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three parameters is identi�able. Based on the results of the identi�abilityanalysis, a novel optimization-based identi�ation method is proposed anddemonstrated on in silio data. The proposed method is based on the deom-position of the parameter estimation problem into two parts using multiplevoltage step traes. The results of the artile are used to formulate expliitriteria for the design of voltage lamp protools.Keywords:Dynamial modeling, System Identi�ation, Single Cell Neuronal Models,Computer Algebra, Optimization1. IntrodutionThe HH (Hodgkin-Huxley) modelling formalism of membrane urrentsand ell eletrophysiology is one of the most widely used framework for thepurpose of modelling exitable ells [1℄. HH models, that are essentially non-linear eletrial iruit models, are omposed of parallel voltage dependent(and possibly voltage independent) ondutanes, that orrespond to vari-ous types of membrane urrents. The dynamial desriptions of neuronalbehavior, ranging from the fundamental theoretial priniples [2, 3, 4℄ to thewide range of appliations with speial fous, are predominantly based onthis model lass.Beause of the theoretial and pratial importane of HH models, a largenumber of papers are devoted to their parameter estimation under variousonditions, applying di�erent approahes and estimation tehniques. How-ever, the fundamental question, whether it is at least theoretially possibleto determine all of the model parameters from the measured data - that is,2



the question of theoretial identi�ability - has not even been raised for HHmodels.The onept and importane of identi�ability. One the model struture is�xed (see later Eqs. (2)-(7) in our ase), one an perform parameter estima-tion, the quality of whih is ruial in subsequent usability of the obtainedmodel [5℄. The strutural identi�ability properties of the system desribewhether there is a theoretial possibility for the unique determination ofsystem parameters from appropriate input-output measurements or not. Itis important to emphasize, that identi�ability is a property of the modelstruture, the analysis of whih should ideally preede any model parameterestimation. Basi early referenes for studying identi�ability of dynamialsystems are [6, 7℄. It has been learly shown in the ase of proess systems,that prior strutural identi�ability analysis is an important step in the solu-tion of model alibration problems [8℄. The paper [9℄ solves the problem ofstrutural parameter identi�ability for hemial reation network models.The study and development of di�erential algebra methods, whih areused for identi�ability analysis, ontributed to the better understanding ofimportant system theoreti problems [10, 11℄. The most important de�ni-tions and onditions of strutural identi�ability for general nonlinear systemswere presented in [12℄ in a very lear way. Further developments in the �eldinlude the identi�ability onditions of rational funtion state-spae models[13℄, and the possible e�et of speial initial onditions on identi�ability [14℄.The importane of identi�ability has been also stressed in the ontext ofbiologial models [15, 16, 17, 18℄. However, many modeling and parameterestimation studies in omputational biology still ontinue to ignore this key3



property.Parameter estimation and identi�ability-related results of HH models. Sev-eral artiles have been published whih are fousing on parameter estima-tion problem in the ase of HH based models under various assumptions.Most of the published work [19, 20, 21, 22, 23, 24, 25℄ is onsidering urrentlamp setup, when the voltage traes are measured in the ase of known in-jeted urrents or unknown synapti urrents. In addition, a signi�ant partof literature data assumes prior knowledge regarding the hannel kinetis[19, 22, 21, 25℄. The artile [20℄ provides a survey of automated parameter-searh methods for ompartmental neural models, regarding also the param-eters of ativation and inativation urves. The artiles [26, 27, 28, 29, 30℄onsider voltage lamp senarios (in this ase the voltage is �xed, and trans-membrane urrent traes are measured). In [29, 30, 31℄ a omputationallye�etive global searh method, di�erential evolution is applied.Although the expliit identi�ability properties are not addressed in theabove papers, they disuss several issues, whih are related to identi�ability.The question whether the partiular parameter values seleted are the onlyviable parameters or just one of several possible solutions, has been addressedin [19℄. The paper [32℄ also disusses emerging identi�ability problems inthe ase of HH based neuronal models. In this artile the authors derive 20di�erent omputational models for the erebellar Purkinje ell, whih produevery similar outputs to urrent injetions, and analyze their geometry inthe parameter spae. The artile [22℄ onsiders an estimation problem ofa multiompartmental model based on voltage traes, and shows that if weassume the knowledge of hannel kinetis, the hannel densities (in addition4



intraompartmental ondutanes and overall strength of the presynaptiinput) an be determined. Furthermore, the artile shows that the proposedmethod leads to algorithms that are guaranteed to onverge to the uniqueoptimum. We will see later that identi�ability results desribed in this artileregarding the voltage lamp ase support this observation (if hannel kinetisare known, the maximal ondutane an be uniquely determined).Regarding the results orresponding to voltage lamp setup, the artiles[26, 28℄ realized the weaknesses of the onventional estimation algorithms,whih originate from the assumption of separated ativation and inativa-tion proesses, and provided improved methods for the estimation of HHmodels. Lee et al. in [28℄ proposed a new numerial approah to interpretvoltage lamp experiments. Moreover, it is laimed in [28℄, that all hannelparameters an be determined from a single appropriate voltage step, butthis statement has not been proven rigorously for the whole meaningful pa-rameter spae. In addition, the numerial method proposed in [28℄ is basedon the determination of the time and value of the maximal urrent duringthe voltage step measurement, but, as we will also show, a loal maximumdoes not neessary appear in every ase.Aims. Beause of the lak of identi�ability results even in the simplest pos-sible HH model with just a single ion hannel, the primary aim of this paperis to arry out a rigorous identi�ability analysis in this simplest ase undervoltage lamp measurement onditions. We want to show that identi�abilityproblems may arise even in the very simple ase of one HH hannel withunknown kinetis and a single voltage step measurement protool.An additional goal of the paper is to propose a well grounded parameter5



estimation method for the maximal ondutane and the kineti parametersof the hannel based on the results of identi�ability analysis that is able tohandle the possibly appearing identi�ability problems in the analyzed ase.2. Materials and MethodsIn this setion the model framework, the assumed measurement protool,and the methods applied for identi�ability analysis are desribed.2.1. Ion hannel modelWe onsider a simple hypothetial ion hannel with one ativation (m)and one inativation variable (h). Aording to the most widespread notationin omputational neurosiene (see for eg. [4℄), the urrent, whih is themeasured variable, is simply desribed by
I = gmpmhph(V − E) (1)where V [mV℄ is the voltage, g [nS℄ is the maximal ondutane, and E[mV℄ is the reversal potential of the orresponding ion. The positive integerexponents pm and ph orrespond to the number of independent subunitsof the voltage hannel protein. We will assume the simplest ase in ouralulations when pm = ph = 1. If pm and ph 6= 1, but their values areknown, the estimation algorithm proposed in setion 4 may be used with theorresponding straightforward modi�ation.Both m and h are state variables in the following nonlinear state-spae
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VMaxm, σm, cbh, cah, VMaxh and σh denote the parameters of Gauss-funtionswhih desribe the voltage dependent time-onstants 1.As desribed in setion 1, in this paper we will onsider voltage lamp1We have to note that the approximation of the steady state values with Boltzmannfuntions is not always realisti, as it is desribed in [26℄. However, in the rest of this paperwe assume that this assumption holds. It an be said that the use of Boltzmann-typesigmoid funtions for the desription of steady-state values in the literature is widespread,but not exlusive (see e.g. [33℄). The desription of the voltage dependent time onstantsin the literature is more diverse. In fat, the wide set of possible time onstant urvesorresponding to various rate onstant funtions is desribed in [26℄. The applied Gauss-funtions are an approximation of the skewed bell shape urves, resulting from the rateonstant based desription, where the rate onstants depend exponentially on the voltage(see [26℄). 7



measurement onditions, when the voltage is determined and the transmem-brane urrents are measured.We have to note that beause of the bifuration struture of HH models,small estimation errors of ion hannel properties based on the voltage lampsetup may imply signi�antly di�erent behavior at the membrane voltagelevel, if the voltage is not �xed. However the desription of membrane voltagedynamis is not in the sope of this paper.2.2. Voltage step protoolAn important version of the voltage lamp method is when the voltage,whih is in this ase the manipulable input (u) of the system, is held piee-wise onstant (V (t) = u(t) = Vk for tk ≤ t < tk+1, k = 1, . . . , N). Thus,during eah interval, the values of m∞, h∞, τm and τh an be onsideredas time-invariant parameters in addition to g and E. This implies that thenon-polynomial nonlinearities of Boltzmann and Gauss funtions are natu-rally eliminated from the equations, and the model will fall into the lass ofpolynomial systems, whih makes the appliation of e�etive omputer alge-bra based software tools (e.g. DAISY [34℄) possible for identi�ability testing.Moreover, we also point out that this way we also neglet the prior knowledgethat the ativation and inativation funtions are desribed by Boltzmannand Gauss funtions.We will denote the voltage independent nature of the above parametersshortly by suppressing the V argument, i.e. m∞(V ) = m∞, τm(V ) = τm,
h∞(V ) = h∞ and τh(V ) = τh, with V = V0. In this ase, Eqs. (1-7) aresimpli�ed as follows:

I = gmh(V0 − E) = gmh(u− E) (8)8
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(9)where the model parameters are g, E,m∞, τm, h∞ and τh.2.3. Strutural identi�ability notions and toolsIn general let us onsider the following lass of models

ẋ = f(x, u, θ), x(0) = x0 (10)
y = h(x, u, θ)where x ∈ R

n is the state vetor, y ∈ R
m is the output, u ∈ R

k is the input,and θ ∈ R
d denotes the parameter vetor. We assume that the funtions fand h are polynomial in the variables x, u and θ. We remark that majority ofnonlinear state-spae models with smooth right-hand sides an also be em-bedded into the above polynomial model form (10) on the prie of inreasingthe state spae dimension [35℄.2.3.1. The notions of strutural and pratial identi�abilityThe problem statement of strutural identi�ability analysis is to deter-mine, whether there is a theoretial possibility for the unique determinationof model parameters from measurement data. Shortly speaking, global stru-tural identi�ability means that

y(t|θ′) ≡ y(t|θ′′) ⇒ θ′ = θ′′ (11)where
y(t|θ) = h(x(t, θ), u(t), θ) (12)9



and x(t, θ) denotes the solution of (10) with parameter vetor θ. This meansthat if the system outputs are idential, then the underlying parameters areneessarily the same: this is a model property, e.g. the property of (10). A-ording to (11), a struturally non-identi�able model may produe exatlythe same observed output with di�erent parametrizations. This is learly afundamental obstale of determining the true model parameters from mea-surements irrespetively of the applied estimation method (however sophis-tiated it is), even if the seleted model struture is onsidered to be orret.The lak of strutural identi�ability an usually be �xed by inorporatingmore prior information into the modeling proess e.g. in the form of modelparameter onstraints, by hanging the input/output on�guration, or bymodifying the internal model struture in ase of need. If (11) is valid onlyin a subset of the studied parameter spae, then the model is alled loallystruturally identi�able.Even if the onditions of strutural identi�ability are ful�lled, we are oftenfaed with serious omputational di�ulties during the implementation of theatual parameter estimation proedure. These problems are usually referredto as pratial identi�ability problems, and they are most often aused by thesarity and/or the noisiness of measurement data, by low output sensitivityto ertain parameters, or simply by inappropriately designed input signals.Beside more advaned measurement tehnology, the results in this ase anoften be greatly improved using optimal experiment design tehniques [16℄.2.3.2. Global strutural identi�ability analysis using di�erential algebraThe following notations, de�nitions and onditions are mostly taken from[12℄. Let us denote a di�erential polynomial F (u, u̇, . . . , y, ẏ, . . . ) by F (u, y; p)10



where p = d
dt
.The struture (10) is globally identi�able if and only if by di�erentiating,adding, saling and multiplying the equations the model an be rearrangedto the parameter-by-parameter linear regression form:

Pi(u, y; p)θi −Qi(u, y; p) = 0 i = 1, . . . , d (13)It is visible from (13) that θi an be expressed as
θi =

Qi(u, y; p)

Pi(u, y; p)
i = 1, . . . , d (14)if Pis are non-degenerate. The non-degenerate ondition an be fostered byensuring that the inputs exite the system dynamis su�iently so that theparameter vetor an be determined in a numerially well-onditioned way.2.3.3. Strutural identi�ability analysis using Taylor series expansion of theoutputConsider again the nonlinear model struture in (10). The well-knownpaper [36℄ gives the following ondition for global strutural identi�abilitybased on the Taylor series expansion of the system output. Let

ck(θ) = lim
t→0+

dk

dtk
y(t, θ) (15)Then a su�ient ondition of global strutural identi�ability is

ck(θ1) = ck(θ2), k = 0, 1, . . . , kmax, =⇒ θ1 = θ2 (16)where kmax is a positive integer (small enough for the symboli omputa-tions to remain tratable). It is important to remark that the lak of globalsolvability of ck for the system parameters in the ase of a given kmax value11



is generally not enough for proving non-identi�ability, sine the inlusion ofhigher derivatives (new ck-s) may result in the solvability of the orrespond-ing system of nonlinear equations.3. Identi�ability ResultsIn this setion the obtained results orresponding to strutural identi-�ability properties of ion hannel models under voltage step measurementonditions, and the proposed parameter estimation method based thereonare desribed.3.1. Identi�ability analysis using di�erential algebraThe identi�ability analysis desribed in setion 2.3.2 requires the elim-ination of the di�erential (state) variables m and h from the model Eqs.(8)-(9) and then �nding the parameter groups that an be determined fromthe resulting equations. For onveniene, let us introdue the followingparametrization:
x1 = m, x2 = h

p1 =
1

τm
, p2 = m∞, p3 =

1

τh
(17)

p4 = h∞, p5 = g, k1 = u− EIt an be seen that the physial system parameters are trivially omputable,if p1, . . . , p5 are given. In general, we assume that k1 is known (this meansthat we assume known reversal potential), and we are searhing for the largestsubset in {p1, . . . , p5} that is globally identi�able. Using Eq. (17), the state
12



and output equations of the simple model an be written as
ẋ1 = p1(p2 − x1), ẋ2 = p3(p4 − x2) (18)
y = k1p5x1x2 (19)To get a pure input-output relation, we have to eliminate the state variablesfrom Eqs. (18)-(19). For this, the time-derivative of y is taken that gives

ẏ = (−p1 − p3)y + k1p5p3p4x1 + k1p5p1p2x2. (20)By taking the seond derivative of y with respet to time, the followingequation is obtained
ÿ = (−p1 − p3)ẏ − k1p5p1p3p4x1 − k1p1p1p2p3x2

+ 2k1p1p2p3p4p5 (21)It an be observed that both Eq. (20) and Eq. (21) depend linearly on
x1 and x2, therefore the state variables an be expressed from them andsubstituted to the original output equation (19) in a straightforward way.This property is often alled algebrai observability [10, 34℄. The expressionand substitution results in the following lengthy input-output relation

0 = (−a0 − a1a5 − a1a3)y − (a1a4 − a1a2)ẏ
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2 + a2a4ẏ

2 + ÿ2 + a21 (22)where a0, . . . , a5 are de�ned as
a0 = (p23 − p1p3)(k1p

2
1p2 − k1p1p2p3)

2p4p5,

a1 = 2k1p1p2p3p4p5, a2 = 2p1 + p3

a3 = p21 + p1p3, a4 = p1 + 2p3, a5 = p1p3 + p23 (23)13



The oe�ients in Eq. (22) de�ne the following set of equations for the nineoe�ients ci, i = 1, ..., 9

−a0 − a1a5 − a1a3 = c1 (24)
−a1a4 − a1a2 = c2 (25)

−2a1 = c3 (26)
a2a5 + a3a4 = c4 (27)

a2 + a4 = c5 (28)
a3 + a5 = c6 (29)

a3a5 = c7 (30)
a2a4 = c8 (31)
a21 = c9 (32)The solvability of Eqs. (24)-(32) with respet to the parameters p1, . . . , p5an be heked by e.g. Buhberger's algorithm (see, e.g. [14℄). Using thismethod, the following parameter-pairs an be shown to be globally iden-ti�able: (p1, p2), (p1, p4), (p1, p5), (p2, p3), (p3, p4), (p3, p5). The followingparameter ombinations turned out to be loally identi�able (with 2 possiblesolutions for eah): (p1, p3), (p1, p2, p3), (p1, p3, p4), (p1, p3, p5).For omparison, the identi�ability analysis tehnique based on the Taylorseries expansion of the output has been applied, too, that is desribed in thefollowing subsetion.3.2. Strutural identi�ability analysis using the Taylor series methodTo keep the original physial parameters (or their simple transforma-tions), let us use the previously de�ned parametrization (17) of the ion han-14



nel model.The solution of the state equations (18) is easy to give with zero initialondition:
x1(t) = −p2e

−p1t + p2 (33)
x2(t) = −p4e

−p3t + p4 (34)From this, the output and its suessive derivatives are given by
y(t) = k1p2p4p5(1 + e−(p1+p3)t − e−p1t − e−p3t)

ẏ(t) = k1p2p4p5(−(p1 + p3)e
−(p1+p3)t + p1e

−p1t + p3e
−p3t)

. . . (35)
y(k)(t) = k1p2p4p5((−1)k(p1 + p3)

ke−(p1+p3)t+

+ (−1)k+1(pk1e
−p1t + pk3e

−p3t)), k ≥ 1.From Eq. (35), the oe�ients ck(θ) an be omputed as
c0(θ) = 0

. . . (36)
ck(θ) = k1p2p4p5((−1)k(p1 + p3)

k+

+ (−1)k+1(pk1 + pk3)), k ≥ 1.By the symboli solution of (36), the following parameter pairs were foundto be globally identi�able: (p1, p5), (p1, p2), (p3, p2), (p3, p5), (p1, p4), (p3, p4).The pair (p1, p3) was found to be loally identi�able with 2 possible solutionsas well as the triplets (p1, p3, p5), (p1, p3, p4), (p1, p3, p2).3.3. Disussion of identi�ability resultsFirst we have to emphasize again, that the determination of the identi-�ability properties of a model is an important model-analysis result, whih15



should preede the parameter estimation in ideal ase. If identi�ability prob-lems arise in a model with an assumed input-output on�guration, this willlead to the lak of unique global extremum regarding the optimization prob-lem orresponding to parameter estimation. In this ase, the parameterestimation proess either has to be ompleted with additional measurementsorresponding to di�erent input-output on�gurations (regarding neuronalmodels, one may e.g. onsider using both voltage lamp and urrent lampdata), or reinterpretation of the measurement results is needed, taking intoaount additional assumptions regarding model properties (see later in sub-setion 4).Comparing the results in sub-setions 3.1 and 3.2 above one an observe,that the two methods gave exatly the same globally and loally identi�-able parameter ombinations. We remark that the neessary omputationsfor both methods were performed using the freely available Sage symboliomputation software environment (see. e.g. [37℄, [38℄).The maximal number of identi�able parameters (i.e. the limits of stru-tural identi�ability) in the ase of a single voltage step measurement werewell-observable from the results of the di�erential algebra method. Moreover,it is visible from Eq. (22) that this method (if suessful) �nally gives us suha dynamial desription that is linear in the transformed model parameters(i.e. a regression form model). This theoretially allows us to onstrutsuh an objetive funtion for the parameter estimation that is onvex in thetransformed parameters (e.g. suh a one that is a quadrati funtion of thepredition error). However, it is often not pratially feasible to ompute therequired higher derivatives of the measured system output.16



On the other hand, the smaller set of nonlinear equations in the ase ofthe Taylor series method was muh more easily tratable with symbolialsoftware. Furthermore, it an be seen from the losed form of Eqs. (36) thatneither (p2, p4, p5), nor any pair from these three parameters an be globallyidenti�able.To hek and support our former alulations, we also used the di�erentialalgebra software DAISY [34℄. Firstly, the output of DAISY showed that themodel is algebraially observable, whih is in good agreement with our resultsregarding the elimination of di�erential variables. Seondly, aording to theidenti�ability results of the analysis, the parameters m∞, h∞ and g (i.e.
p2, p4, p5) are not globally identi�able. Moreover, no pair from these threeparameters are identi�able. This fat also mathes the results of sub-setions3.1 and 3.2 where we ouldn't show that these three parameters (or anytwo of them) are identi�able under voltage lamp measurement onditions,assuming a single voltage step.The above results are well understandable in the ase of steady state,when m = m∞ and h = h∞, beause in this ase only the produt of thethree parameters appears as output in y = I = gmh(V − E). However, thedependene also holds during the transient period. In Appendix A a possiblesenario is desribed to demonstrate that the desribed non-identi�abilityproperties may ause problems in the ase of a realisti voltage step protool.The loal identi�ability of (p1, p3) implies that both voltage dependenttime onstants an be attempted to be estimated at eah voltage value (lo-ally), if the other parameters are known. This fat will be exploited laterin setion 4 during the onstrution of the proposed parameter estimation17



method.4. Parameter EstimationIn this setion we propose a parameter estimation method based on theresults of the identi�ability analysis. The main idea of the method is based onthe deomposition of the parameter estimation problem into two onseutivesteps as follows1. estimation of ondutane, ativation and inativation parameters fromthe steady-state urrent values of multiple voltage lamp traes,2. estimation of the voltage dependent time onstants based on the entireurrent response.The main motivation of the deomposition of the parameter estimationproess is to handle the possibly arising identi�ability problems (there may beertain model parametrizations and protools in the ase of whih g, m∞ and
h∞ an not be uniquely determined from a single voltage step) desribed insetion 3.3. With the appliation of steady state urrents, the three parame-ters, between whih identi�ability problems (interdependene) may arise anbe estimated separately from other parameters (time onstants). As we willsee in the next subsetion, with the utilization of prior information, theseissues an be addressed. Furthermore, as we will see later in setions 4.1.1and 4.2, this solution is a omputationally e�ient estimation, that improvesthe overall omputational performane.The properties of the proposed method are investigated in the ase ofdata originating from simulation (in other words, using in silio data). Ifexperimental data were used, we did not know what the exat solution was,18



and therefore the error ould not be estimated. With simulated data, weare able to haraterize the omponent of error arising from the numerialapproah, and obviate the e�ets of experimental noise. Moreover, the stru-tural identi�ability results are independent of the measurement data soure.4.1. Analysis of the proposed method4.1.1. Estimation of ondutane and ativation parametersAs it has been shown in the previous setions, the parameters g, m∞ and
h∞ are not globally identi�able using a single voltage step input. We anirumvent this problem by using multiple voltage steps, and by utilizing theprior knowledge that the voltage dependene of the steady state values ofativation and inativation funtions are desribed by Boltzmann-funtions(see Eqs. (3) and (6)).In the �rst step of the method, we will analyze only the steady stateurrents in the ase of n distint measured input voltage values (Vi, i ∈

{1, ..., n}). In this ase, the following set of nonlinear algebrai equationshold
Ii = gm∞ih∞i, i = 1, . . . n. (37)The ativation and inativation funtions are given by
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(
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−1

, h∞i =

(

1 + exp
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−1(38)The unknown variables to be determined using eqs. (37) and (38) are g,
V1/2m, km, V1/2h and kh. Additionally, it is known that km > 0 and kh < 0.The objetive funtion for the parameter estimation is de�ned in a stan-19



dard way as
W1(θ1)V C =

n
∑

i=1

(Ii − gm∞ih∞i(Vi − E))2, (39)where θ1 = [g V1/2m km V1/2h kh]
T , and m∞i and h∞i are given by Eq. (38).For the optimization proess we used the e�ient, gradient-free Nelder-Meadsimplex algorithm to minimize the error [39℄. The maximum iteration numberwas 1000, the tolerane of the objetive funtion was 10−8, and the toleraneof the parameter values was 10−3.We analyzed the onvergene of the optimization for the following realistiparameter values: g = 67 nS, V1/2m = −31.93 mV , km = 13.03, V1/2h =

−44.35 mV , kh = −5.14. Our results showed that the onvergene propertiesof the algorithm to the global optimum strongly depend on the number ofinput voltage traes (n). The results of simulation experiments suggest thatin order to obtain orret parameter estimation results, a lower bound for nis around 10, if the seleted input voltage values over their possible range inan equidistant way. The estimation results show that if only signi�antly lessvoltage steps with the orresponding steady state urrent values are available,the optimization problem will be badly onditioned, and the onvergeneproperties deteriorate.Aording to the simulation and optimization results, we observed thata su�ient (but not neessary) ondition for the onvergene to the globaloptimum in every ase is that the initial parameter values for optimizationshould be in the approximately ±25% neighborhood of the true values. Thisan be regarded a realisti assumption, aording to [28℄ and [26℄, whih on-lude that the estimation error of onventional algorithms (whih are simplybased on the �tting of exponentials to the urrent trae, and assume that20



ativation and inativation are separated in time and m = h = 1 at the max-imum of the urrent urve) is in this range. This means that the onventionalalgorithms an be used to determine initial values for the optimization.The proposed method is based on steady-state urrents, and as a onse-quene, it works well only if there is a voltage interval present, where boththe steady state ativation and inativation variables are di�erent from zero.If this intersetion interval is narrow, the onvergene properties of the op-timization an be signi�antly deteriorated by measurement noise. Withoutnoise, the proposed method with 10 voltage steps ranging equidistantly from-80 to -8 mV still onverged to the nominal parameters for e.g. in the aseof ativation/inativation harateristis depited in Fig. 1. However, a oneorder of magnitude higher number of iterations (i.e. a few thousand) wasneeded to �nd the nominal parameters ompared to the better onditionedases.
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Figure 1: Ativation and inativation urves (m∞ and h∞), with narrow intersetion(V-type urves)We have to note that the basi Nelder-Mead simplex algorithm does not21



handle onstrains on the parameter values. In ontrast, we have expliit on-straints on the maximal ondutane and the slope fator of the Boltzmannfuntions in our ase, namely g > 0, km > 0 and kh < 0. Aording to ourexperiene, the appropriately tuned simplex based optimization usually doesnot result in parameter values that violate these onstraints. Moreover, thesimplex method's ability to e�etively derease the objetive funtion valuein the �rst few iteration steps is exeptionally good (see Fig. 2), and that wasthe main reason for hoosing it. We note that there are other derivative-freeoptimization methods that an handle onstraints, e.g. the freely availableAsynhronous Parallel Pattern Searh (APPS) algorithm [40℄. The optimiza-tion did not require very high omputational performane due to the statinature of the problem. The longest required omputation time of the sim-plex based optimization was about 45 se on a typial dual ore desktop PCwith 2 GB RAM 2). This ase orresponds to the ativation funtions withvery narrow nonzero intersetion depited in Fig. 1 - dominantly the typialestimation time of ondutane and ativation parameters was about 2-3 se.The evolution of the objetive funtion during the optimization proess inthe ase of a typial estimation senarios of ativation parameters is depitedin the left plot of Fig. 2.4.1.2. Estimation of voltage dependent time onstantsAfter the estimation of g and the parameters of the Boltzmann funtions,our next task is to determine the time onstants at the partiular voltagesde�ned by the applied voltage steps. In this ase the global estimation of cbm,2In this ase the maximal number of iterations was inreased to 500022
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Figure 2: Demonstration of onvergene properties: The evolution of the objetive funtionduring the global estimation of ondutane and ativation parameters (left plot), andduring the estimation of time onstants at a ertain voltage level (right plot). In the aseof the left plot, the error fell below the tolerane limit de�ned for the objetive funtionin 4.1.1, whih means that the value of the objetive funtion is pratially zero - thisorresponds to the steady state in this ase. In the right plot, the tolerane limit for theparameters was reahed.
cam, VMaxm, σm, cbh, cah, VMaxh and σh in Eqs. (2)-(7) is also possible, butnot needed, beause the results of the identi�ability analysis have shown thatat a partiular voltage value τm and τh are identi�able, whih means that wean estimate τm and τh, loally at partiular voltage values without the priorknowledge of their Gaussian-type voltage dependene. If we perform a seriesof suh loal estimations of τm and τh, we have to estimate only 2 parametersat the same time instead of 8.For the identi�ation of τm(Vi) and τh(Vi) at a ertain voltage we aneither use the method proposed in [28℄ (if a loal maxima is present, whih isthe neessary ondition of this method), or, similarly to [26℄, we an simply23



perform the minimization of the following objetive funtion (we have hosenthis latter possibility in this paper):
W2(θ2)V C =

1

N
‖Imtot − Istot(θ2)‖2 (40)where θ2 is the parameter vetor (inluding τm(Vi) and τh(Vi)), N is thenumber of data points in the measurement reord, and Imout and Isout denotethe measured and model omputed total output urrent (as a disrete timesequene). The state trajetories, whih determine the omputed urrentan be determined either by expliit solution of the di�erential equations, asdesribed in [28℄.The onvergene to the global optimum (i.e. to the nominal parameters)and the remaining error depend on the value of the voltage steps, but in thisase also on the holding potential. Previously, the holding potential had norole in the ase of the estimation of θ1, beause we only analyzed the valuesof the steady state urrents. Now the input data of the parameter estimationproess is the whole urrent trae, and the initial values of the ativation andinativation variables. The omparison of the results in the ase of severalprotools is depited in Fig. 3. The parameters of the partiular voltagestep protools are desribed in Table 1, while the interpretation of protoolparameters is depited in Fig. 4. The evolution of the objetive funtionduring the optimization proess is shown in the right plot of Fig. 2 in thease of a typial estimation senarios of time onstants.In Fig. 3, the reason for the signi�ant devianes of the inativation timeonstant in the low voltage ranges is that the holding potential and the valueof the voltage step only aused a small hange in the steady state value ofthe inativation variable (see the relevant values in the range of -90 / -60 in24
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Figure 3: Results of the parameter estimation proess for τm(Vi) and τh(Vi) at variousvoltage step protoolsTable 1: Di�erent voltage step protools for the estimation of τm and τhestimation 1 estimation 2 estimation 3
Vhold [mV℄ -92 -68 -20
Vbase [mV℄ -94 -94 -88

interval [mV℄ 8 8 8
stepnum 10 10 10Appendix A in Fig. 7 3. If the di�erene between Vhold and the orrespondingvoltage step is larger, we get more reliable results (for example in the ase ofestimation 3, whih uses a higher Vhold of -20 mV gives better results in thelower voltage ranges). This means that if possible, it is worth to omplete3In the example detailed in Appendix A, the same ativation/inativation harateris-tis were used, as de�ned in 4.1.1) 25
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Figure 4: Interpretation of VC protool parameters Vhold, Vbase, interval and stepnumthe voltage step protool with both a lower, and a higher holding potential.4.2. Comparison with other methodsThe above proposed parameter estimation algorithm was ompared withtwo other loal parameter estimation methods developed for voltage-lampbased estimation. The method of Lee at al., proposed in [28℄, and the methodof Willms [26℄ have been hosen for this purpose.4.2.1. Comparison with other loal methodsInitial information. The method proposed in [28℄ is based on the analytialexpression of the derivative of the urrent (whih has to be zero in the ex-tremum). Therefore, this method assumes that there is a loal extremum inevery urrent urve (as it is shown Appendix A, this is not always the ase),whih an be determined aurately. The other apriori information that isneeded for the appliation of this method is the same as for our proposedapproah (i.e. known steady state urrents and an interval where at least oneof the ativation or inativation urve is non-zero).The 'full trae' method desribed in [26℄ simultaneously estimatesm∞, h∞and τm, τh from a given trae. Here it is assumed, that the maximal on-26



dutane value of the hannel is known (or it has been estimated e�ientlyprior to the estimation of m∞, h∞ and τm, τh).Computational e�ieny and auray. For the omparison of estimationauray and omputational time, the benhmark problem proposed in [28℄was used. The parameters and equations of the hypothetial ion hannel,used as benhmark problem an be found in appendix B.The steady state ativation and inativation values (m∞ and h∞) were es-timated at every 10 mV from -50 to 50 mV (exept at 0 mV, where no urrent�ows, due to E = 0 mV ). In the ase of all algorithms, the orrespondingerror funtion was minimized with the Nelder-Mead simplex method. Thestopping onditions of the simplex based optimization were the same as in se-tion 4.1.1. The estimated and nominal values of the ativation/inativationfuntions and of the voltage dependent time onstants are depited in �gures5 and 6.Table 2 summarizes the results of the omparison. In the table the re-quired total omputational time TC (orresponding to the estimation of a-tivation/inativation parameters and time onstants) is indiated togetherwith the mean error of the ativation/inativation harateristis (Eact) andvoltage dependent time onstants (Eτ ). The estimation algorithms were runin MATLAB on a standard dual-ore desktop PC (3.2 GHz, 2 GB RAM).In onlusion of the omparison we an say, that if the values of thesteady-state urrents are known, it is suggested to use the method proposedin this artile to estimate the ativation/inativation urves (whih requiresusually only 2-3 s). For the estimation of τm and τh, if loal extremum ispresent in the urrent trae, the method proposed by Lee an be suggested,27
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Table 2: Comparison of the omputational e�ieny and aurayMethod TC [se℄ Eact [%℄ Eτ [%℄deomposition method 70 0.002 1.36Lee 8 1.057 1.288Willms 252 0.591 2.145if we omplete the measurements and the estimation with both a lower anda higher holding potential, the reliability of estimation results may improvesigni�antly.4.2.2. Relation to global methodsIn this artile we have assumed one ion hannel. As mentioned, in thisase the onventional estimation methods, whih are based on �tting expo-nentials on the urrent trae (see [28℄ and [26℄) an be used to determineuseful initial onditions for the analyzed loal tehniques. In the analyzedases, ±25% error in the initial guess ensured the onvergene of loal meth-ods to the nominal values. It is however possible in general that the proposedloal methods onverge only to a loal minimum. In this ase the appliationof global optimization methods may be a solution. These methods requirelarger omputational e�ort in general (e.g. the di�erential evolution - DE -algorithm, whih outperforms simulated annealing and the geneti algortihm[29, 30, 31℄ in the estimation of HH models, requires 57 minutes in the aseof 14 voltage steps assuming a potassium hannel with one ativation gate ona similar plattform), but they reliably �nd the nominal values in most ases,even when the di�erene of initial onditions and the nominal value is about29



one order of magnitude. In ontrast, aording to our results the reliabilityof the proposed deomposition method (whih means the onvergene to thenominal values) is above 95% in the ase when the initial parameter valuesare ±25% of the nominal values, while we assume ±50% or ±75% error inthe initial guess, the reliability of our algorithm is dereased to 70 and 33 %respetively.While the proposed deomposition method needs typially about 400-800 iterations for the estimation of g, m∞ and h∞ (whih mean iterationswith low omputation demand as only the omputed steady-state urrentsare ompared with the measured ones), and about 40-60 iterations for theestimation of τm and τh for eah voltage step (whih demand more omputa-tional e�ort, as in this ase the whole traes are ompared), the DE algoritmtypialy demands about 300 iterations (in this ase, in eah step whole traesare ompared for multiple voltage values and multiple individuals, whih ex-plains the higher resulting running time).Furthermore, if we onsider multiple ion hannels, the onvergene prop-erties of loal methods signi�antly deteriorate, regarding both the estima-tion of g/m∞/h∞ and τm/τh.In general, the appliation of global optimization methods, like the DE,an be unavoidable, if we onsider multiple hannels, or if the prior knowledgeregarding the parameter values is limited. Although the estimation problemand the modeling assumptions are not ompletely idential in the two ases,our results support the �ndings in [31℄ that an input of multiple voltage stepsis required for the safe determination of model parameters.
30



5. ConlusionsThe identi�ability properties of a simple ion hannel model used in Hodgkin-Huxley type neuron models were investigated in this paper using omputeralgebra methods. Two approahes, the di�erential algebrai method and thealgorithm based on the Taylor series expansion of the output were applied toinvestigate strutural identi�ability. Both methods require the symboli so-lution of nonlinear equations to get identi�ability results. The identi�abilityanalysis with both methods onluded that the two steady-state parameters(m∞, h∞) and the ondutane (g) are not globally identi�able together.Moreover, no pair from these three parameters are identi�able.Moreover, it was shown that the two methods usefully omplement eahother in the identi�ability analysis. The di�erential algebra method resultedin a regression form model and an objetive funtion that is onvex in thetranformed parameters. The Taylor series expansion method learly showedthat no pair from the parameters p2, p4 and p5 is globally identi�able.Based on the results of the identi�ability analysis, a novel optimization-based identi�ation method is proposed and demonstrated on in silio data.The proposed method is based on the deomposition of the parameter es-timation problem into two parts. The �rst step inludes the estimation ofthe maximal ondutane value and the ativation/inativation harateris-tis from the values of steady state urrents obtained from multiple voltagestep traes. The seond step of the parameter estimation problem performsparameter estimation of the voltage dependent time onstants. Aording tothe results of the identi�ability analysis, this step an be done loally, if thesteady state values of the ativation/inativation variables orresponding to31



the atual voltage value are known.The results of the artile are used to formulate expliit riteria for thedesign of voltage lamp protools whih are the following.1. The voltage steps should be long enough to ensure that the ativationand inativation variables are able to (at least approximately) reahtheir steady state values.2. At least 10 voltage steps are required for the safe estimation of theinvestigated 5 parameters orresponding to the ativation, inativationurves and ondutane values.3. To provide a reliable estimation of the time onstants in the wide volt-age range, the measurements have to be ompleted both with a higherand a lower holding potential.One possible generalization of the parameter estimation problem wouldbe the addition of further ion hannels of similar or di�erent type, and theinlusion of di�erent powers of ativation and inativation variables in theurrent equations. From an optimization point of view the inlusion of pow-ers of ativation and inativation variables would lead to a mixed-integerproblem.In addition, the identi�ability analysis of the kineti desription of HHmodels (see e.g. [26℄) would be a natural extension of the work desribed inthis paper.6. AknowledgementsThis work was supported by the Hungarian National Fund (OTKA K-83440). 32



Appendix A: Example showing the lak of global identi�abilityIn this appendix, we show a physially meaningful example that illustratesthe non-global identi�ability of the ion hannel model with respet to thethree parameters (namely, g, m∞, and h∞) that often have to be estimated.Other model parameters are assumed to be known. In addition, this examplealso demonstrates the senario, when a loal maximum in the urrent trae(assumed in [28℄) does not appear.First, it will be shown that our model an produe exatly the sameoutput for di�erent parameter/initial ondition values during the voltagestep protool. The solution of the state equation in this ase is given by
x1(t) = p2 + (x1(0)− p2)e

−p1t

x2(t) = p4 + (x2(0)− p4)e
−p3t, (41)from whih the output urrent is omputed as

y(t) = p5k1(p2 + (x1(0)− p2)e
−p1t)(p4 + (x2(0)− p4)e

−p3t). (42)Now, let us sale the model parameters with a positive salar λ as follows:
p∗2 = λ · p2, and p∗5 = p5/λ. Furthermore, let us hoose the initial values ofthe state variables as x∗

1(0) = λ · x1(0), x∗

2(0) = x2(0). The output of themodi�ed model is then
y∗(t) = p∗5k1x

∗

1x
∗

2

= k1p
∗

5(p
∗

2 + (x∗1(0)− p∗2)e
−p1t)(p4 + (x∗2(0) − p4)e

−p3t) (43)
= k1

p5

λ
(λp2 + (λx1(0)− λp2)e

−p1t)(p4 + (x2(0) − p4)e
−p3t)

= y(t) 33



from whih it is lear, that the saled model generates exatly the sameoutput as the original one. The irumstanes of the above ase are notvery likely to hold in the ase of a standard voltage lamp protool, wherethe voltage is held at an other onstant value (the holding potential Vhold)before the voltage step. The holding potential determines the initial valuesof the di�erential variables: x1(0) = m(0) = m∞(Vhold) and x2(0) = h(0) =

h∞(Vhold)). However, the senario is not impossible, as we will show below.Using two �titious neurons, we will now show that the measurable ur-rent responses of a voltage step during voltage lamp measurement an beidential in the ase of di�erent parameters.Let us suppose that both neurons to be ompared here inhibit only oneion hannel, and the ativation and inativation harateristis of the �rstneuron are desribed by
m∞(V ) =

(

1 + exp

(

V1/2m − V

km

))

−1 (44)
h∞(V ) =

(

1 + exp

(

V1/2h − V

kh

))

−1The parameter values for the two neurons an be found in Table 3. Theother parameters in the ase of both neurons were the following
h∞ = 0.75, VMaxm = −78mV, σm = 34, cam = 8.7ms,

cbm = 0.8ms, E = −93mV, VMaxh = −23mV

σh = 24, cah = 6.9ms, cbh = 9ms. (45)As it is shown in Fig. 7, the value of m∞ is 0.35 at -40mV and it is 0.20at -50mV. At the same time, the value of m∗

∞
of the seond neuron is 0.52534



Table 3: Parameters of the two neuronsNo V1/2m km V1/2h kh g1 -31.932 mV 13.033 -44.354 mV -5.139 67 nS2 -41.056 mV 10.555 -44.354 mV -5.139 44.67 nS
−100 −50 0 50

0

0.2

0.4

0.6

0.8

1

V [mV]

m∞
m∞*

h∞=h∞*

Figure 7: Voltage dependenies of the steady ativation and inativation state funtions
m∞, m∗

∞
and h∗

∞
=h∗

∞at -40mV and 0.30 at -50mV. The inativation urve orresponding to h∞was the same in both ases. We applied a holding potential of -40 mV and avoltage step to -50 mV at t=100ms.The omparison of trajetories of ativation and inativation variablesand the output are depited in Fig. 8. The �gure learly shows that theoutputs are idential in the two ases, although the parameters of the twomodels are di�erent.
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m∞ =

1

1 + exp
(

−V−10
10

) h∞ =
1

1 + exp
(

V+10
10

) (46)
τm = 2.5+ 3exp

(

−

(

(−10− V )

20

)2
)

τh = 105− 45exp

(

−

(

(5− V )

160

)2
)(47)

dm

dt
=

m∞(V )−m

τm(V )

dh

dt
=

h∞(V )− h

τh(V )
I = gmh(V −E) (48)and g = 0.5mS/cm2 and E = 0mV .The parameters were taken from [28℄.36
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