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Abstract

In this paper it is shown that deficiency zero mass action reaction networks containing one

terminal linkage class are parametrically and therefore structurally unique with a fixed complex

set. Clearly, weakly reversible deficiency zero networks with one linkage class belong to this class.

However, it is shown through an illustrative example that deficiency zero networks with several

linkage classes can have multiple dynamically equivalent realizations, even if the individual

linkage classes are weakly reversible.

Keywords: reaction kinetic systems, mass action kinetics
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1 Introduction

According to the well-known "fundamental dogma of chemical kinetics" different reaction networks

can produce the same kinetic differential equations [9]. This means, that dynamically equivalent

representations called realizations - i.e. reaction networks with possibly different structure and/or

reaction rate coefficients from the original one - may exist that still lead to the same kinetic differ-

ential equations. This fact has a great importance from the viewpoint of analyzing the properties

of a reaction kinetic system given by its kinetic differential equations, because some of the most

important structural properties, such as (weak) reversibility or deficiency are realization-dependent,

i.e. they may change depending of the particular realization.

Reaction kinetic systems form a special sub-class of positive systems with smooth, polynomial

nonlinearities in the ordinary differential equation (ODE) description implied by the mass action

law [13]. Beside the description of classical chemical reactions, chemical reaction networks (CRNs)

are the main building blocks of highly interconnected biochemical networks with complex behavior

such as metabolic or cell signalling pathways [12].

Because of the significance of structural properties [4, 1, 2], it is of great practical and theoretical

interest to find realizations of a given reaction kinetic system with desired properties. The first step

to this is to solve the so-called inverse problem of reaction kinetics (i.e. the characterization of

those polynomial differential equations which are kinetic), that was published in [7]. Recently,

optimization-based computational algorithms have been presented for the construction of CRN

structures with preferred properties such as reversibility or minimal/maximal number of reactions

and complexes in [10] and [11].
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The aim of this paper is to analyze the relations between the structural properties and realization

uniqueness of reaction networks. Chemical reactions are understood in a wide generalized sense in

the paper (like, e.g. in [4] or [3]), because the constraints of (component) mass conservation are not

taken into account.

2 Description and relevant properties of chemical reaction networks

2.1 Dynamics and structure of reaction networks obeying the mass action law

Let us suppose Xi, i = 1, ..., n chemical species taking part in r chemical reactions. The concentra-

tions xi, i = 1, ..., n form the state vector the elements of which are non-negative by nature. The

elementary reaction steps taking place between the chemical species are in the following form [6]:
n
∑

i=1

αijXi →

n
∑

i=1

βijXi, j = 1, ..., r (1)

where αij is the so-called stoichiometric coefficient of component Xi in the jth reaction, and βiℓ is

the stoichiometric coefficient of the product Xℓ. The linear combinations of the species in eq. (1),

namely
∑n

i=1 αijXi and
∑m

i=1 βijXi for j = 1, . . . , r are called the complexes and are denoted by

C1, C2, . . . , Cm. The stoichiometric coefficients are always non-negative integers.

We say that the reaction network (1) obeys the mass action law (MAL), if the reaction rate of

the above reactions can be described as

ρj = kj

n
∏

i=1

[Xi]
αij = kj

n
∏

i=1

x
αij

i , j = 1, ..., r (2)

where [Xi] = xi is the concentration of the component Xi, and kj > 0 is the reaction rate constant

of the jth reaction, that is always positive.

We use the following dynamical description to describe the time-evolution of specie concentra-

tions [3, 4]:

ẋ = Y · Ak · ψ(x) (3)

where Y ∈ R
n×m stores the stoichiometric composition of the complexes, Ak ∈ R

m×m contains the

information corresponding to the weighted directed graph of the reaction network, and ψ : Rn 7→ R
m

is a monomial-type vector mapping defined by

ψj(x) =

n
∏

i=1

x
yij
i , j = 1, . . . ,m (4)
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where yij = [Y ]ij . The explanation of the structures of Y and Ak is the following. The ith

column of Y contains the composition of complex Ci, i.e. Yji is the stoichiometric coefficient of Ci

corresponding to the specie Xj . Ak is a column conservation matrix (i.e. the sum of the elements

in each column is zero) defined as

[Ak]ij =

{

−
∑m

l=1 kil, if i = j

kji, if i 6= j
(5)

Based on the above, we will call a quadratic matrix a Kirchhoff matrix, if it is a column conservation

matrix with non-positive diagonal and non-negative off-diagonal entries. Using Y and Ak, it is

possible to assign a weighted directed graph (often called ’Feinberg-Horn-Jackson graph’) to a

reaction network, where the vertices correspond to complexes, reactions are represented by directed

edges between complexes, and the weights corresponding to directed edges are the appropriate

reaction rate coefficients [4, 13]. We note that the Laplacian matrix of a weighted directed graph is

often defined as −AT
k .

A set of complexes {C1, C2, . . . , Ck} is a linkage class of a reaction network if the complexes

of the set are linked to each other in the reaction graph but not to any other complex [4] (i.e.

the individual linkage classes form the connected components of the directed graph of the reaction

network). Two different complexes are said to be strongly linked if there exists a directed path from

one complex to the other, and a directed path from the second complex back to the first. Moreover,

each complex is defined to be strongly linked to itself. A strong linkage class is a set of complexes

with the following properties: each pair of complexes in the set is strongly linked, and no complex

in the set is strongly linked to a complex that is not in the set. A terminal strong linkage class is a

strong linkage class that contains no complex that reacts to a complex in a different strong linkage

class (i.e. there is no "exit" from a terminal strong linkage class through a directed edge).

For the reaction Ci → Cj, the corresponding reaction vector vij is defined as

vij = [Y ]·,j − [Y ]·,i (6)

where [Y ]·,i denotes the ith column of Y . The rank of a reaction network denoted by s is defined

as the rank of the vector set H = {vij | Ci → Cj exists}. We use the classical definition for the

deficiency δ of a reaction network [4]:

δ = m− l − s (7)

where m is the number of complexes in the network, l is the number of linkage classes (graph

components) and s is the rank of the reaction network.
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2.2 Dynamically equivalent reaction networks

It is known that reaction networks with different structures and/or parametrizations can give rise

to the same kinetic differential equations [9, 10, 11]. Therefore, we will call two reaction networks

given by the matrix pairs (Y (1), A
(1)
k ) and (Y (2), A

(2)
k ) dynamically equivalent, if

Y (1)A
(1)
k ψ(1)(x) = Y (2)A

(2)
k ψ(2)(x) = f(x), (8)

where for i = 1, 2, Y (i) ∈ R
n×mi have nonnegative integer entries, A(i)

k are valid Kirchhoff matrices,

and

ψ
(i)
j (x) =

mi
∏

k=1

x
[Y (i)]kj
k , j = 1, . . . ,m. (9)

In this case, (Y (i)A
(i)
k ) for i = 1, 2 are called realizations of a kinetic vector field f . It is also

appropriate to call (Y (1), A
(1)
k ) a realization of (Y (2), A

(2)
k ) and vica versa.

3 Realizations of deficiency zero CRNs with one terminal strong

linkage class are unique

In this section, we will prove that CRNs with one terminal strong linkage class cannot have multiple

different realizations, if the set of complexes is fixed. For this, we will use the following standard

notations. The dimension of a vector space V is denoted by dim(V ). For an arbitrary matrix M ,

its rank, image and kernel is denoted by rank(M), Im M , and Ker M , respectively. Furthermore,

let us denote the ith column of a matrix M with [M ].,i.

Additionally, the following relations known from linear algebra and CRN theory will be used.

(For R1-R4, the reader is referred to e.g. [8], while R5, R6 can be found in [3] and [5], respectively)

R1 For any two matrices A, B for which AB exists rank(AB) ≤ min(rank(A), rank(B)).

R2 (Rank-nullity theorem) For any k × l matrix M , dim(Im M) + dim(Ker M) = l.

R3 For any matrices A, B such that the product BA exists

dim(Im A ∩ Ker B) = dim(Im A)− dim(Im(BA)) = dim(Ker(BA))− dim(Ker A) (10)
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R4 The maximal rank of a set V = {v(1), . . . , v(k)} of n-dimensional vectors for which
∑n

i=1 v
(j)
i =

0, for j = 1, . . . , k and k >= n, is n − 1. To see this, let us form the following matrix from

the vectors v(1), . . . , v(k)

M = [v(1) v(2) . . . v(k)] (11)

The maximal row rank of M is clearly n − 1, since the zero vector can be constructed as a

nontrivial linear combination (i.e. a simple addition) of the rows of V . The row and column

ranks of any matrix are always equal, therefore the maximal number of linearly independent

vectors in V is n− 1.

R5 If a CRN with the Kirchhoff matrix Ak ∈ R
m×m has one terminal strong linkage class, then

dim(Im Ak) = m− 1.

R6 If each linkage class of a CRN given by (Y,Ak) contains precisely one terminal strong linkage

class, then the deficiency δ of the network is δ = dim(Im Ak ∩ Ker Y ).

Taking into consideration the preliminary facts R1-R6, we can now state our main theorem.

Theorem 3.1. Any deficiency zero CRN given by (Y,Ak) with one terminal strong linkage class

is parametrically and therefore structurally unique, if the set of complexes is fixed, i.e. there is no

Kirchhoff matrix A′

k different from Ak such that Y ·Ak = Y · A′

k.

Proof. (Indirect) Let us assume that there exists a Kirchhoff matrix A′

k 6= Ak such that Y Ak = Y A′

k.

Then Y (Ak −A′

k) = 0. Let Âk = Ak −A′

k. It is clear that Âk is also a column conservation matrix

(not necessarily Kirchhoff), and that the columns of Âk belong to the kernel of Y , i.e. [Âk].,i ∈ Ker Y

for i = 1, . . . ,m. From this it follows that dim(Ker Y ) ≥ 1 since Âk is nonzero.

From R5 we know that dim(Im Ak) = m− 1. From R3 and R6 it follows that dim(Im Ak) =

dim(Im(Y Ak)), i.e. dim(Im(Y Ak)) = m − 1. Using R1 we get that dim(Im Y ) ≥ m − 1 that

implies dim(Ker Y ) ≤ 1. From the two estimations on the dimension of Ker Y we obtain that

dim(Ker Y ) = 1, and (by using R2) that dim(Im Y ) = m− 1.

Since Âk is a column conservation matrix, for any v ∈ Ker Y it is true that
∑m

i=1 vi = 0. Then,

according to R4, Ker Y ⊂ Im Ak, and therefore dim(Im Ak ∩ Ker Y ) cannot be zero, which is a

contradiction.

The following points are important to remark.
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1. Deficiency zero weakly reversible networks with one linkage class form an important subset of

the CRNs for which Theorem 3.1 is valid.

2. If for a given set of complexes Y , a CRN has two different dynamically equivalent realizations

characterized by Ak and A′

k, then it has infinitely many, because e.g. A′

k =
Ak+A′

k

2 also defines

a valid realization with Y .

3. To obtain other possible realizations, Ak can be modified such that any vector constructed

as a linear combination of the basis of Ker Y and satisfying that the sum of its elements

is zero (i.e. the column conservation property) can be added to any column of Ak as long

as the off diagonal and diagonal entries in the resulting A′

k matrix remain non-negative and

non-positive, respectively (see Example 3.1).

4. Theorem 3.1 is naturally valid for CRNs composed of multiple linkage classes each of which has

precisely one terminal linkage class, if the sets of species belonging to the individual linkage

classes are mutually disjoint. In this case, the linkage classes can be treated as separate

independent CRNs. However, if there are common species between the linkage classes, then

zero deficiency and even (weak) reversibility of the linkage classes are not sufficient for the

uniqueness of the realization, as Example 3.1 will show.

Example 3.1. In this example we will show that deficiency 0 does not guarantee the uniqueness

of the realization in the case of multiple linkage classes. Consider the reaction network the graph

of which is shown in Fig. 1. Let us number the complexes as

C1 = X1, C2 = 2X1 +X2, C3 = 2X2, C4 = 3X1 +X2

Then the matrices of the description (3) are the following:

Y =

[

1 2 0 3

0 1 2 1

]

, Ak =













−1 2 0 0

1 −2 0 0

0 0 −3 2

0 0 3 −2













(12)

M = Y Ak =

[

1 −2 9 −6

1 −2 −3 2

]

(13)
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Ker Y = span



































4

−2

1

0













,













−1

−1

0

1



































, (14)

A vector v with zero sum can easily be constructed from the above basis of Ker Y as

v =













4

−2

0

1













+ 3













−1

−1

0

1













=













1

−5

1

3













(15)

If we add v to the second column of Ak, we obtain a Kirchhoff matrix that defines another realization

of the initial CRN:

A′

k =













−1 3 0 0

1 −7 0 0

0 1 −3 2

0 3 3 −2













(16)

It can be checked that M = Y Ak = Y A′

k. It is noticable from Fig. 2 that the deficiency of the

second realization with A′

k is 1, because it contains only one linkage class.

4 Conclusions

It has been shown that the realizations of deficiency zero reaction networks with one strong terminal

linkage class are unique if the set of chemical complexes is fixed. The result is therefore valid

for weakly reversible deficiency zero networks with one linkage class. The given easily verifiable

structural condition can be useful during the modeling and structure or parameter estimation of

dynamic processes described by chemical reaction networks. It has also been shown through an

example that the deficiency zero property in itself is not enough for realization uniqueness.
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Figure 1: Simple reaction network of Example 3.1

Figure 2: Dynamically equivalent one linkage class realization of the CRN of Example 3.1
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Figure captions

• Fig. 1: Simple reaction network of Example 3.1

• Fig. 2: One linkage class realization of the CRN of Example 3.1
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