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Abstract

Temporal forward-tracking has been the dominant approach for multi-object
tracking and segmentation for several decades, and this remains unchanged even
with the advent of machine-learning-based solutions. While this approach is well-
suited for live tracking applications, it imposes significant architectural limitations
in scenarios where inference speed is less critical. Therefore, in this dissertation,
the primary aim is to showcase a novel tracking architecture developed specifically
to circumvent these limitations. Initially, I designed and tuned the architecture
for the detection, instance segmentation, and tracking of budding yeast cells in
videomicroscopic recordings, where it exhibited superior performance compared to
other evaluated tools. Following this, I extended the architecture to accommodate
a broader range of image modalities, data variations, and computational demands,
enabling a comprehensive evaluation across varied synthetic and semi-synthetic
scenarios. These evaluations highlight the advantages and limitations of the
architecture when confronted with specific challenges.

Additionally, during the early stages of developing the architecture, I identified
a common bias in widely used image processing benchmarks for convolutional
neural networks, particularly concerning object positioning. I conducted an in-
depth investigation across multiple benchmarks and prediction tasks to validate
this bias, revealing severe but often difficult-to-detect consequences stemming from
its presence. To address this issue, I experimented with various data manipulation
techniques and architectural adjustments, several of which successfully eliminated
the bias almost entirely. These findings strongly suggest that the bias is inherently
linked to the boundary conditions used in convolutional operations.
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Chapter 1

Background and motivation

1.1 Multi-object tracking

Automated detection and tracking of multiple objects remains an important yet
challenging task across many loosely related fields. The greatest advancements,
however, have primarily been made in the context of autonomous navigation,
particularly in real-time applications where predictions must be made immediately
after receiving new data. My primary objective was to develop a machine learning-
based architecture for the detection, segmentation, and tracking of budding yeast
cells in videomicroscopic recordings, intended for public use and specifically for the
International Foundation of Medicine (IFOM). Unlike conventional tracking tasks,
where predictions are typically made as data is acquired, in this context, tracking is
only required after the complete image sequence has been recorded. This approach
makes prediction speed less critical and eliminates the data access constraints
typically faced by conventional trackers that rely solely on past information.
Moreover, in contrast to many other tracking applications, maintaining long-term,
continuous tracking of all objects is of paramount importance in this scenario.
Many biologically significant parameters — such as the duration of the cell
division cycle, cell lifespan, division-based inheritance trees, and the effects of
slower-acting chemicals [1, 2] — can only be accurately measured if the tracks
remain fully continuous throughout the entire recording. [3, 4] While achieving
perfect tracking results may not be feasible without expert supervision, reducing
the number of manual corrections needed can substantially enhance the utility
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2 1. BACKGROUND AND MOTIVATION

of these predictions. Therefore, rather than using a combination of state-of-the-

art methods designed and optimized for real-time tracking scenarios, I opted to

develop a novel multi-object tracking architecture with minimal architectural

assumptions and constraints, making it as data-driven as possible, and the main

focus was placed on achieving stable continuous tracking instead of inference

speed.

The concepts and results of this work are detailed in Chapter 2 and are based on

my publication: [Ar1].

While the initial macro-architecture was designed based on the task of videomi-

croscopic yeast cell tracking, it was structured so that only the trained models

carry any task-specific information, while the macro-architecture itself remains as

general as possible. After successful training on the cell tracking dataset provided

by IFOM and conducting comparative evaluations against other competing tools

from various perspectives, the architecture was extended to handle both col-

ored and grayscale images through the incorporation of necessary model changes.

Object marking was made flexible between centroid and bounding box-based

modalities, and the architecture was further optimized to handle long image

sequences without memory overflow errors and with reasonable inference time.

These enhancements enabled the architecture to be evaluated on various other

tracking tasks after retraining the models, such as the MOTS dataset [5, 6, 7],

utilizing synthetic training data for zero-shot knowledge transfer learning [8, 9, 10].

Furthermore, due to the relative lack of high-quality multi-object tracking and

segmentation benchmark datasets, comparative evaluations of the model were

performed in various synthetic scenarios specifically designed to showcase different

challenges and aspects of the multi-object tracking and segmentation task, includ-

ing comparisons against the widely used Kalman filter [11] and ablated variants

of the proposed tracker model.

The concepts and results of this work are detailed in Chapter 3 and are based on

my publication: [Ar2].



1.2 Benchmark object positional bias 3

1.2 Benchmark object positional bias

During the initial design phase of the multi-object tracking architecture, an image
tiling solution was considered, where training would be performed in such a way
that each individual object was centered. However, it was uncertain whether the
positional bias introduced by this approach could significantly decrease prediction
performance. Although this object-centering tiling method was later discarded
due to the adoption of a Mask R-CNN-like model for object detection and instance
segmentation [12] and the development of a novel time-symmetric local tracking
approach using a different perspective, the question of object centering bias
remained relevant, as it was hypothesized that it might have implications for
other tasks and datasets. Therefore, an initial test was conducted on the MNIST
dataset [13], where objects are naturally centered. These tests revealed unusual
fluctuations in predictive performance even with slight object offsets, hinting at
the potential presence of a significant bias.

Following the initial tests, the presence of the bias was measured in popular
datasets with known object positions, such as MS-COCO [14], and it was found
that object positioning is indeed heavily favored towards the center of the field of
view. Due to the presence of this bias in widely used benchmark datasets and
the initial MNIST tests indicating a potentially substantial impact on predictive
performance, evaluation scenarios using modified variants of multiple popular
benchmarks were prepared to showcase the severity and locality of the bias.
Additionally, saliency (also referred to as activation) maps [15, 16] were analyzed
to determine whether the bias was related only to the max-pooling operation [17]
present in the architectures used or if it was a more general issue inherent to
convolutional neural networks. The evaluation of these saliency maps also helped
pinpoint the locality of the bias.

Following these measurements, multiple solutions were proposed to address
the bias, including options for both dataset manipulation and architectural mod-
ifications. The best-performing solution, which utilized alternative boundary
conditions such as toroidal boundary conditions, demonstrated that the likely
source of the bias is the widely used zero-boundary condition, which influences the
model in an unnatural way if it is not trained to handle object positioning. While
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this finding is not entirely new, as other publications have reported correlations
between zero-boundary conditions and better localization, and toroidal boundary
conditions with more tolerant object positioning, the depth of the analysis and
the strength of the findings, even with shifted objects fully present in the images,
represent a novel contribution.
The concepts and results of this work are detailed in Chapter 4 and are based on
my publication: [Ar3].



Chapter 2

Videomicroscopic yeast tracking

2.1 Author Contributions

While all aspects of the macro-architecture, model design, training, and user
interaction functionalities were designed and developed by me, and I wrote the
manuscript along with all tables and figures, which serve as the basis for this
chapter, the project itself was a collaborative effort. Due to data restrictions
preventing access to the test data to maintain its integrity, Paolo Bonaiuti from
the International Foundation of Medicine (IFOM) conceptualized the evaluation
methods, generated comparative results for the assessed tools, and contributed to
manuscript preparation, particularly in Sec. 2.4.1. Andrea Ciliberto from IFOM
provided valuable theoretical insights and constructive feedback from a biological
perspective, while András Horváth contributed essential theoretical insights and
critiques from a machine learning standpoint.

2.2 Introduction

For several decades, tracking of solid objects in video recordings has been a
partially solved problem. Classical image processing-based pattern matching
approaches, such as Scale-Invariant Feature Transform (SIFT) [18] combined with
Random Sample Consensus (RANSAC) [19], have the potential to track objects
with fixed shapes invariantly to shift, scale, rotation, and partially to lighting
conditions. Furthermore the extension of such methods with variants of the
Kalman filter [11, 20, 21] can introduce object velocity or other degrees of freedom
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6 2. VIDEOMICROSCOPIC YEAST TRACKING

into the estimation, which can substantially reduce the position estimation noise,
particularly when the introduced additional parameters tend to be continuous.
However, these methods base their estimation on prior assumptions, which greatly
reduces their capabilities when the assumptions do not hold true. These limitations
are especially apparent in live cell tracking on videomicroscopy recordings, as cells
tend to change shape and morphological description rapidly, unpredictably, and in
a highly nonlinear manner. Additionally, cells can grow and divide with time, have
no real velocity, and often exhibit unpredictable behavior as a living, non-rigid
object. Furthermore, cells on the same recordings tend to be very similar, making
the task even more challenging. Therefore, the most promising solution to address
these issues is using machine learning, where the feature importances and other
estimates are learned by the model and depend mainly on the distribution of the
training dataset.

In recent years, several cell tracking software and libraries have switched to
machine-learning-based solutions, mainly utilizing convolutional neural networks
(CNNs), as they generally perform well on image processing tasks. Some of these
tools, such as CellTracker [22], Usiigaci [23], and YeaZ [24], separate segmentation
and tracking and use deep learning only for high-quality segmentation. However,
they use classical methods, such as the Kalman filter, bipartite graph matching,
or other methods for tracking which ultimately rely on a rigid metric system.
In contrast, other tools, such as CellTrack R-CNN [25], and Ilastik [26], adopt
deep learning or other forms of machine learning for tracking either in an end-to-
end manner or as a separate segmentation followed by tracking. This approach
shows advantages both theoretically and empirically, as demonstrated by the often
superior performance of machine learning based and other data-driven methods
when sufficient amount of training data is available. [27, 28] However, to the best
of our knowledge, all of these tools rely on a frame-by-frame identity matching
approach, utilizing only consecutive frames for tracking. This approach is a major
simplification and disregards a large amount of useful information that could be
present in the temporal neighborhood of the given video frames.

Therefore, we developed a complete tracking pipeline that separates segmenta-
tion and tracking because end-to-end training with our method was unfeasible.
Our method uses deep learning for both stages utilizing the temporal neighborhood
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of consecutive frames for prediction, makes skipping of frames possible up to the
size of the temporal neighborhood making the tracking substantially more robust
and uses metrics only between different predictions for the same cell on the same
frame minimizing the introduction of methodical assumptions via the choice of
the similarity metric. The most similar method in the literature that we know
of is DeepTrack [29], which was recently developed for tracking cars. However,
while this method utilizes the local temporal neighborhood via encoding objects
using Temporal Convolutional Networks (TCNs), the network architecture and the
metric system for object matching is substantially different, making our solution
architecturally novel.

2.3 Methods

2.3.1 Instance Segmentation

In case of tracking pipelines not trained in an end-to-end manner, segmentation
is commonly employed as a preliminary stage before tracking. The reason being
that the detection of the objects is mandatory for tracking, and detection via
segmentation can provide essential information about the objects present, sim-
plifying and improving the manageability of the tracking task. In the context of
cell tracking, high-quality segmentation of cells is also important from a biological
perspective as it offers valuable information regarding the size and shape of cells,
as well as serving as a quality check for the tracking process.

From both the target and solution architecture perspectives, segmentation
can be classified into semantic segmentation and instance segmentation. In
the realm of CNN-based image processing, semantic segmentation is typically
considered the easier task and can be accomplished using relatively simpler
network architectures like SegNet [30], U-Net [31], and others. However, accurately
separating objects of the same category after semantic segmentation can be
highly challenging and may necessitate the utilization of classical image processing
methods, which we previously discussed as being less desirable. On the other hand,
recent advancements in deep learning, particularly the introduction of Mask R-
CNN-like architectures [12], have made it possible to achieve instance segmentation
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solely based on deep learning techniques. Although these architectures tend to be
more complex and rigid due to the combination of convolutional, fully connected,
and potentially other network connection types, they are highly valuable when it
is essential to separate instances of objects belonging to the same category.

In our approach, we employ a distinct step of Mask R-CNN-based instance
segmentation prior to tracking, grounded in the previously described arguments.
This step serves two purposes: to provide accurate segmentation results and to
serve as initialization for the tracker. As high quality environments are publicly
available for Mask R-CNN architeture training, instead of focusing on developing a
novel architecture, we trained an instance segmentation model using the Detectron2
[32] environment. To improve the performance and robustness of the model, we
employed multiple data augmentation techniques during the training process.

The specific model we chose was a Mask R-CNN architecture with ResNet-50
feature pyramid backbone pretrained on the COCO instance segmentation dataset
[14] with 128 ROI heads for the single "cell" object type. The model was trained
through 120,000 iterations with a base learning rate of 0.0025, minibatch size
of 4 and otherwise the deafult parameters of the Detectron2 environment. For
artificial data augmentation, we employed various transformation options provided
by the Detectron2 environment and the Albumentations library [33]. The chosen
transformations and their respective parameters are summarized in Tab. 2.1. The
transformations and their parameters were determined in a qualitative manner
to ensure that the resulting outcomes closely resemble biologically plausible
samples, while maximizing variance. However, conducting an extensive data-
specific parameter search could potentially yield even better results.

The trained instance segmentation model showed exceptional performance in
both object detection and shape recognition. Therefore we decided to not only use
its results as inputs for the subsequent tracking method in the pipeline but also
utilize them as the final segmentation output. This decision was made in contrast
to the option of using segmentation estimates of the tracking method. Examples
of such instance segmentation results can be seen in Fig. 2.1. Using these initial
instance segmentation predictions as segmentation instances in tracking effectively
combines the strengths of both stages of the pipeline: the segmentator module
produces more accurate segmentations, while the tracker connects them.
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Detectron2 transformations

Transformation Parameters

Random Brightness Intensity Min = 0.7, Intensity Max = 1.3, P = 0.2
Random Contrast Intensity Min = 0.7, Intensity Max = 1.3, P = 0.2
Random Flip P = 0.1
Random Extent Intensity Min = 0.7, Intensity Max = 1.3, No Shift, P = 0.2

Albumentations transformations

Transformation Parameters

Grid Distortion Num Steps = 10, Distort Limit = 0.2, P = 0.2
Elastic Transformation Alpha = 991, Sigma = 8, Alpha Affine = 50, P = 0.2

Table 2.1: Employed augmentation techniques
Data augmentation transformation parameters for Detectron2 and Albumentations-
based instance segmentation training

2.3.2 Tracking

While deep-learning based segmentation has gained popularity in modern cell

tracking software, tracking often relies on comparing consecutive frames using

metrics like Euclidean distance or Intersection over Union (IoU). In contrast,

more advanced but still rigid methods, such as variants of the Kalman filter,

consider motility patterns along with position and shape for tracking. Following

such frame-to-frame similarity measures, various techniques, including variants

of the Hungarian method [34] can be employed for optimal assignment without

repetition.

However, these methods are sensitive to several hyper-parameters, artifacts,

and unusual cases. Even with perfect segmentation and correct assignment, frame-

to-frame metrics are not expected to yield a perfect match unless the object

moves in a completely predictable way, with estimable process and measurement

noises. [20, 21] This sensitivity arises due to the movement, speed, shape changes,

and other descriptors of the object, as well as environmental factors such as

lighting conditions. Consequently, manual fine-tuning of parameters on a per-

recording basis, or even adopting different parameters within a single record, is

often necessary.
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Figure 2.1: Segmentation sample results
A showcase of robust segmentation results, depicting accurate cell detection and
segmentation under varying lighting conditions, while effectively avoiding detection
of obviously dead cells. The upper row displays the raw input samples, while the
lower row shows the predicted segmentation instances overlaid.

Machine-learning based techniques offer an alternative to address these chal-

lenges, as they can learn the movement patterns of the tracked object and adapt

to environmental changes when provided with diverse training data. Artificial

data augmentation can also be used to enhance data variety or simulate specific

anomalies. However, in popular cell tracking software, these solutions are usually

implemented on a frame-to-frame level, potentially leading to sensitivity to un-

expected temporally local anomalies, such as changes in lighting conditions or

administration of drugs that alter cell movement patterns or morphology.

Instead we propose a novel multi-frame based assignment method that predicts

the position of a marked cell on several consecutive frames using a state-of-the-art

semantic segmentation architecture. Our method is based on the concept that,

although the direction of time is important in cell tracking, certain morphological
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changes such as cell growth generally occur in the positive temporal direction.
Therefore, having information about the future position of the cell can be advan-
tageous for tracking. As a result, we have developed a time-symmetric tracking
method that utilizes the local temporal neighborhood in both the negative and
positive temporal directions. Based on this architecture, the model learns to
capture the direction of time and temporally unidirectional changes from the
data, instead of relying on a temporally biased architecture. Our approach draws
notable inspiration from the 2019 study of X. Wang [35]. However, instead of
using cycle consistency losses, we sought to create an architecture that remains
invariant to the direction of time itself. After the predictions are generated by
this architecture, the resulting local tracks can be optimally matched and linked
together based on prediction information within their temporal overlaps using the
Hungarian method.

Local Tracking

The local tracking around a single frame is performed on all cells individually
distinguished by the previous instance segmentation step via a neural network
designed for semantic segmentation. The channel parameters of this network can
be defined the tracking range (TR) parameter. The segmentator model input for
a single cell instance consists of (TR + 1 + TR) + 1 images as channels of the
single input where TR+1+ TR images are raw video frames centered around the
frame on which the given cell is to be tracked, while on the additional 1 channel a
single white dot marks the cell to be tracked at its centroid and the rest of the
image is black. The determination of the centroid coordinates (xc, yc) is based on
the segmentation instance for the given cell using image moments. The equations
are as follows:

xc =

∑∑
x · I(x, y)∑∑
I(x, y)

(2.1)

yc =

∑∑
y · I(x, y)∑∑
I(x, y)

(2.2)

The target outputs for the local tracker consist of n+1+ n frames, containing
the segmentation of the cell marked on the last channel of the input. An illustration
of this local tracking architecture is presented in Fig. 2.2.
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The reason for using the centroid of the segmentation and not the segmentation

itself in the input is that according to our experiments if the segmentation

information would be present there, the local tracker would not learn how to

perform semantic segmentation. Instead it would copy the input segmentation

to all outputs, providing false segmentations to all outputs except the middle

one. However via using the centroid as a marker, the local tracker is forced to

learn how to perform segmentation for the single marked cell on all temporal

instances present, and thus it will be able to perform tracking via segmentation.

Furthermore, if a cell instance is temporally close to the beginning or end of

the recording, such that it is within n frames of the boundary, direct forward

or backward tracking using a kernel size of n+1+n is not feasible. Nevertheless,

the number of channels, which determines the local tracking distance, is a fixed

parameter of the network architecture. To address this issue, we incorporate

temporal padding by repeating the first or last frame. Additionally, we ensured

that such instances are included during training to make the network capable of

handling such edge cases and maintain its temporal invariance.

Based on empirical evidence, we found that among the tested semantic seg-

mentation models, variants of the DeepLabV3+ [36] architecture from Pytorch

Segmentation Models [37] yielded the best performance for this task. The models

were trained through 20 epochs with a minibatch size of 10 in all experiments

using stochastic gradient descent optimizer with cosine annealing learning rate

scheduling having warm restarts during the first 15 epochs, and a gradual cooldown

during the last 5 epochs. The model output had sigmoid activation with binary

crossentropy loss.

Artificial data augmentation of the local tracking samples was performed

using the torchvision transformations library [38]. For positional transformations

random horizontal flip [p=0.5] and random affine [degrees=(-40, 40), scale=(0.7,

1.3), p=0.4] transformations were uniformly applied to the input and ground truth

data. For color transformations color jitter [brightness=0.5, contrast=0.5, p=0.4]

transformation was applied for each input frame individually to improve model

robustness for unexpected lighting artefacts.
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Figure 2.2: Local tracking structure
Depiction of input and output information structure of local tracking via segmen-
tation with local tracking range (TR) = 2. Notice that while the left to right
positive temporal direction of the data is recognizable from cell growth, and the
model learns this during training, the architecture itself has no built in directional
preference, resulting in a completely data-driven estimation for local tracking.

Global Tracking

As the output of local tracking, a single cell instance marked by the video frame
and its position is tracked forwards and backwards through TR frames. This local
tracking output can be obtained for each cell instance detected by the instance
segmentation step, serving as the input for global tracking. Therefore the aim
of global tracking is to match local tracks based on the semantic segmentation
predictions in their overlapping areas, and chain them together based on ID
matching creating full cell tracks based on a globally optimal consensus.

In practice, at first, we obtain this global consensus on a t to t+ 1 level, as
usually the cells can be tracked from one frame to the next. However, if a cell
instance did not receive any matches above the minimal requirement threshold,
the matching can be repeated for larger temporal distances. This secondary
matching is performed after all t to t + 1 matching is done, and only between
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the remaining candidates. Secondary matching is also performed hierarchically in
terms of temporal difference meaning that temporally closer instances get matched
first and only the remaining ones can get matched later with larger temporal
differences. The maximal possible matching distance is 2TR, but matches over
TR are unreliable as they are based on relatively few segmentation predictions,
and only indirectly contain information about the segmentation of the central
cell instances to be matched. Therefore we believe, using TR as the maximal
temporal distance between local track matching is logically the most sound choice,
but in practice other choices could have minor benefits depending on the dataset.

Based on this methodology, the global consensus of ID matching can be turned
into a one-to-one assignment problem for N × M candidates, where N is the
number of candidates in frame t and M is the number of candidates in frame
t+∆t where 1 < ∆t ≤ 2TR. Such assignment problems can be optimally solved
by variants of the Hungarian method in polynomial time even for non-square
matrices, but this requires a sound metric choice to measure the goodness of the
candidate matches. In our case these candidate matches are the 2TR + 1−∆t

segmentation pairs in the overlapping temporal region of the local tracks to be
compared. Therefore in an ideal scenario where perfect segmentations are achieved
in local tracking, any metrics that solely compare segments within the same frame
and calculate the average of these comparisons could be employed. This is because
segmentation instances belonging to the same cell should result in a perfect match.
However in practice, the mean of Intersection over Union (IoU) turned out to be
the best metric choice as it takes both the positional and morphological differences
of the segmentations into account, and gives 0 similarity for segmentations with no
overlap regardless of the distance. This process of calculating the metric similarity
measure based on local tracks is depicted in Fig. 2.4.

After computing the selected metric between all global tracks of frame t and
t+∆t, a threshold can be employed to establish a minimum required similarity
based on the metric results. This step eliminates candidates that do not meet the
desired level of similarity. Subsequently, the Hungarian method can be applied
to determine the optimal global consensus for ID matching between frame t and
t + ∆t, as depicted in Fig. 2.5. Via performing these steps in the hierarchical
approach as described earlier, complete global tracks are constructed based on
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a global consensus of similarity, which solely relies on the prediction capabilities
of the local tracker. The construction of global tracks is performed using the
depth-first search graph algorithm [39] to cover all existing branches arising from
connections with a higher temporal distance than one frame. An example of
successful global tracking using this pipeline is presented in Fig. 2.3.

Figure 2.3: Tracking sample results
A side by side display of tracking results, demonstrating successful tracking of all
cells in the same recording with a temporal difference of 8 frames. New cells were
appropriately assigned new IDs while maintaining consistent tracking of existing
cells.

Skipped Instance Interpolation

By employing the aforementioned methodology for global tracking, we can ef-
fectively address inconsistency errors in segmentation that commonly arise in
realistic scenarios when ∆t > 1. In such cases, although the resulting tracks will
be complete, they may not be continuous, and segmentations for missed frames
will be absent. To tackle this issue, we use a positional linear interpolation method,
which is described by the following equations:

∆c(x, y) =
(t− tlast)cnext(x, y) + (tnext − t)clast(x, y)

tnext − tlast
(2.3)
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Figure 2.4: Metric similarity structure
Schematic structure of the metric similarity measurement step between 2TR + 1
long local tracks of different cell instances on frames with a temporal distance of
∆t. The solid lines indicate the central segmentation instances with a ∆t temporal
distance to be matched, while the arrows indicate the similarity metric between
the segmentation estimates for each time frame. Subsequently, the individual
metric results are averaged to obtain a single measure of similarity.

S(x, y) = Slast(x, y) + c(x, y) (2.4)

Here, S(x, y) and t represent the interpolated segmentation and its correspond-

ing time, respectively. Slast(x, y), clast(x, y), and tlast denote the segmentation,

centroid, and time of the last occurrence of the cell with the given ID, while

cnext(x, y) and tnext represent the centroid and time of the next occurrence of the

cell with the given ID. Although this method only shifts the segmentation from

the last occurrence to the linearly interpolated position without altering its shape,

in practice the results have proven satisfactory. Still, in the future, incorporating

a method that linearly interpolates the shape of the segmentation by considering

both the last and next occurrences could potentially yield minor improvements.
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Figure 2.5: Global assignment structure
Illustration of the metric similarity based assignment step using the Hungarian
method for non-square matrices. Newly unassigned cells, such as cell number
4 receive a new ID, while the previously assigned cells retain the ID of their
corresponding previous instances.

Ancestry Assingment

Our architecture currently does not include an integrated solution for assigning
newly born cells to their ancestors. However, the stability and continuity of the
predicted cell tracks suggest the feasibility of implementing such a feature later
if required. Initial tests show that a basic prediction method using Euclidean
distance, combined with positional and morphological heuristics like maximal
newborn cell size, can produce satisfactory results for ancestry assignment when
the predicted tracks are unbroken. For example, a somewhat similar simple
distance-based method was employed in the Cell Tracking Challenge submission
by A. Arbelle (2021) [40, 41]. However, for more complex samples, additional
morphological factors may need consideration, such as connectedness, or machine
learning-based solutions could be utilized as a separate module if an ample amount
of training data is available. Additionally, there is the option of integrated object
instance classification of division, akin to the approach described in the publication
by I. E. Toubal (2023) [42]. However, this would further increase the data intensity
of architecture training and could introduce a potential weakness in the tracker
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module due to false positive cell division predictions dissecting some of the tracks.

2.4 Results

For evaluation purposes, we opted to calculate F-scores based on binary decisions
of correctness for segmentation and tracking, instead of utilizing continuous
regression metrics. This approach offers a clear numerical evaluation of the
capabilities of the compared tools and tool versions. F-scores for segmentation
were computed using IoU, with a minimum similarity threshold of 0.5. We selected
this threshold as it is strict enough to assess the accuracy of correct cell detection
while disregarding minor segmentation discrepancies that hold minimal biological
significance. In the case of tracking evaluation, F-scores were also calculated based
on the segmentation IoU, with the additional inclusion of ID matching. True
positive values, also referred to as "links" were registered if the segmentations
matched on the same frame, and the IDs matched consecutively for both the
prediction and the ground truth. This tracking evaluation method of link matching
is described in the work of M. Primet (2011) [43].

2.4.1 Yeast Data Source

The training and validation data used to generate the primary results in this
paper are videos of budding yeast cells dividing in a microfluidic device. Cells are
S. Cerevisiae wild-type-like, with W303 genetic background. Yeast is a unicellular
eukaryote, which shares many essential genes and phenotypes with multi-cellular
eukaryotes, such as mammals. On the other hand, its relatively small genome
(∼ 12×106 base pairs), short doubling time and easy genetic tools allow to perform
experiments in a short time and with limited costs. Such experiments would
be very costly or even impossible to do in higher eukaryotes. Not surprisingly,
many discoveries performed in higher eukaryotes were inspired by original studies
performed in yeast.

In the experiments, cells were grown overnight at 30 ◦C in complete YPD
medium and synchronized by the use of the pheromone α-factor. Imaging started
when they were released from this stimulus. Cells were free to grow and duplicate,
trapped in the microfluidic device to prevent them from moving in the field of
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Tracking
Range

Valid Local
Tracks

Training
Samples

Validation
Samples

1 99019 88993 10026
2 64659 58059 6600
3 47940 43018 4922
4 37347 33487 3860
5 29888 26769 3119
6 24373 21803 2570
7 19931 17819 2112
8 16278 14533 1745
9 13301 11847 1454
10 10915 9709 1206

Table 2.2: Yeast sample distribution
Number of valid local tracking samples for model training in function of tracking
range (TR), and the disribution of training and validation samples.

view. Images were acquired every 3 minutes for 3.5 hours using a DeltaVision
Elite imaging system equipped with a phase-contrast objective. The field of view
is a square of 111.1 µm size, resulting in a 512x512 pixels image. The duration of
the cell-cycle of the analysed cells is ∼ 1.5 hours, while their size is ∼ 5µm.

The segmentation and tracking models were trained on a dataset comprising
of 314 movies, and for validation purposes during model design, 35 additional
movies were used. These movies were acquired using the same microscope,
objective, and image size, but with varying durations and time-lapses. On
average, each movie contained 35.8 frames and 20.2 individual cells to be tracked.
The ground truth labels were initially generated using Phylocell [44] in a semi-
automated, semi-manual manner. They were then manually corrected and curated
by multiple experts, who removed incorrect segmentations (such as dead cells,
segmentations of empty space, and multiple segmentations per cell) and corrected
cell tracking. The training and validation sample numbers of the segmentation
model were independent of model parameters, while for the tracking model, the
model parameter tracking range (TR) substantially influenced the number of
available samples, as shown in Tab. 2.2. Further details on the model parameter
TR will be discussed in Sec. 2.3.2. For final testing and evaluation of the tools
and model parameters, 5 additional independent recordings were used, containing
a total of 4629 identified cell instances.
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2.4.2 Comparative Datasets Definition

While our architecture was initially designed for the segmentation and tracking of
yeast cells, we also claim that it is capable of generalization to diverse data types,
including those featuring faster-moving objects, given an adequate amount of
training data. Additionally, in contrast to numerous other methods, our tracking
architecture seamlessly integrates both morphological and kinematic information,
making it entirely data-driven and retrainable without requiring any substantial
architectural changes.

To support these claims, we aimed to train and evaluate it using microscopic
recordings of other cell types. However, we found that such data is not readily
available in the required quantity and quality. Our architecture demands extensive
training data due to its size and complexity, as a trade-off for tracking quality
and stability, which poses a challenge compared to simpler tracking solutions. For
instance, the Cell Tracking Challenge [40] or the CTMC-v1 dataset [45] could
have been suitable for evaluation purposes. However, they lack the necessary
intra-class variance required for successful training of complex models without
severe overfitting on the training data. This issue was also noted in the publication
of I. E. Toubal (2023) [42].

To address this issue, we synthetically created multiple toy datasets comprising
objects with various morphological and motility patterns. To introduce a level
of difficulty and realism to the tracking tasks, each simulated recording includes
a randomized background composed of 10 Gaussian density functions, with a
maximum relative brightness level of 0.39, and a similar framewise-random noise
with a maximum relative brightness level of 0.078.

Synthetic Arrows

The objects designated for tracking are triangular arrows, with a maximum size
difference ratio of 6, an average speed equivalent to 40% of the mean object size,
uncorrelated with the size of the individual object, allowing for speeds even greater
than the object size. Additionally, these objects have a maximum angular rotation
of 10° for each frame, allowing for object crossing and thus occlusion, and random
uniform grayscale values exceeding a brightness level of 0.39. Furthermore, the
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objects may also expand from one frame to the next by 1.6-10.0% of their original
size, with a probability of 0.33 at each time step. The average density of objects
in this scenario is ∼ 11.39 per frame.

Synthetic Amoeboids

This object tracking task is similar to "Synthetic Arrows". However, the objects
to be tracked are more complex amoeboids with semi-random initial shapes and
shape changes from one frame to the next. Both the initial shapes of these objects
and the iterative shape changes are generated using Perlin noise [46] in a 50-point
polar coordinate system with an octave value of 6, a persistence value of 0.5,
and a lacunarity value of 2.0. Furthermore, the shape changes are governed in a
Gaussian manner based on the distance from the object centroid to avoid complete
filling of the object space or the disappearance of an object due to random chance.
This approach creates amoeboid-like objects with randomized boundaries allowing
for highly concave contours and even the short-term splitting of an object in
extreme cases. Additionally, while the individual shape changes are gradual
from one frame to the next, the objects can be nearly unrecognizable over larger
temporal distances. Lastly, unlike the "Synthetic Arrows", the objects perform
perfectly rigid collisions with no velocity loss, making occlusion impossible. The
main reason for this choice is that the following other datasets featuring synthetic
amoeboids would require a realistic simulation of occluded object light transference,
which would be mandatory but exceedingly challenging if object occlusions were
allowed. Furthermore, object occlusions are generally less important in microscopy
compared to macroscopic cameras, due to the focal plane specificity of microscopes.
The average density of objects in this scenario is ∼ 9.18 per frame.

Synthetic Amoeboids-PC

The aim of this dataset is to simulate object tracking on phase contrast microscopy
recordings with objects displaying substantially different morphological and motion
characteristics compared to yeast cells. The behavior of the objects in this dataset
is identical to that of "Synthetic Amoeboids." However, instead of displaying
objects with uniform grayscale color, the Canny edge detector [47] is applied to
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the binary object mask, followed by a Gaussian blur with a large kernel size of 51
pixels, mimicking phase contrast microscopy visual characteristics in a simplistic
manner. The average density of objects in this scenario is ∼ 8.87 per frame.

Synthetic Amoeboids-PCC

The objects in this dataset behave similarly to those in "Synthetic Amoeboids-
PC," with the only notable difference being that the objects undergo non-rigid
collisions, resulting in a 10% velocity loss for each collision involving both objects.
This seemingly minor change leads to the clumping of objects, making the track-
ing task simultaneously easier and more challenging. Object identification and
segmentation become substantially more difficult due to the clumping, while the
reduced momentum simplifies assignment. Additionally, a small force is applied
to each object towards the center of the field of view. Although this force does
not visibly alter object motility, it ensures that the object clump is likely to form
within the field of view. The average density of objects in this scenario is ∼ 20.27

per frame, much higher than in the previously discussed scenarios, as expected.

Synthetic Amoeboids-PCCA

This dataset does not exhibit any differences in terms of object behavior compared
to "Synthetic Amoeboids-PCC." Instead, each recording is augmented with a
highly disruptive artifact, which poses challenges for both object detection and
tracking, even for the human eye. These artifacts consist of 100 white lines placed
in a uniform random manner between the edges of the field of view, obscuring
both the objects and the background. The artifact patterns generated in this
way are static but unique to each recording, rendering it impossible for models to
learn their positions. The average density of objects in this scenario is ∼ 21.18

per frame, similarly high as in case of "Synthetic Amoeboids-PCC".

2.4.3 Comparative Tool Evaluation

For comparative evaluation, we selected Phylocell [44] [48] and YeaZ [49] as the two
other cell tracking tools. The reason behind this choice was that the ground truth
training and testing data were generated using Phylocell and were later manually



2.4 Results 23

corrected by experts. On the other hand YeaZ provides a fair comparison to our
solution as it employs a similar segmentation pipeline and a somewhat comparable
tracking pipeline, utilizing the Hungarian method. As the ground truth data
excludes cells that eventually leave the microscope’s field of view throughout
the recording (from now on referred to as "border tracks"), we conducted two
evaluation scenarios for the tools. In one scenario, border tracks were removed in
post-processing from all predictions to ensure an unbiased comparison, while in
the other scenario, the prediction results were left unaltered.

Figure 2.6: Comparative tool evaluation
Comparative evaluation of segmentation and tracking performances of Phylocell,
YeaZ and our pipeline based on F-measures of segmentation IoU and tracking
link matches with enabled and disabled border track predictions. Disabled border
tracks present an unbiased comparison between the tools, while enabled border
tracks show results with the unaltered outputs.

The segmentation and tracking F-measure results are depicted in Fig. 2.6. It
is evident that our solution substantially surpasses both other tools in terms of
segmentation and tracking quality, particularly in the more equitable scenario
where the border tracks were eliminated. In the unaltered prediction case, the
performance of Phylocell remained comparable to its prior results since the tool
already automatically removes most border tracks. Conversely, YeaZ and our
solution exhibited notably lower performance due to domain discrepancy between
the predictions and ground truth data. Nevertheless, even in this case, our
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solution outperformed Phylocell in terms of expected F-score values, although
with a substantially higher degree of variance on the lower side.

These results indicate the effectiveness of our method, but also suggest at a
strong connection between segmentation and tracking quality due to the apparent
correlation between metric results. To investigate further, we used Phylocell
instance segmentation inputs for our tracker. In this case, the mean tracking
F-score of our method was 0.868± 0.015, showing a negligible difference compared
to the tracking F-score of Phylocell at 0.878± 0.02. While our tracking method
did not surpass the performance of Phylocell on the measured samples, this may
be attributed to a highly non-uniform segmentation error distribution of Phylocell,
which leads to certain track predictions being mostly incorrect while others are
mostly correct. Although our tracker is theoretically capable of correcting sparse
errors in mostly correct tracks, it is unable to rectify tracks composed predom-
inantly of faulty or missing instance predictions. To verify this, we conducted
an experiment detailed in Sec. 2.4.5, introducing segmentation errors in a more
uniform manner.

2.4.4 Hyperparameter Dependencies

The parameters we considered to have a major impact on tracking performance
for both local and global tracking are the local tracking range, the complexity
of the local tracker model backbone, and the metric used for global consensus.
For a more detailed description of these parameters and their functions in the
architecture, please refer to Sec. 2.3.2.

The differences in tracking F-scores resulting from these parameters are pre-
sented in Fig. 2.7. Somewhat surprisingly, we observed minimal differences in
performance based on the local tracking range and model complexity. Furthermore,
smaller local tracking ranges exhibited marginally better performance, suggesting
that the benefits of larger tracking kernels were outweighed by the increased model
complexity, which slightly hindered training. On the other hand, these results also
indicate that lightweight models with smaller local tracking ranges and simpler
backbones are suitable for tracking predictions, resulting in substantially shorter
inference times. As an additional benefit, while performing inference without
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Figure 2.7: Hyperparameter dependencies
Comparative evaluation of tracking F-scores in function of local tracking ranges,
backbone model complexities and global consensus metrics with enabled and
disabled border track predictions. Disabled border tracks present an unbiased
comparison between the parameters, while enabled border tracks show results
with the unaltered outputs.

GPU acceleration remains slower by orders of magnitude, it is more reasonable

with such lightweight models, making initial pipeline testing more accessible.

As anticipated, the use of IoU as the metric for global consensus substantially

outperformed Euclidean distance, underscoring the importance of incorporating

cell morphology in short-term tracking.
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2.4.5 Tracking Robustness

To comprehensively demonstrate the tracking stabilization and segmentation

interpolation capabilities of our architecture, and to show that tracking quality

is not solely reliant on initial instance segmentation quality, we conducted an

ablation study. In this study, we removed every 1:15 (Noise 1:15) and 1:5 (Noise 1:5)

segmentation instances in a uniform random manner before tracking. Furthermore,

to showcase the potential advantage of longer local tracking ranges, we created a

scenario where segmentation instances were removed in 7-frame-long blocks, with

these elimination blocks also positioned in a uniform random manner with a 1:5

average chance of segmentation instance elimination (Box Noise 1:5). This box

noise scenario presents a different but equally realistic challenge compared to the

fully uniform noises, as in various applications, objects can disappear for several

frames due to occlusion and limited field of view.

The applied noises substantially impacted both segmentation and tracking

outcomes, as segmentation instances were removed and the previously continuous

tracks were broken up. Therefore, it was the task of the tracker module to create

continuous tracks despite the missing segmentation instances and to interpolate

the removed instances as effectively as possible. The resulting F scores before

and after re-tracking are presented in Fig. 2.8 for Noise 1:15 and Noise 1:5 with

the thus far best performing local tracking range of 1. For Box Noise 1:5, we

measured the performance of the architecture for local tracking ranges of 1, 4,

and 7. These F scores are presented in Fig. 2.9.

The results reveal that for all examined noises, both the segmentation and

tracking F scores showed substantial improvement compared to the disrupted

tracks due to the interpolated segmentation instances and the reconnected tracks.

Furthermore, in the case of Box Noise 1:5, the longer local tracking ranges were

preferred, as they provided better coverage for the continuously missing segmented

instances. These findings clearly demonstrate that while there is a substantial

correspondence between instance segmentation and tracking results, both modules

of our method strongly support each other, leading to simultaneous improvements

in both, thus contributing to the observable correspondence.
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Figure 2.8: Uniform random noise reconstruction
Comparative evaluation of segmentation and tracking F-scores for Intact, Noise
1:15, and Noise 1:5 cases. Both segmentation and tracking results include baseline
values disrupted by the given noise, as well as re-tracked values initiated with the
disrupted segmentation.

Figure 2.9: Box noise reconstruction
Comparative evaluation of segmentation and tracking F-scores for Intact and Box
Noise 1:5 cases. Both segmentation and tracking results include baseline values
disrupted by the noise, as well as re-tracked values initiated with the disrupted
segmentation using local tracking ranges (TR) of 1, 4 and 7.

Moreover, during this experiment, we observed a substantially greater influence
of tracking parameters compared to previous trials. Specifically, the accuracy of
the segmentation confidence threshold of the tracking model and the minimal
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similarity threshold of the global assignment step became notably more crucial,
particularly in scenarios of reduced instance segmentation quality. This was
especially evident with more complex models featuring larger local tracking ranges.
An illustration of this relationship is depicted in Fig. 2.10 for Noise 1:15. While
this observation might imply that extensive and costly hyperparameter tuning is
necessary for the tracker module in case of lower quality instance segmentation
results, in practice, these parameters can be readily and efficiently adjusted based
on visual assessment of segmentation quality of the local tracker model and a
global tracking sanity check on only a few consecutive frames. Conversely, the
heightened significance of the accuracy of these parameters further underscores
that while tracking may be straightforward in cases of good quality instance
segmentation, achievable by nearly any model, in scenarios of poorer quality
instance segmentation, a well-designed tracking architecture can play a pivotal
role, substantially impacting both segmentation and tracking quality.

2.4.6 Comparative Datasets Evaluation

Using the five synthetic datasets described in Sec. 2.4.2, our yeast tracking
architecture was trained on 80 synthesized videos for each type, each comprising
100 frames, and subsequently evaluated on 20 videos. The only modification
applied to the architecture was the utilization of bounding box marking instead
of centroid marking for the tracked objects. This adjustment was necessary due
to the potential intersection of object paths and thus the possibility of occlusion,
rendering centroid marking ambiguous in certain scenarios. The chosen TR value
for each training was 4, as it provides a good balance between missing instance
interpolation and prediction quality. The resulting segmentation and tracking
F scores are displayed in Tab. 2.3, while sample prediction results are displayed
in Fig. 2.12 with raw inputs for the given samples displayed in Fig. 2.11. These
sample displays were chosen in an unbiased manner by always selecting the first
training sample, regardless of prediction quality. However, the frames chosen for
display were selected to best showcase the differences between the datasets.

These results clearly display the difficulty difference between objects with more
predictable behaviors, such as yeast cells or synthetic arrows, and comparatively
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Figure 2.10: Hyperparameter interdependence
Illustration of the interdependence of hyperparameters: segmentation confidence
threshold of the tracker model and minimal similarity threshold of the global
assignment as a function of local tracking range (TR).

more challenging and unstable objects, such as the synthetic amoeboid versions.
While the numerical results for amoeboids are lower compared to those for yeast
cells or synthetic arrows, they are still acceptable given the difficulty of the tasks.
The errors mostly arise from instance segmentation, as tracking F scores are
never substantially lower than the segmentation F scores. Empirical assessment
also shows that the predictions are mostly correct and would serve as a valuable
baseline for later manual corrections if necessary. Furthermore, these results
could be substantially improved through specialized augmentation techniques,
hyperparameter tuning, using more complex backbone architectures for feature
extraction, and increased training data. Therefore, based on our assessment, these
results demonstrate the adaptability of our architecture in various object tracking
scenarios with vastly different object morphologies and behaviors. However, they
also highlight the different training requirements and expectations for different
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Segmentation F score Tracking F score
S. Arrows 0.9185± 0.0057 0.8990± 0.0076
S. Amoeboids 0.7137± 0.0082 0.6605± 0.0093
S. Amoeboids-PC 0.6861± 0.0089 0.6662± 0.0098
S. Amoeboids-PCC 0.7726± 0.0101 0.7693± 0.0111
S. Amoeboids-PCCA 0.5078± 0.0129 0.5022± 0.0140
Yeast Reference 0.9234± 0.0136 0.9202± 0.0138

Table 2.3: Synthetic sets numeric results
Segmentation and Tracking F scores of the full pipeline for various synthetic
datasets with vastly different object behaviors and challenges compared to natural
yeast recordings.

datasets. A more detailed analysis of this aspect is described in Sec. 2.4.7.

Figure 2.11: Synthetic sets input samples
A display of raw input samples on various synthetic datasets with highly different
object behaviors, ordered from left to right as "S. Arrows," "S. Amoeboids,"
"S. Amoeboids-PC," "S. Amoeboids-PCC," and "S. Amoeboids-PCCA." The
displayed consecutive images are only 4 frames apart to show understandable
results even in cases of extremely fast-moving objects.
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Figure 2.12: Synthetic sets tracking sample results
A display of segmentation and tracking results on various synthetic datasets with
highly different object behaviors, ordered from left to right as "S. Arrows," "S.
Amoeboids," "S. Amoeboids-PC," "S. Amoeboids-PCC," and "S. Amoeboids-
PCCA." The displayed consecutive images are only 4 frames apart to show
understandable results even in cases of extremely fast-moving objects.

2.4.7 Data Requirement Analysis

The training of neural network-based prediction models always requires a varied
set of training samples, ideally covering all possible scenarios that may arise during
inference. Furthermore, the number of sample points should be high enough to
minimize dataset-specific learning, commonly referred to as overfitting to the
training dataset. While both sample variety and the avoidance of overfitting can be
improved through artificial data augmentation and other generalization techniques,
there is a highly task-dependent limit for the minimal required amount of training
data. Assessing this limit numerically before initial training and evaluation can
be very challenging or nearly impossible. Thus, we provide example evaluation
results using training sets with varying sample numbers as potential guidelines on
the yeast tracking dataset, as well as the synthetic datasets described in Sec. 2.4.2.
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The results using randomly selected subsets of the original dataset for the
training of both instance segmentation and local tracking models are presented in
Fig. 2.13. For the proper interpretation of these results, it must be noted that
individual model trainings can vary to a certain degree due to the stochastic nature
of the training process, which is especially true for datasets with lower sample
sizes. Nevertheless, some clear patterns are still noticeable. Based on these, it
appears that yeast cells are by far the easiest of these objects to segment and track,
as only 2% of the 314, approximately 35.8-frame-long videos can lead to nearly
identical results as training on the full dataset. Conversely, the various examined
synthetic datasets showed varied results, clearly displaying how challenging the
unique features of the given dataset are.

2.5 Discussion

To display the capabilities and characteristics of our architecture, we performed a
comparative evaluation against other tools specifically designed for budding yeast
cell segmentation and tracking. Additionally, we analyzed the hyperparameter
sensitivity of our architecture. We also measured the reconstructive capabilities
of the tracker module in cases of lower quality segmentation to demonstrate
the robustness of the architecture as a whole. Furthermore, we evaluated the
architecture on various synthetic datasets to display its retrainability and to
provide guidelines for the difficulty of particular visual and motility patterns.
Finally, we analyzed the training data requirements of the architecture on the
available natural and synthetic datasets to aid potential future applications that
require the retraining of the models.

Our architecture demonstrated outstanding state-of-the-art performance com-
pared to other evaluated yeast segmentation and tracking tools in terms of both
instance segmentation and tracking results, substantially outperforming Phylocell
and YeaZ. Remarkably, our architecture even outperformed Phylocell in the sce-
nario where border tracks were not removed, a condition that is biased towards
Phylocell.

The results of the hyperparameter dependency analysis of our architecture
indicate that shorter local tracking ranges are slightly preferred if segmentation
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results are stable, as training less complex models is easier in terms of data intensity.
However, as the tracking robustness analysis shows, longer local tracking ranges
are preferred if the detection or segmentation of objects is imperfect, especially
if objects are lost for multiple consecutive frames. In more difficult datasets,
such scenarios can easily occur naturally due to object occlusion and various
visual artifacts. It should be noted that, according to our results, the acceptance
threshold values of the tracking architecture must be tuned more precisely for
larger local tracking ranges.

Furthermore, the hyperparameter dependency analysis reveals that low-complexity
encoding backbones of the local tracker model are sufficient for tracking yeast cells,
making the model lightweight in terms of computational requirements, although
GPU-accelerated inference is still highly recommended. Additionally, the analysis
of the global assignment step shows that Intersection over Union (IoU) is the
preferred metric for prediction similarity based local track matching.

Lastly, the analysis of performance on synthetic datasets, as well as the analysis
of training data requirements on both synthetic and yeast datasets, showcases the
general versatility of the architecture if a sufficient amount of annotated training
data is available. As our architecture contains re-trainable models as predictors,
these results show promise for applying the same architecture for other cell types
after retraining on appropriate data. The results also indicate that all the analyzed
synthetic sets are more challenging than yeast cells, but mostly valid predictions
are still achievable on most of them with comparatively larger amounts of training
data. Furthermore, we believe that while the analyzed synthetic sets differ from
reality in many aspects, their characteristic features and the associated training
data requirements and metric results can serve as a guide for the retraining of the
models in terms of data requirements and performance expectations.

2.6 Data and Code Availability

Various data resources, as well as the segmentation and tracking pipeline, have
been made openly accessible through a dedicated GitHub repository: https:

//github.com/SzaboGergely0419/PPCU_IFOM_YeastTracker. This repository
includes supplementary resources such as different versions of the tracker model,

https://github.com/SzaboGergely0419/PPCU_IFOM_YeastTracker
https://github.com/SzaboGergely0419/PPCU_IFOM_YeastTracker
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sample test data, and the complete set of training and test sets used for yeast
tracking. Sample prediction results are uploaded directly to the repository. Ad-
ditionally, a comprehensive Google Colab environment is provided within the
repository, allowing for the execution of the entire pipeline.





Chapter 3

General time-symmetric tracking

3.1 Author Contributions

The concepts and results presented in this chapter were the outcome of a partial
collaboration between Zsófia Molnár, András Horváth, and me. While I was
responsible for the conceptual and performance-related redesign of the architecture,
training of the models, creation of prediction results, and writing of the manuscript,
the evaluation framework was a joint effort. Zsófia Molnár and I worked closely
on designing this framework, with her playing a key role, particularly in the
conceptualization of the metrics. The design and creation of the figures in this
chapter were also a collaborative effort between us. András Horváth provided
essential theoretical insights, critiques and guidance that further shaped the work.

3.2 Introduction

Detection, segmentation, and tracking of multiple objects in image sequences
remain challenging tasks, requiring the optimization of numerous factors during the
design of new methods. While most state-of-the-art tracking systems prioritize low
latency for real-time applications such as self-driving cars and surveillance cameras,
this emphasis on speed often comes at the expense of incorporating potentially
valuable information and generalization capabilities, especially when inference time
is not a limiting factor. As discussed in Chapter 2, a novel tracking architecture,
termed the "TS" architecture due to its time-symmetric tracking approach, was
introduced specifically for the task of tracking living cells in videomicroscopic

37
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recordings. This architecture showed excellent performance in handling object
assignment challenges during cell division and maintaining continuous tracking
due to its reconstructive capabilities.

Although Chapter 2 presented an in-depth analysis of the TS architecture’s
performance in tracking budding yeast cells and other synthetic cell-like objects,
its potential in other substantially different environments was not fully explored.
Therefore, in this chapter, the focus is extended to a broader evaluation of the
TS architecture using standardized metrics and comparative analyses against
traditional approaches such as the Kalman filter [11]. Additionally, the archi-
tecture’s capabilities are further examined in highly specific synthetic scenarios
and in the challenging zero-shot knowledge transfer scenario between the syn-
thetic MOTSynth-MOTS-CVPR22 training dataset [7] and the real-world MOTS
dataset [50] for person tracking. By systematically extending the investigation of
this architecture’s performance to diverse tracking contexts, this chapter aims to
highlight its flexibility and potential for broader applications beyond cell tracking.

All related codes, data, and models are available at https://drive.google.
com/drive/u/2/folders/1JbCJT4DMnzMIchqqC1IcKRjmYA0s5-IZ, frozen at the
time of publication. The updated and further maintained codebase can be accessed
through the following GitHub repository: https://github.com/SzaboGergely0419/
Symmetry-Tracker.

3.3 Architecture overview

Although the TS architecture, which serves as the foundation for the analyses
presented in this chapter, is nearly identical to the version detailed in Chapter 2,
several minor theoretical modifications were made to enhance its capabilities.
Additionally, the practical implementation was completely restructured to accom-
modate the substantially increased computational requirements of the subsequent
evaluation scenarios. For a macroscopic overview of the architecture, a high-level
data flow illustration is presented in Fig. 3.1.

While the original implementation provides a pipeline implementation, it
contains some inefficiencies, resulting in longer-than-necessary inference times and
memory overflow errors in longer sequences. Since some of the data we intended

https://drive.google.com/drive/u/2/folders/1JbCJT4DMnzMIchqqC1IcKRjmYA0s5-IZ
https://drive.google.com/drive/u/2/folders/1JbCJT4DMnzMIchqqC1IcKRjmYA0s5-IZ
https://github.com/SzaboGergely0419/Symmetry-Tracker
https://github.com/SzaboGergely0419/Symmetry-Tracker
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Figure 3.1: Macro-architecture overview
Data flow diagram of the TS architecture, illustrating the process from raw input
image sequence to finalized track predictions.

to analyze — specifically the MOTS sequences — are particularly lengthy, we
had to completely refactor and optimize the tracking architecture, while keeping
the Detectron 2 [32] and SMP [51] based models intact. The updated pipeline
implementation further modularizes the tracking segment by breaking it down into
fully independent sub-tasks of data preparation, local tracking, global tracking and
graph based ID reduction, employs preparatory calculations to minimize runtime
in longer sequences, and mitigates memory usage inflation over time. A comparison
of memory usage and runtime between the original and updated TS architecture is
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presented in Fig. 3.2. These results were measured using the five yeast recordings
provided through the demonstration environment of the original implementation
[Ar1], which are relatively short and do not cause that implementation to crash.
While the runtime benefits of the preparatory calculations are not evident in these
short sequences, the stark reduction in memory usage inflation in the tracker
segment is apparent. The improved version of the full pipeline, frozen at the time
of publication, is accessible via the URL provided in Sec. 3.2.

Figure 3.2: Memory usage comparison
A display of memory usage and runtime differences between the original implemen-
tation of the TS architecture tracking segment and the improved implementation.

3.4 Metric definitions

To evaluate the overall performance of the architecture and specifically highlight
details of tracking performance, we employed two families of metrics. The first
family is based on comparisons of Intersection over Union (IoU) scores, using a 50%
matching threshold for binary acceptance or rejection, making the interpretation
of results straightforward. The second family includes the widely used HOTA
scores, along with associated DetA and AssA scores.[52]
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3.4.1 IoU 50% scores

The scores in this family are heavily inspired by the F-scores used in Chapter 2.
However, the tracking F-score used there combines detection and association errors,
making it heavily dependent on detection performance. While this approach is
valid, we believe that more easily interpretable results can be obtained by focusing
solely on association, where detection was successful, akin to the calculation of
HOTA. Here, we will define only the association scores, as our primary interest
lies in a detailed analysis of tracking performance. For a more general analysis,
please refer to the HOTA metric family.

Let GT (t, n) represent the n-th binary ground truth mask at time t and
PD(t,m) the m-th binary predicted mask at time t. We define the IoU50 binary
metric as:

IoU(GT (t, n), PD(t,m)) =
|GT (t, n) ∩ PD(t,m)|
|GT (t, n) ∪ PD(t,m)|

(3.1)

IoU50(GT (t, n), PD(t,m)) =

{
1 if IoU(GT (t, n), PD(t,m)) > 0.5

0 if IoU(GT (t, n), PD(t,m)) ≤ 0.5
(3.2)

Thus, we can define a successful object detection in a simplified way without
needing optimal assignment: if any GT object has a match based on the IoU50

metric to any PD object on the same frame, it will be a unique match due to
the matching threshold of 50%, as only a single object can occupy a single image
point. Furthermore, if |GTD50(t, t+ 1)| is the number of ground truth object IDs
mutually present at time t and t+ 1 where detection was successful at time t, and
|PDD50(t, t+1)| is the number of predicted object IDs mutually present at time t

and t+ 1 where detection was successful at time t, we can define the true positive
association count TPA50, the false positive association count FPA50, and the
false negative association count FNA50 as follows:

TPA50(t, t+ 1) =
∑
n,m

IoU50(GT (t, n), PD(t,m))

∩ IoU50(GT (t+ 1, n), PD(t+ 1,m)) (3.3)

FPA50(t, t+ 1) = |PDD50(t, t+ 1)| − TPA50(t, t+ 1) (3.4)
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FNA50(t, t+ 1) = |GTD50(t, t+ 1)| − TPA50(t, t+ 1) (3.5)

Based on these values, association precision AP50, association recall AR50, and

association F-scores AF50 can be calculated for the temporal position (t, t+ 1) as:

AP50 = TPA50/(TPA50 + FPA50) (3.6)

AR50 = TPA50/(TPA50 + FNA50) (3.7)

AF50 =
2AP50AR50

AP50 + AR50

(3.8)

While precision, recall, and F-scores are typically presented in the range of [0, 1],

we will present them multiplied by 100 to align with the value range of the HOTA

metric family.

3.4.2 HOTA metric family

For a detailed description of the HOTA metric family, please refer to the 2020

paper by Luiten et al. [52]. In summary, unlike the previously widely used MOTA

and IDF1 scores, HOTA effectively balances the importance of both association

and detection, making it an excellent metric for evaluating the overall performance

of a tracking system. Additionally, HOTA can be decomposed into detection

accuracy (DetA) and assignment accuracy (AssA) scores. While our primary focus

is on the performance of the tracking model, the overall performance of the entire

system is also crucial for interpreting the tracking results. Therefore, DetA, AssA

and HOTA scores will be all presented in the analysis. Unlike the segmentation

IoU-based metrics defined in Sec. 3.4.1, these scores are computed for the bounding

boxes of each object instance to align better with comparisons to other tracking

models that typically predict only bounding boxes, not segmentations. Hence,

we advise interpreting the IoU 50% scores as the primary indicators of model

performance, with the HOTA metric family serving as a comparative measure

that may obscure some of the true potential of the segmentation-based tracker.
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3.5 Tracker variants

To evaluate the tracking capabilities of the TS architecture, we compared it with
the widely used Kalman filter [11], a default choice in many object tracking environ-
ments. Although advancements have made the mathematical limitations regarding
linearity and parameterization of the Kalman filter more flexible [20, 21, 53], the
core concept remains the same: tracking objects based on a limited set of parame-
ters such as position and its derivatives, while the Kalman filter optimally balances
the estimated temporal forward prediction between past positions, updated ac-
cording to a state transition model, and new object detections, transformed by
an observation model. Although this temporal forward prediction approach is
computationally lightweight, making it ideal for live object tracking scenarios,
it disregards morphological information and other input data details not repre-
sented by the observation model. Moreover, temporal forward predictions must
be assigned to observations at different temporal positions to perform tracking,
which involves assigning objects in different state spaces. While this might seem
sound at first glance, the similarity measurement is highly constrained by the
state transition and observation models, limiting the information that can be
compared between observed and forward-predicted objects. This often defaults
to an oversimplified metric, such as L2 distance between centroid positions. Ad-
ditionally, any temporal forward prediction model ignores future data, which is
reasonable for live tracking scenarios but overlooks potential information when
the entire temporal sequence is available at the time of prediction.

In contrast, the TS architecture’s local tracking segment inherently learns
temporally local behaviors and predicts segmented masks using both past and
future data. These predictions are compared in the same state space, as they
are made by the same model from different perspectives. We believe that the
difference between temporally forward-predicting models and the symmetric
tracking capabilities of the TS architecture is somewhat analogous to a comparison
between the Forward algorithm [54] and the Viterbi algorithm [55], although the
temporally symmetric parallel predictions and the updating of past predictions
based on new information in the Viterbi algorithm are conceptually distinct. On
the other hand, while it is natural for the TS architecture to skip missed object
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instances and re-interpolate them after tracking, temporal forward predictors like
the Kalman filter can also skip missed instances if the state transition model
is applied multiple times after a matching detection is not found based on the
matching criterion. In our implementation of the Kalman filter-based tracker, we
allowed temporal forward predictions and re-interpolations with a maximum of 8
frames distance, matching the local tracker models’ TR value of 4, resulting in a
maximum assignment distance of 2TR = 8.

To further assess the impact of positional and morphological information in
assignments, we evaluated two restricted variants of the TS architecture: TS-
L2 and TS-Shape. The TS-L2 variant uses the same local tracking model but
retains only the centroids of the predicted masks for L2 distance-based similarity
comparison, ignoring all morphological information. The TS-Shape variant aligns
the centroids of predicted masks before calculating IoU-based similarity, focusing
solely on morphology and disregarding positional data. Evaluating the TS-L2
variant is particularly interesting, as it serves as a middle ground between the
Kalman filter and the TS architecture by using visual cues from inputs while
ignoring morphology during assignment.

Despite the substantial differences in prediction methodologies among these
four models, their predictions can be handled similarly. We applied the unaltered
Hungarian algorithm-based global assignment step of the TS architecture, followed
by depth-first search of connected IDs and interpolation of missed instances to
all predictions. Furthermore it must be noted that following track prediction,
we omitted any tracks shorter than 10 frames in length. While this introduces a
reverse dependence from tracking quality to detection quality, it also adds a sense
of realism to the tests, as in autonomous systems such low confidence detections
are often omitted too.

3.6 Datasets

While evaluating novel methods on natural datasets is crucial, such datasets
for MOTS (Multi-Object Tracking and Segmentation) tasks are relatively rare,
especially those with ample training data where all objects are accurately labeled
and tracked. For instance, the recently released SA-V dataset, allegedly used
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to train the SAM 2 model, provides a large number of high-quality tracks but
only for a few objects per recording [56]. This limitation makes it unsuitable
for training the instance segmentation stage of the evaluated architectures and
almost completely prevents the assessment of the recall capabilities. Moreover, the
TS architecture has already been proven to outperform other methods that were
specifically designed for budding yeast cell detection and tracking on a natural
dataset of such videomicroscopic recordings.

Therefore, we opted to create various synthetic scenarios, building on the syn-
thetic datasets presented in Chapter 2, to evaluate specific performance differences
among the four tracking models described in Sec. 3.5. The code used to generate
these scenarios, along with the resulting datasets, is available at the URL provided
in the abstract. Although these scenarios are artificial, their aim is to simulate
key features and events commonly observed in natural settings. Additionally,
to ensure evaluation on natural datasets, we trained models on the synthetic
MOTSynth-MOTS-CVPR22 dataset [7] and then evaluated their performance on
real-world samples from the MOTS dataset [50].

3.6.1 Visual signaling scenario

For the foundation of this synthetic dataset group, we used the Synthetic Arrows
scenario defined in Sec. 2.4.2. This baseline scenario was selected for its simplicity:
the objects move quickly with near-linear motion characteristics, and there is
minimal visual information to be gained from the objects’ morphological features,
except for the indication of their forward direction. Consequently, we anticipated
the Kalman filter to perform well in this scenario, providing a benchmark for
evaluating the TS architecture variants.

In contrast, the modified versions of the Synthetic Arrows dataset that we
created were expected to be more challenging. In these scenarios, the arrows
undergo a specific color change before a turning event, similar to how cars use
turn signals, indicating the direction in which the arrow will turn after a number
of T frames. The arrow then executes a 90°turn in the signaled direction. The
first variant, Synthetic Arrows TR-1, initiates a turn with a 20% chance per frame,
with a signaling period of T = 4 frames. The second variant, Synthetic Arrows
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TR-2, initiates a turn with an 80% chance per frame, with a signaling period of
T = 2 frames. These scenarios were designed to test how well the TS variants
interpret visual cues and to assess the extent to which visually signaled kinematic
events disrupt the Kalman filter.

3.6.2 Semi-random positioning scenario

Similarly to the "Visual Signaling" scenario, we also used the Synthetic Amoeboids
scenario defined in Sec. 2.4.2 as a baseline. However, unlike the original Synthetic
Amoeboids scenario, we applied no morphological changes to the objects from
one frame to the next, making them even more recognizable based on their
morphological features. Unlike the Synthetic Arrows scenario, the amoeboids
possess unique morphological characteristics due to the Perlin noise [46] applied
in their generation process. While these objects are still relatively easy to track,
we anticipated that disregarding morphological cues would be disadvantageous
for both the Kalman filter and the TS-L2 model, even for this baseline scenario,
especially when compared to Synthetic Arrows.

The modified versions of the Synthetic Amoeboids baseline dataset that we
created were also expected to be increasingly challenging. While in these variants,
the objects still exhibit semi-random but almost linear movement patterns, exclud-
ing collisions, their final position in each frame is adjusted by a random uniform
positional noise at a maximum distance of 1/D relative to the field of view in both
the x and y directions. As 1/D increases, this makes object tracking solely based
on position progressively more difficult, thereby raising the importance of object
morphology. The two variants of this scenario are Synthetic Amoeboids RP-1/20
and Synthetic Amoeboids RP-1/5, with random positioning relative distances of
1/20 and 1/5, respectively. We expect these variants to be particularly challenging
for tracking models that ignore morphological information.

3.6.3 MOTS challenge

The MOTSynth-MOTS-CVPR22 training dataset includes 767 full HD videos,
each 1,800 frames long, generated within the computer game GTA V [7], with
pedestrians annotated as objects. The official test set consists of seven naturally
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captured and manually annotated samples. However, because the challenge’s
evaluation kit has been outdated for some time, we opted instead to use three
publicly released full HD resolution sequences from the MOTS challenge training
set as our test set, available at https://motchallenge.net/data/MOTS/ (2024).
Our models were trained on the first 600 recordings of the training set, with
the remaining training samples used for evaluation. Notably, we were unable to
perform deep fine-tuning of model hyperparameters on the training dataset either,
due to the immense computational requirements and training times. Thus, we
opted to use the original augmentation scheme and hyperparameters of the TS
model, with a local tracking range of 2. Therefore, it is likely that, with a more
specialized model, even better results could be achieved.

To the best of our knowledge, the only official submission to the MOTSynth-
MOTS-CVPR22 challenge is based on the widely recognized "Tracking without
Bells and Whistles" (Tracktor) model by Bergmann et al. [57]. Although only this
single submission exists, it employs a popular state-of-the-art tracking method,
making its performance the most reliable benchmark for comparison in our
evaluation.

3.7 Evaluation results

We conducted a comprehensive evaluation of the tracker models Kalman filter, TS,
TS-L2, and TS-Shape using the metrics defined in Sec. 3.4 across both synthetic
scenarios and the MOTS challenge variant outlined in Sec. 3.6. The evaluation
results are presented as Kernel Density Estimation (KDE) distribution estimates
[58] for the AssA and HOTA metrics, and as mean values for all other metrics.

For proper interpretation of the results, it is important to preliminarily note
that an observable increase in DetA and HOTA scores often coincides with
particularly low AssA and especially AR50 scores. While these elevated DetA and
HOTA values are technically correct, they primarily result from the exclusion of
unreasonably short tracks, which removes lower-confidence detection instances and
artificially boosts detection precision, thereby inflating DetA and HOTA scores.
Therefore, as our focus is primarily on tracking performance, we caution against
drawing far-reaching conclusions from these inflated DetA and HOTA values.

https://motchallenge.net/data/MOTS/


48 3. GENERAL TIME-SYMMETRIC TRACKING

3.7.1 Synthetic scenarios

To establish a baseline for the other scenarios, we first present the comparative
evaluation results between the Synthetic Arrows and Synthetic Amoeboids datasets
in Fig. 3.3. While the models Kalman, TS, and TS-L2 demonstrated similar
performance in the simplistic Synthetic Arrows scenario, the TS architecture clearly
outperformed both the Kalman filter and the TS-L2 model in the morphologically
more complex Synthetic Amoeboids scenario. This result highlights the potential
benefit of incorporating morphological information. However, the TS-Shape model
substantially underperformed on both datasets, particularly in the Synthetic
Amoeboids scenario, indicating that positional information alone is more valuable
in these scenarios than morphological information, and that the combined benefit
of both types of information is not merely additive. Notably, the comparatively
better performance of the TS-Shape model on the Synthetic Arrows is likely due
to the arrows being often accurately identifiable by their specific area, whereas
different amoeboids might share similar surface features by chance.

Next, we present the results for the "Visual signaling" scenario defined in
Sec. 3.6.1 in Fig. 3.4. As anticipated, the Kalman filter’s performance deteriorates
as the movement patterns of the objects become more dependent on visual
signals. In contrast, the TS and TS-L2 architectures show a lesser decline in
performance, with the difference being clearly noticeable but relatively modest.
Notably, the TS-L2 architecture performs similarly to the TS architecture, as
the visual signals are encoded within the architecture and positional estimates,
even though the assignment metric in the architecture disregards morphological
information. The TS-Shape architecture continues to perform the worst, as there
is minimal morphological information available to differentiate the objects.

Lastly, we present the results for the "Semi-Random Positioning" scenario
defined in Sec. 3.6.2 in Fig. 3.5. Here, the TS architecture shows a clear advantage
over both the Kalman filter and the TS-L2 architecture, emphasizing the benefit
of predicting full object morphologies instead of relying solely on positional
assignments. While the TS-Shape architecture still performs far worse than the
others, its performance remains relatively stable across the scenario, as it is
unaffected by the position of the objects.
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Figure 3.3: Baseline metric results
KDE (top) and mean (bottom) metric results of tracker models Kalman, TS,
TS-L2 and TS-Shape for datasets Synthetic Arrows and Synthetic Amoeboids.

3.7.2 MOTS challenge

Similarly to the synthetic scenarios, we present the results for the MOTS challenge
samples described in Sec. 3.6.3 in Fig. 3.6. Due to the particularly challenging
nature of this task, the object detection score is low. Still, the TS model performs
notably better than the other models. Interestingly, while the TS-Shape architec-
ture still has the lowest performance overall, it performs much better than in the
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Figure 3.4: "Visual signaling" metric results
KDE (top) and mean (bottom) metric results of tracker models Kalman, TS
and TS-L2, TS-Shape for scenario "Visual signaling" datasets Synthetic Arrows,
Synthetic Arrows TR-1 and Synthetic Arrows TR-2.

synthetic scenarios. We believe this can be attributed partially to the particularly
clear visual differences between the pedestrian objects to be tracked.

The overall performance of the TS architecture, with a mean HOTA score of
48.56, closely matches the HOTA score of 48.8 achieved by the benchmark Tracktor
model. Moreover, the TS architecture achieves a substantially higher mean AssA
score of 82.39, compared to the Tracktor model’s AssA score of 44.6. This suggests
that the comparable HOTA scores are primarily due to imperfect detection and
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Figure 3.5: "Semi-random positioning" metric results
KDE (top) and mean (bottom) metric results of tracker models Kalman, TS,
TS-L2 and TS-Shape for scenario "Semi-random positioning" datasets Synthetic
Amoeboids, Synthetic Amoeboids RP-1/20 and Synthetic Amoeboids RP-1/5.

segmentation by the Detectron 2 based Mask R-CNN instance segmentation step

within the TS architecture, while its novel tracking approach far outperforms the

Tracktor model. Furthermore, since the Mask R-CNN with a ResNet-X feature

pyramid backbone used by the TS architecture is widely recognized as one of the

top-performing instance segmentation models [59, 60, 61], it is highly likely that
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Figure 3.6: MOTS challenge metric results
KDE (top) and mean (bottom) metric results of tracker models Kalman, TS,
TS-L2 and TS-Shape for the MOTS dataset samples described in Sec. 3.6.3

with a more specialized training scheme of the instance segmentation model —–
including dataset-specific data augmentation and hyperparameter tuning —– a
substantially higher HOTA score could be achieved.
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3.8 Discussion

Even from the baseline comparison of the Synthetic Arrows and Synthetic Amoe-
boids datasets, the clear advantage of the TS tracking architecture over the Kalman
filter is evident. The TS architecture’s ability to process multimodal information
— including positional, morphological, and other image characteristics — rather
than just kinematic data, proves beneficial when such information is relevant.
Furthermore, the results suggest that the optimal integration of positional and
morphological information for track assignment far outperforms the use of either
information alone.

In the "Visual Signaling" scenario, the results reveal that incorporating move-
ment pattern forecasting based on visual signals can enhance movement prediction,
even when morphological information is not used in the track assignment step.
This is demonstrated by the increasingly superior performance of the TS-L2
model compared to the Kalman filter as the frequency of color-signaled motility
events increases. This highlights the importance of visual cues in multi-object
tracking, such as signal lights, turn signals, head movements, and even subtle gait
or movement changes often observed in real-world environments. Notably, while
human perception and real-time tracking models can only utilize past and present
data, it is possible — and likely — that visual cues appearing in the future can
aid in predicting motion that occurred before those cues. Processing these cues at
inference time can be advantageous, and the TS architecture is uniquely capable
of capturing and utilizing this information.

In the "Semi-random Positioning" scenario, where object movement is less
predictable based on past positions and morphological information becomes crucial,
the TS architecture shows clear superiority over the Kalman filter. Furthermore,
in the Synthetic Amoeboids RP-1/5 dataset, the performances of the TS-L2 and
TS-Shape models nearly balance out, demonstrating the increased importance of
morphological information when positional estimates are unstable or when lower
temporal sampling rates lead to less consistent movement patterns.

On the MOTS dataset, the TS architecture achieved a HOTA score comparable
to that of the benchmark Tracktor model, reflecting similar overall performance.
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However, the associative tracking performance of the TS architecture far sur-
passed the Tracktor benchmark. This strongly suggests that the TS architecture
offers superior tracking capabilities, and with more dataset-specific training and
optimization of the instance segmentation component within the TS architec-
ture, substantially higher overall tracking results could likely be achieved on the
MOTSynth-MOTS-CVPR22 dataset. Moreover, this performance highlights the
TS architecture’s potential applicability beyond videomicroscopic cell tracking to
offline personnel tracking tasks such as surveillance, crowd movement analysis, and
other related applications. Additionally, the TS tracking architecture’s ability to
deliver state-of-the-art performance across vastly different tasks strongly indicates
its suitability for a wide range of tracking applications, provided its lower inference
speed is acceptable in exchange for predictive performance.



Chapter 4

Object centering bias

4.1 Introduction

Evaluation and validation of machine learning tools in the image processing field
are frequently conducted on large, publicly available datasets such as MNIST [13],
CIFAR-10 [62], ImageNet [63], MS-COCO [14], and many others. The data distri-
bution in these datasets has been thoroughly examined from many perspectives.
However, the interesting, non-background pixels are usually concentrated in the
middle of the images, and objects rarely appear at the edges. In contrast, for
certain applications — such as collision prevention in self-driving cars — objects
appearing at the edges of the images might be especially critical.

While the architecture of convolutional networks suggests that they are shift-
invariant, this common assumption is not fully correct. It has been demonstrated
in the 2019 paper by R. Zhang [64] that these structures are dependent on spatial
shifting.

In this chapter of the thesis, extending on the 2020 results of O. S. Keyhan
and J. C. Gemert [65] and the 2021 results of Md. Am. Islam et al. [66] I present
evidence, that convolutional neural networks (CNNs) are capable of learning non
translation equivariant behaviors — which appear at the edges of the image —,
thus training and validating on the previously mentioned data sets might provide
biased results and the trained CNNs might not reach the expected performance
in realistic circumstances where objects may appear near the edges of the images.
Furthermore we propose multiple validation environments capable of showing

55
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these biases in an emphasised manner and we propose multiple simple solutions

to this issue which could prevent the biased behavior without any substantial

drawbacks.

4.2 Object distribution on popular data sets

In the human visual system, there is only one location in the eye, the fovea

centralis, where the density of light-processing cones is substantially higher than

in the surrounding regions. This area is responsible for detailed central vision as

well as primary color vision. [67] Since the nervous system can typically focus

on only one region at a time, it is easier to center important elements in the

field of view. Furthermore, it is also more aesthetically pleasing to view images

where the important details and objects are positioned at the center [68]. This

evolutionary consequence of human behavior can introduce a substantial bias in

all human-acquired datasets.

This bias can be easily observed in simpler datasets such as MNIST, where all

objects are centered, and a completely black region surrounds the edges of every

image. However, in other, more complex datasets such as CIFAR, ImageNet, and

MS-COCO, this bias is still present, although it might be less obvious. Measuring

this bias is challenging in classification datasets where the positions of objects are

not precisely annotated, but it can be easily computed in datasets where object

locations are marked with bounding boxes or masks.

To illustrate this phenomenon, heatmaps representing the frequency of certain

objects according to their positions in the MS-COCO dataset are showcased in

Fig. 4.1.

It could be easily assumed that this bias is irrelevant in convolutional network

training, given their supposed shift invariance. However, as mentioned earlier

and demonstrated in the following sections of the chapter, this phenomenon can

introduce a substantial bias in prediction performance, particularly when objects

are positioned close to the boundary of the image.
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Car Person Handbag

Figure 4.1: MS-COCO object distributions
Appearance probability of certain objects in the MS-COCO dataset. The top
row displays a heatmap representing the frequency of center points calculated
for all objects, while the bottom row shows a similar heatmap for the bounding
boxes. As observed, there is a high probability that the centroid or even the
entire bounding box of a randomly selected object will be located near the center,
whereas objects rarely appear around the edges of the image.

4.3 Regional training results on CNNs

After recognizing the possible non-equivariant translational behavior of CNNs
during initial measurements, a specific object segmentation task was designed
and evaluated using the popular U-Net architecture [31]. In this section and in
Sec. 4.4, all measurement results were generated using the same U-Net architecture,
employing cross-entropy as the loss function, with 20 epochs of training on 60,000
randomly generated sample images with a batch size of 32, and evaluated on
16,000 samples. The task itself involved semantic segmentation and classification
of handwritten digits using the MNIST handwritten digits dataset. However,
the images were placed onto randomly selected and rescaled samples from the
ImageNet dataset, which served as the background. The task was purposefully
designed to be easy and solvable for the U-Net architecture, as the non-background
regions always had the maximum possible value in the input images, and classifying
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the MNIST handwritten digits dataset is a near-trivial task, even for non-state-of-
the-art architectures. The handwritten digits were always positioned in the middle
region of the much larger ImageNet samples, and a 168x128 region was cropped
as the training and test samples. The positioning limits for all measurements
mentioned in Sec. 4.3 and Sec. 4.4 were established to ensure that no parts of the
objects left the image. Even in the most extreme cases, the objects just touched
the edge of the image. Example input images with the corresponding labels are
shown in Fig. 4.2.

Central Transitional Edge

Figure 4.2: MNIST-ImageNet samples
Example input images are shown in the upper row, while the corresponding
background labels are displayed in the lower row for the training sessions utilizing
ImageNet samples as backgrounds and MNIST handwritten digit samples as the
objects to be segmented and classified.

Using these images, five initial trainings were performed with the same U-Net
architecture to test the hypothesis of non-equivariant translation. In half of the
cases, the handwritten digits were positioned in the central 30 percent of the
images, which corresponds to the central 9 percent of the image in terms of area.
In the other half, the handwritten digits were positioned outside the central 70
percent of the images.
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Loss
central 30%

Loss
excluded
central 70%

Different per
Same
loss ratio

Central training 0.00041 6.974354 16,086.638
Edge training 0.000690 0.000417 1.898

Table 4.1: Initial positional bias results
Mean values of the losses corresponding to the training and evaluation at the
center and at the edges, along with the ratios between testing on the same type of
dataset versus testing on the opposite type. The ratios indicate that the results
deteriorate in both cases when the training and test sets have different object
placement patterns. However, the increase in loss is far more drastic in the case
of central training.

For the test data, two sets were initially created in a similar manner, and
the mean test losses for each neural network were measured using both similarly
positioned test data and oppositely positioned data. The loss values were almost
the same on average for the similar datasets used for training and testing. However,
switching the datasets revealed a remarkably extreme difference. Training only at
the edges of the images and testing at the center increased the test loss values
by approximately 1.9 times on average. In contrast, training only at the center
and testing at the edges increased the loss values by more than 16,000 times. The
averaged values for the four possible pairings, as well as the exact ratios between
the losses for the same neural networks, are presented in Tab. 4.1.

Following this initial measurement, the problematic region was further localized
by decreasing the allowed central region for the objects in the training images
from 1 to 0.1. The objects were placed during testing on bands ranging from
0.0-0.1 to 0.9-1.0, where 0.0-0.1 marks the most central region of the image, and
0.9-1.0 marks the edge of the image. For each training case, five independent
neural networks with the same U-Net architecture were trained, and the results
for each instance were averaged. The results, shown in Fig. 4.3 and Tab. 4.2,
indicate that when the objects are placed only in the central 60 percent of the
images, the mean losses begin to increase rapidly even when positioned more
than 30 percent away from the edges of the images. This phenomenon is present
even though the objects are entirely present in the images even when placed at
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the 90 percent band from the central region, so this drop in performance cannot
be attributed to occlusion. It can also be observed that the outermost region,
0.9-1.0, is sensitive to objects placed in the central 80 percent of the images. Both
the slightly more restrictive central 60 percent and the less restrictive central 80
percent object placements appear to be quite realistic based on the measurement
results described in Sec. 4.2. Therefore, it can be concluded that unless special
care is taken in the placement of the objects, the training and evaluation results
on many popular datasets are likely to be biased, and the performance of CNNs
in realistic applications, where objects may appear in a non-centered manner, will
decline substantially.

In all measurement descriptions, only the main and most determining parame-
ters of the experiments will be listed. For a detailed set of parameters and the
PyTorch [69] based implementation of all experiments, please refer to the original
publication [Ar3] and the codes in the related supplementary material.

4.4 Saliency-shift maps of regionally trained U-
nets

Following the initial measurements, it was hypothesized that the class saliency
maps, also referred to as attention maps [15, 16] could change depending on the
position of the object, even if the positional shift of the object was minuscule. To
ascertain whether this information would contribute to a deeper understanding of
the phenomena, the differences in the saliency maps for the setups described in
Sec. 4.3 were measured, and the absolute differences between the saliency map
generated for the non-shifted (centrally placed) object and the saliency maps
generated for the same images with the shifted object and background were
calculated. It is important to emphasize that the objects never left the image, in
the most shifted cases, the objects remained fully inside the image, positioned near
the edges. For better visualization, the saliency map differences were represented
as a matrix of the same size as the input images, with the coordinates representing
the amount of shift in the given direction — the origin positioned at the center —
and the values representing the dispersion-normalized [70] difference values. Some
samples of the resulting images can be seen in Fig. 4.4.
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Figure 4.3: Positional bias distributions
Mean loss values of the U-Nets trained on the "band regions" described in Sec. 4.3.
The loss values begin to increase drastically starting at the 0.5-0.6 evaluation band
unless objects are specifically positioned near the edges during training. This
indicates that more than 64 percent of an image will be segmented and classified
with significantly worse performance in terms of area. For the numeric values,
please refer to Tab. 4.2.

Based on these results, it can be strongly suspected that zero-padding has a
categorically distinct effect, which cannot be achieved even by images with large
completely black regions. This is because the padding has zero values in each
layer, while the zero values originating from the input image can change from
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Forbidden
Outer
Region

LossVal
0.0-0.1

LossVal
0.1-0.2

LossVal
0.2-0.3

LossVal
0.3-0.4

LossVal
0.4-0.5

0.0 0.945 0.980 1.082 0.980 1.062
0.1 0.917 0.963 1.008 1.070 0.957
0.2 0.959 0.918 0.937 0.889 1.055
0.3 1.106 0.894 0.972 0.979 0.976
0.4 1.308 0.891 1.012 1.049 0.981
0.5 0.887 0.923 0.955 0.947 1.048
0.6 0.898 0.921 0.853 0.868 0.891
0.7 1.036 1.032 1.061 0.866 1.447
0.8 1.025 1.048 1.104 1.125 1.018
0.9 1.141 1.212 1.150 1.217 1.429

LossVal
0.5-0.6

LossVal
0.6-0.7

LossVal
0.7-0.8

LossVal
0.8-0.9

LossVal
0.9-1.0

0.0 1.085 1.085 0.987 0.989 1.041
0.1 0.956 0.956 1.019 0.909 1.927
0.2 1.028 1.028 0.934 1.535 16.101
0.3 1.066 1.066 4.315 404.340 3,164.413
0.4 2.202 2.202 411.924 7,549.861 25,575.147
0.5 13.921 13.921 246.706 2,098.795 8,063.583
0.6 17.030 17.030 319.163 1,697.250 5,924.594
0.7 58.702 58.702 831.526 5,900.890 17,408.368
0.8 23.522 23.522 390.934 2,655.341 9,557.831
0.9 69.234 69.234 839.521 5,890.076 21,579.727

Table 4.2: Positional bias distribution values
Mean loss values for training-evaluation pairs averaged over five individually
trained U-nets. The rows display the loss values for models trained with specific
"outer" restrictions on object positions, while the columns show the normalized
loss values for evaluations conducted with varying regional band restrictions on
object positions.

one layer to another. It is believed that the effects of zero-padding, or any other

padding exhibiting behavior that is characteristically different from the input

image itself, along with the potentially large-scale non-equivariant translational

behavior of the maximum pooling layers, cause the drastic differences in loss

values under different training circumstances described in Sec. 4.3. Furthermore,
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Figure 4.4: Saliency map differences
Normalized saliency map differences based on the shift vectors, with zero shift
positioned at the center. The top row depicts the results using U-Nets trained
with objects positioned in the middle, allowing for a central 30 percent, while
the bottom row depicts the results using U-Nets trained with objects at the
edges, prohibiting a central 70 percent. As observed, the CNNs trained on images
containing objects solely at the center exhibit a distinct and large difference in
their saliency maps when the objects are present at the edges. In contrast, the
CNNs trained with objects positioned at the edges do not exhibit such differences.

based on the measurement results detailed in Sec. 4.3, there is a high likelihood
that a convolutional neural network learns unwanted, meaningless, and destructive
non-equivariant translational behavior near the edges. This issue can be easily
mitigated by deliberately positioning objects near the edges of the images during
training, as this object positioning compels the convolutional neural network to
disregard the otherwise unusual behavior of zero-padding.

From a different perspective, a noticeable resemblance exists between the effect
of boundary conditions and the mechanisms behind Dropout and, in particular,
Dropblock. Thus, based on the observed behaviours, it is hypothesized that zero-
padding can be considered a pathological case of Dropblock, where all activations
are systematically zeroed out in every layer within a specific region. However,
in the cases of Dropout and Dropblock, the remaining activations are scaled to
maintain the average activation, while this mechanism is absent in the case of
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boundary conditions. Additionally, the regions for Dropout and Dropblock are
randomly chosen for each layer, whereas the boundary condition consistently
affects the outermost pixels.

4.5 Performance of commonly applied models at
the boundary

To investigate the previously introduced caveat of neural networks under predic-
tion tasks different from semantic segmentation and classification, an instance
segmentation Mask R-CNN variant architecture was examined [12], implemented
in the Detectron2 environment [32]. A pretrained version of the Mask R-CNN
network with a ResNet-50 feature pyramid backbone [71] was utilized with ROI
align. For the sake of reproducibility, pretrained weights provided by Detectron2
for the MS-COCO dataset were employed to investigate how object shift affects
the detection accuracy of the model on the dataset.

A similar decline in the objectness score of detected objects was observed
as they approached the boundary of the image. Notably, this drop was not
observed for large objects that occupied more than 25 percent of the image area.
Such objects were detected with high confidence, even when partially out of
frame. For example, individuals were detected even when only one of their arms
was visible in the image. In contrast, the detection accuracy of smaller objects
decreased substantially as they neared the edge of the image. An illustration of
this phenomenon is presented in Fig. 4.5.

To further investigate the phenomenon, the performance of the commonly
applied classification network VGG-16, on the ImageNet dataset was observed. Ten
classes were selected, with ten images from each class, creating a mini dataset of 100
images. These images were manually shifted to ensure that the interesting objects
were always positioned at the boundary. Pretrained models were downloaded
from the TorchVision [72] model library and their performance was investigated.
These models demonstrated high classification accuracy and performed well on
the original samples. However, as anticipated based on the previous results,
performance dropped substantially and often resulted in misclassification when
objects approached the boundary. An image illustrating this effect can be seen in
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Figure 4.5: Detection bias sample
Depiction of the boundary effect using a Mask R-CNN, with a ResNet-50 feature
pyramid backbone network, pretrained on the MS-COCO dataset. The original
input image can be seen on the left, where the object marked by purple instance
mask is detected with high confidence. The right plot displays how confidence
changes with each periodic right shifts of the image. Even in case of maximal shift
none of the pixels of the object are out of frame, the drop in detection confidence
happened only due to an indirect effect of the boundary.

Fig. 4.6. The results indicate that shift invariance causes only a minor change in
classification accuracy, but an abrupt decrease is observed when the object nears
the boundary. This decrease is not related to shift invariance. It is important to
note that the periodic shifts applied introduced a strong edge in the middle of the
image, but this was not the reason for the accuracy drop, as classification results
changed only slightly with smaller shifts that also created this effect.

These results demonstrate that the phenomenon described and investigated
in the previous section with simple datasets also exists in complex networks and
problems, including classification, detection, and segmentation.

4.6 Solutions for the mitigation of object centering
bias

As highlighted by the results in Sec. 4.3, training with objects solely positioned
in the central regions can introduce a notable bias in CNNs. Conversely, while
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Agama 66% Agama 6.7%
Mud Turtle 26%

Junco Snowbird 74% Junco Snowbird 0.7%
Ostrich 99%

Figure 4.6: Classification bias samples
Sample cases showing the drastic effect of shifting objects to the boundary of the image on
classification networks, using the pretrained version of VGG-16 with ImageNet samples.
The first column displays the original images which are classified correctly. The second
column depicts how the classification confidence of the original class changes by shifting
the image. The last column depicts the largest investigated shift. The classification
confidence for the original class and the newly predicted class are displayed below the
images along with their confidence scores.

training with objects placed exclusively at the edges of the images still introduces
some degree of bias, its effect is substantially smaller, by several orders of magni-
tude, compared to the central training case. This section aims to explore data
manipulation-based and architecture-specific solutions to mitigate the impact of
object centering bias.

4.6.1 Image cropping

One straightforward solution to address this issue is to disregard the outer regions
of images. This can be achieved by employing a network with smaller input
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dimensions, eliminating the use of boundary conditions altogether, and avoiding
the inclusion of these pixels in computations. This approach can directly mitigate
object centering bias. However, it reduces the visible and analyzable region
available to the network, which may not be acceptable in many scenarios. Moreover,
to apply such cropping-based transformations, it is necessary to know the shape
and position of the objects in advance. Otherwise, cropping can result in the loss
of critical features or even entire objects. Given these constraints, this method is
impractical for a considerable number of real-world applications, unlike the other
solutions discussed in this section that do not suffer from these limitations.

4.6.2 Image shifting

If the application and available data permit — based on the measurement results
in Sec. 4.3 — adjusting or augmenting the training and evaluation datasets to
achieve a uniform spatial distribution for each object class can possibly be an
effective solution. To validate this hypothesis, a Mask R-CNN was retrained on
the MS-COCO dataset by shifting objects toward the boundaries of the images.
For images containing multiple objects, which is typical for this dataset, one object
was selected at random, and the image was shifted periodically until the edge of
the given object bounding box aligned with the boundary of the image.

Similarly, several classification architectures were retrained on the ImageNet
dataset using large random translations. Although translation is a standard data
augmentation technique, it typically involves only a few pixels. In this experiment,
periodic translations were applied randomly, ranging from zero pixels to up to
one-quarter of the image width and height. This process introduced potential
issues and artifacts, such as objects being cut in half, since the exact locations of
objects are unknown in this dataset. However, this manipulation increased the
likelihood of objects being positioned closer to the boundaries.

After training these models, performance was evaluated on both the original
datasets and two modified datasets, where objects were deliberately moved to
the image boundaries. For ImageNet, the earlier-described small subset of 100
images, with objects positioned at the boundaries, was used. For MS-COCO, the
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previously described method was employed to generate test images with random
shifts.

The results for ImageNet are presented in Tab. 4.3, while the results for object
detection on MS-COCO are shown in Tab. 4.4. As evident from these results, when
objects were positioned at the boundaries during training, model performance on
the original test sets dropped slightly. This decline can likely be attributed to the
artifacts introduced by the shifting method. However, for test sets where objects
were at the boundaries, models trained with a central bias performed substantially
worse. In classification tasks, top-1 accuracy dropped by over 65%, while detection
and segmentation tasks showed a decline of around 15%. In contrast, models
trained with objects placed closer to the boundaries — or randomly shifted closer
to the boundaries in the classification task — experienced only a slight decrease
in accuracy on the original datasets at an average drop of 4%, and maintained
comparable performance on the shifted test sets.

Compared to the image cropping solution described in Sec. 4.6.1, this image-
shifting method is more versatile and can be applied to a wider range of applications.
However, architectural solutions — as discussed in following Sec. 4.6.3 — could
provide an objectively better and more practical approach. Such solutions would
not require manipulation of the training dataset, would avoid the introduction
of new artifacts, and could be applied universally, even when the shapes and
positions of objects are unknown.

4.6.3 Toroidal boundary condition

Toroidal or otherwise periodic boundary conditions are widely utilized in classical
image processing, physics simulations, cellular automata, and other fields. However,
their usage is not a standard practice in convolutional neural networks (CNNs).
Based on the results of the image-shifting solution described in Sec. 4.6.2, it
was hypothesized that applying toroidal boundary conditions in convolutional
layers could mitigate the object centering bias in a similar manner. Unlike zero-
padding, this approach would avoid artificially created edges, serving as a purely
architectural solution.
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Architecture ImageNet ImageNet Boundary

VGG-16 Orig. 70.8% 7%
VGG-16 Shifted 66.4% 62%
VGG-16 Toroidal 70.6% 66%
ResNet-50 Orig. 72.1% 5%
ResNet-50 Shifted 66.75% 61%
ResNet-50 Toroidal 71.8% 65%
DenseNet121 Orig. 75.1% 3%
DenseNet121 Shifted 69.3% 66%
DenseNet121 Toroidal 74.2% 68%

Table 4.3: Classification bias mitigation
Top-1 test accuracies of various architectures on the original ImageNet test set
(first column) and a manually created small subsample, where images have objects
positioned at the boundary (second column). The rows list three architectures:
VGG-16 [73], ResNet-50 [71], and DenseNet-121 [74]. Each model is evaluated in
three variants: trained on the original ImageNet training set using zero-padding
(Orig.), trained on a version of the dataset with objects shifted towards the
boundaries (Shifted), and trained on the original dataset with toroidal boundary
conditions (Toroidal).

MS-COCO Orig MS-COCO Shifted

Box mAP Orig. 33.6% 15.6%
Box mAP Shifted 31.7% 28.4%
Seg mAP Orig . 31.4% 17.4%
Seg mAP Shifted 29.4% 25.3%

Table 4.4: Detection bias mitigation
Mean average precision (mAP) results for a Mask R-CNN network with a ResNet-
50 backbone and a feature pyramid network with ROI align on the MS-COCO
dataset. Two versions of the test set were evaluated: the original MS-COCO
test set (MS-COCO Orig) and a modified version where a randomly selected
object was always shifted to the boundary (MS-COCO Shifted). mAP results
are reported for bounding box detection (Box) and instance segmentation tasks
(Seg) under two different training conditions. Rows marked with (Orig.) show
results on the unaltered MS-COCO dataset, while rows marked with (Shifted)
show mAPs for networks trained on a dataset where a randomly selected object
was always shifted to the boundary.
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Furthermore, when using shifted images, all hidden layers of the network are
still affected by zero-padding. However, applying toroidal boundary conditions to
every convolutional layer eliminates the need to handle the influence of zero-valued
boundaries, which would otherwise still affect hidden layers, even when using
images with black edges.

To evaluate the impact of toroidal boundary conditions, the same regional
training and evaluation procedures described in Sec. 4.3 were repeated, with the
convolutional layers configured to use toroidal boundary conditions. The resulting
loss values for each training region versus each evaluation band are shown in
Fig. 4.7 and Tab. 4.5. As these results indicate, employing periodic boundary
conditions for every convolutional layer effectively eliminates the object centering
bias. When comparing the loss values of zero-padding to toroidal boundary
conditions, the latter performs more than 37,000 times better in the outermost
regions without causing any significant drop in prediction accuracy in the central
regions.

The effect of toroidal boundary conditions was also tested on the original Ima-
geNet dataset and its shifted variant, where objects are positioned at the boundary.
The results, presented in Tab. 4.3, demonstrate that changing the boundary con-
ditions can substantially improve the model performance for boundary-positioned
objects. Moreover, saliency map differences were measured based on object shifts,
following the methodology outlined in Sec. 4.4. The results are shown in Fig. 4.4.
When comparing these to Fig. 4.8, it becomes apparent that training only with
objects at the center yields results comparable to training with objects at the
edges — an outcome that was not observed with zero-padding. Additionally, larger
differences in saliency maps were eliminated using toroidal boundary conditions,
and the images in Fig. 4.8 only depict minor perturbations caused by the individual
test image backgrounds, which are exaggerated due to the normalization.

4.7 Discussion

The presented results highlight a significant limitation of conventionally designed
and evaluated convolutional neural networks caused by boundary conditions. When
objects are positioned close to the edge of an image, the zero activations introduced
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Figure 4.7: Positional bias distributions - Toroidal boundary
Mean loss values of the U-Nets trained on the "band regions" described in Sec. 4.3,
with toroidal boundary conditions in each convolutional layer. Compared to
the values in Fig. 4.3, the relative increase of loss values based on training and
evaluation positions is minimal. For the numeric values, please refer to Tab. 4.5.

at the boundary result in markedly different neural network activations compared

to when the objects are at the center. This phenomenon was systematically

analyzed through classification, semantic segmentation and instance segmentation

tasks on the MNIST, ImageNet, and MS-COCO datasets. To address this issue,

two approaches were explored: shifting images so that objects appear at the

boundaries during training, and employing toroidal boundary conditions instead
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Forbidden
Outer
Region

LossVal
0.0-0.1

LossVal
0.1-0.2

LossVal
0.2-0.3

LossVal
0.3-0.4

LossVal
0.4-0.5

0.0 0.00038 0.00038 0.00039 0.00033 0.00042
0.1 0.00049 0.00055 0.00053 0.00046 0.00052
0.2 0.00053 0.00060 0.00065 0.00058 0.00063
0.3 0.00075 0.00073 0.00067 0.00079 0.00078
0.4 0.00069 0.00072 0.00060 0.00053 0.00082
0.5 0.00069 0.00062 0.00082 0.00073 0.00075
0.6 0.00074 0.00068 0.00052 0.00061 0.00057
0.7 0.00062 0.00063 0.00065 0.00066 0.00053
0.8 0.00082 0.00069 0.00072 0.00074 0.00062
0.9 0.00064 0.00067 0.00059 0.00057 0.00081

LossVal
0.5-0.6

LossVal
0.6-0.7

LossVal
0.7-0.8

LossVal
0.8-0.9

LossVal
0.9-1.0

0.0 0.00042 0.00041 0.00037 0.00048 0.00041
0.1 0.00050 0.00049 0.00052 0.00053 0.00057
0.2 0.00060 0.00050 0.00074 0.00062 0.00063
0.3 0.00087 0.00064 0.00066 0.00091 0.00114
0.4 0.00073 0.00069 0.00075 0.00072 0.00150
0.5 0.00078 0.00083 0.00086 0.00074 0.00128
0.6 0.00076 0.00069 0.00076 0.00077 0.00090
0.7 0.00059 0.00051 0.00066 0.00069 0.00156
0.8 0.00059 0.00085 0.00077 0.00098 0.00164
0.9 0.00064 0.00074 0.00081 0.00128 0.00171

Table 4.5: Positional bias distribution values - Toroidal boundary
Mean loss values for training-evaluation pairs averaged over five individually
trained U-nets with toroidal boundary conditions applied to convolutional layers.
The rows display the loss values for models trained with specific "outer" restric-
tions on object positions, while the columns show the normalized loss values for
evaluations conducted with varying regional band restrictions on object positions.

of zero-padding. These methods led to a substantial improvements in prediction

performance at the image boundaries, which has potential implications for a

variety of practical applications.

Although the influence of boundary conditions on translation invariance and
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Figure 4.8: Saliency map differences - Toroidal boundary
Normalized saliency map differences calculated and displayed similarly to Fig. 4.4.
The top row shows results for models trained with the central 30% region allowed,
while the bottom row depicts results for models trained with the central 70%
region restricted. Utilizing toroidal boundary conditions completely eliminated
the large saliency map differences at the image edges.

object positioning has been addressed in previous studies, this work introduces
several novel contributions: (1) identifying object centering bias in widely used
benchmark datasets, (2) conducting a comprehensive analysis of this bias across
different tasks, datasets, and models, including saliency map difference evaluations,
(3) recognizing the presence of this bias even when objects are fully present within
the images, (4) proposing boundary conditions as a primary factor contributing
to the bias, and (5) presenting multiple fundamentally different simple practical
solutions to almost completely mitigate these effects.





Chapter 5

Summary

For the specific task of videomicroscopic multi-object detection, instance seg-
mentation, and tracking of budding yeast cells, I developed a novel architecture
that substantially reduces theoretical limitations compared to the commonly
used forward-tracking approach. Although this architecture is unsuitable for live
tracking due to its time-symmetric data access and slower inference speed, it
offers potential for superior performance from a theoretical standpoint. Following
architecture design, my primary aim was to demonstrate its practical utility for the
original task of budding yeast cell tracking while also showcasing its advantages
across a wide range of multi-object tracking scenarios.

Initially, my focus was on evaluating the architecture for videomicroscopic
cell tracking. The results showed that the architecture performed exceptionally
well in yeast cell segmentation and tracking, outperforming established tools like
Phylocell and YeaZ in various tests. Notably, it even surpassed Phylocell in
scenarios biased in Phylocell’s favor, highlighting the robustness and accuracy of
this approach. Through hyperparameter tuning, it was found that shorter local
tracking ranges were more beneficial when segmentation was reliable, as they
reduced both model complexity and data requirements. However, in instances
where segmentation was inconsistent — such as when objects disappeared over
several frames — longer local tracking ranges helped preserve tracking accuracy.
This finding underscores the need to adjust tracking thresholds, particularly in
datasets where object detection is challenging. It was also determined that a
low-complexity encoding backbone was sufficient for yeast cell tracking, making

75
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the model computationally efficient, although using a GPU-accelerated inference
is still recommended for optimal performance. For track matching, Intersection
over Union (IoU) proved to be the most reliable metric for evaluating prediction
similarity. Further tests using biologically inspired synthetic datasets demonstrated
the model’s versatility, suggesting that with sufficient annotated training data,
the architecture can be retrained for other cell types. Although the synthetic
datasets presented greater challenges compared to the yeast data, the architecture
still produced reliable and empirically valuable predictions, even if they might
require occasional manual correction. These findings provide valuable insights into
the model’s data requirements and retraining potential, supporting its broader
application in diverse cell-tracking tasks.

Following this, I shifted focus to a more generalized evaluation of the archi-
tecture. Using multiple synthetic scenarios and a subset of the MOTS challenge
dataset, a detailed analysis of the instance segmentation and tracking model was
conducted, particularly focusing on the novel tracking mechanism. Although the
architecture was originally designed for yeast cell tracking, where it excelled, the
evaluation was expanded to assess its performance in environments with different
modalities. Comparative analyses were conducted against two restricted variants
of the local tracking model as well as the widely used Kalman filter. The results
demonstrated the clear architectural advantages of the proposed model, while also
highlighting the limitations of the alternative approaches. These comparisons em-
phasized the critical role of selecting the appropriate architecture when addressing
different morphological and visual cues. Furthermore, the proposed architecture
was able to achieve state-of-the-art overall segmentation and tracking performance
on the MOTS personnel tracking dataset, while delivering far superior associative
tracking performance compared to the benchmark Tracktor model. While there is
still room for further refinement, these findings illustrate the architecture’s unique
strengths and its utility in multi-object tracking tasks on pre-recorded data.

In parallel to the primary focus on multi-object tracking, I discovered and
conducted a thorough analysis of an intriguing failure of convolutional networks
and related benchmark datasets. The results indicate that boundary conditions
can introduce zero activations in each layer. Consequently, objects located near
the edges of an image generate highly different activations compared to those
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positioned in the center. This phenomenon was extensively investigated across
classification and instance segmentation tasks on the MNIST, ImageNet, and MS-
COCO datasets, utilizing localization with region-based performance evaluations
and comparing differences in saliency maps. Furthermore, I demonstrated that this
issue can be mitigated by either shifting the image towards the boundary during
training or by applying toroidal boundary conditions instead of zero-padding.
This training methodology substantially enhanced the network’s accuracy at the
boundaries, almost entirely eliminating the bias. The implications of this finding
hold considerable potential importance for various practical applications.

New Scientific Results

Thesis 1a

I developed a novel deep-learning-based multi-object instance segmentation and
tracking architecture for videomicroscopic recordings of budding yeast cells. On
a yeast tracking dataset collected by IFOM, the architecture achieved IoU-based
segmentation and tracking F-scores of [0.918± 0.019, 0.917± 0.016], respectively.
This performance surpassed that of competing state-of-the-art tools designed for
this particular task, specifically Phylocell [0.881± 0.020, 0.878± 0.020] and YeaZ
[0.818± 0.022, 0.807± 0.023].
Corresponding publication: [Ar1]

Thesis 1b

The proposed architecture is inherently capable of reconstructing fragmented tracks
due to its novel time-symmetric tracking approach, greatly improving tracking
consistency, a critical requirement for accurate cell inheritance assignment. For
instance, in scenarios with uniform random removal of every fifth object instance,
the tracking-based reconstruction improved the tracking F-score from 0.404± 0.016

to 0.888± 0.013.
Corresponding publications: [Ar1, Ar2]
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Thesis 1c

I evaluated the proposed architecture on various synthetic and semi-synthetic
datasets, showcasing its robustness in addressing potential challenges in cell tracking
environments and other natural tracking contexts, such as pedestrian tracking. The
results demonstrate the versatility of the architecture, the reliability of its novel
tracking approach, and can serve as a guide of expected performance on other
datasets.
Corresponding publications: [Ar1, Ar2]

Thesis 1d

I conducted an ablation study on the proposed architecture, separating the con-
tributions of motility-based and morphology-based tracking, which the original
architecture integrates seamlessly. The results revealed the individual impact of
motility and morphology on tracking performance across the evaluated scenarios
and highlighted the advantages of a tracking method that combines both. Further-
more, the proposed architecture consistently matched or outperformed the widely
used Kalman filter in all scenarios. Notably, in the scenario with semi-randomized
object motility, the architecture achieved a 3.49-fold improvement in association
F-score, due to its ability to utilize all temporally local imaging information for
tracking.
Corresponding publication: [Ar2]

Thesis 2a

I demonstrated that widely used benchmark datasets, such as MS-COCO, exhibit
an object positioning bias, strongly favoring objects located near the center of the
image. This bias can result in prediction performance that is more than five orders
of magnitude lower near the edges of the image, even when the objects are fully
visible. The effects of this bias were analyzed for segmentation, detection and
classification tasks, with a detailed localization of its impact based on prediction
performance results and saliency maps.
Corresponding publication: [Ar3]



79

Thesis 2b

I proposed architectural and data manipulation-based solutions to mitigate this bias.
The most effective approach involved replacing zero-padding in all convolutional
layers of the model with toroidal boundary conditions. This modification led to a
performance improvement of more than 37,000 times in the most extreme cases.
Corresponding publication: [Ar3]
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