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Abstract

A computation-oriented representation of uncertain kinetic systems is introduced and
analysed in this paper. It is assumed that the monomial coe�cients of the ODEs belong
to a polytopic set, which de�nes a set of dynamical systems for an uncertain model. An
optimization-based computation model is proposed for the structural analysis of uncertain
models. It is shown that the so-called dense realization containing the maximal number of
reactions (directed edges) is computable in polynomial time, and it forms a superstructure
among all the possible reaction graphs corresponding to an uncertain kinetic model, as-
suming a �xed set of complexes. The set of core reactions present in all reaction graphs of
an uncertain model is also studied. Most importantly, an algorithm is proposed to compute
all possible reaction graph structures for an uncertain kinetic model.

Keywords: reaction networks, uncertain models, reaction graphs, algorithms, convex optimiza-
tion

1 Introduction

Kinetic models in the form of nonlinear ordinary di�erential equations are widely used for
describing time-varying physico-chemical quantities in (bio-)chemical environments [55]. More-
over, the kinetic system class is dynamically rich enough to characterize general nonlinear
behaviour in other application �elds as well, particularly where the state variables are nonneg-
ative and the model has a networked structure, such as in the modelling of process systems,
population or disease dynamics, or even transportation processes [14, 5, 45]. In biochemical
applications, the exact values (or even sharp estimates) of the model parameters are often not
known, making the models uncertain [6]. Even when we have measurements of su�cient quan-
tity and quality, the lack of structural or practical identi�ability may result in highly uncertain
models even with the most sophisticated estimation methods [41, 8, 7]. This inherent uncer-
tainty was a key factor in the development of Chemical Reaction Network Theory (CRNT),
where (among other goals) a primary interest is to study the relations between the network
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structure and the qualitative properties of the corresponding dynamics, preferably without the
precise knowledge of model parameters. From the earlier results of CRNT, we have to mention
the well-known De�ciency One and De�ciency Zero Theorems [12, 39] opening the way towards
a structure-based (essentially parameter-free) dynamical analysis of biological networks. Recent
particularly important �ndings in this area are the identi�cation of biologically plausible struc-
tural sources of absolute concentration robustness [37], and the proof of the Global Attractor
Conjecture [1, 9].

The e�cient treatment of uncertain quantitative models is a fundamental task in mathemat-
ics, physics, (bio)chemistry and in related engineering �elds [4, 13]. An important early result is
[15], where the solutions of linear compartmental systems are studied with uncertain �ow rates
that are assumed to belong to known intervals. In [22] a probabilistic framework is proposed for
the representation and analysis of uncertain kinetic systems. In [32] an analytical expression is
computed for the temperature dependence of the uncertainty of reaction rate coe�cients, and
a method is proposed for computing the covariance matrix and the joint probability density
function of the Arrhenius parameters. A recent outstanding result is [33], where a deterministic
computation interpolation scheme for uncertain reaction network models is proposed, which is
able to handle large-scale models with hundreds of species and kinetic parameters.

The description of model uncertainties using convex sets is often a computationally appeal-
ing way of solving model analysis, estimation or control problems [50, 3]. From the numerous
applications, we mention here only a few selected works from di�erent �elds. In [51], a stabi-
lization scheme was given for nonlinear control system models, where the uncertain coe�cients
of smooth basis functions in the system equations are assumed to form a polytopic set. An
interval representation of �uxes in metabolic networks was introduced in [28], which enables
the computation of the α-spectrum even from an uncertain �ux distribution. In [24], a nonlinear
feedback design method is proposed which is able to robustly stabilize parametrically uncertain
kinetic systems using the convexity of the constraint ensuring the complex balance property.
Recently, a new approach was given for the stability analysis of general Lotka-Volterra models
with polytopic parameter uncertainties in [2].

It is known that the reaction graph structure corresponding to a kinetic ODE-model is gen-
erally non-unique, even in the case when the monomial coe�cients are assumed to be known
[16, 55, 34]. This property is called dynamical equivalence, macro-equivalence or confoundabil-
ity in the literature [10, 16]. The �rst solution to the inverse problem, namely the construction
of one possible reaction network (called the canonical network) for a given set of kinetic dif-
ferential equations was described in [17]. The notion of dynamical equivalence was extended
by introducing linear conjugacy of kinetic systems in [18] allowing a positive de�nite diagonal
transformation (a change of units) between the solutions of the kinetic di�erential equations.
The simple factorization of kinetic models containing the Laplacian matrix of the reaction graph
allows the development of e�cient methods in various optimization frameworks for computing
reaction networks realizing or linearly conjugate to a given dynamics with preferred properties
such as density/sparsity [40], weak reversibility [20], complex or detailed balance [42], minimal
or zero de�ciency [21, 23]. Using the superstructure property of the so-called dense realizations,
it is possible to algorithmically generate all possible reaction graph structures corresponding to
linearly conjugate realizations of a kinetic dynamics [54, 52].

Dynamical equivalence of reaction networks is strongly related to identi�ability and dis-
tinguishability of the corresponding nonlinear models [48, 10]. Clearly, if a kinetic system has
several dynamically equivalent realizations then it cannot be identi�able with respect to the
reaction rate coe�cients as parameters, even if the measured output is the whole concentration
vector. Due to its fundamental importance in model development, identi�ability analysis has
a wide literature (for general de�nitions and results, see, e.g. [27, 49, 25]). The possibility to
uniquely determine model parameters from measurements can be considered as an observability
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problem known from systems theory [35]. In this context, it is possible to construct computa-
tionally e�cient methods to check structural identi�ability [36, 47]. When a model structure
is �xed, it is important to �nd those subsets of parameters for which the model is globally or
at least locally identi�able. This problem is addressed and solved in [29] using Gröbner bases,
and successfully applied to systems biology models in [30]. Moreover, parameter transforma-
tions of initially non-identi�able models are often useful to solve identi�ability and then model
calibration problems [31, 26].

Even if the monomials of a kinetic system are known, the parameters (i.e., the monomial
coe�cients) are often uncertain in practice. For example, one may consider the situation when a
kinetic polynomial ODE model with �xed structure is identi�ed from noisy measurement data.
In such a case, using the covariance matrix of the estimates and the nonnegativity/kinetic
constraints for the system model, we can de�ne a simple interval-based (see, e.g. [28]), or a
more general (e.g., polytopic or ellipsoidal) uncertain model [25, 44]. Based on the above,
the goal of this paper is to extend and illustrate previously introduced notions, computational
models and algorithms for kinetic systems where the uncertain parameter vector belongs to a
polytopic set. As it is often done in the literature, this kind of uncertainty will be brie�y called
polytopic uncertainty.

2 Notations and computational background

In this section we summarize the basic notions of kinetic polynomial systems and the generalized
model de�ned with uncertain parameters.

The applied general notations are listed below:
R the set of real numbers
R+ the set of nonnegative real numbers
N the set of natural numbers including zero
Rn the n dimensional Euclidean space
Rn×m the set of matrices having entries from the set R in n rows and m columns
[M ]ij the entry of matrix M with row index i and column index j
[M ].j the jth column of the matrix M
rj the jth coordinate of the vector r
vec(M) the column extension of the matrix M
0n the null vector in Rn

1n the vector in Rn with all coordinates equal to 1
eni the vector in Rn for which the ith coordinate is 1 and all the others are zero

2.1 Kinetic polynomial systems and their models

Nonnegative polynomial systems are de�ned in the following general form:

ẋ =M · ϕ(x) (1)

where x : R → Rn
+ is a nonnegative valued function, M ∈ Rn×p is a coe�cient matrix and

ϕ : Rn
+ → Rp

+ is a monomial-type vector-mapping. The kinetic property of the dynamics (1)
can be ensured by prescribing sign conditions for the entries of matrix M depending on the
exponents of ϕ excluding so-called negative cross-e�ects from the model equations, see [17, 14].
This property implies that the nonnegative orthant is invariant for the system dynamics.

In this paper, we treat kinetic models as a general nonlinear system class that is suitable
for the description of biochemical reaction networks. Hence, we do not require that all models
belonging to the studied class are actually chemically realizable. Several physically or chemically
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relevant properties such as component mass conservation, detailed or complex balance can be
ensured by adding further constraints to the computations (see, e.g. [19]).

De�nition 2.1. A chemical reaction network (CRN) can be characterized by three sets
[11, 12].
species: S = {Xi | i ∈ {1, . . . , n}}
complexes: C = {Cj =

n∑
i=1

αjiXi | αji ∈ N, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}}

reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}
For all i, j ∈ {1, . . .m}, i 6= j the reaction Ci → Cj is represented by the ordered pair (Ci, Cj),
and it is described by a nonnegative real number kij ∈ R+ called reaction rate coe�cient.
The reaction Ci → Cj is present in the reaction network if and only if kij is strictly positive.

The relation between species and complexes is described by the complex composition

matrix Y ∈ Rn×m, the columns of which correspond to the complexes, i.e.

[Y ]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (2)

The presence of the reactions in the CRN is de�ned through the rate coe�cients as the o�-
diagonal entries of the Kirchho� matrix Ak ∈ Rm×m which is a Metzler compartmental
matrix with zero column-sums. Its entries are de�ned as:

[Ak]ij =

kji if i 6= j

−
m∑

l=1,l 6=i
kil if i = j

i, j ∈ {1, . . . ,m} (3)

According to this notation, the reaction Ci → Cj takes place in the reaction network if and only
if [Ak]ji is positive, and [Ak]ji = 0 implies that (Ci, Cj) /∈ R. Since a chemical reaction network
is uniquely characterized by the matrices Y and Ak, we refer to a CRN by the corresponding
pair (Y,Ak).

If mass action kinetics is assumed, the equations governing the dynamics of the concen-
trations of the species in the CRN de�ned by the function x : R → Rn

+ can be written in
the form:

ẋ = Y · Ak · ψY (x) (4)

where ψY : Rn
+ → Rm

+ is the monomial function of the CRN with coordinate functions

ψYj (x) =
n∏
i=1

x
[Y ]ij
i , j ∈ {1, . . . ,m} (5)

The nonnegative polynomial system (1) is called a kinetic system if there exists a reaction
network (Y,Ak) so that its dynamics satis�es the equation [55]:

M · ϕ(x) = Y · Ak · ψY (x) (6)

As it has been mentioned in the Introduction, reaction networks with di�erent sets of com-
plexes and reactions may be governed by the same dynamics. If Equation (6) is ful�lled, then
the CRN (Y,Ak) is called a dynamically equivalent realization of the kinetic system (1).

We emphasize that the left term in Equation (6) de�nes a multivariate polynomial function,
while the right hand side contains all information (i.e., complex composition, reaction graph
structure and reaction rate coe�cients) of a reaction network. Therefore, the monomial func-
tions ϕ and ψY in Equation (6) might be di�erent, since the monomials corresponding to pure
product complexes do not appear in the kinetic di�erential equations [55, 10]. However, by con-
struction, the monomials of all complexes including those of product complexes are contained

4



in ψY . We assume that the set of complexes is �xed initially. This clearly de�nes Y and ψY .
Naturally, ψY must contain the monomials of ϕ. Therefore, without the loss of generality, we
can assume that ϕ = ψY . This can be achieved by setting the coe�cients of those monomials of
ψY to zero in M , which are not contained in ϕ. Using the above assumptions and the fact that
two polynomials are equal if and only if they contain the same set of monomials and the coef-
�cients of the corresponding monomials are equal, we can write Equation (6) in the following
simple equivalent form:

M = Y · Ak (7)

Reaction networks have another representation, which is more suitable for illustrating the
structural properties. It is a weighted directed graph G(V,E) called the Feinberg-Horn-

Jackson graph or reaction graph for brevity [55]. The complexes are represented by the
vertices, and the reactions by the edges. Let the vertices vi and vj correspond to the complexes
Ci and Cj, respectively. Then there is a directed edge vivj ∈ E(G) with weight kij if and only
if the reaction Ci → Cj takes place in the CRN.

2.2 Uncertain kinetic systems

For the uncertainty modelling, we assume that the monomial coe�cients in matrixM are con-
stant in time but uncertain, and they can be represented by points of an nm dimensional
polyhedron. In [19], a special class of uncertain models was already introduced under the notion
of `structural dynamical equivalence', where an initial reaction network structure was assumed
with uncertain reaction rate coe�cients modelled as intervals, and di�erent dynamically equiv-
alent structures were computed for it. Here a di�erent uncertainty model is used, since we do
not assume any initial network structure for the uncertain polynomial model. Moreover, [19]
did not address the computation of all possible graph structures for uncertain models.

Remark 2.2. In previous sections the set of uncertain parameters is noted as a polytope or a
polytopic set, but from now on we use the notion of a polyhedron as well. A polytope is de�ned
as the convex hull of its vertices, while a polyhedron is the intersection of halfspaces, and the
two de�nitions are not equivalent in general. However, in the examined problems it is assumed
that the variables of the models are bounded, and the de�nitions of the bounded polyhedron and
the general polytope are equivalent.

The entries of the matrix M characterize the column vector vec(M) = [[M ]>.1, . . . , [M ]>.m]
>,

which is the column extension of the matrix M and it represents a point in the Euclidean
space Rnm. In the uncertain model it is assumed that the possible points vec(M) are all the
points of a closed convex polyhedron P , which is de�ned as the intersection of q halfspaces.
The boundaries of the halfspaces are hyperplanes with normal vectors n1, . . . , nq ∈ Rnm and
constants b1, . . . , bq ∈ R. Applying these notations, the polyhedron P can be described by a
linear inequality system as

P = {v ∈ Rnm | v> · ni ≤ bi, 1 ≤ i ≤ q} (8)

For the characterization of the polyhedron P not only the possible values of the parameters
should be considered, but also the kinetic property of the possible polynomial systems, i.e. a
polynomial system ful�lling the constraints of the model needs to be a kinetic system . This
can be ensured (see [17]) by prescribing the sign pattern of the matrix M as follows:

[Y ]ij = 0 =⇒ [M ]ij ≥ 0, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (9)
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These constraints are of the same form as the inequalities in Equation (8), for example the
constraint vec(M)j ≥ 0 can be written by choosing the normal vector ni to be the unit vector
−enmj and bi to be the null vector 0nm.

We note that there is a special case when the possible values of the parameters of the
polynomial system are given as intervals, and the polyhedron P is a cuboid.

It is possible to de�ne a set L of �nitely many additional linear constraints on the variables to
characterize a special property of the realizations, for example a set of reactions to be excluded,
or mass conservation on a given level, see e.g. [54]. These constraints can a�ect not only the
entries of the coe�cient matrix M but the Kirchho� matrix Ak of the realizations as well. Let
the column vector vec(Ak) ∈ Rm2−m be de�ned as the column extension of the Kirchho� matrix
having only its o�-diagonal entries as coordinates, and let r be the number of constraints in
the set L. Then the equations can be written in the form

vec(M)> · αi + vec(Ak)
> · βi ≤ di (10)

where αi ∈ Rnm, βi ∈ Rm2−m and di ∈ R hold for all i ∈ {1, . . . , r}. These constraints do not
change the general properties of the model, and as it will be shown in Section 2.3, it can be
modelled as a linear programming problem.

In the case of the uncertain model, we will examine realizations assuming a �xed set of
complexes. Therefore, the known parameters are the polyhedron P , the set L of constraints
and the matrix Y . Hence a constrained uncertain kinetic system is referred to as the triple
[P , L, Y ], but we will call it an uncertain kinetic system for brevity.

De�nition 2.3. A reaction network (Y,Ak) is called a realization of the uncertain kinetic
system [P , L, Y ] if there exists a coe�cient matrix M ∈ Rn×m so that the equation M = Y ·Ak
holds, vec(M) is in the polyhedron P and the entries of the matrices M and Ak ful�l the set
L of constraints. Since the matrix Y is �xed but the coe�cients of the polynomial system can
vary, this realization is referred to as the matrix pair (M,Ak).

2.3 Computational model

Assuming a �xed set of complexes, a realization (M,Ak) of an uncertain kinetic system [P , L, Y ]
can be computed using a linear optimization framework.

In the constraint satisfaction or optimization model, the variables are the entries of the ma-
trixM and the o�-diagonal entries of the matrix Ak. The constraints regarding the realizations
of the uncertain model can be written as follows:

vec(M)> · ni ≤ bi, i ∈ {1, . . . , q} (11)

M = Y · Ak, (12)

[Ak]ij ≥ 0, i 6= j, i, j ∈ {1, . . . ,m} (13)
m∑
j=1

[Ak]ij = 0, j ∈ {1, . . . ,m} (14)

Equations (11) ensure that the parameters of the dynamics correspond to a point of the poly-
hedron P . Dynamical equivalence is de�ned by Equation (12), while Equations (13) and (14)
are required for the Kirchho� property of matrix Ak to be ful�lled. Moreover, the constraints
in the set L can be written in the form of Equation (10).

The objective function of the optimization model can be de�ned according to the desired
properties of the realization, for example in order to examine if the reaction Ci → Cj can be
present in the reaction network or not, the objective can be de�ned as max[Ak]ji.
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We apply the representation of realizations of the uncertain model as points of the Euclidean
space Rm2−m+nm, the realization (M,Ak) corresponds to the vector [vec(Ak)

>, vec(M)>]>,
which de�nes the coordinates of the representing point. Due to the linearity of the constraints
in the computational model, the set of possible realizations of an uncertain kinetic system
[P , L, Y ] is a convex bounded polyhedron denoted by Q.

3 Structural analysis of realizations of the uncertain

kinetic model

In this section we summarize some of the special structural properties of the realizations of an
uncertain kinetic system [P , L, Y ].

3.1 Superstructure property of the dense realizations

A dynamically equivalent or linearly conjugate realization of a kinetic system with a �xed
set of complexes having maximal or minimal number of reactions is called dense or sparse
realization, respectively [40, 20]. It is known that for any kinetic system there might be several
di�erent sparse realizations, however, the dense realization is structurally unique and it de�nes
a superstructure among all realizations, see [19].

The directed graph G(V,E) is called a superstructure with respect to a set G of directed
graphs with labelled vertices, if it contains every graph in the set G as subgraph, and it is mini-
mal under inclusion. By the de�nition it follows that for any set G there exists a superstructure
graph and it is unique.

In the case of dynamically equivalent and linearly conjugate realizations of kinetic systems
the superstructure is the reaction graph of a dense realization, that contains all the reaction
graphs representing realizations of the kinetic system as subgraphs, not considering the edge
weights. This means that the set of reactions which might be present in any of the realizations
is the same as the set of reactions in the dense realization.

Dense and sparse realizations can be introduced in the case of the uncertain model as well,
and these are applied during the structural analysis.

De�nition 3.1. A realization (M,Ak) of the uncertain kinetic system [P , L, Y ] is called a
dense (sparse) realization if it has the maximal (minimal) number of reactions.

It can be proved that the superstructure property holds for uncertain kinetic systems as
well, and the proof is based on the same idea as in the non-uncertain case, see [53].

Proposition 3.2. A dense realization (M,Ak) of an uncertain kinetic system [P , L, Y ] deter-
mines a superstructure among all realizations of the model.

Proof. If the point D in the polyhedron Q of possible realizations represents a dense realization,
then the superstructure property is equivalent to the property that any coordinate with index
i ∈ {1, . . . ,m2 −m} of an arbitrary point in Q can be positive only if the same coordinate of
D is positive. Let us assume by contradiction that there is another realization R ∈ Q so that
there is an index j ∈ {1, . . . ,m2 −m} for which Dj = 0 and Rj > 0 hold.

Since the polyhedron Q is closed under convex combination, the point

T = c ·D + (1− c) ·R c ∈ (0, 1)

is also in Q. The coordinates with indices of the set {1, . . . ,m2 − m} of all the points in
Q are nonnegative, therefore such a coordinate of the convex combination is positive if the
corresponding coordinate of D or R is positive. Consequently, T has more positive coordinates
with indices j ∈ {1, . . . ,m2−m} than the dense realization does, which is a contradiction.
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It follows from Proposition 3.2 that the structure of the dense realization is unique. If there
were two di�erent dense realizations, then the reaction graphs representing them would contain
each other as subgraphs, which implies that these graphs are structurally identical.

The dense and sparse realizations are useful for checking the structural uniqueness of the
uncertain model.

Proposition 3.3. The dense and sparse realizations of an uncertain kinetic system [P , L, Y ]
have the same number of reactions if and only if all realizations of the model are structurally
identical.

Proof. According to the de�nitions if in the dense and sparse realizations there is the same
number of reactions, then in all realizations there must be the same number of reactions.
Since the structure of the dense realization is unique, there cannot be two realizations with
the maximal number of reactions but di�erent structures, therefore all realizations must be
structurally identical to the dense realization.

The converse statement is trivial: If all the realizations of the model are structurally identical,
then the dense and sparse realizations must have identical structures, too.

3.2 Polynomial-time algorithm to determine dense realizations

A dense realization of the uncertain kinetic system can be computed by the application of a
recursive polynomial-time algorithm. The basic principle of the method is similar to the one
presented in [53]: To each reaction a realization is assigned where the reaction takes place, if it
is possible. In general, the same realization can be assigned to several reactions, therefore there
is no need to perform a separate computation step for each reaction. The convex combination
of the assigned realizations is also a realization of the uncertain model. If all the coe�cients of
the convex combination are positive then all reactions that take place in any of the assigned re-
alizations are present in the convex combination as well. Consequently, the obtained realization
represents a dense realization, where all reactions are present that are possible.

The computation can be performed in polynomial time since it requires at most m2 − m
steps of LP optimization and some minor computation.

Remark 3.4. It follows from the operation of the algorithm that if there are at least two
realizations assigned to reactions as de�ned, then there are in�nitely many dense realizations,
since at least one coe�cient of the convex combination can be chosen arbitrarily from the interval
(0, 1).

In the algorithm the assigned realizations are represented as points in Rm2−m+nm and are
determined using the following procedure:

FindPositive([P , L, Y ], H) returns a pair (R,B). The point R ∈ Q represents a realization of
the uncertain model [P , L, Y ] for which the value of the objective function

∑
j∈H Rj considering

a set H ⊆ {1, . . . ,m2−m} of indices is maximal. The other returned object is a set B of indices
where k ∈ B if and only if Rk > 0. If there is no realization ful�lling the constraints then the
pair (0, ∅) is returned.

In the algorithm we apply the arithmetic mean as convex combination, i.e. if the number of
the assigned realizations is k then all the coe�cients of the convex combination are 1

k
.
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Algorithm 1 (Computes a dense realization)
Input: [P , L, Y ]
Output: Result

1: H := {1, . . . ,m2 −m}
2: B := H
3: Result := 0 ∈ Rm2−m+nm

4: loops := 0
5: while B 6= ∅ do
6: (R,B) := FindPositive([P , L, Y ], H)
7: Result := Result+R
8: H := H \B
9: loops := loops+ 1

10: end while

11: Result := Result/loops
12: if Result = 0 then
13: There is no realization with the given properties.
14: else

15: Result is a dense realization.
16: end if

Proposition 3.5. The realization returned by Algorithm 1 is a dense realization of the un-
certain kinetic system.

Proof. Since the set of all possible solutions can be represented as a convex polyhedron, the
point Result computed as the convex combination of realizations is indeed a realization of
the uncertain kinetic system [P , L, Y ]. Let us assume by contradiction that the returned point
Result does not represent the dense realization. Then there is a reaction (Ci, Cj) which is present
in the dense realization but it does not take place in Result. By the operation of the algorithm
it follows that there must be a realization assigned to the reaction (Ci, Cj), consequently this
reaction takes place in the realization computed as the convex combination of the assigned
realizations as well. This is a contradiction.

3.3 Core reactions of uncertain models

A reaction is called core reaction of a kinetic system if it is present in every realization of the
kinetic system [41]. It is possible that there are no core reactions, but there can be several of
them as well. If all the realizations are structurally identical, then by Proposition 3.3 it follows
that each reaction is a core reaction. The notion of core reactions can be extended to the case
of uncertain models in a straightforward way.

De�nition 3.6. A reaction Ci → Cj is called a core reaction of the uncertain kinetic system
[P , L, Y ] if it is present in every realization of the model, considering all possible coe�cient
matrices M for which vec(M) ∈ P holds.

Let [P , L, Y ] and [P ′, L, Y ] be two uncertain kinetic systems considering the same set of
complexes and additional linear constraints so that the polyhedron P ′ is a subset of P . If the
sets of core reactions in the models are denoted as CP and CP ′ , respectively, then CP must be a
subset of CP ′ . This property holds even if P ′ is a single point in Rnm and [P ′, L, Y ] is a kinetic
system de�ned as an uncertain kinetic system.

The set of core reactions of an uncertain kinetic system can be computed using a polynomial-
time algorithm. This method has been �rst published in [46] for a special case, where the
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coe�cients of the polynomial system have to be in prede�ned intervals, therefore the polyhedron
P is a cuboid. Since the method only requires the constraints characterizing the model to be
linear, it can be applied without any modi�cation to the model of uncertain kinetic systems
de�ned in this paper as well.

The question whether a certain reaction is a core reaction of a kinetic model or not, can be
answered by solving a linear optimization problem. However, if this question has to be decided
for all possible reactions, the computation can be done more e�ciently than by doing separate
optimization steps for every reaction. The idea is to minimize the sum of variables representing
the o�-diagonal entries of the Kirchho� matrix. Generally, several variables in the minimized
sum are zero in the computed realization, which means that the reactions corresponding to
these variables are not core reactions. This step is repeated for the remaining set of variables
until the computation does not return any more non-core reactions. Finally, the remaining
variables need to be checked one-by-one.

In the algorithm we refer to sets of indices corresponding to the o�-diagonal entries of the
Kirchho� matrix Ak by their characteristic vectors. The set B ⊆ {1, . . . ,m2−m} is represented
by the vector b ∈ {0, 1}m2−m, which is de�ned as

bi =

{
1 if i ∈ B
0 if i /∈ B

(15)

The procedure applied during the computation is more formally the following:

FindNonCore([P , L, Y ], b) computes a realization of the uncertain kinetic system [P , L, Y ]
represented as a point R ∈ Rm2−m+nm, for which the sum of the coordinates with indices from
the set B ∈ {1, . . . ,m2−m} is minimal. The procedure returns the vector c, the characteristic
vector of the set C which contains the indices corresponding to zero entries of the Kirchho�
matrix of the realization R, i.e. C ⊆ {1, . . . ,m2 −m} and [i ∈ C ⇐⇒ Ri = 0].

We also need to utilize some operations on the sets represented by their characteristic vectors:
b ∗ c represents the set B ∩ C, i.e. it is an element-wise `logical and'
c represents the complement of the set C, i.e. it is an element-wise negation.
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Algorithm 2 (Computes the set of core reactions)
Inputs: [P , L, Y ]
Output: b

1: b := 1m
2−m

2: c := b
3: while c 6= 0 do
4: c := FindNonCore([P , L, Y ], b)
5: c := c ∗ b
6: b := b ∗ c
7: end while

8: for i = 1 to m2 −m do

9: if bi 6= 0 then
10: c := FindNonCore([P , L, Y ], em

2−m
i )

11: b := b ∗ c
12: end if

13: end for

14: if b = 0 then
15: There are no core reactions of the model [P , L, Y ].
16: else

17: The vector b characterizes the core reactions of the model [P , L, Y ].
18: end if

Proposition 3.7. Algorithm 2 computes the set of core reactions of an uncertain kinetic
system [P , L, Y ] in polynomial time.

Proof. Let us assume by contradiction that the algorithm does not return the proper set of
core reactions. There can be two di�erent types of error:

a) Let us assume that there is an index i for which the corresponding reaction is a core
reaction, but according to the algorithm it is not. In this case there must be a realization R
computed by the algorithm so that Ri is zero. This is a contradiction.

b) Let us assume that there is an index j for which the corresponding reaction is not a core
reaction but the algorithm returns the opposite answer. Consequently, after the while loop of
the computation (from line 8) the coordinate bj must be equal to 1. Then the remaining possible
core reactions are examined one by one, therefore the procedure FindNonCore([P , L, Y ], em

2−m
j )

is also applied. According to the assumption the realization R computed by the procedure must
be so that Rj is zero, which also yields a contradiction.

The computation according to the algorithm can be performed in polynomial time, since it
requires the solution of at most m2 −m LP optimization problems and some additional minor
computation steps.

4 Algorithm to determine all possible reaction graph struc-

tures of uncertain models

In this section we introduce an algorithm for computing all possible reaction graph structures
of an uncertain kinetic system [P , L, Y ]. The proposed method is an improved version of the
algorithm published in [52], where all the optimization steps can be done parallelly. We also
give a proof of the correctness of the presented method. Before presenting the pseudocode of
the algorithm, we give a brief explanation of its data structures and operating principles.
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We represent reaction graph structures by binary sequences, where each entry encodes
the presence or lack of a reaction. During the algorithm, all data (i.e. the Kirchho� and the
coe�cient matrices) of the realizations are computed, but only the binary sequences encoding
the directed graph structures are stored and returned as results.

According to the superstructure property described in Proposition 3.2, only the reactions
belonging to the dense realization need representation and storage. Moreover, if there are core
reactions as well, then the coordinates corresponding to these can also be omitted. Both sets
can be computed in polynomial time as it has been presented in Sections 3.2 and 3.3.

Let us refer to the set of reactions in the dense realization and the set of core reactions in
the uncertain kinetic system [P , L, Y ] as DP and CP , respectively. Then a realization of the
uncertain model [P , L, Y ] can be represented by a binary sequence R of length z, where z is
the size of the set DP \ CP of non-core reactions in the dense realization. To de�ne the binary
sequence R it is necessary to �x an ordering on the set of non-core reactions. The coordinate
Ri is equal to 1 if and only if the ith non-core reaction is present in the realization, otherwise
it is zero.

It is easy to see that knowing its structure, a realization can be determined in polynomial
time: For each reaction Ci → Cj which is known not to be present in the realization the
constraint [Ak]ji = 0 needs to be added to the constraint set L, and a dense realization of
the (constrained) model has to be computed. Since it is known that there exists a realization
where all non-excluded reactions take place, all of them have to be present in the computed
constrained dense realization, consequently it will have exactly the prescribed structure.

During the computation the initial substrings of the binary sequences have a special role.
Therefore, for all k ∈ {1, . . . z} a special equivalence relation =k is de�ned on the binary
sequences. We say that R =k W holds if for all i ∈ {1, . . . k} the coordinate Ri is equal to Wi.
The equivalence class of the relation =k that contains the sequence R as a representative is
referred to as Ck(R). (We note that in general there are several representatives of an equivalence
class.) The elements of an equivalence class Ck(R) can be characterized by a set of linear
constraints added to the model. According to this property and Proposition 3.2, the dense
realization in Ck(R) determines a superstructure among all the realizations in the same set.
The procedure FindRealization applied during the algorithm computes dense realizations of
the uncertain model determined by the initial substrings. A realization is referred to as a pair
(R, k) if the corresponding realization represents the dense realization in Ck(R). The realizations
represented by such pairs get stored for some time in a stack S, the command `push (R, k) into
S' puts the pair (R, k) into the stack and `pop from S' takes a pair out of the stack and returns
it. The number of elements in the stack S is denoted by size(S).

The result of the entire computation is collected in a binary array called Exist, where all
the computed graph structures are stored. The indices of the elements are the sequences as
binary numbers, and the value of element Exist[R] is equal to 1 if and only if a realization with
the structure encoded by R has been found.

Considering the data structures, the main di�erence between the proposed method and the
algorithm presented in [52] is that the sequences encoding the reaction graph structures are
stored in only one stack in our current solution. Furthermore, the optimization steps using the
sequences popped from this stack can be run in parallel. However, in this case the use of the
binary array Exist is necessary.

Within the algorithm we repeatedly apply two subroutines:

FindRealization((R, k), i) computes a dense realization of the uncertain kinetic system [P , L, Y ],
for which the representing binary sequenceW is in Ck(R), and for every index j ∈ {k+1, . . . , i}
the coordinate Wj is zero. It is possible that among the �rst k coordinates there are more ze-
ros than required, therefore the computed sequence W is compared to the sequence R. The
procedure returns the sequence W only if W =k R holds, otherwise −1 is returned. If the
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optimization task is infeasible then the returned object is also −1.

FindNextOne((R, k)) returns the smallest index i for which k < i and Ri = 1 hold. If there
is no such index, i.e. Rj is zero for all k < j, then it returns z+1, where we recall that z is the
length of the sequences that encode the graph structures.

Let the sequence D = 1 represent the dense realization. Then the pseudocode of the algo-
rithm for computing all possible graph structures can be given as follows.

Algorithm 3 (Computes all reaction graph structures of an uncertain kinetic system)
Inputs: [P , L, Y ], D, z
Output: Exist

1: push (D, 0) into S
2: Exist[D] := 1
3: while size(S) > 0 do
4: (R, k) := pop from S
5: i := FindNextOne((R, k))
6: if i < z then
7: push (R, i) into S
8: end if

9: while i < z do
10: W := FindRealization((R, k), i)
11: if W < 0 then
12: BREAK
13: else

14: i := FindNextOne(W, i)
15: Exist[W ] := 1
16: if i < z then
17: push (W, i) into S
18: end if

19: end if

20: end while

21: end while

Using the description of the algorithm, we can give formal results about its main properties.

Proposition 4.1. Algorithm 3 computes all possible reaction graph structures representing
realizations of an uncertain kinetic system [P , L, Y ].

Proof. Let us assume by contradiction that there is a realization of the uncertain kinetic system
[P , L, Y ] represented by the sequence V which is not returned by Algorithm 3. Let R be
another sequence that was stored in the stack S as (R, p) at some point during the computation,
for which V =p R holds and p is the greatest such number. If p = 0 then D is suitable to be R,
and by the operation of the algorithm it follows that p < z holds. (If p were equal to z, then V
would be equivalent to R which is a contradiction.)

There is a point during the computation when (R, p) is popped out from the stack S. Let us
assume that FindNextOne(R, p) returns i and FindNextOne(V, p) returns j. In this case i ≤ j
must hold since R represents the superstructure in Cp(R) and if i were equal to j then p would
not be maximal.

During the examination of sequence R, the procedure FindRealization((R, p), i) is applied
�rst (line 10), and it must return a valid sequence W1, since its constraints are ful�lled by
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the sequence V as well. If FindNextOne(W1, p) is j1 then j1 ≤ j must hold, since W1 rep-
resents the superstructure in Ci(W1) and V is also in Ci(W1). If j1 was equal to j then p
would not be maximal. Otherwise, the computation can be continued by calling the proce-
dure FindRealization((R, p), j1). It must return a valid sequence W2 for which we get that
FindNextOne(W2, p) = j2 ≤ j holds by applying similar reasoning as above.

These steps must lead to contradiction either by p not being maximal or by creating an
in�nite increasing sequence of integers that has an upper bound.

It follows that every possible reaction graph structure that represents a realization of the
uncertain kinetic system [P , L, Y ] is returned by the algorithm.

Remark 4.2. Since the calculations of procedure FindRealization((R, k), i) are independent of
the results of previous calls of the same procedure, the order of the calls is irrelevant regarding
the result of the entire computation.

Remark 4.3. The proof of Proposition 3.2 in [52] can be applied for verifying the property that
during the computation according to Algorithm 3 every reaction graph structure is returned
only once.

Remark 4.4. We can also give an upper bound to the number of required optimization steps
by considering the realizations (R, k) regarding k. For all k the number of possible realizations
R stored in the stack S is at most 2k. When such a realization is popped from the stack the
required optimization steps is at most z − k. Consequently, a rough upper bound to the number

of optimization steps required during Algorithm 3 can be given as
z−1∑
k=0

2k(z − k).

5 Illustrative examples

In this section we demonstrate the operation of the algorithms presented in this paper on two
examples with di�erent degrees and types of uncertainties, and even in the case of additional
linear constraints.

5.1 Example 1: a simple kinetic system

The model that serves as a basis for this example was presented previously in [43, 54]. The
uncertain model is generated using the kinetic system

ẋ1 = 3c1 · x32 − c2 · x31
ẋ2 = −3c1 · x32 + c2 · x31, (16)

where c1, c2 > 0. The realizations are considered on a �xed set C = {C1, C2, C3} of complexes,
where the complexes C1 = 3X2, C2 = 3X1, C3 = 2X1 + X2 are formed of the species X1 and
X2.

It follows that the characterizing matrices Y and M of the kinetic system referred to as
[M,Y ] are

Y =

[
0 3 2
3 0 1

]
M =

[
3c1 −c2 0
−3c1 c2 0

]
During the numerical computations the parameter values c1 = 1 and c2 = 2 were used.

A. Uncertainty de�ned by independent intervals
This model represents a special case in the class of uncertain kinetic systems de�ned in Sec-
tion 2.2, since the possible values of every coe�cient of the kinetic system are determined by
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independent upper and lower bounds that are de�ned as relative distances. Let the coe�cient
matrix M be represented by the vector vec(M) ∈ R6, and for all l ∈ {1, . . . , 6} let the relative
distances of the upper and lower bounds of vec(M)l be given by the real constants γl and ρl
from the interval [0, 1], respectively. Then the equations de�ning the polyhedron PA ⊂ R6 of
the uncertain parameters can be written as

vec(M)> · e6l ≤ (1 + γl) · vec(M)l l ∈ {1, . . . , 6} (17)

vec(M)> · (−e6l ) ≤ (ρl − 1) · vec(M)l l ∈ {1, . . . , 6} (18)

In the examined uncertain kinetic system [PA, L, Y ] no additional linear constraints are con-
sidered, i.e. L = ∅.

In [54] all possible reaction graphs � with the indication of the reaction rate constants
de�ned as functions of the parameters using the notations k1 = c1 and k2 = c2 � representing
dynamically equivalent realizations of the kinetic system [M,Y ] have been presented. Obviously,
these structures must appear among the realizations of the uncertain kinetic model [PA, ∅, Y ] as
well, but there might be additional possible structures among the realizations of the uncertain
kinetic system.

Interestingly, the result of the computation was that in the case of any degree of uncertainty
(γl, ρl ∈ [0, 1) for all l ∈ {1, . . . 6}), the sets of possible reaction graph structures of the uncertain
model [PA, ∅, Y ] and that of the non-uncertain system [M,Y ] are identical. This result might
be contrary to expectations, but for this small example it is easy to prove that the obtained
graph structures are indeed correct for all positive values of the parameters c1 and c2. For this,
we divide the computation into smaller steps.

It has been shown in [52] that in the case of dynamically equivalent realizations the com-
putation can be done column-wise (since the jth column of matrix Ak depends only on the
jth column of matrix M). These computations can be performed separately, and all the pos-
sible reaction graph structures can be constructed by choosing a column structure for every
index j ∈ {1, . . . ,m} and building the Kirchho� matrix Ak of the realization from them. Con-
sequently, if in the case of the jth column the number of di�erent structures is pj, then the

number of structurally di�erent realizations is
m∏
j=1

pj.

First the original kinetic system [M,Y ] is examined. To make the notations less complicated,
the entries of the Kirchho� matrix are denoted by the corresponding reaction rate coe�cients,
i.e. [Ak]ij = kji for all i, j ∈ {1, 2, 3}, i 6= j.

In the case of the �rst column we get:

Y ·

−k12 − k13k12
k13

 =

[
3c1
−3c1

]
k12, k13 ∈ R+ =⇒ k12 ∈ [0, c1], k13 =

3

2
c1 −

3

2
k12 (19)

It can be seen that for every positive value of the parameter c1 the two corresponding reaction
rates can realize 3 of the 22 = 4 possible structurally di�erent solutions. Both can be positive,
or either one can be positive while the other one is zero. (Possible outcomes are for example:
k12 = 1

2
c1, k13 = 3

4
c1 or k12 = 0, k13 = 3

2
c1 or k12 = c1, k13 = 0.) The fourth case, when both

k12 and k13 are zero is possible only when [M ].1 = [0 0]>, which requires the corresponding
parameters of uncertainty ρi to be at least one.

In the case of the second column, 3 of the 4 possible outcomes can be realized and a similar
reasoning can be applied:

Y ·

 k21
−k21 − k23

k23

 =

[
−c2
c2

]
k21, k23 ∈ R+ =⇒ k21 ∈ (0,

c2
3
), k23 = c2 − 3k21 (20)
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In the third column there is no uncertainty because there are only zero entries in [M ].3. Con-
sequently, in the case of [Ak].3 only 2 solutions are possible. The two corresponding reactions
can either be both present or both missing.

Y ·

 k31
k32

−k31 − k32

 =

[
0
0

]
k31, k32 ∈ R+ =⇒ k31 ∈ R+, k32 = 2k31 (21)

It follows from the above computations that the number of possible reaction graph structures
is 3 · 3 · 2 = 18, and the generated structures are identical to the ones presented in [54]. This
number could be larger only if all the reaction rates in the �rst or second column of Ak can be
zero, but this requires the entries in the corresponding column [M ].1 or [M ].2 to be zero.

B. Uncertainty de�ned as a general polyhedron
Now we examine the uncertain kinetic system that was also generated from the kinetic system
[M,Y ], but the set PB of possible coe�cients is de�ned as a more general polyhedron.

If the matrix M of coe�cients is represented by the vector vec(M) ∈ R6 where vec(M)> =
[M11,M21,M12,M22,M13,M23], then let the equations determining the polyhedron PB be the
following:

vec(M)> · (−e61) ≤ 0

vec(M)> · (−e64) ≤ 0

vec(M)> · e65 = 0

vec(M)> · e66 = 0 (22)

vec(M)> · [1, 1, 1, 1, 0, 0]> = 0

vec(M)> · [0,−1,−1, 0, 0, 0]> ≤ 7

vec(M)> · [−1, 0, 0, 1, 0, 0]> ≤ −1

In this case, again, no additional linear constraints are considered in the uncertain model, i.e.
we examine the uncertain model [PB, ∅, Y ]. The computation of all possible reaction graph
structures shows that in addition to the structures realizing the non-uncertain kinetic system
[M,Y ], there are 6 more possible structures, presented in Figure 1.

It can be seen that the vector vec(M1)
> = [3,−3,−2, 2, 0, 0] corresponding to the original

non-uncertain kinetic system is in the polyhedron PB, therefore the 18 structures determined
by its realizations must be among the realizations of the uncertain kinetic system. Then we
can apply a reasoning similar to that in Section 5.1.A. Since the entries in column [M ].3 are
all zero in every point of PB, only the two outcomes that appear in the case of the original
kinetic system [M,Y ] are possible in the case of this column. The uncertain model can have
more realizations than the original kinetic system only if all the reaction rates in at least one
of the columns [Ak].1 or [Ak].2 can be zero. This is possible only if all the entries in [M ].1
or [M ].2 are zero. From the constraints of the polyhedron PB it follows that vec(M)1 ≥ 1,
consequently the column [M ].1 cannot be zero. But [M ].2 can have only zero entries, for example
vec(M2) = [3,−3, 0, 0, 0, 0]> ∈ PB satis�es this property. For the columns of the matrices M
and M2 the following hold: [M2].1 = [M ].1 and [M2].3 = [M ].3. Therefore, for the �rst and
third columns of Ak there are 3 and 2 possible outcomes, respectively. Since in the case of the
second column there is one additional possible outcome, the number of further reaction graph
structures (compared to the original kinetic system [M,Y ]) is 3 · 2 = 6. It is easy to see that
these are exactly the ones presented in Figure 1 with the indicated reaction rate coe�cients for
an arbitrary p > 0. In summary, additional structures compared to [54] could be found for the
studied polytope only if c2 = 0. This means that it could be shown in this special case that the
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degree of structural uncertainty (i.e., the possible number of di�erent graph structures) do not
increase with the introduction of parametric uncertainty when c1, c2 6= 0. We have to remark
that whether a monomial coe�cient can be practically zero or not has to be carefully checked
depending on the features of the studied system model.
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Figure 1: Possible reaction graph structures of the uncertain kinetic system [PB, ∅, Y ] in addition
to the realizations of the kinetic system [M,Y ] published in [54].

5.2 Example 2: Glyoxylate bypass model

In this section a biochemically motivated example introduced previously in [38] is examined. It
can be modelled as a kinetic system, and the uncertain models are generated by using the given
numerical values of the system. The chemical process modelled by the system can be described
as follows.

The role of the isocitrate dehydrogenase (IDH) enzyme is the decarboxylation of isocitrate
and beside that the production of α-ketoglutarate and CO2 in the tricarboxylic acid (TCA)
cycle. The activity of this enzyme depends on its state: in unphosphorylated state it is active,
but in phosphorylated state the enzyme is inactive. In Escherichia coli the phosphorylation of
this enzyme is regulated by a bifunctional enzyme called IDHKP (IDH Kinase/Phosphatase).
The IDHKP enzyme has a key role in the regulation of the carbon �ux between the TCA and
the so called Glyoxylate bypass.
The species characterizing the initial chemical reaction network are:

I active IDH (isocitrate dehydrogenase)
IP phosphorilated IDH
E bifunctional IDHKP enzyme (IDH Kinase/Phosphatase)
EI binding of the enzyme E and I
EIP binding of the enzyme E and IP
EIP I an active ternary complex, the binding of the enzyme E and both I and IP

In the model 9 complexes are formed from these species, and let us assume that this set is
�xed: C = {C1 = EI, C2 = EIP , C3 = EIP I, C4 = I + E, C5 = IP + E, C6 = EI + I, C7 =
EIP + IP , C8 = EI + IP , C9 = I +EIP}. The structure of the complexes de�nes the complex
composition matrix Y of the CRN.
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Y =



0 0 0 1 0 1 0 0 1
0 0 0 0 1 0 1 1 0
0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0 0


The following rates of the reactions were taken from the original article [38]:

k41 = 1.6 k14 = 0.3 k15 = 1.06 k52 = 4.62 k25 = 0.94 k24 = 0.12
k93 = 33 k39 = 0.77 k37 = 0.9 k83 = 0.6 k38 = 3 k36 = 0.48297

The numerical parameters uniquely de�ne the Kirchho� matrix Ak and the reaction graph of
the CRN as well. The reaction graph is depicted in Figure 2, the core reactions are indicated
with dashed lines.

Ak =



−1.36 0 0 1.6 0 0 0 0 0
0 −1.06 0 0 4.62 0 0 0 0
0 0 −5.15297 0 0 0 0 0.6 33
0.3 0.12 0 −1.6 0 0 0 0 0
1.06 0.94 0 0 −4.62 0 0 0 0
0 0 0.48297 0 0 0 0 0 0
0 0 0.9 0 0 0 0 0 0
0 0 3 0 0 0 0 −0.6 0
0 0 0.77 0 0 0 0 0 −33



Figure 2: The reaction graph of the initial reaction network (Y,Ak).

The dynamics of the CRN (Y,Ak) is characterized by the kinetic system [M,Y ], where the
coe�cient matrix M is equal to Y · Ak.

M =



0.3 0.12 1.25297 −1.6 0 0 0 0 −33
1.06 0.94 3.9 0 −4.62 0 0 −0.6 0
1.36 1.06 0 −1.6 −4.62 0 0 0 0
−1.36 0 3.48297 1.6 0 0 0 −0.6 0

0 −1.06 1.67 0 4.62 0 0 0 −33
0 0 −5.15297 0 0 0 0 0.6 33


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As the �rst step of the computations, the dense realization of [M,Y ] was determined.
We found that it was structurally identical to the initial CRN (Y,Ak). As the result of the
algorithm computing all structures, we get that beside the dense realization there are only two
other possible reaction graph structures realizing the given dynamics. Each of these realizations
are missing only one reaction, namely EIP I → EIP + I or EIP I → EI + I. It can be seen
that these reaction graph structures are subgraphs of the directed graph representing the dense
realization. Furthermore, with the exception of the two above mentioned reactions, every other
reaction of the dense realization is a core reaction.

A. Uncertainty de�ned with relative distances
First we examined the model where the uncertainty of the parameters is de�ned with inde-

pendent intervals characterized as relative distances. These intervals are given by the application
of the uncertainty rates γl and ρl ∈ [0, 1] corresponding to all indices l ∈ {1, . . . , 54} of vec(M),
similarly as it is de�ned in point A. of Section 5.1.

vec(M)> · e54l ≤ (1 + γl) · vec(M)l l ∈ {1, . . . , 54} (23)

vec(M)> · (−e54l ) ≤ (ρl − 1) · vec(M)l l ∈ {1, . . . , 54} (24)

We have examined the uncertain model [P0.2, ∅, Y ] where all the uncertainty coe�cients are
equal to 0.2 and there are no additional linear constraints. From the computations we obtained
that the uncertain kinetic system has 8448 structurally di�erent dynamically equivalent real-
izations and 7 core reactions. The reaction graph structure representing the dense realization
of the uncertain model is depicted in Figure 3. The core reactions are indicated with dashed
lines, while the the additional reactions compared to the initial CRN (Y,Ak) are marked with
outline style arrows.

Figure 3: Reaction graph structure of the dense realization of the uncertain model [P0.2, ∅, Y ].

It can be seen that in the case of the uncertain kinetic model there are more reactions
present in the dense realization and the number of core reactions has become smaller compared
to the initial kinetic system [M,Y ]. It can be expected as well that with very large and very
small numbers of reactions there are less realizations than with a moderately high number of
reactions, but in general the distribution of the number of realizations depending on the number
of reactions is not precisely a binomial distribution as it is depicted in Figure 4.
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Figure 4: Distribution of the structurally di�erent realizations of the system [P0.2, ∅, Y ].

Compared to the initial kinetic system [M,Y ] in the uncertain system [P0.2, ∅, Y ] the fol-
lowing reactions are not core reactions:

EI → I + E (25)

EIP → I + E (26)

EIP I → EIP + IP (27)

Reaction (25) is the dissociation of complex EI, hence in a realization where this reaction is
not present the inverse reaction I + E → EI can be considered as an irreversible transition.
Reaction (26) is the dephosphorylation of IP , therefore the uncertain kinetic system has realiza-
tions where the enzyme E does not dephosphorylate IP , i.e. E has no phosphatase activity. The
reaction (27) represents the phosphorylation of I by the ternary complex, consequently there
exists a realization of the uncertain system where the ternary complex has no kinase activity.

We have also examined the sets of possible structurally di�erent realizations and core re-
actions in the cases of di�erent relative parameter uncertainties. Every model is de�ned with
identical rates of relative uncertainty for every coe�cient and without any additional con-
straints, i.e. we examine such uncertain models [Pα, L, Y ] where the rates γl and ρl for all
indices l are equal to α. According to the expectations, the number of structurally di�erent
realizations is a monotonically increasing function of the rates of uncertainty, while the number
of core reactions decreases as the function of uncertainty. These trends can be proved by the
fact that the sets of possible solutions of the uncertain kinetic models depending on the rates
of uncertainty de�ne an ascending system of sets, i.e. if α < β then the set of solutions of
the system [Pα, L, Y ] is a subset of the set of solutions in the case of [Pβ, L, Y ]. The cardinal-
ities of the sets of structurally di�erent realizations and core reactions are depicted in Figure
5. It has to be mentioned however, that in the case of this particular kinetic system for any
nonzero uncertainty the number of reactions present in the dense realization, and based on the
superstructure property its structure as well is the same. The dense realization of the initial ki-
netic system [M,Y ] has 12 reactions, however in the dense realization of the uncertain systems
[Pα, L, Y ] for any 0 < α < 1 there are 22 reactions.
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Figure 5: The number of structurally di�erent realizations and core reactions depending on the
rate of relative parametric uncertainty.

B. Constrained uncertain model
We have also examined the possible structures of the uncertain model [P0.2, L, Y ] when the

set of constraints L is not empty. In the dense realization of the uncertain system [P0.2, ∅, Y ]
there are 10 reactions in addition to the set of reactions present in the dense realization of the
initial kinetic system [M,Y ]. In the constrained model we exclude these additional reactions
except for two degradation-like ones:

EIP I → EI

EIP I → EIP

These two reactions represent the degradation of the ternary complex, while the excluded
reactions are synthesises and degradations which are not interpretable from a biological point
of view. The computations returned that the constrained system has 22 structurally di�erent
realizations and all 14 allowed reactions are present in the dense realization of the constrained
model. The distribution of structurally di�erent realizations depending on the number of reac-
tions can be seen in Figure 6.
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Figure 6: Distribution of the structurally di�erent realizations of the constrained uncertain
kinetic system [P0.2, L, Y ].

We have also examined the phosphorylation and dephosphorylation related enzymatic ac-
tivity of the ternary complex using the structurally di�erent realizations. Among the returned
realizations there are four structurally di�erent realizations where the reactions related to the
enzymatic activity of the ternary complex are missing:

EIP I → EIP + IP (28)

EIP I → EI + I (29)

Reaction (28) expresses that the ternary complex has kinase activity and reaction (29)
is the dephosphorylation of IP . One of these realizations is depicted in Figure 7, compared
to it the other three realizations are missing one or both of the reactions EIP I → EI and
EIP I → EIP . These particular cases exemplify that based only on the uncertain model, which
might be constructed using noisy measurement data, it is hard to identify the original network
structure, even if we have prior information about biochemically uninterpretable reactions which
might be excluded. Although the ternary complex EIP I of the initial kinetic system shows
enzymatic activity, this biochemically important fact does not follow directly from the behaviour
of the uncertain system.

Figure 7: Realizations where the ternary complex EIP I has no enzymatic activity.
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C. Polytopic uncertainty
We have de�ned an uncertain kinetic system with a polytopic set PC of possible coe�cients

determined by the restriction of the set P0.2 with the following constraints:

vec(M) · (e541 + e542 ) ≤ 1.36

vec(M) · (e542 + e544 ) ≤ −0.3
vec(M) · (−e548 − e549 ) ≤ −1.9
vec(M) · (e5444 + e5448) = 0

vec(M) · (−e5449 + e5452) ≤ 2

The computations returned that the uncertain kinetic system [PC , ∅, Y ] has 4224 realizations
which is exactly the half of the amount corresponding to the uncertain model [P0.2, ∅, Y ] de�ned
with relative distances. The distribution of the structurally di�erent realizations of the uncertain
model de�ned with polytopic uncertainty can be seen in Figure 8.

Figure 8: The distribution of the uncertain kinetic model [PC , ∅, Y ].

It can also be seen that in this case the dense realization is not structurally equivalent to the
dense realizations of the uncertain model [P0.2, ∅, Y ], since there are only 21 reactions present.
Based on the superstructure property the reaction graph representing the dense realization of
the model [PC , ∅, Y ] is a subgraph of the graph depicted in Figure 3 representing the dense
realization of [P0.2, ∅, Y ], the former one is missing the reaction EI + IP → EI. Furthermore,
the examination of the core reactions returned that compared to the uncertain model [P0.2, ∅, Y ]
the reaction EI → E + I is also present in every realization, and together with this there are
8 core reactions of the model [PC , ∅, Y ].

6 Conclusion

The set of reaction graph structures realizing uncertain kinetic models was studied in this
paper. For this, an uncertain polynomial model class was introduced, where the coe�cients of
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monomials belong to a polytopic set. Thus, an uncertain kinetic model includes a set of kinetic
ordinary di�erential equations. Using the convexity of the parameter set, it was proved that the
unweighted dense reaction graph containing the maximal number of reactions corresponding to
an uncertain model, forms a superstructure among the possible realizations assuming a �xed
set of complexes. This means that any unweighted reaction graph realizing any kinetic ODE
within an uncertain model is a subgraph of the unweighted directed graph representing the
dense realization.

To search through the possible graph structures, an optimization-based computational
model was introduced, where the decision variables are the reaction rate coe�cients, and the
entries of the monomial coe�cient matrix. It was shown that the dense realization can be
computed in polynomial time using linear programming steps. An algorithm was proposed to
compute those `invariant' reactions (called core reactions) of uncertain models that are present
in every realization of the uncertain model. Most importantly, an algorithm with a proof of cor-
rectness was also presented in the paper for enumerating all possible reaction graph structures
corresponding to an uncertain kinetic model.

The theoretical results and the proposed algorithms were illustrated on two examples. The
examples show that the introduced approach is suitable for the structural uniqueness analysis
of uncertain kinetic models.
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