Midterm Homework

Everybody can choose a topic on a first-came-first-served basis. The list of topics is a selection from Wolfram Demonstrations Project and can be found on the webpage of `Introduction to Nonlinear Dynamical Systems' (`Nemlineáris dinamikus rendszerek alapjai').

Each homework consists of a theoretical part and a practical part. The theoretical part should be a nicely illustrated text describing both the origin and the environment of the problem and its solution. A short list of references is also needed. Together with the figures included, the densely typed text should not be shorter than 5 pages. The practical part should be the commented MATLAB version of the respective MATHEMATICA code and, running without errors, it should be able to reconstruct the results presented by Wolfram. With the consent of the lecturer, topics that fall outside the list below can be chosen, too.

Exceptionally good homeworks will score some extra points. The instructors and the lecturer are happy to answer the questions that arise in due course of preparing the homework. All e-mails will be answered soon and appointments can be arranged, too.

The complete MATLAB code, together with the electronic version of the theoretical part, should be sent to one of the instructors by e-mail. A printed copy of the theoretical part should be given to the lecturer. (Please, just drop them into the box near the door to room No.231.)

The deadline is 11:59 PM on Wednesday, December 7, 2016.

The list of topics:

Van der Pol Oscillator

The Alpha and Beta Components of the Hodgkin-Huxley Model

Hopf Bifurcation in the Sel'kov Model

Structural Instability of a Supercritical Pitchfork Bifurcation

Motion of a Pendulum in the Wind

Bifurcation Diagram for the Three-Variable Autocatalator

Group Chase and Escape

Sledding on a Bumpy Slope: Chaos and Strange Attractor

Biodiversity in Spatial Rock-Paper-Scissors Games

Predator-Prey Ecosystem: A Real-Time Agent-Based Simulation

Garbage Collection by Ants

Ecosystem Dynamics

Predator-Prey Dynamics with Type-Two Functional Response Neuronal Bursting Hindmarsh-Rose Neuron Model Neural Impulses: The Action Potential in Action Chaotic Attractor in Tumor Growth Dynamical Network Design for Controlling Virus Spread Contagion in Random and Scale-Free Networks Sensitivity Analysis of Transition Phases of Perturbed Gene Pathways with a Neural Network The Moran Process Pen Falling Off a Finger **Simplest Chaotic Circuit Chaotic Oscillation Circuit IFS: Rotation, Translation, and Scaling Spring Pendulum** Solving the Cable Equation **Two-State Protein Melting Curve (N, P, T Ensemble) Elementary Processes in Protein Folding A Simple Model for Multiple Epidemics Optimal Induction of Foreign Protein Synthesis Spontaneous Oscillations in Yeast Chemostat Cultures** A Nonlinear Stage-Structured Cannibalism Model Milk Centrifugation to Cream and Skim **Cellular Automata Model of an MPA Fishery** Maximizing the Present Value of Resource Rent in a Gordon-Schaefer Model Game of Life in 3D Layers

Hacker's Symbol: The Glider in the Game of Life

Diauxic Growth of Bacteria on Two Substrates

Diffusion-Limited Aggregation: A Real-Time Agent-Based Simulation

Activator-Inhibitor Cellular Automata

Bioeconomics of a Discrete Ricker Model with Delayed Recruitment

Desynchronization Dynamics of Two Coupled Oscillators

Attraction and Repulsion in Dynamical Systems

Fed-Batch Fermentation

Competition for Territory: The Levins Model for Two Species

Bifurcation in a Model of Spruce Budworm Populations

Cellular Automaton Model of Pine Savanna Dynamics in Response to Fire and Hurricanes

Voter Model

Torsion pendulum

Foucault's pendulum

Synchronizing pendulum clocks

Romeo and Juliet

Chaotic Dynamics of a Modulated Semiconductor Laser

Hopf Bifurcation in the Brusselator

Pendulum with Three Magnets

Chaotic Itinerary but Regular Pattern

Study of the Dynamic Behavior of the Rossler System

Comparing Leapfrog Methods with Other Numerical Methods for Differential Equations

Compass Needle in Uniform and Rotating Magnetic Fields

Memristor Based Chaotic System

Sensitivity to Initial Conditions in Chaos
Phase Space of an Intermittently Driven Oscillator
Chaos While Sledding on a Bumpy Slope
Michaelis-Menten Enzyme Kinetics and the Steady-State Approximation
Ball Bouncing in a Potential Well
Mackey-Glass Equation
Pursuit Curves
Chaotic Itinerary but Regular Pattern
Bifurcation Analysis of a Cubic Memristor Model
Flying to the Moon
Mathematics of Tsunamis (pretty hard)
Collatz Problem as a Cellular Automaton
Double Pendulum
The Rossler Attractor
A Triangle Model of Criminality
Herd Immunity for Smallpox
Reflections in an Elliptical Region
Gingerbreadman Trajectories