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Abstract: In this contribution the problem relating dynamic behavior and parameter values
for weakly reversible chemical reaction networks (CRNs) that obey the mass action law is
revisited. The approach is founded on previous methods and results discussed in [15, 16] for
weakly reversible CRNs. Two new research directions are however undertaken in this study, one
of them exploits an alternative factorization of the Kernel of the Kirchhoff matrix Ak which
in a natural way links complex balance with zero deficiency. The other one intends to use the
convex structure of the so-called family of solutions described in [15] on the space of reaction
channels.

1. INTRODUCTION

Deterministic reaction kinetic models obeying the mass
action law (MAL) form an important subclass within
nonnegative systems, since they have good dynamical
description properties in spite of their simple algebraic
structure. Such models are capable of producing all the
important qualitative features (such as stable and unsta-
ble equilibria, multiple equilibria, bifurcation phenomena,
oscillatory and even chaotic behaviour) that support the
better understanding of complex processes in artificial or
natural systems [9, 3].

Chemical reaction network theory (CRNT) is originated in
the 1970’s by the pioneering works of Horn, Jackson and
Feinberg [14, 11]. The deficiency of a CRN is a nonnegative
integer number that only depends on the stoichiometry
and the graph structure of a CRN but not on the reaction
rate coefficients [11]. Also in [11], the stability of CRNs
with zero deficiency is proved with a given Lyapunov
function that is independent of the system parameters and
therefore suggests a robust stability property with respect
to parameter changes.

Weakly reversible networks (characterized by the property
that each node in their reaction graphs lies on at least
one directed cycle) form a particularly important class
of reaction networks because strong properties are known
about their dynamics. A still unpublished but significant
result claims the existence of at least one positive equilib-
rium point within each stoichiometric compatibility class
for weakly reversible CRNs [8]. An important subclass
within weakly reversible networks is the set of CRNs
with complex balanced equilibrium points. The geomet-
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rical structure of complex balanced equilibrium points is
explored in [7] and is shown to be a toric variety. Here
we have to mention three important conjectures that em-
phasize the significance of weakly reversible and complex
balanced CRNs. TheGlobal Attractor Conjecture says that
for any complex balanced CRN and any initial condition
x(0) ∈ Rn

+, the equilibrium point x∗ is a global attractor
in the corresponding positive stoichiometric compatibility
class. According to the Persistency Conjecture, the dy-
namics of any weakly reversible mass-action system is per-
sistent. The Boundedness Conjecture says that any weakly
reversible reaction network with mass-action kinetics has
bounded trajectories. Recently, both the Global Attractor
Conjecture and the Boundedness conjecture have been
successfully proved for one linkage class reaction networks
by the same author [2, 1].

The relationship between the chemical network structure
and the possibility of multiple equilibria is investigated in
[5] from and algebraic and in [6] from a structural point of
view. The possibility of multistationarity of CRNs with
mass action dynamics was investigated in [12] through
subnetwork analysis and recently in [4] by setting up an
appropriate set of linear inequalities

The characterization of equilibrium points of weakly re-
versible CRNs using the so-called ‘family of solutions’
was introduced in [15] and with additonal geometric con-
straints it was effectively used for establishing conditions
on the possibility of having multiple equilibrium points
within a stoichiometric compatibility class [16]. The pur-
pose of this paper is to extend the results published in
[15, 16] by presenting an improved parametrization of the
family of solutions. Using the developed description of
CRN structure and dynamics, we relate known results in
CRNT with it, such as the structure and the local stability
of complex balanced equilibrium points.
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2. FORMAL DESCRIPTION OF REACTION
NETWORKS

Let m be the number of molecular species participating
on a given set of r irreversible chemical reaction steps and
c ∈ Rm the corresponding vector of species concentrations
(defined as number of molecules, e.g. mole numbers per
unit of volume). Each reaction step transforms a set of
chemical species (reactants) into another (products). In
CRNT, the sets of chemical species participating on reac-
tion steps are called complexes. Complexes and reaction
steps conform a reaction network, accepting a graph de-
scription where the former correspond with the nodes and
the latter with the (directed) edges of the network.

Let C = {C1, . . . , Cn} be the set of complexes present in a
given reaction network. In order to construct the graph,
we follow the description in [15], and associate to each
complex Ci a set Ii of integer elements with ordinality
in n, and a pair of vectors {yi, εi}. The set Ii collects
those complexes reached from Ci. Vector yi ∈ Rm has
as entries the (positive) stoichiometric coefficients of the
molecular species that participate in complex i. Finally,
vector εi ∈ Nn denotes the ith standard unit vector in the
Euclidean space (where the ith element is 1, while all the
other elements are zero).

The reaction rates Rij at which any complex i transforms
into j are assumed to obey the mass action law so that:

Rij = kijψi(c), (1)

with kij > 0 being the reaction rate constants and ψi(c) :
Rm → R functions of the form:

ψi(c) =
m∏
j=1

c
yji

j ≡ cyi (2)

Whenever c is a strictly positive vector (meaning all
components strictly positive), the following alternative
representation may be more convenient:

lnψi(c) = yTi ln c (3)

where the natural logarithm ln(·) operates on any vector
element-wise. The stoichiometric vectors yi associated to
the complexes of the network will be collected in the so-
called molecularity matrix Y ∈ Rm×n.

2.1 Graph structure of reaction networks

The graph for a chemical reaction network is built by
linking complexes Ci → Cj for every i and j ∈ Ii. The
resulting graph structure is composed of a number ℓ of
”isolated” sub-graphs known in CRNT as linkage classes
(they are also called connected components).

For each linkage class λ = 1, ..., ℓ, we define the set Lλ

as the one which contains as elements the indices of the
complexes that belong to that linkage class 1 .

For each λ we also select a complex (we refer to as
the reference) jλ and define a n-dimensional vector ωλ

associated to the linkage class as follows: 2

1 To be precise, the set Lλ will be that containing as elements
Lλ = {i1, i2, ..., iNλ

}, with Nλ = N (Lλ), being ij the cardinality
associated to complex Cij , and N (·) the operator which indicates
the number of elements in the set.
2 Vector ωλ is referred in classical CRNT as the characteristic
function of linkage class λ.

ωλi =

{
1 if i ∈ Lλ

0 otherwise
(4)

Vectors ωλ (λ : 1, ..., ℓ) are orthogonal to each other since
by construction, sets Lλ for λ = 1, ..., ℓ are disjoint.

Complexes within a linkage class are connected by se-
quences of irreversible reaction steps defining directed
paths. Two complexes are strongly linked if they can be
reached from each other by directed paths (trivially every
complex is strongly linked to itself). The largest set of
strongly linked complexes defines a strong terminal linkage
class if no other complex can be reached from its elements
(such set in graph theory it is known as strongly connected
component or strong component). A linkage class Lλ is
said to be weakly reversible if all its complexes are strongly
linked. Weakly reversible networks are those composed by
weakly reversible linkage classes.

2.2 The dynamics of reaction networks

The net change in time of species concentrations follows
the set of ordinary differential equations 3 [11]:

ċ = Y ·Ak(ψ) ≡ Y ·
ℓ∑

λ=1

Aλ
k(ψ), (5)

whereψ(c) ∈ Rn is a vector containing as entries the scalar
function monomials (2) and Aλ

k(ψ) a linear operator that
accepts the following factorizations:

Aλ
k(ψ) =

∑
i∈Lλ

ψi(c)
∑
j∈Ii

kij · (εj − εi). (6a)

Aλ
k(ψ) =

∑
i∈Lλ\jλ

ϕi(ψ)(εi − εjλ), (6b)

ϕi in (6b) correspond with the net reaction rate flux
around complex i, so that ϕi(ψ) =

∑
j∈Lλ\i(Rji − Rij).

From orthogonality of vectors εi, each net kinetic flux ϕi
can also be expressed as:

ϕi(ψ) = ε
T
i A

λ
k(ψ) for every i ∈ Lλ \ jλ (7)

ϕjλ ≡ εTjλA
λ
k(ψ) = −

∑
i∈Lλ\jλ

ϕi. (8)

Network fluxes can be written in vector form as:

ϕ(ψ) =M(k)ψ (9)

where M(k) is the n × n matrix with rows mi(k) ∈ Rn,
so that ϕi(ψ) =m

T
i (k)ψ. For every i ∈ Lλ the rows have

the following structure:

mij =


kji ≥ 0 for j ∈ Lλ \ i

−
∑
j∈Lλ

kij > 0 for j = i

0 for j /∈ Lλ

(10)

Note that since the closure relation (8) is valid for any ψ,
vectors mi must satisfy that:∑

i∈Lλ

mi(k) = 0 for λ = 1, ..., ℓ (11)

3 Such description entails a number of chemical reactions taking
place on a well mixed closed domain or vessel at constant tempera-
ture.
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2.3 Kernel and Image of the operator Ak(ψ)

The image of Ak(ψ) lies within the subspace:

∆λ = span{εi − εjλ | i ∈ Lλ \ jλ}, and ∆ =
∪ℓ

λ=1
∆λ

(12)
This can be concluded by inspection of (6). Since vectors
in ∆λ are linearly independent, they form a basis for the
subspace, being its dimension Nλ−1. Hence, dim(∆) = ℓ ·
(Nλ − 1) = n− ℓ.

Because the elements of the set ∆ are linearly independent,
the null space of Ak(ψ) requires ϕ = 0 and therefore
coincides with the null space associated to the matrix
M(k). The zero flux condition on each complex is known
as complex balance [13].

The dimension of the null space ofM(k) equals the number
of linkage classes. Each element of its basis µj(k) is a
vector with nonnegative elements, positive if the com-
plexes are in a terminal linkage class and zero otherwise
(Proposition 4.1 in [11]).

As a direct consequence, all elements are positive if the
linkage class is weakly reversible. The dimension of the null
space being ℓ is a consequence of (11) and the structure of
vectors (10) extended to every linkage class. This in turn
is equivalent to assert that M(k) is a column conservation
matrix.

In addition, each vector εi−εjλ can be expressed in terms
of Nλ − 1 linearly independent column vectors of M(k)
with column numbers in Lλ. Let φi be a vector satisfying
that:

εi − εjλ =M(k)φi

Without loss of generality it can be set up so that εTjλφi =
0 for every i ∈ Lλ and λ = 1, ..., ℓ, namely having zero
values at the location of the references jλ.

In summary, vectors µj(k) and φi(k) are solutions of the
following set of equations:

M(k)µj = 0 for j ∈ R
M(k)φi = εi − εjλ for i ∈ Lλ \ jλ and λ = 1, ..., ℓ

(13)

where the set R is that which collects the indexes of the
reference complexes jλ (one per linkage class).

2.4 The stoichiometric subspace and reaction simplex

The so-called stoichiometric subspace Σ is defined as that
spanned by the union over all linkage classes λ of the vector
sets:

Σλ = span{yi − yjλ | i ∈ Lλ \ jλ} and Σ =
∪ℓ

λ=1
Σλ

(14)
Alternatively, by denoting each vector in Σ as ∆yi = yi −
yjλ , the stoichiometric subspace can be re-defined as:

Σ = span{∆yi | i ∈ LR ≡ L \ R} with L = ∪λLλ (15)

Note that the number of elements in set (15) coincides
with n − ℓ, the dimension of ∆. Thus if s = dim(Σ), the
number of dependent vectors in Σ will be:

δ = n− ℓ− s (16)

Vectors in the set Σ are related by δ linear combinations:∑
i∈LR

γik∆yi = 0 for all k = 1, ..., δ (17)

where parameters γik are the entries of vectors γk which
conform a basis for the null space of the stoichiometric
subspace.

In the sequel we will be particularly interested in motions
of system (5) restricted to the convex region resulting from
the intersection of the positive orthant in the concentration
space and a linear variety associated to the stoichiometric
subspace Σ (also known in CRNT as compatibility class).
Such region, known either as reaction simplex or reaction
polyhedron, is formally defined with respect to a reference
concentration vector c0 as:

Ω(c0) = {c ∈ Rm|c ≥ 0, BT(c− c0) = 0} (18)

where B ∈ R(m×m−s) is a full rank matrix that spans
column-wise the orthogonal complement Σ⊥, i.e. B ≡ Σ⊥.

3. THE STRUCTURE OF EQUILIBRIUM
SOLUTIONS IN CHEMICAL REACTION NETWORKS

3.1 The family of solutions

Equilibrium solutions can be expressed in terms of vectors
µj(k) and φi(k) defined in (13) as follows:

ψ(ψj , ϕi) =
∑
j∈R

ψjµj +
∑
i∈LR

ϕiφi (19)

what takes us to the following result which suggest a
general structure for the equilibrium solutions of (5).

Lemma 1
Every feasible equilibrium solution of (5) can be written
in the form:

F (ψj ;αk) =
∑
j∈R

ψjµj +

δ∑
k=1

αk

∑
i∈LR

γikφi (20)

where µj and φk are solutions of (13), γik are parameters
that solve (17) and αk for k = 1, . . . , δ are arbitrary
parameters.

Proof: That for any αk ∈ R with k = 1, . . . , δ, relation
(20) is an equilibrium solution can be shown by substitut-
ing the expression into equation (5), and making use of
(13) so that:

Ak(F ) =
δ∑

k=1

αk

ℓ∑
λ=1

∑
i∈Lλ\jλ

γik (εi − εjλ) (21)

and

Y ·Ak(F ) =
δ∑

k=1

αk

∑
i∈LR

γik∆yi (22)

where according to (17), the term Y ·Ak(F ) = 0. To prove
that every equilibrium solution can be written in the form
(20), we make use of (19), (13) and (17) to recover (20)
with αk ≡ ϕk for k = 1, ..., δ. 2

From now on we will refer to equation (20) as the fam-
ily of equilibrium solutions. Among all possible elements
satisfying (20) we will concentrate on those being strictly
positive. To that purpose we will define the set:

F(α) = {F > 0 | ψj > 0; αk ∈ R for j ∈ R, k = 1, . . . , δ}
(23)

Example Let us consider the reaction network shown
in Fig. 1. The CRN structure can be described by the
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following connection rules: I1 = {3}, I2 = {5}, I3 = {1},
I4 = {5}, I5 = {2, 4} and a molecularity matrix:

Y =

(
1 2 1 2 2
0 1 1 1 1
0 0 1 3 2

)
For this case sets Lλ are:

L1 = {1, 3}, L2 = {2, 5, 4}.

Fig. 1. Reaction network in Example 1. Complexes are
denoted by C1, . . . , C5

We choose complexes 3 and 4 as references so that R =
{3, 4}, and the set LR defined in (15) becomes LR =
{1, 2, 5}. The stoichiometric subspace is that spanned by
the following column vectors:

Σ =

(
0 0 0

−1 0 0
−1 −3 −1

)
(24)

As s = 2, δ = 1 and γ1 = [ 0 1 −3 ]T . The non-zero off-
diagonal elements ofM(k) are the following:M(k)i,j = kji
for (i, j) = (1, 3), (2, 5), (3, 1), (4, 5), (5, 2) and (5, 4).

The expression for the set of equilibrium solutions (20)
takes the form:

F (ψ3, ψ4;α2) =
∑

j∈{3,4}

ψjµj + α1

∑
i∈{1,2,5}

γi1φi (25)

In (25) the µ vectors are:

µ3 = [k31/k13 0 1 0 0]T ,

µ4 = [0 k52k45/(k25k54) 0 1 k45/k54]
T

Using (13), we obtain the following φ vectors:

φ1 =

(
−1

k13
0 0 0 0

)T

,

φ2 =

(
k31
k13

−k54 + k52
k25k54

1 0 − 1

k54

)T

,

φ5 =

(
k31k52

k13k25k54

−k52
k25k54

−k52
k25k54

0
−1

k54

)T

.

For determining the γ parameters, we obtain the following
set of equations:

γ11∆y1 + γ21∆y2 + γ51∆y5 = 0, (26)

where the ∆y-s are computed according to (15) as

∆y1 = y1 − y3 = ( 0 −1 −1 )
T
,

∆y2 = y2 − y4 = ( 0 0 −3 )
T
,

∆y5 = y5 − y4 = ( 0 0 −1 )
T
.

Finally, for the solution of (26), we obtain

γ11 = 0, γ51 = −3γ21.

3.2 Additional solvability constraints

Every feasible equilibrium solution must belong to the
family of solutions (23), but in addition its elements must
also satisfy (3), which in vectorial form becomes:

lnψ = Y T ln c (27)

We then say that a feasible equilibrium solution exists for
a given set of parameters αk, with k = 1, ..., δ, if there is
some c > 0 solving the following set of equations:

F (ψj(c);αk) = exp
(
Y T ln c

)
(28)

A complex balanced equilibrium solution exists if there
is some c > 0 which satisfies (28) for αk = 0 with
k = 1, · · · , δ. Substituting (20) into (28), re-ordering terms
and using the logarithm we also get:

ln
∑
j∈R

µj +
ℓ∑

λ=1

ωjy
T
jλ

ln c (29)

= ln

(
exp

(
Y T ln c

)
−

δ∑
k=1

αk

∑
i∈LR

γikφi

)
where the following equivalence has been used:

ln

∑
j∈R

ψjµj

 = ln
∑
j∈R

µj +
ℓ∑

λ=1

ωjy
T
jλ

ln c (30)

The representation of the family of feasible equilibrium
solutions we just discussed is complementary to the one
described by [15] based on the intersection of the so-called
family and manifold of solutions, and employed to find
conditions in the parameter space for the existence of
complex dynamic behavior.

4. STABLE EQUILIBRIUM IN CHEMICAL
REACTION NETWORKS: THE HORN SET

In this section we characterize a particular set of reaction
rate parameters (reaction rate constants) that will lead to
stable equilibria. The set will be referred to in the sequel
as the ”Horn set” after the name of one of the founders of
CRNT who described the properties of complex balance
solutions [13]. The discussion we provide here revisits his
findings on a geometric context. The Horn set is defined
as follows:

H(K) =

{
kij > 0 | ln

∑
j∈R

µj(kij) ∈ Im

(
Y T −

ℓ∑
λ=1

ωλy
T
jλ

)}
(31)

In the following three propositions, we will show how the
previously developed description can be used for revisiting
and analyzing known results in CRNT.

Proposition 1
Chemical reaction networks with any set of parameters
K ∈ H will only accept complex balance equilibrium
solutions

Proof: That any set of parameters K ∈ H is compatible
with a complex balance solution follows directly from
the definition of the set. That is to say, for any element
K ∈ H there exists some constant parameter vector γ -
equivalently a parameter vector ξ∗ = exp(γ)- such that:

ln
∑
j∈R

µj(kij) =

(
Y T −

ℓ∑
λ=1

ωλy
T
jλ

)
ln ξ∗ (32)
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Reordering terms in the previous expression we get that:

ln
∑
j∈R

µj(kij) +
ℓ∑

λ=1

ωjy
T
jλ

ln ξ∗ = Y T ln ξ∗ (33)

Using lnψ∗
jλ

= yT
jλ

ln ξ∗, with λ = 1, ..., ℓ, we obtain the
equivalent relation:

ln
∑
j∈R

µj(kij)ψj = Y T ln ξ∗ (34)

which coincides with equation (28) -equivalently eqn (29)-
with αk = 0 for all k, that is to say, a complex balance
equilibrium solution.

To prove that solutions other than complex balance ones
are not possible with the same reaction rate coefficients,
we assume that one such solution exists for the same
parameter set which produces (34). Let us first note that
parameters must obey the following relations:

εTi
∑
j∈R

µj = exp
[
(yi − yjλ)T ln ξ∗

]
for i ∈ Lλ, (35)

and λ = 1, ..., ℓ. Substituting this expression into (29)
(with ξ replacing c) we get (element-wise):

(yi − yjλ)T ln ξ∗ + yT
jλ

ln ξ = (36)

ln

(
exp

(
yT
i ln ξ

)
−

δ∑
k=1

αk

∑
i∈LR

γjk(φj)i

)
Adding and subtracting yTi ln ξ on the left hand side, and
re-ordering the terms we obtain the equivalent expressions:

xi = ai(ξ; ξ
∗)xi +

δ∑
k=1

αk

∑
j∈L\R

γjk(φj)i (37)

ai(ξ; ξ
∗) = exp

[
(yi − yjλ)T (ln ξ∗ − ln ξ)

]
with xi = exp(yT

i ln ξ). The existence of solutions other
than complex balance relates directly to the solvability of
(37), namely finding a ξ vector for parameters αk others
than zero satisfying the equation for every i ∈ Lλ and
λ = 1, ..., ℓ.

Equality holds only for a(ξ; ξ∗) = 1 and αk = 0 for every
k ∈ Lλ \ jλ, i.e. complex balance solutions. 2

Proposition 2
Complex balanced solutions are unique in the sense that
there is only one complex balance solutions per compati-
bility class

Proof: To show this we make use of equation (29) and
suppose there are two solutions ln ξ and ln ξ′ associated to
the same parameter set K ∈ H, with ξ and ξ′ in the same
compatibility class. Then we have for every i ∈ Lλ and
λ = 1, ..., ℓ that:

εTi ln
∑
j∈R

µj + y
T
jλ

ln ξ = yT
i ln ξ (38)

εTi ln
∑
j∈R

µj + y
T
jλ

ln ξ′ = yT
i ln ξ′ (39)

Subtracting one expression from the other we get:

(yi − yjλ )
T (ln ξ − ln ξ′) = 0 for i ∈ Lλ \ jλ and, λ = 1, ..., ℓ (40)

In other words (ln ξ − ln ξ′) ∈ Σ⊥. Since by assumption,
ξ and ξ′ are in the same compatibility class we must also
have that:

(ln ξ − ln ξ′)T (ξ − ξ′) = 0 (41)

But according to Lemma 2 with a convex function candi-
date:

V (ξ) =

m∑
i=1

ξi(ln ξi − 1) (42)

[ln(ξ)− ln(ξ′)]
T
(ξ − ξ′) ≥ 0 for any ξ, ξ′ ∈ X, with strict

inequality. This implies that in order for equation (41) to
hold ξ ≡ ξ′. In other words, there is just one equilibrium
solution per compatibility class. 2

Proposition 3
The positive equilibrium points of any complex balanced
network are locally asymptotically stable within the cor-
responding stoichiometric compatibility class.

Proof: First of all, let us make use of (6a) to write the
right hand side of (5) as a summation over λ of functions:

fλ(ξ) =
∑
i∈Lλ

ψi(ξ)
∑
j∈Ii

kij · (yj − yi) (43)

Select some positive reference ξ∗ > 0 (its associated vector
ψ∗ is strictly positive) and re-write the previous expression
in the equivalent form:

fλ(ξ) =
∑
i∈Lλ

ey
T
i ν
∑
j∈Ii

ψ∗
i kij · (yj − yi) (44)

where ν = ln ξ − ln ξ∗. Consider also the following scalar
function:

gλ(ξ; ξ∗) ≡ νT fλ(ξ) =
∑
i∈Lλ

exi

∑
j∈Ii

ψ∗
i kij · (xj − xi) (45)

where xi = yT
i ν. An upper bound for gλ(ξ; ξ∗) can be

established from Lemma 2 in the Appendix with V (x) =
ex : R → R so that:

exi(xj − xi) ≤ exj − exi (46)

For any scalars xi and xj . Strict convexity of V (x) ensures
that the equality holds only if xi = xj . We also have that

exj − exi = (εj − εi)T
n∑

k=1

εke
xk (47)

Combining (47) with (46) and substituting the resulting
expression in (45) we get:

gλ(ξ; ξ∗) ≤

(
n∑

i=1

exiεTi

)[∑
i∈Lλ

ψ∗
i

∑
j∈Ii

kij · (εj − εi)

]
≡ (48)(

n∑
i=1

exiεTi

)
Aλ

k(ψ
∗)

Where we recall once again that the equality holds if and
only if xi = xj for every i, j ∈ Lλ. The result then follows
using B1 in the proof of Lemma 2 (in the Appendix) as a
Lyapunov function candidate, since we have:

Ḃ1 =

ℓ∑
λ=1

gλ(ξ; ξ∗) ≤

(
n∑

i=1

exiεTi

)
ℓ∑

λ=1

Aλ
k(ψ

∗) = 0 (49)

Therefore B1(ξ; ξ
∗) ≥ 0 and Ḃ1(ξ; ξ

∗) ≤ 0 2

Then, an estimate on the stability neighborhood can be
given by computing an appropriate level-set of B1 around
the selected equilibrium point in the positive orthant. We
also remark that as the Global Attractor Conjecture has
recently been proved for CRNs containing one linkage class
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[1] (see also the Introduction), therefore computing the
domain of attraction now can have significance only in the
multiple linkage class case.

5. CONCLUSION

The geometry of equilibrium solutions in weakly reversible
CRNs with mass action dynamics was examined in this
paper. For this, the so-called ‘family of solutions’ structure
introduced originally in [15] was used and extended. Using
the reported improved parametrization, future work will
be focused on making the rank conditions published in
[16] computationally more treatable to explore parametric
regions leading to multiple equilibrium points within a
stoichiometric compatibility class.

Appendix A. A LEMMA FOR CONVEX FUNCTIONS

Lemma 2
Let V (x) : X → R, with X ⊆ Rn its domain, a convex
function with continuous derivatives on X, and ν(x) : X →
Rn be the gradient of V (x). Then the following inequalities
hold for every x ∈ X:

(i) νT (x1)(x− x1) ≤ V (x)− V (x1) for any x1 ∈ X.
(ii) [ν(x2)− ν(x1)]

T
(x2 − x1) ≥ 0 for any x1, x2 ∈ X.

inequalities are strict whenever x ̸= x1 or x1 ̸= x2 in (i)
and (ii), respectively.

Proof: In order to prove the first part choose any x1 ∈
X and construct a function B1(x;x1) as the difference
between V (x) and its supporting hyperplane at x1. The
supporting hyperplane is of the form:

H(x;x1) = V (x1) + νT (x1)(x − x1), and B1(x;x1) =
V (x)−H(x;x1)

By construction the function is strictly positive, i.e. it is
positive for all x ∈ X other than x1, so the result (i) follows
in a straightforward manner since:

B1(x;x1) ≡ V (x) − V (x1) − νT (x1)(x − x1) ≥ 0, so that
V (x)− V (x1) ≥ νT (x1)(x− x1)

To prove the second part, we note that B1(x;x1) is itself
a convex function since ∇xB1 = ν(x) − ν(x1) so its
hessian coincides with that of the convex function V (x).
By using the same supporting hyperplane argument we
construct the following strictly positive definite function
around some x2 ∈ X:

B2(x;x1, x2) ≡ B1(x;x1)−B1(x2;x1)−[ν(x2)− ν(x1)]
T
(x−

x2) ≥ 0

where the inequality holds for any x ∈ X. In particular it
holds for x = x1, thus:

B1(x2;x1) + [ν(x2)− ν(x1)]
T
(x1 − x2) ≤ 0

which implies that B1(x2;x1) ≤ [ν(x2)− ν(x1)]
T
(x2−x1),

and the assertion is in this way proved. 2
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