
DETERMINING FLAT OUTPUTS OF MIMO NONLINEAR

SYSTEMS USING DIRECTED GRAPHS

Dávid Csercsik ∗ Gábor Szederkényi ∗,1 Katalin M. Hangos ∗,2

∗ Process Control Research Group,

Computer and Automation Research Institute HAS

H-1518 Budapest, P.O. Box 63, Hungary,

csercsik@scl.sztaki.hu

Abstract: Graph theoretic methods for flatness analysis of MIMO systems are proposed in

this paper. Necessary and sufficient conditions for flatness are formulated, and an algorithm is

described for the explicit expression of the state variables and inputs from the flat outputs. For

this purpose, some new concepts and constructions are defined. In all cases, structural flatness

properties are examined (i.e. only the appearance and expressibility of the state variables are

critical for the analysis).

The method is demonstrated on a simplified nonlinear model of a the primary circuit

dynamics of a pressurized water nuclear reactor (PWR).

Keywords: Linear and nonlinear control, control theory, process control, control

applications, hybrid systems

1. INTRODUCTION

Finding flat outputs for a nonlinear system gives us

valuable support in state estimation and controller

design, therefore this is an extensively studied area

of modern systems and control theory. A good in-

troductory theory about flatness-based control appli-

cations can be found in (Fliess et al., 1994) and in

(Rathinam, 1997). Further computation techniques of

state and input trajectories for flat systems using auto-

matic differentiation is discussed in (Robenback and

Vogel, 2004). Necessary and sufficient algebraic con-

ditions for the flatness of four-dimensional systems

are given in (Pomet, 1996). Trajectory generation for

differentially flat systems with inequality constrains

is detailed in (Faiz et al., 2001). Applications of the

flatness property to mechanical systems are described

in (Kiss, 1998).

1 Gábor Szederkényi is a grantee of the Bolyai János Research

Scholarship of the Hungarian Academy of Sciences
2 Partially supported by the Hungarian Research Fund OTKA

through grant K67625 and by the Control Engineering Research

Group of BUTE

Previously, bond graphs extended with the bicausality

concept proved to be useful in finding flat outputs

in nonlinear MIMO systems (Richard et al., 2002)

related to dynamic inversion (Gawthrop, 2000). How-

ever, bond graph description of dynamical systems

is heavily based on the identification of important

physical processes (particularly energy exchange) of

the modeled system (Broenink, 1999). Our proposed

approach is substantially different from this, because it

relies only on the algebraic structure and properties of

the system equations. Hence, our algorithm is usable

with such models where the physical meaning is not

transparent (or completely lost e.g. because of coordi-

nates transformations, embeddings etc.).

We will consider the class of general nonlinear sys-

tems in the following form:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

, (1)

where x ∈ R
n is the state vector, u ∈ R

m is the

control input and y ∈ R
m is the output. A system

(1) is called (differentially) flat if the state and input

variables can be expressed as functions of the outputs

���
 �������� 	

���
 ���������� ���������� �� ��������� ��������� !"#$ %& '()#*$+'$+,'�%"$ -�. /0%' 1'2#'3 4 0- 5"-03 6'#%27-0820& 9:+9;3 9<<=

and their derivatives, i.e.:

x = A(y, ẏ, ÿ, ..., yα), u = B(y, ẏ, ÿ, ..., yα+1).

In this paper our aim is to identify a special subclass

of flat systems, with the so called global explicit

expressibility property. This property means, that we

can get closed and globally valid explicit formulas for

the functions A and B.

For this aim, we will define some graphs to formulate

necessary and sufficient conditions for flatness using

the theory of directed graphs, and define a method for

automatic check of explicit expressible flatness in the

case of suggested flat outputs.

2. THE GRAPH THEORETICAL ALGORITHM

In this part, we define the basic concepts and notations

related to the proposed graph-theoretical algorithm for

finding flat outputs to a MIMO nonlinear system.

Throughout the paper general MIMO square sys-

tems are only considered, where r = dim(u) =
dim(y) < n with n being the number of state

variables. Furthermore, we will discuss only the

simplest case, when the flat outputs are considered

as state variables.

2.1 Representation graphs

The algebraic structure of the system is described by

the structure graph which is defined as follows:

• The vertices of the graph are the state-variables,

the input variables, and the output variables.

• A directed path leads from vertex V1 to vertex V2

if and only if the variable V2 depends on V1 (If

V2 is a state-variable, this means that V1 can be

found in the state-equation describing the time

derivative of V2. An output variable depends on

a state variable if and only if the state variable

can be found in it’s output equation).

The structure graph shows which variables are influ-

enced by a state or input. If we take the same graph

with reversed path directions, we will get information

about which outputs or states depend on other states

and inputs. We’ll call this graph in the following the

dependency graph.

If we suppose that some state variables and derivatives

are known, and we want to express some other state

variables from a state equation, the algebraic form of

the state equation determines whether we can get an

explicit expression of the desired variable or not. To

characterize such properties of a state space model,

we define the explicit expressibility graph in the

following way:

• The vertices of the graph are the state-variables,

the input variables, and the output variables.

• A directed path leads form vertex V1 to vertex V2

if and only if V2 can be expressed explicitly from

the differential equation describing V1.

Remarks. (i) Loop edges will be discarded during

the algorithm, because our aim here will be always to

express a next state as a function of already expressed

other states. But the loop edges influence neither the

states’ dependency on each other nor the properties

related to explicit expressibility. (ii) It is important to

note that causality is implicitly present in the structure

graphs, and thus in the dependency and explicit ex-

pressibility graphs, too. As a directed path from vertex

V1 to vertex V2 in a structure graph is interpreted as the

variable V2 depends on V1, then the change in variable

V1 causes a change in V2.

Problem instance. The proposed method can be ap-

plied to check whether a given set of candidate outputs

is flat for a given nonlinear state space model de-

scribed by its explicit expressibility graph. A problem

instance is thus composed of an explicit expressibility

graph and a set of candidate flat outputs.

2.2 Necessary conditions for flatness

The necessary conditions below are checked first to

sort out problem instances for which either the repre-

sentation graphs or the set of candidate flat outputs are

not suitable.

(Lemma 1) In the case of explicit expression of states,

the maximal number of state-variables which have no

ingoing edge in the explicit expressibility graph is

(r − 1).

(Proof) Such states can only be expressed if an output

is defined for them. If there were r = dim(u)=dim(y)
number of such states, either one of them or the

remaining states (which surely present because r < n)

couldn’t be expressed.

(Lemma 2) For a possible set of flat outputs xi..j all

states and inputs have to be reachable from xi..j in the

dependency graph.

(Proof) If a state or input is not reachable from the

possible flat outputs’ vertices, it will not appear after

any number of derivation of the outputs.

Theorem 1 In the case of m inputs, for a possible set of

flat output-input pairs, m pairwise disjoint paths must

exist in the dependency graph, the union of which

covers each vertex of the dependency graph.

(Proof) If no paths exist at all that cover the entire

dependency graph, there exists at least a state which

will not appear in any derivatives of the outputs. If

they are not pairwise disjoint, the sub-graph depicted

in figure 1 can be found in the graph defined by the

paths.

In this sub-graph, the paths of the explicit expressibil-

ity graph also have to appear (we can also suppose that

���

XA

XB

XI

XC

XD

XJ...

Fig. 1. Sub-graph in the case of non pairwise disjoint

paths

the explicit expressibility graph and the dependency

graph are equivalent in this case). In this case, xI can

be expressed in two ways, this means we get redun-

dant information for it. In other words this implies a

correlation between the derivatives of the flat outputs.

In fact at xJ the following problem appears for both

output derivatives:

Consider that we have chosen a state as a possible flat

output. As we take the derivative of the output, ac-

cording to the dependency graph, we can immediately

identify which state space variables will surely appear

in the derivative’s equation. If only one currently un-

expressed state variable appears, and we can express

it, we can go on to the further derivatives of the output.

At xJ , (at least) two unknown (previously unex-

pressed) variables appear in the equation. In the

derivation thereafter, at least one unknown state vari-

able or input appears in the equations in each step, and

so we will have always less equations than unknown

variables to express.

2.3 The step-by-step construction algorithm

Given a problem instance, the initial step of the flat

model construction algorithm is to check if the neces-

sary conditions, i.e. the conditions of Lemma 1 and 2,

and Theorem 1 are fulfilled. The latter implies to have

m pairwise disjoint paths that together cover the entire

expressibility graph.

The next steps of the algorithm explore step by step

the expressions for the state and input variables that

constitute the flat model by walking systematically

through the path system. Let us denote the set of all

state-variables and inputs by X , and the set of already

expressed variables at any step of the algorithm by

XE . For the sake of simplicity, the inputs are treated

like states, that have to be expressed.

One step of the algorithm At each step, we differen-

tiate k ≤ m unexplored outputs. Suppose that before

the differentiation we have XE ⊆ X variables which

have already been expressed in the previous steps.

Because of the pairwise disjoint paths in the explicit

expressibility graph, at least k new explicitly express-

ible variables (XN
.
= {xN1...xNk}) appear in the new

equations. If all of the other variables on the right side

of the new equations belong to XE , then it is possible

that xN1...xNk can be expressed from the equations.

In the expressible case Xnew
E = XE

⋃

{xN1...xNk},

otherwise the step is unsuccessful.

If not all of the other variables on the right side of

the new equation belong to XE then we have less

equations than unknown variables to express, so the

step is unsuccessful.

If an input’s derivative appears in the new equation,

then either the step is unsuccessful or we must define

new states (pre-compensators) for the corresponding

input.

A next step can follow after a successful step, other-

wise one should repeat the unsuccessful step by choos-

ing another k outputs to explore.

The above described step-by-step algorithm gives rise

to the sufficient condition for a system to be flat

formulated in a theorem below.

Theorem 2 If there exists a set of pairwise disjoint

output-input pathways in the explicit expressibility

graph, which cover the entire dependency graph’s ver-

tices, and the pathways can be ’walked through’ with

the step-by-step method described above, then the sys-

tem is flat, and the state-variables can be expressed

in an explicit way as functions of the flat outputs and

their time derivatives.

3. CASE STUDY: PRIMARY CIRCUIT OF A

NUCLEAR PLANT

Consider the nonlinear hybrid model of a PWR
(VVER-type) nuclear power plant’s primary circuit
described in (Fazekas et al., 2006). The state space
model, derived from energy and mass balances, and
engineering principles is the following:

dN

dt
=

β

Λ
(p1v2 + p2v + p3)N + S

dMPC

dt
= min − mout

dTPC

dt
=

1

cP,PCMPC

[cP,PCmin(TPC,I − TPC) + cΨ1N

+cP,PCmout15 − 6KT,SG(TPC − TSG)

−Wloss,PC(TPC − Tenv)]

dTPR

dt
=

1

cP,PRMPR

(χmP R>0cP,PCmPRTPC,HL +

+χmP R<0cP,PRMPRTPR − cP,PRMPRTPR −

−Wloss,PR + Wheat,PR)

dTSG

dt
=

1

cL
P,SG

MSG

(cL
P,SGmSGTSG,SW − Wloss,SG −

−cV
P,SGmSGTSG − mSGEevap,SG +

+KT,SG(TPC − TSG)) (2)

where N denotes the neutron flux, MPC is the mass

of the primary circuit water, TPC is the primary circuit

water temperature, TPR is the pressurizer temperature

and TSG is the temperature in the steam generator.

The hybrid behaviour of the pressurizer dynamics

is represented using a characteristic function in the

���

followng way. The value of the expression χmP R<0

is 1 if mPR < 0, and 0 if mPR ≥ 0. The operational

principles and basic mathematical models of nuclear

reactors can be found e.g. in (Kessler, 1983).

To shorten and simplify the above equations, the nota-

tions in the following tables will be used
State space variables

N x1

MPC x2

TPC x3

TPR x4

TSG x5

Inputs

v u1

min u2

Wheat,PR u3

Disturbances

mout d1

mSG d2

MSG d3

TSG,SW d4

TPC,I d5

Constants

cP,PC c1
cP,PR c2
cL
P,SG

c3

cV
P,SG

c4

KT,SG K1

Eevap,SG E1

cΨ1 cΨ1

S S

Wloss,PR W2

Wloss,SG W3

Constants

VPC,0 V1

β β

Λ Λ
a2

a3

a4

a5

p1 p1

p2 p2

p3 p3

Functions

MPR(MPC , TPC) = MPC M1(x2, x3)
−ρ(TPC)VPC,0

ρ(TPC) = a1T 2
PC

+ a2TPC + a3 ρ(x3)
Wloss,PC(TPC) = a4TPC + a5 W1(x3)

TPC,HL(TPC) = TPC + 15 T1(x3)

mPR = dMP R

dt
= dMP C

dt
m1(x1, x2, x3, x5,)

−
dρ(TP C)

dTP C

dTP C

dt
VPC,0 u2, d1, d5)

3.1 Simplified dynamics

We can derive the equations of the simplified dynam-
ics, if we substitute χmP R>0 = 0 and χmP R<0 = 1
to the original state space equations (2), and use the
notations defined above.

dx1

dt
=

β

Λ
(p1u2

1 + p2u1 + p3)x1 + S

dx2

dt
= u2 − d1

dx3

dt
=

1

c1x2
[c1u2(d5 − x3) + c1d115 + cΨ1x1

−6K1(x3 − x5) − W1(x3)]

dx4

dt
=

1

c2M1(x2, x3)
[−W2 + u3]

dx5

dt
=

c3d2d4 − c4d2x5 − d2E1 + K1(x3 − x5) − W3

c3d3

We assume that we only utilize inputs u1 and u2 in

this setup. For this case, the dependency graph can

be seen in Fig 2. The explicit expressibility graph is

depicted in Fig. 3 (loop-edges and disturbances are

neglected).

Outputs are chosen as follows: y1 = x4, y2 = x5. The

pairwise disjoint paths are denoted by bold arrows.

Expression of variables. In this case, u1 can not be

directly explicitly expressed from x1, but this problem

can be solved as follows.

• In the beginning X1
E = {x4} X2

E = {x5}
(XE = {X1

E

⋃

X2
E}).

X1

X2x5

x4 x3

u1

u2

d1

d5

d2

d3
d4

u3

Fig. 2. The dependency graph in the simple case

X1

X2x5

x4 x3

u1

u2

Fig. 3. The explicit expressibility graph in the simple

case

• ẏ2 = ẋ5 = f(x3, x5) → x3 can be expressed →
X1

E = {x4} X2
E = {x3, x5}

• ẏ1 = ẋ4 = f(x2, x3) → x3 is already expressed

→ x2 can be expressed → X1
E = {x2, x3, x4}

X2
E = {x3, x5}

• ÿ2 = ˙f(x3, x5) = f(x1, x2, x3, x5, u2) as it can

be seen from the dependency graph. x1 and u2

are the new variables.

• ÿ1 = ˙f(x2, x3) = f(x1, x2, x3, x5, u2) as it can

be seen from the dependency graph. x1 and u2

are the new variables.

At this point, we have 2 independent equations for two

unknown variables that can be solved in this case.

The detailed derivation of the above steps are as fol-
lows.

y1 = x4, y2 = x5

ẏ2 =
1

c3d3
(c3d2d4 − c4d2x5 − d2E1 + K1(x3 − x5) − W3)

x3 =
c4d2x5 − c3d2d4 + d2E1 + K1x5 + W3 + ẏ2c3d3

K1

ẏ1 =
−W2

c2M1(x2, x3)
=

−W2

c2(x2 − (a1x2
3 + a2x3 + a3)V1)

x2 =
−W2

ẏ1c2
+ (a1x2

3 + a2x3 + a3)V1

ÿ1 = ẍ4 = −
W2 (ẋ2 − (2 a1 x3 ẋ3 + a2 ẋ3 + a3) V1)

c2 (x2 − (a1 x3
2 + a2 x3 + a3) V1)2

ẋ2 = u2 − d1

u2 =
ÿ1 c2

(

x2 −
(

a1 x3
2 + a2 x3 + a3

)

V1

)2

W2
+

+(2 a1 x3 ẋ3 + a2 ẋ3) V1 + d1 (3)

���

ÿ2 =
1

c2d2
3

(

−ḋ3[c3d2d4 − c4d2x5 − d2E1 + K1(x3 − x5)]
)

+
1

c2d2
3

(

−ḋ3W3 + d3[c3(ḋ2d4 + ḋ4d2) − c4(ḋ2x5)]
)

+
1

c2d2
3

(

+d3[d2ẋ5 − E1ḋ2 + K1(ẋ3 − ẋ5)]
)

(4)

It is easy to see, that from this equation ẋ3 can be
easily expressed. We denote the expressed form of ẋ3

by F1(.). The notation (.) refers to the fact, that no
new (unexpressed) variables appear in the expression.
In this case u2 can be expressed from equation (3). On
the other hand:

ẋ3 = F1(.) =
1

c1x2
[c1u2(d5 − x3) + c1d115]

+
1

c1x2
[cΨ1x1 − 6K1(x3 − x5) − W1(x3)]

In this new equation x1 is yet unexpressed with the
derivatives of y1 and y2.

x1 =
1

cΨ1
(F1(.)c1x2 − c1u2(d5 − x3) −

−c1d115 + 6K1(x3 − x5) + W1(x3) (5)

The only one vertex of the dependency graph, which

is not expressed yet is the input u1. u1 can not be

explicitly expressed from the differential equation of

x1, but the function can be locally inverted. In fact two

solutions can be expected :

• If we take the third derivative of any output,

ẍ3 will appear, that depends on u1 and u̇2 as

currently unexpressed variables. If we use a pre-

compensator for the input u2, we can get a flat

system.

• Because x1 does not depend on the other state-

space variables, and it appears linearly in the dif-

ferential equation describing x3, it can be taken

into account as an input to the system, and use

the backstepping method described in (van der

Schaft, 2000) to determine u1.

3.2 A more complex dynamics

We can derive the equations of the more complex
part of the hybrid dynamics. For this, we substitute
χmP R>0 = 1 and χmP R<0 = 0 in the original state
space equations (2).

dx1

dt
=

β

Λ
(p1u2

1 + p2u1 + p3)x1 + S

dx2

dt
= u2 − d1

dx3

dt
=

1

c1x2
[c1u2(d5 − x3) + c1d115 + cΨ1x1

−6K1(x3 − x5) − W1(x3)]

dx4

dt
=

1

c2M1(x2, x3)
[c1m1(x1, x2, x3, x5, u2, d1, d5)T1(x3)

−W2 + u3] − x4

dx5

dt
=

c3d2d4 − c4d2x5 − d2E1 + K1(x3 − x5) − W3

c3d3

The equations define the dependency graph that is

shown in Fig. 4 if we suppose the utilization of all 3

inputs. Accordingly, 3 pairwise disjoint paths appear.

X1

X2x5

x4 x3

u1

u2

d1

d5

d2

d3
d4

u3

Fig. 4. The dependency graph in the complex case -

the bold edges do not appear in figure2.

The explicit expressibility graph is depicted in Fig.

5 (loop-edges and external disturbances are omitted).

The outputs are chosen as:

y1 = x2, y2 = x4, y3 = x5.

The pairwise disjoint paths are denoted by bold arrows

again.

X1

X2x5

x4 x3

u1

u2

u3

Fig. 5. The explicit expressibility graph in the complex

case

Expression of variables As it can be seen from the

graphs, in this case our strategy will be the following:

• From the first derivative of y1 = x2 we can

express u2 → XE = {x2, x4, x5, u2}.

• From the first derivative of y3 = x5 we can

express x3 → XE = {x2, x3, x4, x5, u2}.

• The second derivative of y3 = x5 will be ÿ3 =
f(x1, x2, x3, x5, u2) as it can be seen in the

dependency graph. We can express x1 →
XE = {x1, x2, x3, x4, x5, u2}.

• The first derivative of y2 = x4 will be ẏ2 =
f(x1, x2, x3, x5, u2, u3) as it can be seen in the

dependency graph. We can express u3 →
XE = {x1, x2, x3, x4, x5, u2, u3} = X \ u1

���

The detailed derivation is as follows.

ẏ1 = u2 − d2 → u2 = d2 − ẏ1

XE = {x2, x4, x5, u2}

ẏ3 =
c3d2d4 − c4d2x5 − d2E1 + K1(x3 − x5) − W3

c3d3

x3 =
(c4d2x5 − c3d2d4 + d2E1 + K1x5 + W3 + ẏ3c3d3)

K1

XE = {x2, x3, x4, x5, u2}

It is easy to see, that from the equation

ÿ3 =
1

c3d3

2

(((c3d3)((c3ḋ2d4) + (c3d2ḋ4) −

− (c4dp2x5 + c4d2ẋ2) − ṗ2E1 + (K1(ẋ3 − ẋ5)) − W3)

−(c3ḋ3)(c3d2d4 − c4d2x5 − d2E1 + K1(x3 − x5) − W3))

x1 can be easily expressed (x1 appears linearly in ẋ2

which appears linearly in this equation). Thus, finally
we obtain

XE = {x1, x2, x3, x4, x5, u2}

Furthermore, from the equation

ẏ2 =
1

c2M1(x2, x3)
[c1m1(x1, x2, x3, x5, u2, d1, d5)T1(x3)

−W2 + u3] − x4

the expression of u3 is trivial, and all other state and
input variables in the equation are in XE

XE = {x1, x2, x3, x4, x5, u2, u3} = X \ u1

The situation with u1 is the same as detailed in

subsection 3.1, and similar solutions can be found.

4. CONCLUSIONS

It has been shown that the flatness property with

respect to the state variables that serve as simple

outputs can be analyzed using a graph theoretical

method for a class of MIMO nonlinear systems. For

this purpose, a special directed graph, the so-called

explicit expressibility graph has been introduced and

some useful necessary conditions for flatness have

been worked out.

An algorithm has been constructed for the expression

of state variables and inputs using the properties of the

explicit expressibility graph. The method is capable of

proving flatness only in a subclass of nonlinear sys-

tems because of the required structural and algebraic

properties.

The operation of the method has been illustrated on

the simplified (hybrid) model of the primary circuit

dynamics of a pressurized water nuclear power plant.

Further work will be directed towards the extension of

the method to the case when certain states and inputs

are non-globally expressible from the equations.

ACKNOWLEDGEMENT

The first author would like to thank Bálint Kiss at

the Dept. of Control Engineering and Information

Technology of the Budapest University of Technology

and Economics for sharing his knowledge on flat

systems.

5. REFERENCES

Broenink, J.F. (1999). Introduction to physical sys-

tems modelling with bond graphs. Technical re-

port. University of Twente, Dept. of Electrical

Engineering.

Faiz, N., S. K. Agrawal and R. M. Murray (2001).

Trajectory planning of differentially flat systems

with dynamics and inequalities. Journal of Guid-

ance, Control, and Dynamics 24, 219–227.

Fazekas, Cs., G. Szederkényi and K.M. Hangos

(2006). A simple dynamic model of the pri-

mary circuit in vver plants for controller de-

sign purposes. Nuclear Engineering and Design

237, 1071–1087.

Fliess, M., J. Levine, P. Martin and P.Rouchon (1994).

Flatness and defect of nonlinear systems: Intro-

ductory theory and examples. CAS Internal re-

port A-284.

Gawthrop, P.J. (2000). Physical interpretation of in-

verse dynamics using bicausal bond graphs. Jour-

nal of the Franklin Institute 337, 743–769.

Kessler, G. (1983). Nuclear Fission Reactors.

Springer-Verlag. Wien, New York.

Kiss, B. (1998). Using flatness to control pendulum

mechanical systems. In: Proceedings of the Con-

ference of the Latest Results in Information Tech-

nology. Technical University of Budapest. Bu-

dapest, Hungary. pp. 36–42.

Pomet, J. B. (1996). On dynamic feedback lineariza-

tion of four-dimensional affine control systems

with two inputs. Research Report of the Traitment

du signal, automatique and produtcique.

Rathinam, M. (1997). Differentialy flat nonlinear con-

trol systems. Technical Report of the Control and

Dynamical Systems Option, California Institute

of Technology, Pasadena, California.

Richard, P.Y., J. Buisson and H. Cormerais (2002).

Analysis of flatness using bond graphs and

bicausality. In: IFAC 15th Triennial World

Congress. Barcelona, Spain.

Robenback, K. and O. Vogel (2004). Computation of

state and input trajectories for flat systems using

automatic differentiation. Automatica 32, 459–

464.

van der Schaft, Arjan (2000). L2-Gain and Passivity

Techniques in Nonlinear Control. Springer.

���

