FRACTALS
and Applications

Maciej J. Ogorzatek
Department of Information Technologies
Faculty of Physics, Astronomy and Applied Computer Science
Jagiellonian University,
Krakow, Poland

PLVS RATIO QVAM VIS

Fractals and Applications - November 8th, 2013 © Maciej J. Ogorzatek



o Remember the fine structures of the attractors?
® How can we measure the attracting limit set?
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Fractal — “broken, fragmented, irregular”

“I coined fractal from the Latin adjective fractus. The corresponding Latin
verb frangere means "to break" to create irregular fragments. It is therefore
sensible - and how appropriate for our need ! - that, in addition to

"fragmented" (as in fraction or refraction), fractus should also mean

“irregular”, both meanings being preserved in fragment. 9

B. Mandelbrot :
The fractal Geometry of Nature, 1982
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Fractal geometry: the language of nature

Euclid geometry: cold and dry
Nature: complex, irregular, fragmented

“Clouds are not spheres, mountains are not.cones,
coastlines are not circles, and bark is not smooth, nor
does lightning travel in a straight line.”
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Notion of length

e Fractal geometry generalizes ordinary notions of length,
scale, and dimension in interesting and subtle ways.

— For length, classical example is coastline length of a given country or
border.

+ Result depends on fineness of scale used—as scale goes down, length
goes up.

+* Ratio of scale to length gives rise to new notions of dimension.

— Spirals provide another excellent example countering intuition about
length.

+ Example: Smooth polygonal spiral can have finite or infinite lenagth
depending on method of construction.

Construction Method Infinite length (e, = 1/k) Finite length (az = 0.95*_1)
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Spiral 1is-infinitely long but Spiral 2 isn't.

Quarter circles of progressively decreasing radius.

S, = ma,/2
S, = ma,/2

Length =

Ifa =1, q, 9% g3 ..., g7,..., then length is finite (right one, g=0.95).
Ifa, =1, 1/2, 1/3, 1/4, ..., 1/i,..., then length is infinite (left one).
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Definition: Self-similarity

A geometric shape that has the property of self-similarity, that is, each part of
the shape is a smaller version of the whole shape.

Examples:
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In nature — snow-flakes
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e

Another example: Cantor Set

=
The oldest, simplest, most famous fractal
1 We begin with the closed interval [0,1].
2 Now we remove the open interval (1/3,2/3);
leaving two closed intervals behind.
3 We repeat the procedure, removing
the "open middle third" of each
of these intervals
4  And continue infinitely.

Fractal dimension:
D=log2/log3=0.63...

Uncountable points, zero length EE Em
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The Cantor set

German mathematician Georg Cantor(1845-1918)
— a perfect, nowhere dense subset
- Start with a unit interval
- Take away the open middle third
- Take away the open middle third from each remaining. segment
- Repeat indefinitely

0 1

« The final invariant set is the Cantor set.

G. Cantor, Uber unendliche, lineare Punktmannigfaltigkeiten V, Mathematische Annalen 21
(1883) 545-591.
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\T\he Cantor set

- Triadic expansion

- The Cantor set is the set of points in [0,1] for which t
expansion that does not contain the digit ‘1.

- e.g., 1/3is0.02222222..., 2/3 is 0.2, etc.
« The triadic number 0.0200222000202022200022002 is in the
- Address

- Let L denote the left middle third, and R denote the right middle thir
can represent every segment of the Cantor set by an address like LR,

reis a triadic

LLR, etc.
. L R
. LL LR RL RR
. LLL LLR LRL LRR RLL RLR RRL RRR
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Zero length butinfinitely many
points

Having as many points as the intervalj0,1]
Every point in [0,1] can be represented as a binary number, e.g., 0  )01110101.

For each number in [0,1] in binary form, we replace symbolwise 1 by 2. E.g., 0.001
(binary) — 0.002 (triadic). Then,

— Each point in [0,1] corresponds to a point in the Cantor set.
— The Cantor set has as many points as the interval [0,1] has.

The length of the Cantor set is lim__,_(2/3)" = 0.
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Sierpinski Gasket

Start with a solid triangle. Mark the
midpoint of each side. Then, join
them to partition 4 triangles.

Remove the middle one.
Repeat the process infinitely.

The invariant set is the Sierpinski
Gasket.
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Koch curve

» Helge von Koch (Sweden, 1904) introduced a curve
which is infinitely long but can be drawn in fini

© CONSTRUCTION:
o Start with a unit interval.

o Replace middle third by two
segments of equal length

e Repeat infinitely.

¢ Length=lim,_,(4/3)" =00

Nn—o0
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mathematical fractal: Koch Snowflake

Step One.
Start with a large equilateral triangle.
Step Two.
Make a Star.
Divide one side of the triangle into
three parts and remove the middle section.
2. Replace it with two lines the same
length as the section you removed.
3. Do this to all three sides of the triangle.
Repeat this process infinitely.

The snowflake has a finite area bounded
by a perimeter of infinite length!
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Constructing fractals by iterative reduction and
translation

The Koch curve can be constructed
mathematically by an iterative process applied to
any arbitrary object X.

Define four transformations

wy(X): scale 1/3, rotate O, translate (+0,+0)

w,(X): scale 1/3, rotate +60°, translate (+1/3,+0)
w,(X): scale 1/3, rotate —60°, translate (+1/2,+V3/6)
w;(X): scale 1/3, rotate O, translate (+2/3,+0)

Define the transformation
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\Déﬁﬂing the Koch curve

o We have an iterative function
— X1 = W(X,)

e The Koch curve is the invariant set, K, satis
— W(K) =K

® i.e., the solution K of this equation is the Koch cur

e So, it doesn’t matter what the initial object is! Clearly what
achieved a simple coding method that encodes a complex K
curve into some transformation parameters.

e APPLICATIONS: Image coding.
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\Seh‘-\similarity revisited

Self-similarity in the Koch curve
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Sierpinski Gasket re-defined

We may define another W(X) for
the Sierpinski Gasket.

Define three transformations
wy(X): scale 1/3, translate (+0,+0)
w,(X): scale 1/3, translate (+1/2,+0)
w,(X): scale 1/3, translate (+1/4,+\3/4)

Define W(X) as

The Sierpinski Gasket is the solution ¢
W(X)=X.
In practice it is the object that remains
after many iterations
under W(X).
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\Thepmblem of measuring fractals

¢ Benoit Mandelbrot, “How long is the coast of Britain?” Science 155

(1967), 636-638.
e Border of Spain and Portugal:
— A Spanish encyclopedia says 616 miles.
— A Portugese encyclopedia says 758 miles.
e Coast of Britain:
— Various sources claim it between 4500 and 5000 miles!

Problem of measuring fractal objects
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Euclid dimension

In Euclid geometry, dimensions of objects are
defined by integer numbers.

0 - A point

1 - A curve or line

2 - Triangles, circles or surfaces

3 - Spheres, cubes and other solids
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For a square we have N”2 self-similar pieces for the
magnification factor of N

dimension=log(number of self-similar pieces)
/log(magnification factor)

=log(N"2)/logN=2
For a cube we have N3 self-similar pieces

dimension=log(number of self-similar pieces)
/log(magnification factor)

=log(N"3)/logN=3

Sierpinski triangle consists of three self-similar pieces with
magnification factor 2 each

dimension=log3/log2=1.58
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Dimension-of a two dimensional sqaure

™~

N
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Fractal dimension

Fractal dimension can be non-integers

Intuitively, we can represent the fractal dimension
as a measure of how much space the fractal

occupies.

Given a curve, we can transform it into 'n' parts (n
actually represents the number of segments), and
the whole being 's' times the length of each of the
parts. The fractal dimension is then :

d=logn/logs
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Scaling/dimension of the von Koch curve

Scale by 3 — need four
self-similar pieces

D=log4/log3=1.26
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Length of the coastline of Britain

_ In(Ly)/In(L,)
P =1n(s,)7In(s, )

S=1/2, L=20

.-"-|'|-..
PR}
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Real world fractals

A cloud, a mountain, a flower, a tree
or a coastline...
The coastline of Britain
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Practical measurements

There is no formula for coastlines, or defined
construction process.

The shape is the result of millions of years of
tectonic activities and never stopping erosions,
sedimentations, etc.

In practice we measure on a geographical map.

iViedsurerient proceduie.

Take a compass, set at a distance s (in true units).
Walk the compass along the coastline.
Count the number of steps N.

Note the scale of the map. For example, if the map is
1:1,000,000, then a compass step of 1cm
corresponds to 10km. So, s=10km.

The coast length = sN.
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The Hong Kong coast

Apply the procedure with different s.
Results:

— The measured length increases with
decreasing s.

Compass step s Length u
2km 43.262km
1km 52.702km
0.5km 60.598km
0.1km 69.162km
0.02km 87.98km

“Aherdeen
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Power.law of measurement

If we plot log(u) versus log(1/s), we can see that

The slope is d.

For the Hong Kong coast,
d=0.14.

For a circle, d=0.
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Length of the Koch curve

Earlier on, we found the length of the Koch curve to be infinity.
Can we measure it in a similar way as we did for the British coast?

If s=1, u=1.
If s=1/3, u=4.
If s=1/9, u=16, etc.

S0, u—>w ass— 0.
Clearly, we have

log u =d log(1/s) + k
Here, d = 0.2619
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So, how-ong is it? —An ill-posed question!
We may say that the coastline and the Koch curve (and all fractals)

It depends on the size of the measuring instrument.

What is meaningful is the value of d, which measures the level of
convolution of the curve. So, the Hong Kong coast can be less
convoluted than the Koch curve.

Many biological structures are organized in a fractal way to fit an infinite
length within finite area or volume.

— Blood capillaries
— Kidney vessels
— --> SPACE-FILLING FRACTALS
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Dimension

The question of “how long” can be-ill-posed, as we have seen.

Similarly, measurement of areas and volumes could be
meaningless.

This d is related to the concept of DIMENSION.
— Self-similarity dimension

— Compass dimension
— Box-counting dimension

FRACTAL DIMENSION
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Self-similarity
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f-similarity dimension

Fractals are self-similar. Assume that a
fractal object is n copies of itself scaled
down by a factor of s.

So, we can define a power law as

—n =(1/s)P

Examples: o
The “och curve copies itself 4 times with scaling factor of 3. (n=4, s=3,
and D=1.2619)

A line copies itself N times with scaling factor N, where N can be any
integer. (h=s=N and D=1)

A ~quare copies itself N2 times with scaling factor N, where N can be any
integer. (n= N?, s=N and D=2)

D = self-similarity dimension

Fractals and Applications - November
8th, 2013 © Maciej J. Ogorzatek



More examples

Sierpinski Gasket:
— s =2 (scaling)
— n = 3 (copy number)
— Hence, D = log(n)/log(1/s) = 1.585

Cantor set:

— s =3 (scaling)

— n = 2 (copy number) — P ——

— Hence, D = log(n)/log(1/s) = 0.6309
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\Relaﬁon between D and d

e Two power laws:
— Number of self copies n = (1/s)? or log(n)=D log(1/s)
— Totallength u=(1/s)¥ or log(u)=d log(1/s)

o When measuring u, we simply use
— u=nxs or log(u)=Ilog(n) + log(s)

e Thus, we have dlog(1/s) = D log(1/s) + log(s)
- l.e, D=1+d
— The HK coast has a fracFaI dimension of 1+0.14=1.14
— We may define 1+d as the COMPASS dimension.
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Compass dimension

Start with a length (or area, etc) measurement.

Find d in the power law u = (1/s)q.

Then, the dimension found by adding 1 to d is the compass dimension
— another way to find fractal dimension.

Just a different way of computation

— For mathematical fractals like the Cantor set and Koch curve, the self-
similarity dimension and the compass dimension are identical.

— For natural fractals like coastlines, no self-similarity dimension can be found.
So, compass dimension becomes useful.
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Are-organisms fractal?

M. Sernetz et al. (1985 paper in J. Theoretical Biology)

Contrary to common belief, metabolic rate is not proportional
to body weight. Instead, it fits in a power law relationship.

‘ m — CW a log(metabolic rate)

Metabolic rate Body
Slope a = 0.75 weight

. ; 4 5
Fractals and log(body mass)
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Dimension of organisms

We can deduce the fractal dimension from o =
0.75.

Suppose r is the scaling factor (like s). Since
weight is r3, the power law can be modified to
m = cr3,

Thus, D = 3o = 2.25.

— Would the dimension change when an
organ malfunctions?

— Is the dimension different for different
animals?
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Fractal Geometry of the Heart and
Circulatory Structures

the main areas where fractal geometry can be seen
in the circulatory system are:

Arteries and veins - Their cells and organization
display the properties of fractals, such as the power-
law distribution in the diameter distribution of arteries
and veins.

Organization of heart muscle groups - Show
properties of self-similarity, fine structure, etc.
Branching of certain muscles inside the heart

- resemble the bifurcations seen in fractals such as the
Feigenbaum plot

His-Purkinje network - The branches and bifurcation
of this electrical system are essential to human biology
and resilience.

The tendons that connect the tricuspid valve to the
papillary muscles. - These again show bifurcation
along with other fractal properties.

The aortic valve leaflets - These are layered providing
a huge surface area, while keeping a small volume

How does the fractal structure
help?
-The fractal structure of the veins,

arteries, and heart muscles
help protect the circulatory
system from the strong,
violent pumping of the human
heart.

-The fractal structure, which is
usually unnecessary, can
come into play when the His-
Purkinje network is damaged.
This helps the heart be
resilient and resistant t@
damage.

- The fractal geometry of the
heart could possibly save us
everyday.
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Cantor square

Fractal dimension: d =log 4 /log 3 =1.26
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Sierpinski Fractals
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Menger's sponge
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IFS (Iterated Function Systems)

r cos(8) -5 sin(¢ )
—

~ 5in( @] s Ccosi@)

Here, (X,y) Is a point on the image,
(r,s) tells you how to scale and reflect the image at the various points,
(theta,phi) tells you how to rotate,
(e,f) tells you how to translate the image.

Various Fractal Images are produced by differences in these values,

or by several different groups of values.
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IFS (continued)

Remember that matrix from the previous slide? Lets rewrite it as
a system of two equations :

X" = rcos(theta)x — ssin(phi)y + e
y = rsin(theta)x + scos(phi)y + f

(x,y) being the pair we are transforming, and (x ',y ") being the
point in the plane where the old (x,y) will be transformed to.

EVERY Transformation follow this pattern. So for file transmission, all we need
to include would be the constants from above : r,s,theta,phi,e,f, X,y
This greatly simplifies the Task parsing.

On return you would only need to include the (x,y)->(x",y")
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Julia set

e Defined as boundary between bounded and unbounded

sequences in complex plane for the nonlinear maps
z" 4+ ¢ (z,ce C, n usually 2).

Sets are either totally connected or disconnected (latter
called dust).

Manifest themselves in such contexts as familiar
Newton-Raphson algorithm for complex case — e.g.
23 _1=0:

Basin of attraction Basin boundaries.
for z —= 1 solution.
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The Mandelbrot Set

The Mandelbrot set is a connected set of points in the complex plane
Calculate: 2, =722+ 2, Z,=2,>+Z,, Z;=2,°+ Z,

If the sequence 2, Z,, Z,, Z,, ... remains within a distance of 2 of the
origin forever, then the point Z, is said to be in the Mandelbrot set.

If the sequence diverges from the origin, then the point is-not in the
set
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Most popular and complex object of contemporary
mathematics.

Constructed via simple recipe {c € C: c? + ¢~ <}, called
prisoner set.

Zoom views of set:
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Colored Mandelbrot Set

The colors are added to the points that are not
Inside the set. Then we just zoom in on it
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actals in biology

’late 3: Broccoli Romanesco.
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Space-filling curve (SFC) definition

Curves that pass through every point of an_n-dimensional region
with positive area (for n=2) or volume (for n=3), such as the unit
square Q in R? or the unit cube in R3, are called space-
filling curves.

Two main characteristics:
e continuous
« surjective

It can be shown that if f generates a space-filling curve, then it
can not be bijective.
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Contents

1.
2.

3.

Basic notions

Types of space-filling curves
1. The Hilbert space-filling curve
2. The Peano space-filling curve
3. The Sierpinski space-filling curve
4. The Lebesgue space-filling curve

Application of space-filling curves
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The Hilbert curve: geometric generation

If | can be mapped continuously on Q, then after partitioning
| into four congruent subintervals and Q into four congruent
subsquares, each subinterval can be mapped continuously
onto one of the subsquares. This partitioning can be carried
out ad infinitum.

The subsquares must be arranged such that “adjacent
subintervals are mapped onto adjacent subsguares.

Inclusion relationship: if an interval corresponds to a square,
then its subintervals must correspond to the subsquares of
that square.

This process defines a mapping , called the

Hilbert space-filling curve.
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The Hilbert curve: geometric generation

1st iteration 2nd iteration 3rd iteration
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The Hilbert curve: geometric generation
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The Hilbert curve: geometric generation

The mapping 'S surjective: with every sequence of
nested closed squares corresponds a sequence of nested
closed intervals that define a unigue

The mapping IS continuous: In the n-th iteration,|
IS partitioned Iin subintervals, thus

The mapping IS nowhere differentiable.
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The Hilbert curve: a complex representation [Sagan

Establish a formula to calculate the exact coordinates of an
Image point if

t=k/2°", n=0,12,3,..., k=0,1,2,3,..2°"

Use complex representation Z < Z , and affine
transformations to wich Q will be subjected recursively.

Give an orientation to each subsquare such that the exit
point of a subsquare coincides with the entry point of the
next subsquare.
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The Hilbert curve: a complex representation

Oth iteration 1st iteration 2nd iteration

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzatek



The Hilbert curve: a complex representation

The four basic transformations (2 dimensional case):

)2l ofle)
n()2lo ke
%)

3
(- 3
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The Hilbert curve: a complex representation

Represent &=

f,(t) eh, Q

f.()=limh h h, ..h Q

N h G2 O3’

| 25t =0,0,0,9;..., with g, =0,1,20r 3
f, (t) € h, h, QECRIlgNivIgk

For finite quaternaries (edges of subintervals in nth
iteration):

f,(0,%,9,0--d,) = h, h, h, ..h, hhph,..O

0
f. (0,0,0,09,---9,) = hOIl hqz hqa hqn (Oj
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The Hilbert curve: a complex representation

continued...

(1
thhQ2hQ3"'hQn( Z(?jHQOH%H%H%'"H%1th'

j=1

f,, is cont.

— f(O q1q2q3 ) Z( jH ququHQ"'qu—lhqj

- ovemer olhn,
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The Hilbert curve: a complex representation

Further simplifications of the formula are possible...

An example: f. (0,203) = h,h,h, (gj = (S/SJ

h
N
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Approximating-polygons for the Hilbert curve

The polygonal line that runs through the points
f (0), f. (1/2°"), f.(2/2°"), f (3/2°"),..., f.((2°" =1)/2°"), f (D),

IS called the nth approximating polygon or a discrete space filling
curve.

Parametrization:
k+1
22!’1

k+1

p. 1 =>Q:p (t)=2"(t- S

)f( )=2°"(t——) fu(oa )

22n 22n

fork/2" <t<(k+1)/2°",k=0,1,2,3,..2°" -1
converges uniformly to the Hilbert curve
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The Hilbert curve: representation through
grammars

Make use of four distinct templates to.generate the discrete
Hilbert curve: H,A,B and C.

These templates will be translated to a first iteration of the
curve according to a fixed scheme.
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The Hilbert curve: representation through
grammars

The resulting rules and transitions can be used to implement
the recursive construction of the discrete Hilbert curve.

H — A|H—H|B

e H—-A|lA—~ClA|H—H|B—A|H—H|B|C-

© Maciej J. Ogorzate
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The Peano curve: definition

f,(Ott,tL,...) = [

0,t, (k%t,)(k%2""t.)...
0, (k% )(K"""t,)...
with kt; =2—t;, (t; =0,1,2) and k" isthevthit.of k

IS surjective and continuous on |, and represents a SFC.

More interesting: geometric generation according to Hilbert
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The Peano curve: a complex representation

Define orientation of the sub-squares:
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The Peano curve: a complex representation

Use ternary representation of :

Ottty oo = 0g (3 +1,)(3, +,).0. (Bt +150)-

fp (t) = !LTO Pat, 1, Pty -+ p3t2n_1+t2nQ

Continue as with Hilbert”s curve...

- we get the same result as in Peano” s definition
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Approximating polygons for the Peano curve

1

]
——fm e ——
I
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The Peano curve: representation through
grammars

PTOTP—S|R|S—PTOQTP
QTPTQ—R|S|R—QTPTQ
R|S|R—OTPTO—R|S|R

|S—=P1QIP—S|R|S
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The Sierpinski-curve: generation

Partition | into 38 congruent subintervals and
Into congruent subtriangles.

n=0 n=1 n=2

In deriving an algabraic representation it is easier to
divide | into mgsubintervals, thus using quaternaries:

= 1
f.(0,0,0,9,...) =22—s S4.Sa,Sq,Sa,

j=1
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The Sierpinski-curve: generation

with similarity transforms:

S,z=12/2

S;z=z21/2+1

S,z=-721/2+1+1

S;z=2/2+1
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The Sierpinski-curve: generation

Taking into account some properties of ;

fs (04 ququ'--) — Z? (_1)77J S qu
j=1

with 77; = number of 2's preceding g; (mod 2)

and &; =number of I'sand 2's preceding q; (mod 4)
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The Sierpinski curve:-approximating polygons

RN
PR
XD

A
@ ﬁ 9%
A

A n\ A A

— = n=3
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The Sierpinski-curve: generation

lgingly defined as.a map irom | onto
but it can be considered as a map
ro

m | onto a right isosceles triangle .
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The Lebesgue curve: generation and
approximating polygons

1st iteration
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\

Essential properties for applications:

o Finite area — infinite peri

o Self-similarity (same propertie
different scales)

nd shapes at
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Physical relations for capacitors

Both electrodes have a surface A (in m?) separated by
distance d (in m). The applied voltage AU (in Volt) creates
an electric field E = AU/d storing the electrical energy.
Capacitance C in Farad (F) and stored energy J in Ws is:

where ¢, (e.g. 1 for vacuum or 81 for water) is the relative dielectric
constant which depends on the material placed between the two
electrodes and g, = 8.85-1012 F/m is a fundamental constant.
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Capacitance
in Farad

Example

supercapacitor with
1500 F, max. 2.5V
{positive electrode
left)

electrolyte capacitor

| with 1000 mF, max

25 V {positive
electrode left)

electrolyte capacitor
with 10 mF, max.
35 V (bent wire is
positive electrade)

rolled capacitor
with 51 nF, max, 65V

o

plate capacitors
with 50 ;" Left: an
element from an old
vacuum-tube radio
in the form of two
plates rolled Lo a
cylinder, max. 450
V. Right: modern
ceramc element,
max. 100V)

Energy Stored

Watt hours (Wh)

several Ws {Ws)

milli-Ws = 107 Ws
{mWSs)

milli-Ws = 107" Ws
{mWs)

micro-Ws = 10°Ws
(mWs)

Applications

Novel applications
in power
electronics: e.g. in
cars, for replacing
batteries in
consumer
clectronics

Power supply units

Low frequency
technology: general
electronics, e.g.
audio amplifiers

Low frequency
technology: general
electronics, eg.
audio amplifiers

Fractals and Applications - November 8th, 2013
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High frequency
technology:
e.g. radio, TV, PC




How to create capacitors with larger C?

Create capacitors with very large areas A —
technologies to create fractal-type surfaces

Use designs taking advantage of lateral
capacitance in integrated circuits
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100000

10000 slope gives
D=157 .

1000
z
100

10

Paul Scherrer Institute in Villigen, Switzerland - Rudiger Kotz and his group have
developed an electrode in collaboration with the Swiss company Montena (Maxwell).
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a) Micrograph of a cross-section through a supercapacitor electrode.The white stripe is a
part of the 30 um thick metallic carrier-foil (total foil is 0.1 m wide, 2 m long). On both
sides carbon particles provide a complex fractal surface responsible for the high
capacity.The space taken by the green resin used to fix the delicate carbon structure
before cutting and to provide a good contrast for imaging is normally filled with the
electrolyte (an organic solvent containing salt ions).

b) Borderline of the cross section through the electrode surface in (a) to be analyzed by
the box-counting procedure, illustrated for a tiling with 128 squares:M = 56 squares (filled
with light blue colour) are necessary to cover the borderline.Their side lengths are N =
11.3 (square root of 128) times smaller than the length scale of the whole picture.

c) The box-counting procedure is repeated with a computer program for different N.The
average fractal dimension of the borderline is the gradient of the straight line
approximating the measured points in this Log(M) over Log(N) plot, giving D 2.6.This
same dimension was measured in the lengthinterval covering nearly 3 decades between
0.6 mm (length of micrograph in Figs 2a, b) and about 1 ym (fine structure'in Fig. 2d).

d) Carbon particles as seen with an electron microscope show roughness also in the 1 pm
scale. It is assumed that the above indicated fractal dimension D holds over the entire
range of 8 decades between the macroscopic scale (i.e. the geometric size of the order of
0.1 m) and the microscopic scale (i.e. the micropores in the order of 1 nm = 1-10° m).The
electrode surface is therefore multiplied by 10806 or about 60°000 when compared to the
normal two-dimensional surface of 0.2 m2.
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.......

e 800 F boostcap by montena SA utilizing PSI electrode.

o Capacitor module with 2 x 24 capacitors resulting in 60 V , 60 F with
an overall internal resistance of < 20 mOhm.
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e Supercapacitor module for HY-LIGHT.
Capacitance: 29 F

Power: 30 - 45 kW for 20 - 15 sec ; Weight: 53 kg
o HY-LIGHT accelerates to 100km/h in 12 seconds
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velocity {(kmvh)

kW or km/h

net power from fuel-cell

system (kW)

power from supercapacitors (kW)

200 400
driven distance
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Antenna properties

Radiation pattern variation for a linear antenna
with changing frequency — antennas are narrow-
band devices!
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fractal antenna is an that uses a self-similar
design to maximize thelength, or increase the perimeter
(on inside sections or the outer structure), of material that
can receive or transmit electromagnetic signals within a
given total surface area. For this reason, fractal antennas
are very compact, are multiband or wideband, and have
useful applications in and
communications.

Fractal antenna response differs markedly from traditional
antenna designs, in that it i1s capable of operating optimally.
at many different frequencies simultaneously. Normally
standard antennae have to be "cut" for the frequency for
which they are to be used—and thus the standard antennae
only optimally work at that frequency. This makes the
fractal antenna an excellent design for

applications.
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http://en.wikipedia.org/wiki/Antenna_(electronics)
http://en.wikipedia.org/wiki/Cellular_telephone
http://en.wikipedia.org/wiki/Microwave
http://en.wikipedia.org/wiki/Wideband

The first fractal antennas were arrays, and not
recognized initially as having self similarity as
their attribute. are arrays,
around since the 1950's (invented by Isbell and
DuHamel), that are such fractal antennas. They
are a common form used in TV antennas, and are
arrow-head in shape. Antenna elements made
from self similar shapes were first done by
Nathan Cohen, a professor at Boston University,
In 1988. Most allusions to fractal antennas make
reference to these 'fractal element antennas'.

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzatek


http://en.wikipedia.org/wiki/Log-periodic_antenna
http://en.wikipedia.org/wiki/Log-periodic_antenna
http://en.wikipedia.org/wiki/Log-periodic_antenna

N7EL EZNEC 2.8 Log Periodic 209-1988, 288 ohn B4-19-2088 18:15:44

s

] [ B
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Why Fractal Antennas ?

Hypothesis
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Which Fractals and Why?

Loops
Minimize Size
Increase Input Impedance

Dipoles
Minimize Heights
Increase Input Impedance

Dipoles
Multiband
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Small Fractal Loop Antennas

Main Benefit: Increased Input Impedance

Koch Loop vs. Circular Loop

Input Fesistance

Koch Loop
Circle Loop

)
a
=
=
]
=
2
W
al
]
="
—
=
=1
=
=4

TETTETET PR TTTETTE FIETETTE T T /A FETTT T I P TErTerd P T
150 6.0 17.0 18.0 19.0 20.0 21.0
Frequency (MHz) -

" Both loops take up the same volume

But, the input impedance of the fractal loop is higher @’.'{Fl‘ﬂﬁtal
- Antennas
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Koch Monopole

Elatgks at Fasomancs weress [scation

Decreasing Height for Resonant Dipoles

L 1

Fracial Inmages
Koch Monopole

Langth at Eesonzmce versus Ieraticn

However. Total Length Increases
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Main Benefit: Decreased Resonant Frequency

Fractal Tree Monopole over Ground Plane

Resonant Frequency vs. Iteration

I 1 O

g5 . .
Increasing Iteration

90 - + Decreases Resonance

85 ¢

Resonant Frequency (GHz)

2 3 4 ' «® Fractal
Fractal Iteration MNumber A_]_]_ter]]]ag
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Main Benefit: Decreased Resonant Frequency

o T Ak

S o s
L
S b5 =
k- 1] L
e
- -t >

. v,

v - -

I s IR A
P

e,

Iteration 0 Tteratiom 1 Tteration 2

3D Fractal Tree
Inpazt Marched to 50 ckms

Iteration 3 Tteration 4

3D Fractal Tree

Fasonant Frequancy versus Fractal Ieracon
T T T

S0 {dH)

— Iieracion 0
—— Iteracion 1

Fescamt Frequency (OHz)

Treracion 2
——— Iieraton 3
Lieracion 4

1 1 I 1 I I 1
Jerl? 4aw(s 2
Fraguancy (Hr) Itaratiom Numbsar

< Fractal
Antennas
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Sierpinski Sieve Dipole Antennas

Main Benefit: Multiband

511 matched to 50 chims

as coenpunad by Mathod of Momen:s

The 3 bands matched by 3 different bowtie dipoles
Are matched by 1 sierpinski dipole

. L—.I ]
Fraqoancy (Fz)

LA AL

ap Fractal
Antennas

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzalek




Surface Currents Computed by Method of Moments

Surface Currents Clearly Show Multiband Behavior

Cuvent at First Resonance Feaches to the Top of Bowtie Antenna

Current Only Sees Properly Scaled Antenna at First. Secend. and Third Bescnance
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Fractal Square Loop Antennas

Main Benefit: Decreased Size

Decreased Antenna Width
Accompanies Increases in Iteration

For Second and Third Iteration

|
Indentation
‘i,E'i]dtb

—
I [l

Far Field Pattein

¥ T Plase

Far Field Pattern
Femains Similar
even with
Smaller Area

a Fractal
Antennas
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Fractal Square Loop Antenna Design Curves

The Antenna can be Fabricated for a Given Iteration

E
L
E
[
2
)
=

ale.

=]
[ ¥]

Wadth = T,

For a given indentation width,
resonant loops can be designed

using the above eqguation,
where O is found empirically.

Width of Fesonant Square Loop

Caloolated

Fras:tal Deratioe
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Arrays with Fractal Elements

Main Benefit: Decreases Mutual Coupling between Elements

Separation Distance can be Maximized Using Fractal Elements

Sepralion Ditdsnce

Thin Feeding Network for Fractal Array Elements

Ground Plane

Microstrip —_ CPS _ —
(Co-planar strip) o Fractal
Antennas
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John-Gianvittorio - UCLA

Fabricated Fractal Array Antennas

Decreased inter-element coupling for fixed spacing

Increased packing ability with smaller fractal elements

Fractal Array
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Fractal antenna design

e Sample fractal antenna elements:

T WYY
A ry

A é‘é‘
& éA
"V

V.

(a) Koch dipole (b) Koch loop (c¢) Cantor slot patch  (d) Sierpinski dipole
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Fractal antennas have superior multiband performance
and are typically two-to-four times smaller than traditional
aerials.

Fractal antennas are the unigue wideband enabler—one
antenna replaces many.

Multiband performance is at non-harmonic frequencies;
and at higher frequencies the FEA is naturally broadband.

Polarization and phasing of FEAs also are possible.
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\Hactal Antenna

o Practical shrinkage of 2-4 times are re
performance.

o Smaller, but even better performance

Izable for acceptable

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzatek



Visualization of antenna (the brown layer)
Integrated on a package substrate

AiP integrated on Bluetooth® adapter
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Fractus® Julia-12 ISM 2.4 GHz VPol

The JULIA-12 ISM 2.4 GHz panel antenna is a cost effective solution with
an excellent broad coverage in a tiny package. The antenna features an internal

P/N: FR03-02-N-0-002

Frequency Range
Directivity/Gain

2.4-25GHz
9.6 dBi /8.8 dBi

Fractal shaped element and is suitable for both indoor and outdoor aplications. impedance 50 0

Polarisation VPOL

F/B Ratio > 18 dB

VSWR 151

Vertical Beamwith 65°

Horizontal Beamwith 70°

Connector (Pig Tail) RP-TNC or RP-SMA
Radome ABS

Dimensions 10x10x3cm

esults from a standard

Patent Pending: WO015422
0589, PCT/
53 and

1=2.4(GHz), E-total, phi=0 (deg)
1=2.14(GHz), E total, phi=0 (deg)
1=2.5(GHz), E-total, phi=0 (deg)

0 0.0 109
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Fractus® Julia-10b ISM 2.4 GHz VPol P/N: FR03-02-N-0-003

The JULIA-10 ISM 2.4 GHz panel antenna offers a superior gain to size ratio Frequency Range 2.4-2.5GHz
thanks to the Fractus’ patented “Super Directive” patch design. JULIA-10 is the Directivity/Gain 16 dBi 7 15 dBi

ideal choice to get extra range capacity in a tiny package. Impedance 50 O

Polarisation VPOL

F/B Ratio >20dB

VSWR <15:1

Vertical Beamwith 30°

Horizontal Beamwith 35°

Connector (Pig Tail) RP-TNC or RP-SMA
Radome ABS

Dimensions 21x21x3am

Measured results from a star d

Patent Pending: WC01542 0122528,

837, US60/613394,

245Gz F total poe-0 (dog
1-ZADDN € Nk g0 (o)

Us, S.A. Al 3 2d tradel ademarks of FRAC A, Al other trademarks are the property of their respective owners.
ntainad with
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Fractal Geofind™ GPS Slim Chip Antenna

for
tand

Fractal Geofind GPS slim Chip
int b within

10 x 10 x 0.9 mm ¢ er than actual si

Back

CT/EFO

on I

P/N: FR0O5-51-E-0-103

Product Benefits

M High performance/price ratio

Frequency Range
Efficiency

Peak Gain

VSWR

Weight
Temperature
Impedance
Dimensions

NI

S_FRO5-51-E-0-103_wi
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Fractus® Compact Reach Xtend™ Chip Antenna

The Fractus Col
bfg

The Fractus Compact Reach Xtend Chip Antenna speed
t you y integrate it within i

7 X 3 X 2 MM (imag= larger than actual

Front

Patent Pending

P/N: FR05-51-N-0-102

Product Benefits

M small form factor
ce limited
th minimum

Frequency Range

Efficiency

Peak Gain

VSWR

Weight

Temperature

Impedance ane

Dimensions .8 mm

on T
D5_FR05-51-N-0-102_v01

r iradzmarks of FRA WA Al other trademark
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EZConnect™ Zigbee™ Chip Antenna

tus EZConnect Zigbee Chip Antenna is a ¢
i > f hon i ther indu

Fractus EZConnect Zigbee Chip Antenna

Patent Pending

P/N: FR05-51-R-0-105

Product Benefits

M small form factor

Frequency Range
Efficiency

Peak Gain

VSWR

Weight
Temperature
Impedance
Dimensions

on T nim
05-51-E-0-105_w01

ce limited

ard PCE of

for different UV
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Customised Mobile Handset Antenn
Pat. Pending: WOO12258, V520021«
WOOT54225, VSIO/182,635

Fractus Compact Dual-Band Reach XtendTM
WLAM 802.11 a/bigljin Chip Antenna 2.4 «
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FRACTAL ANTENNA

5% 5 E s [

UAB™ Antenna

Extrerne wideband and omnidi ional performance with superior gain. Operates

with or without a ground plane over a 25:1 frequency ra , from WHF to microwave.
npact form factor packat in a 7.7 inch-diam inch-high rademe weighing

4.8 pounds. Up to 250W input power. VSWR less than 2:1.

UAD™ Antenna

Extreme wideband performance with up to 250 v handling and superior gain.
Operate ar UHF to m rave. Low profile of 5.7 inches and easily concealable in
a 7.7 inch-diameter radome. VSWR less than 2:1.

UGS™ Antenna
antenna integrated with an unattended ground sensor (UGS) providing
jior omnidi onal long-range performance. over high HF through
VHFE. Innovative rais phas 2 i und los , while improving
radiation pattern and L 2. ily deployed in eight package
measuring 2.5 inc

RFsabre™
With outstanding lower frequency gain and less than 3:1 VSWR over a very wide

frequency range, the RFs eat performance in a distinctly compact
form factor. The v :
up to 25 MPH. Ge

transmit applications. Mew hang
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Breakthrough performance in a wideband
antenna from the fractal antenna innovators

Fractal antenna technology, implemented in
transparent conductive film, makes covert capability
possible with a mission-capable antenna system
that operates over a huge frequency range.

Conformable
Only 13 x 18 inches
VSWR less than 3:1

Inherently 50 Ohms

Advantage

ally unobtr

Good Gain

Wideband

Compact Size Effective use of small window apertures

Conformable
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GPS / GSM Antenna

ITEM NO..GS-206

Frequency: GPS 1575MHz =3MHZ
Band Width £5 MMz

Iimpedance: S50ohms

SWi: 151

Gain: >3dBi

Cable: RG-174

Frequency. GSM 890-960MH2
1710-1990MHz

Iimpedance: 50 ohms

SWi. <2

Gain: 2.15d

Cable: RG-174

Frequency. 76-110MHz(FM)
525-1700KHz(AM)
Gain: «6db(FM)
+20b(AM)
impedance: 75 ohms
Cable: 3C-2V

Voitage:10-14V

Cabile length: 87

Dia of installation hole: @15mm
Fit VW, GM, Audi, BWM, Peugeot

©) Maciej J. Ogorzaltek



Detailed Product Description
Features:

1) Item no.: GS-205

2)

3) Band width: =5MHz

4) Impedance: 50Q

5) SWI: 1.5:1

6) Gain: >3dBi

7) Cable: RG-174

8)

9) Impedance: 50Q

10) SWI: <2

11) Gain: 2.15dBi

12) Cable: RG-174

13)

14) Gain: +20dB (FM), +5dB (AM)
15) Impedance: 75 ohms

16) Cable: 3C-2V

17) Voltage: 10-14V

20) Fits for VW, GM, Audi, BWM and Peugneot
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G-Antetech Industrial Co., Ltd

Detailed Product Description

ltem no.: GS-208 Frequency:

GPS 1,575MHz+/-3MHz

Band width: +/-5MHz

Impedance: 50Q SWIR: 1.5:1

Gain: >3dBi

Cable: RG174

Frequency: 76-110MHz (FM), 525-1,700MHz (AM)
Gain: +20dB (FM), +5dB (AM)
Impedance: 75Q Cable: 3C-2V
Voltage: 10-14V Cable length: 8"

Dia. of installation hole: diameter 15mm
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Shanghai Sky Year Technology Co., Ltd.

The only patented AM/FM roof mounted shark fin antenna
that completely integrates GPS, GSM, AMPS/PCS and

satellite radio frequencies
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\Data Compression

® A color full-screen GIF image of
kilobytes

e Formulaz=2z"2 + c, 7 bytes! (99.98% )
o It could work for any other photos as well
o The goal is too find functions, each of which produces some part of

the image.

o IFS (Iterated function system) is the key.

delbrot Set occupies about 35
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RFE ID applications

RFID tag antenna, dubbed
Tagtenna antenna for 900 MHz.

Readtenna RFID antenna that is
1/3 the form factor area of a patch
antenna of equal performance. This
FEA is a microstrip patch based on
a fractalised ground plane and a
Sierpinski carpet fractal.

TagtennaTM and ReadtennaTM antennas are available in evaluation kits from Fractal Antenna Systems, Inc.
The antennas are protected by US patents 6140975, 6127977, and 6104349 and pending patents US and foreign.
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\Enh\ameed Read-out distance

In a recent study carried out by researchers at the

, In Finland, a fractal handheld Y
traditional antenna designs. The research findings were published in
Performance Comparison of Compact Reader Antennas for a Handheld
April 2007 edition of the online magazine IEEE Applications & Practices.

performed better than

aper entitled "
F RFID Reader," in the
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http://www.rauma.tut.fi/index.php?pid=1
http://www.rauma.tut.fi/index.php?pid=1
http://www.rfidjournal.com/glossary/163
http://www.rfidjournal.com/glossary/126
http://www.rfidjournal.com/glossary/129
http://www.rfidjournal.com/glossary/8
http://www.rfidjournal.com/glossary/134

How far can we scale-down the fractal

structures\
What Is the smallest featureSize of a

microelectonic fractal objec

HARD LIMIT I
FRACTAL ELECTRODYNAMICS !
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Fractal electrodynamics

The angles radiate a spherical wave with phase center at the vertex. Each angle not
only radiates, but also receives the signal radiated by other angles. As a
consequence, part of the signal does not follow the wire path, but takes “shortcuts™
that start at a radiating angle. The length of the path traveled by the signal is,
therefore, shorter than the total wire length. The higher iteration number in the Koch
antenna, the more angles it has and the closer to each other they are, so the more
signal takes shortcuts and the less signal follows the whole curve path.
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Near fields in the time domain in the vicinity of a single-iteration Koch
monopole (K1) with short-pulse excitation. The sharp angles of the pre-
fractal curve become the center of spherical wave radiation, which
corroborates the coupling or shortcut effect hypothesis
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\Emerjng nano and tera

If we cannot decrease the feature size what Is
the use of fractal geometri

Change the fractal paradigm!
Do not build ,artificial” fractals —
Use fractal nature of surfaces created in new technol

Fractals and Applications - November 8th, 2013
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how to make nanonet transistors ?

CNT / SINW / ZnO
Solution Process

/=X
— Sl —
T > 500 C T <200 C

Nanotransfer Printing Advantages

Highly crystalline CNT / SiINW by
high temperature process

T<200C Plastic, glass or organic substrate :

_ Low temperature final step
h 3
Transparent and conducting

Rogers et al, Nature 2006
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Short Channel nanonet transistors

Seidel, NanoLetters, 2004. Janes, Nature Nanotech, 2008.
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Long channel nanonet transistors

Sy = quE — qD%

as

Analytical solution not possible
Self consistent numerical DD-
Poisson solver

Solve for hundreds of
configuration

Solve for various biases

Simulator at www.nanohub.org as ‘NanoNET
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the end of Oh_m’s law ... I, = f(V,.V.) xE %,m_;’

R

i Experimental
= Mumerical

1.2
.35 [1.0]
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2D to 2D Cantor transform

D¢ r=1+log(m)/log(n)

For D¢ ia=1.5

Let m=2, solve for n:

log(n)=l0g(2)/(Dr ssics1)

Result: n=4

DF,CT= DF,stick

Generation algorithm:

Take a line segment

Remove the fraction (n-2)/n
from its centre (result: 3)

repeat ..

After : Lectures of M. A. Alam
Electrical and Computer Engineering, Purdue University.
2009 NCN@Purdue-Intel Summer School
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Fractal analysis of quantum dots

K.T. Lam, L.W. Ji | Microelectronics Journal 38 ( 2007 ) 905-9%9

{

oy

L‘um\ﬁ."

W
5 AN
§"r¢; 4

'
&

[ tum Hoam
fham

Fig. 1. 2000 x 2000 nm” AFM images of (a) sample A, (b) sample B {annealed at 750°C) and (¢) sample C {annealed at 800 “C). respectively.
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SEROV er al.
DEPOSITION OF NANOSCALE FILMS WITH FRACTAL TOPOGRAPHY

" &
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DEPOSITION OF NANOSCALE FILMS WITH FRACTAL TOPOGRAPHY SEROV et al.

SE 26-0ct-02 WD 43 mm 15.0kV x3.0k 10 pm
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One of very few descriptors Is

FRACTAL DIMENSION !
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PUBLISHED ONLINE: 15 MARCH 2009 | DOE 100038 /NN AN 200937

Nanotubular metal-insulator-metal capacitor
arrays for energy storage

Parag Banerjee’'?, Israel Perez'?, Laurent Henn-Lecordier'?, Sang Bok Lee*** and Gary W. Rubloff'25*
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LETTERS NATURE NANOTECHNOLOGY 00!: 10.1038/NNANG. 200937

Aguwe 3 | Relationship between MIM nanotubular structure and the parameters used to calculate total capacitance. a Plan-view SEM of an AAD MIM
struc ture showing the hexagonal unt cell b, Cross-section of the sample In a ¢, Schematic of a unit cell of an AAD MIM capacitor defining the various
parameter s used to compute total capacitance of the structuse. Here, I s the thickness of the top electrode (TE), 1, ... S the thickness of the insulating
film, 1y is the thickness of the bottom electrode (BE), 7., & the radius of the pore, D is the interpore edge-to-edge dstance and L 5 the depth of the pares
The contribution to total capacitance cames from the sum of te top plarar part C__ _ the cylindrical region of the pore C___, and the bottom part of the
pae C . next to the barrler layer
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Afer MIM de=position

Al ¢ Al Al
Glazs substrate Glass substrate Glass substrate

Electran-besem alwmini wm Afeer TE =tch

Al il Al
Glass substate Glazs substrate Glass substrate

.|

Agure 4 | Process sequence bo prepane MIM capacitors. a Al foll = ancdically bonded to a glass substrate. b, AAD pore fomation e MIM depesl tion via
ALD procesmes d Electron-beam Al kB deposited on top. e, Photol thography, masking and etching of the Al eactrode then the top electrode (TE) TiM, to
diefine the capacitor anea. f, Blectrical testing using the Al foll (which = in contact with the bottom eectrede TiM) as a back contact and elect n-beam Al a5
the top contact g Two-inch wafer with capacitors of diffesent aeas defined on the surface b, A blown-up image of an actual ‘dot’ capac tor tested

Each such dbt capacitor i 125 pm wide and contains -1 x W® nanocapacitors.
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Fractal capacitors in nano structures

hitpZ//nano.materials.drexel.edu

Materials for Supercapacitors

EDLC Charge e
Storage Materials: i Neads RuO,/PAPPA
Majority of present day .
EDLC devices are based e T
tivated carb LAY
on activated carbon A RuO,(sokgel)

RuO,(ED)

m,:t.‘ #rpﬂ“' IAC

MnO
NG

Carbons Polymers Metal Oxides
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http://nano.materials drexel edu

Size Matters

//H}-‘drated
Layer

Nanosize effect on ion
and electron transfer |

L
=
=
=

[
=
i
=
T

v
= g
5 O
Lo
o
-
B 5
8:'::
ﬁ%

Material Utilization/ %

If 1 J' 1 L I
100 150 200 250 300 350

Enerdy Storade . . .
Particle Size / nm

Brprt of o Rk Doy
el
Femirn s Sy e
gl B4, 30

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzalek




Too sm,;all pore size deal pore size Too large pore size

L

increasing accessibility

Decreasing surface area

Conventional wisdom says increasing
surface area is only good insomuch as
the pores are large enough to
accommodate the ion and its solvation
shell

M. Endo ef al., Carbon 40, 2613 (2002). M. Hahn ef al., Eflectrochemical and Solid-Stare Letrers 7, A33 (2004).
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Double cylinder capacitor

Endohedral type Exohedral type

MNanoporous carbons MNanotubes (hollow) Nanowires (solid)

With double layer formed in the pores, it should be a double cylinder capacitor,
not a parallel plate capacitor.

Huang, J_; Sumpter, B. G_; Meunier, V. Angew. Chem. Int. Ed. 2008, 47, 520.
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B

Sio

LN
" Chlorination
7 (500°C<T<1000°C)

Sl wafer

Masking and

Au sputterring
D

Au collectors
=

Au collector Au collector
Electrolyte et e = 0 ‘

CDC etching S‘{:z

\ CDC film
Si wafer

TiC plate Bl CDC film
] Tefion plates
B Electrolyte + separator

TiC-CDC film

Fig. 1. (A to D) Schematic of the fabrication of a micro-supercapacitor integrated onto a silicon chip based
on the bulk CDC film process. Standard photolithography techniques can be used for fabricating CDC
@pacitor electrodes (oxidative etching in oxygen plasma) and deposition of gold current collectors. (E) CDC
synthesis and electrochemical test cell preparation schematic. Ti is extraded from TiC as TiCl,, forming a
porous carbon film. Two TiC plates with the same (DC coating thickness ranging from 1 to 200 um are
placed face to face and separated by a polymer fabric soaked with the electrolyte. SEM micrograph shows a
representative image of a CDUTIC interface, with a good film adhesion and a glassy film fracture surface
typical of amorphous carbon.
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LETTERS NATURE NANOTECHNOLOGY 001 10.1038/MNANG.200.162
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nature SUPPLEMENTARY INFORMATION
motCCMOI'ogy DOI: 10.1038/NNANO. 2010162

Ultrahigh-power micrometre-sized supercapacitors
based on onion-like carbon

David Pech, Magali Brunet, Hugo Durou, Peihua Huang. Vadym Mochalin, Yury Gogotsi,
Pierre-Louis Taberna and Patrice Simon
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LalaS . STITU]

Labaratoirg ¢'Analvie o1 € Acchitecture des Svstdmes

Micro supercondensateur constitué de nano oignons de carbone déposé « pur »
sur des microélectrodes en or en forme de doigts interdigités fabriquées sur lame de silicium
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Supplementary Figure S1. Onion-like carbon. a-d, Molecular dynamics simulation of
evolution of diamond mto OLC for a nanodiamond crystal of 4 nm in diameter. 0.6 nm thick
slices through the center of the particle are shown for four different times starting from the
mitial stage (diamond) to the fully formed graphitic onion.
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What is TH7?

3 .
g = ~ F 3
Visible ™ ™ - ™
£ £ £ E E E =
=1 =1 =1 =1 S E =
— — o o o — o
Go-between for Microwave and Optics

» 1THz = 10'?Hz

* A = 300um in vacuum
* AFE = 4.1meV
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Theoretical

Measurement
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Towards THz Integrated Sources

\\ Gabs

Coup\ed canvy N CoSE-

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzatek




Towards THzZ Integrated Sources

\\ Gahs

Coup\ed Canwy NCSE-
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Towards THz Integrated Sources
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APPLICATIONS

Encoding images
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APPLICATIONS
Fractal from Iterative Function System

IFS
— Multiple Reduction Copy Machine

\/

Initial Image
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MRCM (IFS machine)

Repeat the copying process X:.,,=W(X,)
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\Very high compression ratio

o The whole fern is compressed to four set of numbers

o Translation rotation

o e f ) 1 r
o 0 1.6 -2.5 -2.5

o

o 0 0.44 120 -50

o 0] 0) 0 0) 0

o If each number needs 32 bits to represent, then we need 32x24 bits f
coding. If the picture is mxn pixels,

e the compression rate = mxn/32x24 !! VERY HIGH!
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\Queﬂien: how long does decoding take?

® Suppose
— The initial rectangle is 500x200 pixels
— reduction factor = 0.85

o We want the object to shrink to one pixel in N steps.
- 500*0.85N=1

© Thus, N = 39.

In each step, 4 times more rectangles are drawn. So, we need to dr

- 1+4+42+43+4%+ . +4%=(4%-1)/3 objects
— i.e., =2 10 objects

e Suppose the computer draws 1 million rectangles per second. Ve need ab
sec or 10'0 years to complete!
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Problems

How to decode in reasonably short time with
reasonably good resolution?

How to encode an image?
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Decoding

¢ |IFS machine: y=w,(x) U

e Chaos approach:

— lIterate randomly, with weighted probability for each transformation

o Adaptive cut approach:
— Stop iterating when neighboring points are close enough:

© Maciej J. Ogorzatek



Decoding

IFS Chaos (equal prob) Chaos (weighted prob) Adaptive cut
100,000 100,000
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Example
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Examples

The Transformation Attractor Zoom in
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Contractive Mapping

Let (X,d) be a metric space.

A map w: X-=>X Is contractive
If there exists a constant s<[0, 1),
such that V x, yeX:

d(w(x), w(y)) =sd(X,y)

s IS called the contraction factor of w.
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An Example of- Contractive Mapping

o Let d be the Euclidean distance.
Let w(x) = x/2
Then it is easy to see that s = 1/2,
Therefore w is a contractive mapping.
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\thajve Mapping Theorem

o If wis a contractive mappi
then there exists a unique x*
such that

W(Xx")=x"
and for any xeX,
lim 5. d(w(x), x) =0
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Contractive Mapping

Proving the uniqueness of the fixed point.by contradiction:

Assume the fixed point is not unique.
Let X" and y~ be the two fixed points

Since w is contractive, d(w(x"), w(y")) <sd(x", y")
But x7, y* are fixed points, so LHS = d(x7, y").
This is a because s < 1.
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\Iterated Function System

e An IFS consists of
— a complete metric space (X, d)
— a set of contractive mappings w, defined on X.

L.e. {X,w.: n=1,...,N}
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Hausdorff Distance

h(A,B) =max(d(A,B),d(B, A))
d(A,B) = max mbin d(a,b)

For a metric space

h(AB)=0 iff A=B
h(A,B) = h(B, A)

h(A,B) +h(B,C) > h(A,C)
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Definition of Fractal Transform

Let (H(X), h) denote the metric space, s.t.
— H(X) consists of nonempty compact subsets of X
— his the Hausdorff Distance

The fractal transform associated with an IES is
defined as W: H(X)=2>H(X)

for all Be H(X)

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzalek



The Contraction Mapping Theorem for Fractal
Transform

If w; are contractive with the contraction factor s;.
Then W Is also contractive with contraction factor

S =max s,
|

W Is contractive, by contraction mapping theorem,
there exists a unigue fixed point A .e.

A Is called the attractor of the IFS.
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Fractal Transform

For all BeH(X), lim 5 WM(B) = A
What does this say about coding?

Encode an image | by with the IFS of |

Decode the image by | = lim_5 WM (J) where J is
any random image.
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Example

w;'s are usually chosen to be affine
transformations

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzalek



Example

Consider an IFS of the form {R?; w,,w,,w;}
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Example (cont.)

A Is completely described by W and is
Independent of B

- -a-_.. -n_,.

EE|E' ﬂwﬂl ||| a:
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Fractal Encoding

Problem definition:

Given the image |,
Find an IFS s.t. its attractor is |.

Several methods have been adopted
Not solved in general case.
The Collage Theorem provides a guideline.
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The Collage Theorem

For a set C and a contractive transform W with
attractor A, there exists s€|0, 1),

|IOW, to make C and A close, it is sufficient to
make C and W(C) close.

W(C) is called the collage of C.
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Proving Collage Theorem

because AlS an
attractor

by def. of contractive
transform
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The Collage theorem

In terms of each mapping w;,

w; can be found by partitioning C into parts C,, s.t. each
part is approximated by the contractive transformation w;
of the whole set C.
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Local lterated Function Systems

Intuitions:

— Natural images generally do not contain parts that are
affine transforms of the whole image.

— Different parts of the image may become similar under
certain affine transformation.
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\Locaﬁterated Function Systems
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Local lterated Function Systems

IFS

— approximates each part of the image by a transformed
version of the Image

IFS
— approximates each part of the image by a transformed
version of the of the iImage
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Implementation Issues

How to segment the image?
What transformations to use?
How to find the parameters of the transformatiens?

Where to find the matching segments?
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Encoding Images

Given an image f
How to find wy,w,,...,wy S.t. fIs the fixed point of W?

Partition f into N range blocks R
Find the domain blocks D;and w;(.)
that minimize the distance d(R,wi(D))), i=1,..., N

— The best matching domain D, Is said to cover the range
R.
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Machine Problem 3

Original Image 128 x 128
Range blocks 4 x 4 =» 1024 blocks (non-overlapping)

Domain blocks 8 x 8 = 121 x 121
=14641 (overlapping)

Need to compare 14641 squares with each of the 1024
range blocks

Since the size of domain block is 4 times the size of range
block, we need to down-sample.
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Machine Problem 3

w; Include
— translation and down-sampling

— adjust contrast a and brightness b
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Encoding Images = Finding w.

Search for best Spatial Transformation

Partition Scheme Virtual Codebook
(Range Blocks) (Domain Blocks)

Search for best Grayscale Transformation

0.2, 0.4, 0.6, 0.8}

b=mean (rangelD) - a*mean(p);



Thingsyou can do for extra credits

Add rotation and flip
— Eight types of spatial transformations:

-1

---> Rotate counterclockwise O degree.

---> Rotate counterclockwise 0 degree and flip.
---> Rotate counterclockwise 90 degree.

---> Rotate counterclockwise 90 degree and flip.
---> Rotate counterclockwise 180 degree.

---> Rotate counterclockwise 180 degree and flip.
---> Rotate counterclockwise 270 degree.
---> Rotate counterclockwise 270 degree and flip.
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Thingsyou can do for extra credits

Solve both a and b analytically
— Minimize

— By setting the partial derivatives to zero
therefore

n2 Z” lp —(Z?_l Pi )
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Results

_eft: original
Right: after first iteration
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Other Ways to Partition the Image
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¢) Horizontal-vertical. (d) Irregular partition.
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Other Ways to Partition the Image

Motivation:

— Different regions should be covered by different sizes of range
blocks.

Quadtree partitioning
— Divide a square into 4 equally sized sub-squares.
— Repeat divisions recursively until the squares are small ‘enough.
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An Example of Quadtree Partitioning
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Other Ways to Partition the Image

Motivation:
— Use rectangular instead of square
HV-Partitioning

— A rectangular image is recursively partitioned either
horizontally or vertically to form two new rectangles.

— More flexibility than Quadtree
— Can make the partitions share certain similar structures.
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An Example of HV-Partitions

HV-Partitions

1 st Partition 2nd 3rd and 4th Partitions

(a) (b) (¢)

Figure 11. The HV scheme attempts to create self
similar rectangles at different scales.
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\Results Using HV-Partitions
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Other Ways to Partition the Image

Triangular partitioning
— A rectangular image is divided diagonally into two
triangles.

— Each triangle is recursively subdivided into 4 triangles
by joining 3 partitioning points on the sides of the
original triangle.

AN

— More flexible: triangles can have self-similarities.
— The artifacts do not run horizontally and vertically.
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Comparing Different Ways to Partition an Image

quad tree HV-partition triangular partition
5008 squares 2910 rectangles 2954 triangles

Fractals and Applications - November 8th, 2013
© Maciej J. Ogorzalek



Fractal Zoom

Resolution Independence

— Decoded image can have higher resolution than the original image.
The additional resolution is generated because the
domain block is larger than its range block.

Assumption: details of the domain block is also similar to

detalls of the range block,
— although details of the range block are not given in the original
Image.
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Fractal Zoom

Left: Decoding at 4 times its encoding size
Right: Original image enlarged to 4 times-the size

i1
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\Fractal Zoom
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Fractal Zoom
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Vertical vs. Lateral Flux

® | ateral flux increases the total amount of capacitance.

el L
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Scaling

® Unlike conventional parallel-plate structures, the
capacitance per unit area increases as the process
technologies scale.
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Manhattan capacitor structures

PR L PR i
(d) CDuasi-Fractal
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Fractal Capacitor

® Quasi fractal geometries can be utilized to increase
capacitance per unit area.

3-D representation of a fractal capacitor using a single metal layer.
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Capacitance Estimation

D
(A

X t
(w+s)P-1

cla teral =

® w. Minimum width of the metal.
e s. Minimum spacing between two adjacent strips.

e A: Area of the fractal capacitance.

® . Thickness of the metal layers.

® K: Proportionality factor that depends on the family of
fractals being used.

® D: Fractal dimension.
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Boost Factor vs. Lateral Spacing
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* Quasi-fractal structures maximize periphery
to increase field usage,

« Have strong vertical and lateral components,

« Time consuming to generate and simulate,

* Look beautiful !

[Samavati, Hajumiri, Shahani, Nasserbakht, and Lee, ISSCC 1998]
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Capacitance density comparison

Wowven no Vias
Parallel Wires
Quasi-Fractal
Horizontal PP

Vertical PP
Vertical Bars

% TL1|% TL2

37.0%
28.3%
28.3%
17.9%
0.8%

49.6%
63.7%

62.7%
40.3%
40.3%
26.5%
1.1%

70.7%
90.8%

[Aparicio and Hajimiri, JSSC March 2002]
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VB VPP MIM 0.18p
Average Cap.[pF] @ 1.095 1.076 1.013 1.057

Cap. Density [aF/jum?]| 203.6 1 1281.3 1512.2/ 1100
Cap. Enhancement 1 6.29 7.43
fes [GHZ] 21 37.1 40 <

Q (Measured) @1GHz 63.8 48.7 83.2 95
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