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Abstract— GnRH neurons are key elements of the reproduc-
tive neuroendocrine system and play important central regulat-
ing role in the dynamics of the hormonal cycle. A conductance-
based Hodgkin-Huxley model structure is proposed in the form
of nonlinear ordinary differential equations that is able to
take into account upto- date biological literature data related
to ion channels. The measurement data is originated from
laboratory experiments done in the Institute of Experimental
Medicine of the Hungarian Academy of Sciences and it includes
whole cell patch-clamp recordings. The proposed neuron model
is highly nonlinear in parameters and the evaluation of the
objective function is computationally expensive, therefore the
asynchronous parallel pattern search (APPS) procedure is used
for identification which is a gradient-free optimization method.
It can handle linear equality and inequality constraints and
it has advantageous convergence properties [13]. The work is
intended to be the first step in a bottom-up procedure which
aims to build a hierarchical model of the GnRH pulse generator
that includes the effects of ovarial hormones.

I. INTRODUCTION

Neurons are interesting dynamical systems where a com-
bination of physico-chemical reactions and electrical phe-
nomena are taking place. Dynamical modelling and param-
eter estimation of neurons is a challenging and quickly
developing area with great importance in understanding the
operation of certain physiological processes and potential
use in therapy and drug design [15]. Although there were
numerous attempts for the identification of neuron models
(see, e.g. [27]), the computational methods and techniques
in systems biology are not so well-developed and analyzed
as in more traditional engineering fields [7].

The system of ovarian and pituitary hormones regulates
and maintains the menstrual cycle in adult women. Dur-
ing the menstrual cycle, the anterior pituitary affected by
Gonadotropine-releasing hormone (GnRH) secreted in the
hypothalamus, secretes hormones in a pulsatile way to
stimulate the growth and development of ovarian follicles:
Follicle-stimulating hormone (FSH) and luteinizing hormone
(LH). Consequently, cells in the the ovaries secrete hormones
which affect the secretion of GnRH and pituitary hormones:
Estradiol (E2), progesteron (P4) and inhibin (Ih) [4].

Central control of reproduction in vertebrates is governed
by a neuronal pulse generator that underlies the activity of
hypothalamic neuroendocrine cells that secrete GnRH. Bursts
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and prolonged episodes of repetitive action potentials have
been associated with hormone secretion in this and other
neuroendocrine systems.

The models of GnRH pulse generator, which can be found
in literature nowdays, use generalized very simple neuron
models and networks. Furthermore they are neither based on
the known membrane properties of GnRH neurons, nor are
able to describe the effect of ovary hormones [2], [9].

The main purpose of this work is to develop a method to
estimate the parameters of a simple GnRH neuron model,
based on laboratory measurements.

A. Hodgkin-Huxley type neural models

The Hodgkin-Huxley models are based on the pioneering
work of A.L. Hodgkin and A.F. Huxley done in the 50’s
[12]. This fundamental concept in electrophysiology aims to
describe the electrical activity of neural cells via two types of
elements: the cell membrane is represented by a capacitance,
and various ionic channels in the membrane are represented
by voltage-dependent conductance elements. Each type of
ionic current corresponds to conductance element with a
certain Boltzmann-type voltage-conductance characteristic.
In addition the change of the conductance-value is not instan-
taneous, but inhibits a first order linear dynamic, described by
a time constant of which is also voltage dependent. The ions
are driven through the voltage-dependent conductances by
the ion-specific reversal potentials, which can be originated
from different concentrations of various ions inside and
outside the cell membrane.

II. THE GNRH NEURON

The pulsatile release of GnRH is driven by the intrinsic
activity of GnRH neurons, which is characterized by bursts
of action potentials correlated with oscillatory increases in
intracellular Ca2+.

Furthermore the dynamics of GnRH neurons is affected
by peripherial hormones estradiol (E2) [6], [22], [8], [10]
and progesterone (P4) [16], [3].

The morphological structure formed by the GnRH neurons
and other neurons in the hypothalamus is called the GnRH
pulse generator.

A. Basic membrane properties and ion channels of the GnRH
neuron

In this subsection a chronological summary of some
articles corresponding to the membrane properties of GnRH
neurons is listed.

Experiments of Bosama et al. showed that the GT-1 cell
line expressed a tetrodotoxin-sensitive Na channel, two types



of Ca channels, three types of outward K channels and a K
inward rectifier [1].

Kusano et al. identified an inward rectifier type current,
a tetrodotoxin-sensitive Na+ current (INa) and two major
types of K+ currents, a transient current (IA), a delayed
rectifier current (IK) and low- and high-voltage activated
Ca2+ currents in cultures of embryonic GnRH neurons [21].

The families of electrotonic potentials evoked in indi-
vidual adult GnRH neurons in response to short (20-30
msec duration) and long (200 msec) duration intracellular
current pulses were found to be heterogeneous [24]. The
most striking difference was observed in response to 200
msec hyperpolarizing current pulses where four main profiles
(types I-IV) were consistently observed.

Adult GnRH neurons were found to fire Na+ dependent
action potentials, because 0.5 µmol TTX abolished evoked
action potentials in all cells tested.

These investigations [24] point to the probability of pres-
ence of IQ/H (large current potassium-activated) IA (rapidly
inactivating) and IK (delayed rectifier) potassium channels.

According to [11], GnRH neurons express a variety of
sodium, type IIR (inward rectifying), IA, and IQ/H potas-
sium. and type T and N Ca2+ channels.

Constantin et al. found that Whole-cell recordings of
voltage-gated outward K+ currents in GT1-1 neurons re-
vealed at least two different components of the current. These
included a rapidly activating transient component and a more
slowly activating, sustained component [5]. Furthermore,
according to this article, GT1-1 cells also express inwardly
rectifying K+ currents (IK(IR)) that were activated by
hyperpolarization in the presence of elevated extracellular
K+. These results of this article also indicate that specific
subtypes of K+ channels in GT1-1 cells can have distinct
roles in the amplitude modulation or frequency modulation
of Ca2+ signaling.

III. MATERIALS AND METHODS

Based on literature data about the ion channels of the
GnRH neuron and properties of ion channels, a simple GnRH
neuron-model can be developed and identified via further
literature data and voltage-clamp measurements.

This basic membrane dynamics-model is considered to be
appropriate, if it approximates available measurement data
quantitatively good.

Thereafter, the model can be extended to take the complex
effects of estradiol on the dynamics of membrane potential
into account.

A. Measurement data

The mouse was decapitated, and the brain was rapidly
removed and placed in ice-cold temperature. Brains were
blocked and glued to the chilled stage of a vibratome, and
150-mm-thick coronal slices containing the medial septum
through to the preoptic area were prepared. The slices were
then incubated at 30◦C for 30 min in oxygenated recording
ACSF (rACSF) consisting of (in mM): 118 NaCl, 3 KCl,
2.5 CaCl2, 1.2 MgCl2, 11 D-glucose, 10 HEPES, and 25

NaHCO3, pH 7.3, and thereafter kept at room temperature
(20-23◦C) for at least 1 hr before recording.

1) Whole-cell recording of GnRH neurons: Slices were
transferred to the recording chamber, held submerged, and
continuously superfused with oxygenized extracellular fluid.
In order to record the neurons, the equilibrated hemi-slices
were placed in an immersion-type recording chamber.All
recordings were made at room temperature (20 - 23◦C).

In order to visualize GnRH neurons in the brain slices,
GnRH-enhanced green fluorescent protein (GnRH-GFP)
transgenic mice (kind gift by Dr. Suzanne Moenter) were
chosen in which the GnRH promoter drives selective GFP
expression in the majority of GnRH neurons.

B. Model development

1) The suggested model framework of single cell models:
A single compartment Hodgkin-Huxley (HH) type model is
suggested, which can be extended to a multicompartmental
structure, if needed for the description of bursting. The main
benefits of this model class are the following:
• Modularity: Each ion channel is represented by an

element of the model (conductance), so different ion
channels can be taken into account separately, and in a
modular way. This way ensures the integration of the
most available literature data into the model.

• The properties of specific ion channels can be measured
separately via voltage clamp (reveral potential-based)
methods, and pharmacological (TTX, TEA, etc. based)
methods. These types of measurements can gather data
corresponding to specific elements of the model. This
implies the benefit of the opportunity, that various
elements of the model can be identified separately, using
different parameter estimation methods, if needed.

• Because the different ion channels are described by
different elements of the model, the model is capable
to be extended with equations describing the effect of
estradiol, acting on specific ion channels.
Elements of the model: According to the literature data

detailed in II-A, previous results point to the existence of the
following components on the level of conductance elements
in the HH model:
• Na+ channel: A simple voltage gated inward rectifier

Na+ channel can be assumed, with standard character-
istics [1], [21]. The current related to this channel will
be denoted with INa1.

• A voltage gated transient or rapidly activat-
ing/inactivating K+ channel is taken into account,
responsible for the rapid, transient component of the
outward K+ current (IK1) [21], [5], [24], [1], [11].

• A voltage gated delayed outward rectifier K+ channel
can be assumed, which contributes to the more slowly
activating, sustained component of the outward K+

current (IK2) [21], [5], [24], [1], [11].
• static leakage currents with constant conductance (IL).
These types of conductances can be taken into account as

building blocks, which can be used to find minimal models



of observed characteristic behaviors of GnRH neurons [24],
[11].

The equivalent electric circuit of a one-compartment
GnRH neuron model in the case when all conductances are
taken into account is depicted as in fig. 1
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Fig. 1. Parallel conductance model, with conductances representing
different ion channels

Literature data of qualitative features and parameters re-
lated to some of the the various detailed ion channels can
be found in [23], [26], [17]. The remaining parameters can
be objects to further literature research, and experiments, if
necessary.

Model equations: The model depicted in fig. 1 can be
described with the following equations:

V̇ = − (INa + IK1 + IK2 + IL)
C

+
1
C

Iex (1)

ḣ1 = (h1∞(V )− h1)/τh1(V ) (2)
ṁ2 = (m2∞(V )−m2)/τm2(V ) (3)

ḣ2 = (h2∞(V )− h2)/τh2(V ) (4)
ṁ3 = (m3∞(V )−m3)/τm3(V ) (5)

ḣ3 = (h3∞(V )− h3)/τh3(V ) (6)

where the currents of the ion channels are given by

INa = ḡNa1m1∞(V )h1(V − ENa) (7)

IK1 = ḡK1m
4
2h2(V − EK) (8)

IK2 = ḡK2m3h3(V − EK) (9)

and the so-called leakage current is

IL = ḡL(V − EL). (10)

The exciting current Iex in (1) can be computed from the
exciting voltage Vex (which is the real physical input) as

Iex = p · (Vex − V ), (11)

where p is a known constant parameter.
The ENa, EK and ECa parameters in eqs. (7)-(9) are

the reversal potentials of the corresponding ions, and the
mi∞, hi∞ and τ notations are defined as nonlinear Boltz-

mann and Gauss functions:

mi∞(V ) =
(

1 + e
Vhi1

−V

Ki1

)−1

, i = 1, 2, 3 (12)

hi∞(V ) =
(

1 + e
Vhi2

−V

Ki2

)−1

, i = 1, 2, 3 (13)

τmi(V ) = Cbi1 + Cai1e
−(Vmi1−V )2

σ2
i1 , i = 2, 3 (14)

τh1(V ) = Ca12e
Vm12−V

σ12 (15)

τhi(V ) = Cbi2 + Cai2e
−(Vmi2−V )2

σ2
i2 , i = 2, 3 (16)

The parameters of the Boltzmann and Gauss functions
(Vhi1,2 , Ki1,2, Cbi1,2 , Cai1,2 , Vmi1,2 and σi1,2), and the
ENa, EK and ECa reversal potential values were determined
using literature data [15], [26], and measurement data corre-
sponding to the intra- and extracellular fluid concentrations.

C. Parameter estimation

1) Basic identification setup: The manipulated external
input to the system was the excitation voltage Vex. Three
square signals of different amplitudes shown in fig. 2 were
used as inputs. The measured output was the total output
membrane current:

Iout = INa + IK1 + IK2 + IL

The measured outputs for the corresponding input voltages
can be seen in fig. 3. The sampling time of the measurements
was 0.1 ms.

The known parameter values (taken from literature and
obtained from previous measurements) were the following:

Vh11 = −30, Vh21 = −60, Vh31 = −3 (17)
K11 = 5.5, K21 = 8.5, K31 = 10 (18)

Vh12 = −70, Vh22 = −78, Vh32 = −51 (19)
K12 = −5.8, K22 = −6, K32 = −12 (20)

Vm12 = −40, Vm21 = −58, Vm31 = −50 (21)
σ12 = 33, σ21 = 25, σ31 = 30 (22)

Ca21 = 2, Ca31 = 47, Cb21 = 0.37, Cb31 = 5 (23)

Vm22 = −78, Vm32 = −50, σ22 = 25, σ32 = 50 (24)
Ca22 = 45, Ca32 = 1000, Cb22 = 19, Cb32 = 360 (25)

ENa = 70, EK = −90, ECa = 140, EL = −50 (26)

The estimated parameters were the membrane capacitance
C in (1) and the ḡNa, ḡK1, ḡK2, ḡL conductances in eqs
(7)-(10).

The objective function of the estimation was the standard
two-norm of the difference between the measured and com-
puted output currents for the three measurements, i.e.

V (θ) =
1

N1
‖Im

out,1 − Is
out,1‖2

+
1

N2
‖Im

out,2 − Is
out,2‖2 +

1
N3
‖Im

out,3 − Is
out,3‖2 (27)

where θ is the estimated parameter vector, and Im
out,i and

Is
out,i for i = 1, 2, 3 denote the measured and model



computed (simulated) total output current (as a discrete time
sequence) for the ith measurement, respectively. Further-
more, Ni is the number of data points in the case of the
ith measurement.

D. Optimization algorithm

Since none of the state variables in eqs. (1)-(6) were
measured, a simulation based minimization of the objective
function was performed. Because of the model nonlinearity,
the objective function value can be a complicated function of
the estimated parameters. Moreover, the precise simulation
of the system dynamics for a given parameter set is compu-
tationally quite demanding, i.e. a few hundred evaluations of
the objective function takes a couple of hours on a typical
desktop PC. This also means that avoiding the numerical
approximation of the gradients of the objective function was
desirable in our case.

The above facts motivated us to choose the freely available
Asynchronous Parallel Pattern Search (APPS) algorithm for
parameter estimation. Parallel pattern search (PPS) is a useful
tool for derivative-free optimization where the number of
variables is not large (about fifty or less) and the objective
function is expensive to evaluate [14]. The basic PPS algo-
rithm is very simple, its main steps are the following (where
f denotes the objective function to be minimized):
Initialization:
• Set the iteration counter k = 0.
• Select a set of search directions D = {d1, . . . , dp}.
• Select a step-length control parameter ∆0.
• Select a stopping tolerance tol.
• Select a starting point x0 and evaluate f(x0).

Iteration:
1) Compute xk + ∆kdi and evaluate f(xk + ∆kdi), for

i = 1, . . . , p concurrently.
2) Determine x+ and f(x+) such that f(x+) =

min{f(xk + ∆kdi), i = 1, . . . , p}.
3) If f(x+) < f(xk), then xk ← x+ and f(xk) ←

f(x+). Else ∆k ← 1
2∆k.

4) If ∆k > tol, k ← k + 1, go to Step 1. Else, exit.
The APPS algorithm is an asynchronous extension of the
PPS method that efficiently handles situations when the in-
dividual objective function evaluations may take significantly
different time intervals and therefore it is very suitable to be
implemented in a parallel or grid environment. Furthermore,
recent implementations of the APPS method handle bound
and linear constraints on the parameters [18]. The global
convergence of APPS under standard assumptions is also
proved [19]. These advantageous properties suggest that
APPS can be a good choice to solve simulation-intensive
optimization problems.

IV. RESULTS AND DISCUSSION

The approximate order of magnitude of the estimated
parameters was known from literature data, therefore an
acceptable initial guess could be made for them. The param-
eters were scaled appropriately during the optimization to
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Fig. 2. Input voltages applied to the system
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Fig. 3. Measured output total membrane currents
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Fig. 4. Dependence of the objective function on gK1 and gK2

transform each value into the [0 1] interval. The simulations
were compared to three different cases of voltage clamp
measurements’ data series. In the first case, the parameters
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Fig. 5. Dependence of the objective function on gNa and gK1

of the voltage step were −70 and 40 mV, and it was applied
between 10 and 40 ms.tiple runs of the APPS algorithm were
performed starting from different initial conditions within
the physically acceptable domain. The method converged
well for each run and produced acceptable final results in
the same order of magnitude with very similar objective
function value. A typical result from these experiments is
the following. The algorithm needed 255 function evalua-
tions altogether and provided the model parameters with the
objective function value V (θ∗) = 63.91:

C = 4.134nF, ḡNa = 2.253 · 10−4mS, (28)

ḡK1 = 2.079 · 10−4mS, ḡK2 = 2.279 · 10−5mS, (29)

ḡL = 9.046 · 10−6mS (30)

Results of the voltage steps are depicted in figure 6.
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As it can be seen from figures 4 and 5, the sensitivity
of the objective function to various parameters differs in
an order of magnitude. Fig. 5 shows that the loss function
depends heavily on the maximum conductance of the 1st
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Fig. 7. Simulated sodium and potassium currents

potassium channel, but hardly on the maximum conductance
of the sodium channel.

This can be related also to the measurement method: in the
case of voltage-clamp measurements, the sodium current for
example influences only the negative spike at the beginning
of the voltage step so it hardly affects the objective function.

In addition, while the Hodgkin-Huxley type models exhibit
several benefits (for example strong physical basis, and
modularity, which probably will hold great values in the case
of future measurements with specific channel-blockers), it
seems that the weak identifiability and correlation between
model parameters appear among his drawbacks.

Furthermore the sensitivity to a specified parameter
strongly depends on the values of the other parameters.
Anyway the resulting parameters are in a physiologically
feasible region, and can serve as starting point for further
estimation procedures. Furthermore, it can be noted that the
fitting of the response function is not perfect (especially in
the region of the local maxima), as it can be seen in figure
6. This implies the re-consideration of parameters, that were
determined from literature data (parameters of the sigmoid
and Gauss-functions etc.), and even the qualitative features
of the model (for example the lack of activation dynamics
in the case of sodium current).

As it can be clearly seen in figure 7, the two potassium
currents are qualitatively different: IK1 is a transient-type
current with an early maxima, and IK2 is monotone, slower
current.

V. CONCLUSIONS AND FUTURE WORK

In this work a Hodgkin-Huxley type model of the GnRH
neuron was suggested, based on biological literature data.
Based on voltage-clamp measurements, the asynchronous
parallel pattern search (APPS) procedure was used for pa-
rameter identification.

A. Future work
The main aim of the work is to create a simple model

of the GnRH neuron, which can describe the characteris-
tic qualitative features of this class of neurons related to



basic electrophysiological properties, and interactions with
the ovarian elements of the neuroendocrine reproductive
cycle. Obviously, the next stage in the identification process
requires the application of further measurement data, corre-
sponding to current clamp measurements, and measurements
with the application of various selective ion-channel blocking
agents (TEa, TTX etc). Based on further measurement data,
the model will be re-adjusted, and extended, if necessary
with further ionic currents. One of the future tasks will be
to theoretically analyze the identifiability of the model.
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