determine all

possible realizations of the same kinetic system to find one

for which an appropriate stability theorem can be applied.

Furthermore, we provide an algorithm for the effective cal-

culation of the realizations. We demonstrate the results on

simple examples.
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1 Introduction

Nonnegative dynamical systems are characterized by the

property that the state variables always remain nonnega-

tive during the operation, i.e. the nonnegative orthant is

invariant for the dynamics. Such systems appear primar-

ily in such applications where nonnegative physical vari-

ables (e.g. concentrations, pressures, etc.) correspond to

the states of the studied systems. Therefore the main ap-

plication areas of nonnegative systems are chemistry, biol-

ogy, thermodynamics, population and epidemic modeling

or even certain transportation processes.

Deterministic kinetic systems with mass action kinet-

ics or simply chemical reaction networks (CRNs) or reac-

tion kinetic networks (RKNs) form a wide class of nonneg-

ative systems. CRNs are able to produce all the important

qualitative phenomena (e.g. stable/unstable equilibria, os-

cillations, limit cycles, multiplicity of equilibrium points

and even chaotic behavior) that are important for the study

and better understanding of nonlinear processes. There-

fore, CRNs can be regarded as a possible ”prototype of

nonlinear systems” [3]. The theory of chemical reaction

networks has significant results relating network structure

and the qualitative properties of the corresponding dynam-

ics [8, 5]. However, the network structure corresponding

to a given dynamics is generally not unique [2], in other

words different CRNs may imply the same polynomial dif-

ferential equations. In this context it is appropriate to call

a CRN a realization of the underlying dynamics. Recently,

optimization-based computational methods were proposed

for dynamically equivalent network structures with given

preferred properties [10, 11].

Since the theorems related to the qualitative dynamic

behavior of kinetic systems are formulated for the CRNs, it

is possible that for the same dynamics, multiple CRN real-

izations exist, for some of which certain stability theorems

apply. Therefore a possible approach for stability analysis

is to determine all possible structurally different realiza-

tions of a given dynamics, to determine whether a realiza-

tion exists for which a stability theorem is valid. The aim

of this paper is to summarize some of the most important

stability theorems related to CRNs, to provide an efficient

algorithm for the determination of all structurally different

realizations of a kinetic system, and to demonstrate the ap-

proach on simple examples.

2 Materials and Methods

In this section, we first shortly define the tools used for the

description of CRNs, which will represent the realizations

of a kinetic system, review the stability theorems realted to

CRNs, and then discuss the results regarding kinetic realiz-

ability.

2.1 Dynamics and structure of kinetic systems

Based on [4], we characterize CRNs with the following

triplet.

• S = [X1, ..., Xm] the set of species.

• C = [C1, ..., Cn] is the set of complexes. The com-

plexes are linear combinations of the species, i.e.

Ci =

m
∑

j=1

αijXj , i = 1, ..., n

where αij > 0 are the integers called the stoichiomet-

ric coefficients.
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• R = {(Ci, Cj)} where (Ci, Cj) ∈ C is the set of re-

actions (i.e. Ci is transformed into Cj). Furthermore,

each reaction can be characterized by its reaction rate

coefficient kij ≥ 0.

A directed graph, called the reaction graph or com-

plex graph may be assigned to the reaction network in a

straightforward way. The reaction graph GR = (V,E)
of a reaction network is a directed graph consisting of

a finite nonempty set V of vertices and a finite set E

of edges. The vertices correspond to the complexes, i.e.

V = {C1, C2, . . . Cn}, while the directed edges represent

the reactions, i.e. (Ci, Cj) ∈ E if complex Ci is trans-

formed to Cj in the reaction network. The reaction rates

kij are assigned as positive weights to the corresponding

directed edges in the graph.

A set of complexes {C1, C2, . . . , Ck} is a linkage

class of a reaction network if the complexes of the set are

linked to each other in the reaction graph but not to any

other complex [5].

There are several possibilities to represent the struc-

ture of dynamic equations of mass action systems (see, e.g.

[4] or [2]). We will use the representation introduced in

Lecture 4 of [4], i.e.

ẋ = Y Akψ(x) (1)

where x ∈ R
m is the concentration vector of the species,

Y ∈ R
m×n, a nonnegative integer matrix, stores the sto-

ichiometric composition of the complexes, Ak ∈ R
n×n

contains the information corresponding to the weighted di-

rected graph of the reaction network, and ψ : Rm 7→ R
n is

a monomial-type vector mapping defined by

ψj(x) =

m
∏

i=1

x
yij

i , j = 1, . . . , n (2)

where yij = [Y ]ij . The exact structure of Y and Ak is the

following. The ith column of Y contains the composition

of complex Ci, i.e. Yji is the stoichiometric coefficient of

Ci corresponding to the specie Xj . Ak is a column conser-

vation matrix (i.e. the sum of the elements in each column

is zero) defined as

[Ak]ij =

{

−
∑m

l=1
kil, if i = j

kji, if i 6= j
(3)

In other words, the diagonal elements [Ak]ii contain the

negative sum of the weights of the edges starting from the

node Ci, while the off-diagonal elements [Ak]ij , i 6= j

contain the weights of the directed edges (Cj , Ci) coming

into Ci. Based on the above properties, it is appropriate to

call Ak the Kirchhoff matrix of a reaction network.

2.2 Important properties of kinetic systems

A CRN is called reversible, if each of its reactions is a re-

versible reaction. A CRN is called weakly reversible, if

each complex in GR lies on at least one directed cycle (i.e.

if complex Cj is reachable from complex Ci on a directed

path in the reaction graph, then Ci is reachable from Cj

on a directed path). Furthermore we say that the compo-

nent (or complex set) C′ ⊆ C is strongly connected if

Ci, Cj ∈ C′ implies that there is a path from Ci to Cj .

A component is terminal if there is no reaction leading out

of it.

Using the notation M = Y Ak, equation (1) can be

written in the compact form

ẋ =Mψ(x) (4)

We can associate an n-dimensional vector with each

reaction in the following way. For the reaction Ci → Cj ,

the corresponding reaction vector denoted by ek is given by

ek = [Y ]·,j − [Y ]·,i, k = 1, . . . , r, (5)

where [Y ]·,i denotes the ith column of Y . Any convention

can be used for the numbering of the reaction vectors (e.g.

the indices i and j in (5) can be treated as digits in a decimal

system). The rank of a reaction network denoted by s is

defined as the rank of the vector set H = {e1, e2 . . . , er}
where r is the number of reactions. The elements of H

span the so-called stoichiometric subspace, denoted by S,

i.e. S = span{e1, . . . , er}. The positive stoichiometric

compatibility class containing a x0 ∈ R
n is the following

set [5]: (x0 + S) ∩ R
n
+, where R

n
+ denotes the positive

orthant in R
n. The deficiency d of a reaction network is

defined as [4, 5]

d = mni − l− s, (6)

where mni is the number of non-isolated vertices in the re-

action graph, l is the number of linkage classes and s is the

rank of the reaction network. The deficiency is a very use-

ful measure for studying the dynamical properties of reac-

tion networks and for establishing parameter-independent

global stability conditions.

Furthermore we may define the stociometric matrixQ
of a reversible CRN, which consits of (positive and nega-
tive) integer elements capturing the basic conservation laws
of the reactions. For example the stociometric matrix of

X1 + 2X2 ⇋ X3 ⇋ 2X1 +X2

is

Q =





−1 2
−2 1
1 −1





The concept of balancedness, following [13] may be
defined as follows Let us suppose a reversible CRN, and let
us define the equilibrium constant K

eq
j of the j-th reaction

as

Keq
j

.
=

kf
j

kr
j
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where k
f
j and krj are the forward and backward reaction

rates of reaction j. We say that there exists a thermody-

namic equilibrium x∗ if

Ln(Keq) ∈ im (QT ) (7)

In this case, the set of all thermodynamic equilibria is given

by

ε
.
= {x∗∗ ∈ R

m
+ |QTLn(x∗∗) = QTLn(x∗)} (8)

A CRN is called balanced if there exits a thermodynamic

equilibrium.

Let us emphasize that in contrast to deficiency, which

is a structural property, balancedness also depends on the

actual rate constants.

2.3 Stability theorems of reaction kinetic systems

The following results and conjectures illustrate the poten-

tial of applying the theory of kinetic systems in nonlinear

control.

• The Deficiency Zero Theorem [5] shows a very robust

stability property of a certain class of kinetic systems.

It says that deficiency zero weakly reversible networks

possess well-characterizable equilibrium points, and

independently of the weights of the reaction graph

(i.e. that of the system parameters) they are at least lo-

cally stable with a known logarithmic Lyapunov func-

tion that is also independent of the system parameters.

Moreover, they are input-to-state stable with respect

to the off-diagonal elements of Ak as inputs [1], it

is straightforward to asymptotically stabilize them by

additional feedback [9].

• The Deficiency One Theorem [5] formulates a simi-

lar statement. Consider a chemical reaction network

with deficiency d and l linkage classes. Let di, i =
1, . . . , l denote the deficiencies of the individual link-

age classes considered as their own networks. Sup-

pose the following conditions:

– di ≤ 1 ∀i = 1, . . . , l

–
∑l

i=1
di = d

– Each linkage class contains a single terminal

strongly linked component.

Then, if a mass action system corresponding to the

network with a specified rate set admits a positive

equilibrium concentration, there exists precisely one

equilibrium concentration in each positive stoichio-

metric compatibility class. Furthermore, if the net-

work is weakly reversible, every mass action system

permitted by the network has a positive equilibrium.

• Theorem 4.2 of article [13] concludes that for bal-

anced CRNs, the ε set of thermodynamic equlibria is

globally asymptotically stable for every x(0) ∈ R
m
+ .

2.4 Realizability of polynomial vector fields

Consider an autonomous nonlinear system

ẋ = f(x), x(0) = x0 (9)

where f : X → R
n is locally Lipschitz, X is an open sub-

set of Rn and x0 ∈ X . Suppose that the nonnegative or-

thant [0,∞)n = R
n

+ ⊂ X . Then the nonnegative orthant is

invariant for the dynamics (9) if and only if f is essentially

nonnegative.

The problem of kinetic realizability of polynomial

vector fields was first examined and solved in [7] where

the constructive proof contains a realization algorithm that

produces the weighted directed graph of a possible associ-

ated kinetic mechanism (called the canonical mechanism).

According to [7], the necessary and sufficient condition for

kinetic realizability of a polynomial vector field is that all

coordinates functions of f in (9) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (10)

where gi and hi are polynomials with nonnegative coeffi-

cients.

In [7], the authors give a procedure for generating a

possible reaction graph for a given kinetic ODE system

(as already mentioned, this reaction graph is generally not

unique). The main significance of the above procedure

from our point of view is that it defines a Y and Ak ma-

trices (and so ψ(x) as well) for a kinetic system, in other

words it provides one realization from the all possible ones.

2.4.1 Dynamical equivalence of mass-action networks

It is known [8] that CRNs with different structures and/or

parametrization can give rise to the same kinetic differen-

tial equations. Therefore, we will call two CRNs given by

the matrix pairs (Y 1, A1
k) and (Y 2, A2

k) dynamically equiv-

alent, if

Y 1A1
kψ

1(x) = Y 2A2
kψ

2(x) = f(x) (11)

In this case, the (Y i, Ai
k) pairs for i = 1, 2 are called re-

alizations of a kinetic vector field f (see, e.g. [7] for more

details). It is also appropriate to call (Y 1, A1
k) a realization

(Y 2, A2
k) and vice versa.

We will assume throughout the paper that the set of

complexes (i.e. the stoichiometric matrix Y ) is fixed and

known before the computations. In this case (since ψ(x)
is determined by Y as well - see Eq. (2)), the condition

(11) for dynamical equivalence can be written as: Y A1
k =

Y A2
k = M . This implies that the matrices Ai

k are in one

to one correspondence with the realizations, and it makes

sense to say that Ai
k is a realization of (Y,Ak).

As in [11], we introduce the constraint set K , and the

constrained realizations of a CRN. K excludes s reactions

from the CRN i.e.

K = {[Ak]i1,j1 = 0, ..., [Ak]is,js = 0} (12)

124



where ip 6= jp for p = 1, ..., s. If we enumerate the re-

actions of Ak, we may represent any K as a set of natural

numbers. We denote the set of constraint sets by K.

A dynamically equivalent constrained realization of

a CRN (Y,Ak) is a reaction network (Y,A′

k) such that

Y Ak = Y A′

k and the prescribed constraints K in the form

of eq. (12) are fulfilled for A′

k. A dynamically equivalent

constrained dense realization of a CRN (Y,Ak) is a con-

strained realization that contains the maximal number of

nonzero elements in A′

k. Similarly, the constrained sparse

realization is a constrained realization with the minimal

number of nonzero elements in A′

k.

We will say that the realizationsAk andA′

k are struc-

turally equivalent if [Ak]i,j = 0 only if [A′

k]i,j = 0.

3 Results

As it has been discussed in the previous section, a set of dif-

ferential equations underlying a CRN may have multiple

realizations, which may significantly differ in their struc-

ture. Therefore it is possible that a stability theorem may

hold for only some of them. A possible approach is to de-

rive all the realizations of the corresponding CRN to find

one for which some of the proposed theorems apply.

3.1 Algorithm for the effective determination of real-

izations

A computational algorithm for finding sparse and dense re-

alizations of CRNs is described in [10]. As it is discussed in

[12], the constrained dense realization is a super-structure

[12], during the calculation of realizations, one should take

into account the following considerations.

• First, if we try to compute the constrained dense re-

alization with the constraint set K , and it turns out

that no such realization exists, the same result will be

straightforward for all K ′ ⊃ K .

• Let us define the full constrained dense realization

under the constraint set K as a realization that holds

all edges but the ones which correspond the the con-

straint set K . Our second observation is that if we try

to compute the constrained dense realization with the

constraint set K1, and the resulting realization is not

full (it does not hold all the allowed edges), but cor-

responds to a full constrained dense realization where

K2 ⊃ K1. In this case if K3 is any real subset of K2,

which includesK1 the realization will not exist.

For example, let us assume that we have 6 reactions

in the dense realization and are trying to calculated

the dense realization with K1 = {1} and the re-

sulting constrained dense realization holds only the

edges {3, 5, 6}. In this case K2 = {1, 2, 4}. In this

case neither of the realizations with K3
1 = {1, 2} or

K3
2 = {1, 4} will exist (if they existed, the resulting

realization would not be constrained dense). Further-

more, we do not have to calculate the realization corre-

sponding to K2 = {1, 2, 4} in the following, because

its already given.

According to the above two observations, it makes

sense trying to compute those realizations first, in which

only one edge is prohibited. If any of these possible real-

izations does not exist or is not full constrained, we may

utilize this information in the following when calculating

realizations in which more edges are excluded. We shall

so avoid the computation of those realizations of which we

know that they do not exist, making the algorithm compu-

tationally more efficient. We may formalize this approach

as follows.

Let us define the following GK directed graph. The

nodes of GK correspond to the constraint sets K . A di-

rected edge from node i to node j is present if and only if

Ki ⊂ Kj . It is easy to see that all nodes reachable from i

will be reachable in one step (by the transitivity property of

the subset relation).

In case the algorithm is as follows. We will use a

marking of the nodes, which can be described as an index-

ing from the index set {0, 1}. First, let us assume that all

nodes of GK are unmarked. Let us assume that the dense

realization of the CRN in question holds n edges, while the

sparse realizations (which are not structurally unique) hold

m edges. Let Ω = Ad
k. For i = 1 to i = n − m do the

following.

• Consider all constraint sets, where exactly i edges are

prohibited. Let us denote this set of constraint sets by

Ki. Let us denote an element of this set by Ki
p ∈ Ki.

• Try to compute the corresponding constrained dense

realizations for all Ki
p ∈ Ki for which correspond-

ing node vip in GK is unmarked one by one. As it is

described in [10], this can be done for each possible

realization by solving a mixed integer linear program-

ming problem (MILP).

• If the corresponding realization (A
p
k) exists update Ω

as Ωnew = Ω
⋃

A
p
k

• If the resulting realization exists, however it is not full,

but corresponds to the full realization of the constraint

set Kj
q (corresponding to the node vjq , where j > i),

mark all nodes of GK which can be found on any

paths connecting vip and vjq (including vjq).

• If the corresponding realization does not exist, mark

all nodes in GK which are reachable from vip.

When the algorithm is is finished, Ω will hold all the struc-

turally different realizations of the CRN. It is easy to see,

that we try to compute only those realizations, which have

a chance to exist according to the previous results. Further-

more, if the actual realization does exist, it is sure, that it

will be structurally different from the previous ones.
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4 Examples

4.1 Example 1

Let us consider the system

ẋ1 = 1 + x1x2 − 6x2

1 + 4x4

ẋ2 = 1− 5x1x2

ẋ3 = 4x1x2 − 3x2

3

ẋ4 = 3x2

1 − 3x4 (13)

In this case, the realization is unique, and it de-

fines a weakly reversible CRN with deficiency 0,

which ensures global stability of the equilibrium point

[0.77 0.26 0.52 0.6]. The structure of the realization

(Network 1) is depicted in Fig. 1.

Figure 1. Weakly reversible kinetic structure of Network 1.

The matrices of the CRN description are as follows

Y =









0 0 1 2 0
0 0 1 0 0
0 2 0 0 0
0 0 0 0 1









Ak =













−1 1.5 0 0 1
0 −1.5 2 0 0
1 0 −5 0 0
0 0 3 −3 2
0 0 0 3 −3













4.2 Example 2

Let us suppose, that the CRN depicted in Fig. 2 is given
with the following matrices

Y =

(

1 1 2 0 1 1
2 0 1 3 3 1

)

Ak =

















−2.5 0 0 0 0 0
1.5 0 0 0 0 0
1 0 −1 0 0.5 0.5
0 0 1 0 0 0
0 0 0 0 −1 0.5
0 0 0 0 0.5 −1

















(the differential equations may be obtained by Eq. 4)
The deficiency of the network is 3, and since the network
is not reversible it is neither balanced, this means that none

X1+2X2 

X1 

2X1+X2 X1+X2 

X1+3X2 

3X2 

Figure 2. Network 2.

of the stability theorems itemized in 2.3 apply. If we calcu-
late the dense and a sparse realization, we get the following
matrices

Ad
k =

















−2.9 0 0.1 0 0.1 0.1
1.5 0 0.1 0 0.1 0.1
1.1 0 −1.3 0 0.7 0.6
0.1 0 0.7 0 0.2 0.1
0.1 0 0.3 0 −1.2 0.4
0.1 0 0.1 0 0.1 −1.3

















As
k =

















−2.5 0 0 0 0 0
1.5 0 0 0 0.3333 0
1 0 −1 0 0.5 0.5
0 0 1 0 0 0
0 0 0 0 −0.8333 0.5
0 0 0 0 0 −1

















In the case of the dense and this sparse realization, the defi-
ciency is also 3 and reversibility does still not hold. On the
other hand, if we calculate all realizations we can find the
reversible structure depicted in Fig. 3. In this realization
the complexes x1 and 3x2 do not take part in any reaction,
so we may describe the system with the following matrices

Y =

(

1 2 1 1
2 1 3 1

)

Ak =









−4.12 0.06 0.06 0.06
1 −2 0.5 0.5

0.06 0.97 −1.03 0.47
3.06 0.97 0.47 −1.03









X1+2X2 

2X1+X2 X1+X2 

X1+3X2 

Figure 3. Network 2, reversible realization .

In this case we get that the deficiency of the system

is equal to 1, and reversibility ensures the one terminal

linkage class, so the deficiency one theorem applies. This

means that the equilibrium [0.5 0.41] will be asymptoti-

cally stable in this case.
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4.3 Example 3

Let us consider the brusselator model discussed in [6],
which is able to produce different dynamic behaviors in-
cluding oscillation. The dynamical equations of the model
are

ẋ1 = kf
1
x2 − kr

1x1 − kf
2
x1 + kr

2 − kf
3
x3

1 + kr
3x

2

1x2

ẋ2 = −kf
1
x2 + kr

1x1 + kf
3
x3

1 − kr
3x

2

1x2; (14)

we may easily derive the equilibrium coordinates

x̄1 = kr
2/k

f
2

x̄2 = (kr
1x̄1 + kf

3
x̄3

1)/(k
f
1
+ kr

3 x̄
2

1)

Let us consider the following parametrization

kf
1
= 0.0882 kr

1 = 1 kf
2
= 2 kr

2 = 2 kf
3
= 11.3333 kr

3 = 1

and the realization depicted in Fig. 4.

X2 

2X1+X2 

X1 0

3X1

Figure 4. Network 3, brusselator - reversible realization .

Y =

(

0 1 0 3 2
1 0 0 0 1

)

Ak =













−kf
1

kr
1 0 0 0

kf
1

−kf
2
− kr

1 kr
2 0 0

0 kf
2

−kr
2 0 0

0 0 0 −kf
3

kr
3

0 0 0 kf
3

−kr
3













If we compute the deficiency of the whole network and of

the linkage classes, we may observe that none of the defi-

ciency theorems hold (the overall deficiency is one, while

the deficiencies of the linkage classes are 0). On the other

hand it is easy to check that the conditions for balancedness

hold, so the equilibrium point is asymptotically stable.

5 Conclusion

We have shown that the stability theorems of CRN theory

may be a useful tool to analyze the stability of polynomial

systems, which inhibit kinetic realizations. For the suc-

cessful application of these theorems, one may need to de-

termine all possible structurally different realizations of a

given system and analyze if the set of all realizations holds

one or more, for which a stability theorem applies. We pro-

posed an algorithm for the effective determination of all

possible structurally different realizations. Furthermore we

demonstrated the application of various stability theorems

on simple examples.
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