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Introduction

During my PhD studies, my primary objective was to develop a novel multi-object
segmentation and tracking architecture for videomicroscopic recordings of budding
yeast cells. This initial task, while highly specialized, led to the development of a
generalizable solution with far-reaching implications. The architecture I designed,
initially tailored for the detection, instance segmentation, and tracking of yeast
cells, demonstrated significant advantages over existing tools, both in terms of
performance and adaptability. This outcome extends beyond the original task,
accommodating a wide variety of image modalities due to its data-driven approach.
Through comprehensive evaluations, I have explored its strengths and limitations
across diverse synthetic and semi-synthetic datasets. These results serve as the
foundation of thesis group 1.

While designing the architecture, I identified a previously mostly overlooked
bias in convolutional neural networks (CNNs), particularly related to object
positioning in widely used image processing benchmarks. This bias, present even
in standard evaluation subsets, has far-reaching implications for tasks that rely on
CNNs for object recognition and segmentation. My investigation into this bias,
supported by experiments with data manipulation techniques and architectural
modifications, led to the discovery of simple solutions that nearly completely
eliminate the bias, and hint at boundary conditions in CNNs as the root cause.
These results serve as the foundation of thesis group 2.

Alongside these main contributions, which are reflected in my first-author
publications, I have also participated in numerous studies as a second or lower
author. While these are beyond the scope of my thesis points and my PhD study

in general, I will provide a list of these works for the sake of transparency.



New Scientific Results

Thesis 1la

I developed a novel deep-learning-based multi-object instance segmentation and
tracking architecture for videomicroscopic recordings of budding yeast cells. On
a yeast tracking dataset collected by IFOM, the architecture achieved IoU-based
segmentation and tracking F-scores of [0.918 £ 0.019, 0.917 £ 0.016], respectively.
This performance surpassed that of competing state-of-the-art tools designed for
this particular task, specifically Phylocell [0.881 £ 0.020, 0.878 £ 0.020] and YeaZ
[0.818 £ 0.022, 0.807 4 0.023].

Corresponding publications: [Arl, Ar2|

Segmentation and tracking of cells in videomicroscopic recordings are critical
in various fields of biological research, including drug discovery, gene expression
monitoring, and others. Although some solutions exist for the automatic or semi-
automatic tracking of yeast cells, even machine-learning-based approaches often
rely on specific architectural assumptions, such as classical pattern and position
matching models and Markovian temporal forward tracking. While these solutions
may be advantageous in fields like the automotive industry, where inference speed
is crucial, in videomicroscopic tracking applications, prediction performance —
particularly stable tracking — is far more important. Moreover, such limitations
reduce the flexibility of these models, hindering their data-driven adaptability.
Based on a request from the International Foundation of Medicine (IFOM), my
objective was to develop a novel multi-object segmentation and tracking (MOTS)
architecture designed to support data-driven generalization, improved prediction
performance, and enhanced tracking consistency, even at the potential cost of
inference speed. For further details on the proposed architecture, please refer to
Thesis 1b.

The models used in the MOTS pipeline were trained on manually corrected and
curated data provided by IFOM. Final performance evaluations were conducted
at IFOM using samples that were not disclosed to me during model design and
training. An example result for segmentation and tracking predictions is presented

in Fig. 1, demonstrating near-perfect outcomes based on empirical assessment.
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Figure 1: Tracking Sample Results

A side by side display of tracking results, demonstrating successful tracking of all
cells in the same recording with a temporal difference of 8 frames. New cells were
appropriately assigned new IDs while maintaining consistent tracking of existing
cells.

For comparative evaluation, the tools Phylocell and YeaZ were chosen. Phylo-
cell was selected as it was used to create the raw ground truth labels that were
later manually corrected, while YeaZ exhibited the greatest architectural similarity
to my design among the available tools, albeit still using a highly different archi-
tecture. Instance segmentation F-scores were measured using Intersection over
Union (IoU), while tracking F-scores were assessed using link matching between
consecutive frames. In case of link matching a prediction is considered true positive
only when both segmentation instances were correctly matched and the track IDs
of the matched instances were identical on both the ground truth and prediction
sides, while false predictions include track loss on both the ground truth and
prediction sides as well as ID switches.

Segmentation and tracking performance were evaluated with tracks leaving
the field of view both enabled and disabled in the ground truth data, the former
introducing a positive bias towards Phylocell designed to track these instances,
whereas the latter provided an unbiased evaluation. The results, presented in

Fig. 2, show that in the unbiased scenario the proposed pipeline far outperforms



both Phylocell [0.881 4 0.020, 0.878 +0.020] and YeaZ [0.818 +0.022, 0.807 4 0.023]
in terms of segmentation and tracking F-scores [0.918 + 0.019,0.917 + 0.016], and

it even exhibits superior performance with enabled border tracks.
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Figure 2: Comparative Tool Evaluation

Comparative evaluation of segmentation and tracking performances of Phylocell,
YeaZ and the proposed pipeline based on F-measures of segmentation IOU and
tracking link matches with enabled and disabled border track predictions. Disabled
border tracks present an unbiased comparison between the tools, while enabled
border tracks show results with the unaltered outputs.



Thesis 1b

The proposed architecture is inherently capable of reconstructing fragmented tracks
due to its novel time-symmetric tracking approach, greatly improving tracking
consistency, a critical requirement for accurate cell inheritance assignment. For
stance, in scenarios with uniform random removal of every fifth object instance,
the tracking-based reconstruction improved the tracking F-score from 0.404 4+ 0.016
to 0.888 + 0.013.

Corresponding publication: [Arl|

The proposed architecture consists of the two major segments of instance
segmentation and tracking. The tracking segment can be further divided into the
steps: temporal local tracking, global assignment using depth-first-search-based
track ID reduction, and a post-processing step for missed instance interpolation.
The macro-architecture is illustrated from a data flow perspective in Fig. 3. The
novelty of the architecture lies in its combined use of the unique time-symmetric
local tracking and global assignment steps. This approach is based on the concept
of tracking each object within its local temporal neighborhood — later referred to
as the single-sided tracking range (T'R) — calculating metric similarity between
the offset local track predictions as illustrated in Fig. 4, and performing globally
optimal assignment using the Hungarian method in a hierarchical order that
decreases as the temporal offset increases. Following this, the architecture’s
capability to naturally reassign fragmented tracks within 27T R allows for the
identification of missed object instances, which can be reinterpolated using the

following equations:

(t - tlast)cnext<m7 y) + (tnext - t)clast<m7 y) (1)
tnext - tlast

S(l’, y) = SlaSt(xa y) + C('I;? y) (2)

Where S(z,y) and ¢ represent the interpolated segmentation and its corresponding

AC(Q}, y) =

time, respectively. Sist (T, y), Clast (T, y), and t1,5 denote the segmentation, centroid,
and time of the last occurrence of the object with the given ID, while ¢pext(, )
and t,ex represent the centroid and time of the next occurrence of the object with
the given ID.
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Figure 3: Macro-architecture overview
Data flow diagram of the proposed architecture, illustrating the process from raw
input image sequence to finalized track predictions.

The reconstructive capabilities of the architecture are best represented through
the experiments in which every 1:15 or 1:5 object was removed in a uniform
random distribution or every 1:5 object was randomly removed but in continuous
boxes. The results, shown in Fig. 5 and Fig. 6, illustrate how effectively the
architecture preserves tracking continuity, especially with an appropriately chosen

local tracking range (7'R) model parameter.
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Figure 4: Metric similarity structure

Schematic structure of the metric similarity measurement step between 2T'R + 1
long local tracks of different cell instances on frames with a temporal distance of
At. The solid lines indicate the central segmentation instances with a At temporal
distance to be matched, while the arrows indicate the similarity metric between
the segmentation estimates for each time frame. Subsequently, the individual
metric results are averaged to obtain a single measure of similarity.
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Figure 5: Uniform random noise reconstruction

Comparative evaluation of segmentation and tracking F-scores for Intact, Noise
1:15, and Noise 1:5 cases. Both segmentation and tracking results include baseline
values disrupted by the given noise, as well as re-tracked values initiated with the
disrupted segmentation.
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Figure 6: Box noise reconstruction

Comparative evaluation of segmentation and tracking F-scores for Intact and Box
Noise 1:5 cases. Both segmentation and tracking results include baseline values
disrupted by the noise, as well as re-tracked values initiated with the disrupted
segmentation using local tracking ranges (T'R) of 1, 4 and 7.
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Thesis 1c

I evaluated the proposed architecture on various synthetic and semi-synthetic
datasets, showcasing its robustness in addressing potential challenges in cell track-
ing environments and other natural tracking contexts, such as pedestrian tracking.
The results demonstrate the versatility of the architecture, the reliability of its
novel tracking approach, and can serve as a guide of expected performance on
other datasets.

Corresponding publications: [Arl, Ar2]

For the simulation and benchmark evaluation of varied cell tracking environ-
ments, | created five synthetic datasets due to the lack of high-quality publicly

available cell segmentation and tracking datasets.

e "S. Arrows" simulates fast-moving arrows that represent movement direction
and are rigid objects.

e "S. Amoeboids" simulates fast-moving objects with semi-random shapes
undergoing continuous elastic changes, modeled using Perlin noise.

e "S. Amoeboids-PC" features objects similar to those in "S. Amoeboids" but
incorporates simulated phase-contrast microscopy effects.

e "S. Amoeboids-PCC" builds upon "S. Amoeboids-PC" by introducing modi-
fied object motility through the promotion of clumping behavior.

e "S. Amoeboids-PCCA" is similar to "S. Amoeboids-PCC" but adds a static,

highly disruptive noise randomized for each video.

In addition, all synthetic samples include image-wise and video-wise random
background noise. Prediction samples are shown in Fig. 7, while segmentation and
tracking F-scores for each dataset category are presented in Tab. 1. The results
demonstrate that, even in substantially more complex scenarios compared to yeast
tracking, the architecture achieves reliable object tracking. However, detection
and instance segmentation performance are noticeably reduced in cases involving
noisy or otherwise challenging recordings.

Partially building on "S. Arrows" and "S. Amoeboids", I created two additional

scenarios, each consisting of multiple datasets that express the signature behaviors
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Figure 7: Synthetic sets tracking sample results

A display of segmentation and tracking results on various synthetic datasets with
highly different object behaviors, ordered from left to right as "S. Arrows", "S.
Amoeboids", "S. Amoeboids-PC", "S. Amoeboids-PCC", and "S. Amoeboids-
PCCA." The displayed consecutive images are only 4 frames apart to show
understandable results even in cases of extremely fast-moving objects.

Segmentation F score Tracking F score

S. Arrows

S. Amoeboids

S. Amoeboids-PC

S. Amoeboids-PCC
S. Amoeboids-PCCA

0.9185 4 0.0057
0.7137 £ 0.0082
0.6861 £ 0.0089
0.7726 £ 0.0101
0.5078 +0.0129

0.8990 £ 0.0076
0.6605 £ 0.0093
0.6662 £ 0.0098
0.7693 £ 0.0111
0.5022 £ 0.0140

Yeast Reference

0.9234 +£0.0136

0.9202 £ 0.0138

Table 1: Synthetic sets numeric results

Segmentation and Tracking F scores of the full pipeline for various synthetic
datasets with vastly different object behaviors and challenges compared to natural
yeast recordings.

at varying strengths. In the "Visual signaling" scenario, the synthetic arrows
exhibit rapid turning behavior that can only be predicted through visual cues.
This behavior is analogous to the movement of cars partially predictable by signal

lights or the movement of pedestrians based on their eye direction. In the "Semi-
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random positioning" scenario, the elastic changes of the synthetic amoeboids are
disabled. However, the amoeboids display semi-random, completely unpredictable
movement patterns. The aim of these scenarios is to provide baseline tests for
potential real-world cases where visual cues and object motility are interrelated,
or where stable tracking of objects must rely at least partially on morphological
or other visual characteristics rather than solely on positional derivatives. For
comparative prediction results on these datasets, please refer to Thesis 1d.

In addition to the fully synthetic datasets and the yeast tracking benchmark, I
tested the proposed architecture on a variant of the MOTSynth-MOTS-CVPR22
benchmark dataset. In this benchmark, model training is performed on synthetic
samples generated using the videogame GTA V| while evaluation is conducted
on manually annotated real-world pedestrian tracking and segmentation data.
Even without extensive hyperparameter tuning due to the dataset’s extremely
large size, the architecture achieved a HOTA score of 48.56, nearly identical
to the benchmark value of 48.8 submitted in 2022. This benchmark was based
on the widely used state-of-the-art architecture by P. Bermann et al., "Tracking
Without Bells and Whistles" (ICCV, 2019). Furthermore, the AssA score of
82.39 achieved by the proposed architecture far surpasses the benchmark value
of 44.6, highlighting its exceptional tracking capability. This result suggests that
substantially higher HOTA values could likely be achieved with improvements to

the instance segmentation model alone.
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Thesis 1d

I conducted an ablation study on the proposed architecture, separating the con-
tributions of motility-based and morphology-based tracking, which the original
architecture integrates seamlessly. The results revealed the individual impact of
motility and morphology on tracking performance across the evaluated scenarios
and highlighted the advantages of a tracking method that combines both. Further-
more, the proposed architecture consistently matched or outperformed the widely
used Kalman filter in all scenarios. Notably, in the scenario with semi-randomized
object motility, the architecture achieved a 3.49-fold improvement in association
F-score, due to its ability to utilize all temporally local tmaging information for
tracking.

Corresponding publication: [Ar2]
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Figure 8: "Visual signaling" metric results

Mean metric results of tracker models Kalman, TS and TS-L2, TS-Shape for
scenario "Visual signaling" datasets Synthetic Arrows, Synthetic Arrows TR-1
and Synthetic Arrows TR-2.

The modular design of the proposed architecture enabled the integrated im-
plementation of different tracking models. T implemented two ablated variants
of the proposed architecture, both using the same local trackers trained on the
given dataset but modifying the global assignment step. In one variant, only

the centroid Euclidean distance (L2) was considered during assignment, while
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Figure 9: "Semi-random positioning" metric results

Mean metric results of tracker models Kalman, TS, T'S-L2 and TS-Shape for
scenario "Semi-random positioning" datasets Synthetic Amoeboids, Synthetic
Amoeboids RP-1/20 and Synthetic Amoeboids RP-1/5.

MOTS #02 MOTS #09 MOTS #11

Figure 10: MOTS challenge metric results
Mean metric results of tracker models Kalman, TS, TS-L2 and TS-Shape for the
MOTS dataset samples.

in the other, only the centroid-aligned intersection over union (Shape) was used.
Additionally, I implemented the widely used Kalman filter.

The "Visual signaling" and "Semi-random positioning" scenarios, as well as the
MOTSynth-MOTS-CVPR22 dataset variant, were evaluated using the proposed
time-symmetric tracking architecture (TS), its two ablated variants (TS-L2 and
TS-Shape), and the Kalman filter. For these evaluations, I employed an improved
metric system compared to the link-matching-based F-scores used for yeast cell

tracking. While link-matching F-scores effectively signal tracking performance,
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they are strongly correlated with segmentation performance, necessitating their
combined interpretation. In contrast, for these scenarios, I measured association
performance, where links were accounted for only when segmentation was suc-
cessful on both sides, removing the correlation to better isolate the individual
contribution of tracking. Metrics included association precision (APs), recall
(ARs), and F-scores (AF5), all measured at a 50% IoU cutoff for segmentation
correctness and scaled by 100 for consistency with the other statistics. These
metrics provide a detailed insight into tracking performance. Additionally, I
measured the bounding box-based industry standard DetA, AssA, and HOTA
scores to provide a general performance assessment of detection, association, and
overall performance, comparable to public benchmark results such as those on
MOTSynth-MOTS-CVPR22.

The results for the "Visual signaling" scenario are presented in Fig. 8, detailing
outcomes for no turns, infrequent turns (TR-1), and frequent turns (TR-2).
The results for the "Semi-random positioning" scenario are shown in Fig. 9,
covering no random movements, small random movements (RP-1/20), and large
random movements (RP-1/5). The results for the MOTSynth-MOTS-CVPR22
dataset are presented in Fig. 10, showing performance for the three manually
labeled evaluation samples individually. These results highlight the importance
of the proposed tracker’s ability to integrate positional and visual cues and
demonstrate its superior performance compared to the Kalman filter, even in
tasks for which it was neither specifically designed nor highly optimized. Notably,
in the "Semi-random positioning" scenario, the proposed architecture achieved
a 3.49-times higher association F-score (AFjg), reflecting a substantially better

tracking performance for this particular task.



17

Thesis 2a

I demonstrated that widely used benchmark datasets, such as MS-COCO, exhibit
an object positioning bias, strongly favoring objects located near the center of the
image. This bias can result in prediction performance that is more than five orders
of magnitude lower near the edges of the image, even when the objects are fully
vistble. The effects of this bias were analyzed for segmentation, detection and
classification tasks, with a detailed localization of its impact based on prediction
performance results and saliency maps.

Corresponding publication: [Ar3|

The foundation of most modern image-processing neural networks is the
convolution operation, which is inherently translation-invariant. This property
enables convolutional neural networks (CNNs) to exhibit translation-invariant
behavior. While at the time of the publication this thesis point is based on, it
was already known that the assumed translation-invariant behavior of CNNs does
not always hold true, the underlying cause of this effect was not well understood,
and the potential intensity and impact were not clearly demonstrated. Initial
measurements I conducted revealed that training with object positioning biased
towards the center of the images can have a profound impact on prediction
performance near the edges. Specifically, these tests showed a more than 16,000-
fold decrease in prediction performance, even when the objects remained fully
within the field of view.

The significance of this effect is amplified by the strong object positioning
bias present in popular and widely used benchmarks. This bias, being present in
both training and testing datasets, remains undetectable during evaluation on
the benchmark datasets. Its presence is only naturally revealed when the trained
models partially fail in real-world applications lacking the bias.

To thoroughly investigate the extent and localization of this bias, I performed
more detailed measurements across different image-processing tasks. For these
experiments, I trained several U-net models on a controlled dataset using ImageNet

samples as backgrounds to ensure the task remained non-trivial. Hand-drawn
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Figure 11: Positional bias distributions

Mean loss values of the U-Nets trained and evaluated on restricted regions. The
loss values begin to increase drastically starting at the 0.5-0.6 evaluation band
unless objects are specifically positioned near the edges during training. This
indicates that more than 64 percent of an image will be segmented and classified
with substantially worse performance in terms of area.

Change of Classification confidence in terms of image shift
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Figure 12: Classification bias sample

Junco Snowbird sample showing the drastic effect of shifting objects to the boundary
of the image on classification models, using the pretrained version of VGG-16 with
ImageNet samples. The first column displays the original images which are classified
correctly. The second column depicts how the classification confidence of the original
class changes by shifting the image. The last column depicts the largest investigated
shift. The classification confidence for the original class and the newly predicted class
are displayed below the images along with their confidence scores.

MNIST numbers were overlaid onto these images for segmentation and classi-

fication, with their positions restricted to specific regions during training and
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evaluation. During training, the objects were confined to centralized regions, while
during evaluation, they were restricted to bands at specified distances from the
image center. The results of these experiments are shown in Fig. 11.

Additionally, I assessed instance segmentation and classification tasks using
pre-trained models, where objects were manually shifted closer to the image
edges. A sample results for classification shown in Fig. 12. The results confirm
that prediction performance drastically decreases near the edges of images for
all evaluated tasks, unless objects were positioned near the image edges during
training.

To further localize the bias and possibly reveal its cause, I calculated saliency
map difference images based on shifted object positions using models trained with
objects near the center or near the edge of the image on the previously described
dataset with Image net samples as backround and MNIST samples as objects to

be segmented and classified. Example results are presented in Fig. 13.
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Figure 13: Saliency map differences

Normalized saliency map differences based on the shift vectors, with zero shift
positioned at the center. The top row depicts the results using U-Nets trained
with objects positioned in the middle, allowing for a central 30 percent, while
the bottom row depicts the results using U-Nets trained with objects at the
edges, prohibiting a central 70 percent. As observed, the CNNs trained on images
containing objects solely at the center exhibit a distinct and large difference in
their saliency maps when the objects are present at the edges. In contrast, the
CNNs trained with objects positioned at the edges do not exhibit such differences.
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Thesis 2b

I proposed architectural and data manipulation-based solutions to mitigate this bias.
The most effective approach involved replacing zero-padding in all convolutional
layers of the model with toroidal boundary conditions. This modification led to a
performance improvement of more than 37,000 times in the most extreme cases.

Corresponding publication: [Ar3]

Based on the measurement results described in Thesis 2a, I proposed several
potential solutions to mitigate the object centering bias. Among these, two
solutions demonstrated the best performance: randomly shifting training samples,
even at the risk of partial object loss, and implementing toroidal boundary
conditions in every convolutional layer. The latter introduces almost no drawbacks,

aside from requiring an architectural modification.

MS-COCO Orig MS-COCO Shifted

Box mAP Orig. 33.6% 15.6%
Box mAP Shifted 31.7% 28.4%
Seg mAP Orig . 31.4% 17.4%
Seg mAP Shifted 29.4% 25.3%

Table 2: Detection bias mitigation

Mean average precision (mAP) results for a Mask R-CNN network with a ResNet-
50 backbone and a feature pyramid network with ROI align on the MS-COCO
dataset. Two versions of the test set were evaluated: the original MS-COCO
test set (MS-COCO Orig) and a modified version where a randomly selected
object was always shifted to the boundary (MS-COCO Shifted). mAP results
are reported for bounding box detection (Box) and instance segmentation tasks
(Seg) under two different training conditions. Rows marked with (Orig.) show
results on the unaltered MS-COCO dataset, while rows marked with (Shifted)
show mAPs for networks trained on a dataset where a randomly selected object
was always shifted to the boundary.

Results for classification, instance segmentation, and semantic segmentation
tasks with classification, as described in Thesis 2a, were evaluated using these
solutions either individually or in combination. These results are presented in
Tab. 3, Tab. 2, and Fig. 14. The findings indicate that the use of toroidal boundary
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Figure 14: Positional bias distributions - Toroidal boundary

Mean loss values of the U-Nets trained on restricted regions, with toroidal boundary
conditions in each convolutional layer. Compared to the values in Fig. 11, the
relative increase of loss values based on training and evaluation positions is
minimal.

conditions offers slightly superior performance compared to random shifts. This
advantage likely arises because large random shifts can introduce new artifacts,
such as partial removal of objects from the field of view. Nonetheless, both
solutions far outperform the biased models and nearly eliminate the effects of the

bias entirely.

Architecture ImageNet ImageNet Boundary
DenseNet121 Orig. 75.1% 3%
DenseNet121 Shifted 69.3% 66%
DenseNet121 Toroidal — 74.2% 68%

Table 3: Classification bias mitigation

Top-1 test accuracies of DenseNet121 architecture on the original ImageNet test set
(first column) and a manually created small subsample, where images have objects
positioned at the boundary (second column). The model is evaluated in three
variants: trained on the original ImageNet training set using zero-padding (Orig.),
trained on a version of the dataset with objects shifted towards the boundaries
(Shifted), and trained on the original dataset with toroidal boundary conditions
(Toroidal).
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