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Nonlinear Oscillators

Aims of this lecture

@ Study of the asymptotic oscillatory behavior in nonlinear
dynamic systems

@ Spectral methods (Harmonic Balance and Describing Function
technique)

e Examples of continuous-time nonlinear dynamic systems (Van
der Pol circuit and Chua circuit)
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Nonlinear systems/circuits: limit cycles

d
T); — f(x,t) xeR" teR*
A solution x(t) = D(t,xo) is said to be periodic if there exists T

such that:
Vit: &(t+ T,x0) = P(t,x0)

The image of @(t,xp) in the state-space (or phase-space) R" is
called periodic trajectory or limit cycle v of period T.
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Linear systems/circuits: limit cycles
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The circuit presents infinitely many non-isolated cycles with the
same frequency. The cycle amplitude depends on the initial
conditions.
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Linear systems/circuits: limit cycles

(T
N

The energy in the circuit is:

dw dvc di;
dt Cd tlingr =0

w(t) =05Li? +05CVv: = dt
The following trajectories satisfy the state equation

0.5Li2(t) + 0.5 Cv&(t) = 0.5 Li?(0) + 0.5 C v3(0) = costant
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Nonlinear systems/circuits: limit cycles

V)= —v+kv?

Figure: Van der Pol circuit

i(v)=—v+kv?

dv 1 .
% - C [i +2(v)]
ﬂ v

d L

The circuit presents a single limit cycle, that attracts all the
trajectories.
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Equilibrium point analysis

Equilibrium point x = (v, i) = (0,0)

1 1
P
;0
A = L 2 4ic
2= 5% 50¢

L < 4C unstable focus
L > 4C unstable node

The circuit has no stable equilibrium points. It can be shown that
voltage and current are bounded as t — o0.
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Bounded state

Let us consider the state function

%4
V(v,i) =0.5Cv? +0.5Li° = (jTt = v(v — kv
It follows that

v(t) is bounded

Q if v(t) — oo then V(v,i) — oo, but this is impossible as
9 <0, vlvl < &
@ As a consequence, v(t) - o as t — o0, i.e.

© IM such that |v(t)| < M, Vt
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Bounded state

i(t) is bounded
Q if i(t) — £oo then

Q if i(t) » —oo then
v(t) is bounded)
Q if i(t) » +o0 then

dv
dt

dv
dt

dv
dt

~ —%, because v(t) is bounded.

>0, = v(t) > +o0 is impossible (as

<0, = v(t) >0, = L =Y _0is

dt — L

impossible (due to the assumption i(t) — +)
Q it follows that M such that |i(t)| < M, Vt
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Limit cycle
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Time waveforms
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Computation of limit cycles

@ Determination of all the periodic limit cycles (either stable
and unstable) and their stability properties (Floquets
multipliers FMs)

e In large scale dynamical systems the sole time—domain
numerical simulation does not allow to identify all the limit
cycles (either stable and unstable)

o It would require to consider infinitely many initial conditions

e Unstable limit cycles cannot be detected through simulation

@ By means of Spectral methods, the computation of all the
limit cycles is reduced to non-differential (sometimes
algebraic) problem.

e Harmonic Balance Technique
o Describing Function Technique
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Computation of limit cycles: Time-domain methods

@ If the system possesses a stable cycle v, we can try to find it by
numerical integration (simulation). If the initial point for the
integration belongs to the basin of attraction of +, the computed
orbit will converge to v in forward time. Such a trick will fail to
locate a saddle cycle, even if we reverse time.

@ there exist different time domain methods especially to directly
locate periodic orbits even if they are saddle or unstable cycles. The
problem of finding the steady state is converted into a
boundary-value problem, to which the standard approaches, such as
shooting methods and finite-difference methods, can be applied.

o Oty + T,x9) = P(to, x0) = X0, where the minimum cycle period T
is usually unknown. An extra phase condition has to be added in
order to select a solution among all those corresponding to the cycle.
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Computation of limit cycles: Spectral methods

@ Harmonic Balance (HB) and Describing function (DF)
techniques permit
e to determine the set of all stable and unstable limit cycles.
e to provide an accurate characterization of each limit cycle
- A. |. Mees, Dynamics of feedback systems, John Wiley, New
York, 1981.

@ Floquet’s multipliers permit
e to investigate limit cycle stability and bifurcations. They can
be determined by exploiting either a time-domain or a
frequency domain approach.

- F. Bonani and M. Gilli, “Analysis of stability and bifurcations
of limit cycles in Chua's circuit through the harmonic balance
approach,” IEEE Transactions on Circuits and Systems: Part
1, vol. 46, pp. 881-890, 1999.
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Computation of limit cycles: Spectral methods

Fundamental concepts

1) A periodic solution ®(t,xp) = x(t) = x(t + T) € R" can be
expanded through the Fourier series

[oe}
2
x(t) = Ao + Z Ak cos(kwt) + By sin(kwt) w=2Z
k=1 T
Ny
Ao = 7J0 x(t)dt e R
5 (T
Ac = 7J x(t) cos(kwt)dt € R"
T Jo

T
By = EJ x(t) sin(kwt)dt € R"
T Jo



Nonlinear Oscillators
Limit Cycles
Spectral methods

Computation of limit cycles: Spectral methods

Fundamental concepts

2) Approximated representation of x(t) by means of a finite
number of N harmonics

N
x(t) ~ Ag + Z Ak cos(kwt) + By sin(kwt)
k=1
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Computation of limit cycles: Spectral methods

Fundamental concepts

3) Given a non autonomous nonlinear dynamical system

% = f(x,t), the r.h.s f(x, t) can be expanded through the

Fourier series by using N harmonics

N
2
f(x,t)=Fo+ Z Fa, cos(kwt) + Fp, sin(kwt) w= %T
k=1
1 T
Fb = = f(x,t)dt € R"
o = 7 o
2 T
Fa, = —j f(x,t) cos(kwt)dt € R"
T Jo

T
Fg, = %L f(x,t)sin(kwt)dt € R"
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Computation of limit cycles: Spectral methods

Fundamental concepts

4) Substitute x(t) and f(x,t) in & = f(x,t), i.e

d

p (Ao + Z Ay cos(kwt) + By sm(kwt)) =Ffy+ Z FAk cos(kwt) + FBk sin(kwt)

t
=1

A set of 2N + 1 nonlinear algebraic equations is obtained, by
equating the coefficients of the constant term and of the
harmonics cos(kwt), sin(kwt)
(A05A17 . aANaBl7"'aBN) = 0
(Ao, AL, .. AN, B, .. By) = —kwAg
(

Fs
Fa (Ao, A1,...,An, Bi, ..., By) ke By

k

with 1 < k< N.
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Computation of limit cycles: Spectral methods

Harmonic Balance (1 < k < N)
FO(A07A17"'aANaBla"'7BN) =0
FBk(A07A17"'7ANyBl7"'7BN) == —kwAk
FAk(Ao,Al,...,AN,Bl,...,BN) kak

2N + 1 equations in 2N + 1 unknowns

Describing Function (N = 1)

Fo(Ao,A1,B1)) = 0
Fg, (Ao, A1,B1) = —whA;
Fa,(Ag,A1,B1) = wB;

2N + 1 equations in 2N + 1 unknowns
x(t) = Ag + Ay cos(wt) + By sin(wt)
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DF Technique: Duffing

2
THD 1 8 4 n(y(1)) = Beos(wt),

where nonlinearity n(y(t)) = y(t)3.

- Let us approximate y(t) with one harmonic only:
y(t) ~ Aj cos(wt) + By sin(wt)

Note: Ap = 0 from simulations.
Unknowns are A; and By (w is given).

- Express nonlinearity n(y(t)) as a Fourier series:

n(y(t)) ~ NEsin(wt) + N cos(wt) + NE sin(3wt) + N4 cos(3wt),
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Duffing

Coefficients Nf*, NE, N5' and N2 are given by

.
3
NA - Ef n(y (1)) cos(wt)dt = > Ay (A2 + B?)
T J, 4
B 2 (" . 3 2 2
NE — 7f n(y(8)) sin(wt)dt =+ By(A% + B)
0
A_ 2 ! L 2 2
N3 = - n(y(t)) cos(3wt)dt = ZAI(AI —3B1)
0
s 2 (7 ) 1 2 2
NG =2 | nly(1)sin(Bwt)dt = ; By(3A] - BY)
0
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Duffing equation

Duffing

- Using y(t) ~ Aj cos(wt) + By sin(wt)

dy(t d?y(t
y(®) _ —Awwsin(wt) + Biw cos(wt), j;g ) = —Ajw? cos(wt) — Biw? sin(wt)

dt

Neglect n(y(t))'s 3" harmonic: n(y(t)) ~ N{* cos(wt) + NE sin(wt).
Equating coefficients in % + adyd—(tt) + n(y(t)) = [ cos(wt) yields
—Aw? +aBw+ N —5=0

—Biw? — aAw + NlB =0
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Duffing

Use N{ = 2A,(A? + BY), N8 = 3B,(A? + B?):

3 3
Arw? — ZA? - ZAIBI2 —aBw+B=0
B 2—§B3—§AQB Aiw =0
W 4 1 4 1b1 + AW =

Letting w =1, @« = 0.08 and 8 = 0.2 yields

A =1.07287
B = 0.608554
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Computation of limit cycles for Lur'e systems

»(—) B
s(f) [ L'® x(t)
n(-)

L(D)x(t) + n[x(t)] = s(t), x(t)eR

If the systems admits of a periodic solution of period T, then x(t)
can be expanded through the Fourier series

0
x(t) = Ao + Z A cos(kwt) + Bysin(kwt)  w=—
k=1
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Examples

Third order oscillator

4
n(x) = —gx + @x3

D3+ (1+a)D?*+ 8D+ afB

L(D) a(D?+ D+ p)

Second order oscillator

_LCD?>— LD +1
B kLD

L(D)
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The harmonic balance (HB) technique

1. The state is represented through a finite (N) number of
harmonics

N
x(t) = Ao + Z Ay cos(kwt) + By sin(kwt)
k=1

2. The term L(D)x(t) yields:

N
LD)x(t) = LO)A + Y {Re[L(jkw)]A, + Im[L(jkw)]By} cos(kwt)
k=1
N
+ D {Re[L(jkw)]By — Im[L(jkw)A} sin(kwt)
k=1
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The harmonic balance (HB) technique

3. The term n[x(t)] yields (by truncating the series to N

harmonics):
N
n[x(t)] = Co+ ), Cicos(kwt) + Dy sin(kwt)
k=1
T N i
1 .
G = ] n Ao + Z Ak sin(kwt) + By cos(kwt) | dt
0 k=1 i
2 (T N ]
Ck = T]om Ao + Z Ai sin(kwt) + By cos(kwt) | cos(kwt)
0 k=1 i
2 (T | N ]
D = Z| n|Ao+ > Agsin(kwt) + By cos(kwt) | sin(kwt)
0 k=1 i
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The harmonic balance (HB) technique

3. The term s(t) yields (by truncating the series to N

harmonics):
N
s(t) = Po + Z Py cos(kwt) + Qg sin(kwt)
k=1
SR
P = J ) cos(kwt) dt

Q = J sin(kwt) dt
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Lur'e systems

The harmonic balance (HB) technique

4.

A set of 2N + 1 nonlinear equations is obtained, by equating
the coefficients of the constant term and of the harmonics
cos(kwt), sin(kwt)

L(0)Ao + Go(Ao,-,By) = Po
Re[L(jkw)]Ak — Im[L(jkw)]Bk + Ck(Ao, . BN) = P, 1<k<N
Im[L(jkw)]Ak + Re[L(jkw)]|Bx + Dk(Ao,...By) = Qr 1<k<N

Autonomous systems: the term A; is assumed to be equal
to zero (i.e. the phase of the first harmonic of x(t) is
arbitrarily fixed); since w is unknown, the system has an equal
number [(2N + 1)] of equations and unknowns.
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DF Technique: Van der Pol oscillator

The Van der Pol equation (see Fig. 1) is described by the following
autonomous system:

where nonlinearity n(x) = x°.

Step 1: Expression for L(s) is

kLRs
I(s) = — =%
)= R — s+ R
Step 2: Approximate x(t) as x(t) ~ By sin(wt).
Ap = 0 from simulations, A; = 0 since phase may be chosen arbitrarily.

Unknowns are B; and w.
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Van der Pol oscillator

Step 3: express n(x(t)) = x> as a Fourier Series:
n(x(t)) = (Bysin(wt))® ~ Ny sin(wt) + N3sin(3wt),
where N; and N3 are
3
—J )sin(wt)dt = > B}
4
L3
== )sin(3wt)dt = —=Bj
4
Step 4: Write differential equation for Lur'e system:

x(t) + L(D)n(x(t)) = 0,

where x(t) ~ By sin(wt) and n(x(t)) ~ Ny sin(wt) (3w neglected, since
Fourier series for n(x(t) and x(t) are of same order)
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Van der Pol oscillator

Step 4 (contd): express L(D)n(x(t)) as
L(D)n(x(t)) = L(D)Ny sin(wt) = NyRe{L(jw)} sin(wt) + N1 Im{L(jw)} cos(wt).
Insert this into By sin(wt) + L(D)n(x(t)) = 0 and equate coefficients:

By + NyRe{L(jw)} =0,
NyIm{L(jw)} = 0

Expressions for Re{L(jw)} and Im{L(jw)} are

—kRL%w? kLR?w(1 — LCw?)

R LCo?t (o ™M) = i 1 (Lw)?

Re{L(jw)} =
Jm{L(jw)} = 0 yields w = \/%

Bi + 3 B3Re{L(jw)} = O gives By = —2—
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The circuit

R
! a\% In
J_ + + +
L c2 v, v, :E c1 vy Ng
T

Figure: Chua’s circuit

dVy Vo — Vi .
_ (V.
G dt R IR( 1)
dVs Vi — VW,
C = /
274t R B
i,
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The circuit model

Chua’s circuit is described by the following autonomous nonlinear
dynamical systems

. dX1

x1=—=a(—x1+x —n(x))
dr

. dX2

Xp = — = X1 — X0 + X3
dr

. dX3

X3 = — = —fx

3= o Bx2,

where 7 = tR71C;* and

xa = Vi o = Va, x5 = Rb, o= GG B = RRGL,
n(x1) = Rig(Vh) = vx1 + (SXf’. v =—8/7, § = 4/63.
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Chua’s circuit

Equilibria

Figure: Equilibria: x; values

There are three equilibria:

X = (;(1,)_(27)_(3) = (_15707 1a5)7
X = ()?17)?27)?3) = (070u0)7
X = (%1,%,%) = (1.5,0,—1,5).
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Matlab code

function [y, t]=Chua

v = —8/7;6 =4/63; a =5; B = 15;

x0 = [0.5,0.1, —0.5];

tspan=[0 : 0.01 : 200];

options = odeset(’'RelTol’,1e — 12,’AbsTol’,1e — 12,'Jacobian’,@J);
[t, y] = odelbs(@f tspan,x0,options);

plot(y(:,1).y(:,2).'b’)

function dydt = f(t, x)
n=[—a*g(x(1))00];
A=[-aa0;1 —11;0 —80];
dydt = A% x + n;

end

function dfdx = J(t, x)
dfdx = [—a % (1 +8+3% 5% x(1)."2) «0; 1 —11;0 —B0];
end

function y = g(x)
y =7v%x+0%x.3;
end

end
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Numerical simulations for « =5, § = 15

a =5, 3=15, (21(0),22(0),25(0)) = (0.5,0.1,-0.5)
-0

o
0.08] By
0.6 “og|
0.4 |
”DDZ \—12
o -14
-002 -1

5 s s 0 o8 o1 o

Figure: Evolution towards % = (1.5,0,—1,5).

a=5,3=15 (21(0), 22(0), 23(0)) = (=1, 0.1, ~0.5)

o. 3
03 3
02) 25
01 2
.o 15
04l T
02| 05
03 of
-0.4 -05
. -15 -1 -05 05 0 0.5

Figure: Evolution towards x = (—1.5,0,1,5).
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Chua’s circuit

Numerical simulations for « = 8, § = 15

045 1 15 2 B4 o2 0 0.2 0.4

Figu re: Evolution towards a stable limit cycle located at x; > 1 and x3 < —1.
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Chua’s circuit

Numerical simulations for « = 8, § = 15

a=38, =15, (z1(0), 1'2(()?3, z3(0)) = (-1, 0.1, 1)

-0.4 -0. ‘
0—2 -15 -1 -0.5 0—84 -0.2 0 0.2 0.4
X1 X2

Figu re: Evolution towards a stable limit cycle located at x; < —1 and x3 > 1.
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Numerical simulations for « =9, g = 15

15, (21(0), #2(0), #5(0))

(1,01, —0.5)

o
02| 05
0.1 °
-05
9
g g
-01
-15
-02| .
03 25|
. -
0.5 15 84 -02 0 0.2

i
&

0.4

Figure: Stable period-2 cycle mostly located at x; > 1 and x3 < —1.

a=09, =15

(1(0), 22(0), z3(0)) = (-1, 0.1

0.5)

o.
03| 25
0.2| 2
15
0.1
& £
o
05|
-0 o
02 05|
03 -15 -05 -04  -02 0 0.2

Figure: Stable period-2 limit cycle

mostly located at x; < —1 and x3 > 1.

K 0.4
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Chua’s circuit

Numerical simulations for « = 9.1, § = 15

a=9.1, =15, (21(0), 22(0), 23(0)) = (0.5, 0.1, —=0.5)
0.3 - 1

0.2

0.4

Figure: Stable single-scroll chaotic attractor mostly located at x; > 1 and x3 < —1.
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Chua’s circuit

Numerical simulations for « = 9.1, § = 15

0:2 0.4

Figure: Stable single-scroll chaotic attractor mostly located at x; < —1 and x3 > 1.
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Chua's circuit

Numerical simulations for « = 9.5, 5§ = 15

0.2 0.4

%
S
So

Figure: Stable double-scroll chaotic attractor located at |xi| < 2 and |x3| < 3.
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Numerical simulations for « = 9.5, 5§ = 15

a =95, =15, (J;l(o)v §2(0)7 333(0)) = (71, 0.1, 1)

2
15
|
! \
1
05
g 0 2o
05
1
1
-2
-15
50 800 850 900 950 1000 F50 800 850 - 900 950 1000

Figure: x1(r) and x3(7) contributing to the development of the double-scroll
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Chua'’s circuit: Computation of limit cycles

The parameters o and 3 are chosen in such a way that the Chua's
circuit exhibits (e.g. « =8 and = 15):
@ Three unstable equilibrium points (denoted by P+, P, PO
and corresponding to x = +1.5 and to x = 0 respectively).

@ Two stable asymmetric limit cycles (denoted by A™ and A7)
mainly lying in the regions x > 1 and x < —1 respectively.

@ One stable symmetric limit cycle (denoted by S°).

@ One unstable symmetric limit cycle (denoted by SY).
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Chua’s circuit

Chua’s circuit: Complex dynamic behavior

Stable symmetric LC (Si)

Stable asymmetric LCs (Ai)
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Chua’s circuit: Lur'e model

% = —ax+ay —an(x)
% = X—y+z

d

@ = by

State equations can be cast in a Lur'e model
L(D)x(t) = —an[x(t)]

S+ (1+a)s®+ Bs+af

Lis) = s?+s+p
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Efficient HB implementations

1. Consider the time samples vectors

y(t) =
y = ly(to), y(t1),
x = [x(to), x(t1),
s = [s(to), s(t),

ceey

L(D)x(t)

(tan), y(tan+1)]

<

o x(tan), x(tans1)]

., s(tan), s(tons1)]

p=1,...,2N+1
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Efficient HB implementations

2. Impose that the HB equation be satisfied for t = t,
y(tp) + nlx(tp)] = s(tp), p=1,...,2N+1
that in vector notation yields

y+n[x]=s

with

nx] = [ n[x(t)], n[x(2)], ... n[x(tan+1)] I



Nonlinear Oscillators
Limit Cycles
Chua’s circuit

Efficient HB implementations

X = F_IK, X = [A07 Al?"'7AN7 Bl""’BN]/

1 Vfl 7i1 “.e WiN ViN
-1 1 751 754 e VEN 7iN
L Yng1i1 Yan411 o0 VaN4LN VINALN
q2mp
Y5q = Ccos(qwtp) = cos <2N n 1)

. . q2mp
Yo.q sin(quwtp) = sin <2N n 1>
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Efficient HB implementations

y = r—1 Qw) X
[L0) 0 O 0 0]
0 Ry K 0 0
0 -h R 0 0
Qw) = ) i
0 0 0 ... Ry In
0 0 0 ... —Iy Rw]

Re = Re{L(jkw)}, I = Im{L(jkw)}

nlx] = n[l'X]



Nonlinear Oscillators
Limit Cycles
Chua’s circuit

Efficient HB implementations

y+n[x]=s

Mw) X +nlXx]=s

Q) X+Tn[l'X]=Ts

The 2N + 1 equations in the 2N + 1 unknowns X can be solved
without performing any integrals.
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Limit cycle stability

@ Limit cycles may present the same stability characteristics of
equilibrium points: they may be stable, unstable or behave as
saddles.

@ The stability of limit cycles is studied through the Poincarée
map, that reduces the stability property of a limit cycle to
those of a nonlinear discrete system.

@ The stability can also be studied through spectral techniques.
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Chua’s circuit

Periodic limit cycle: final remarks

o

The describing function technique is very effective for detecting the
existence of limit cycles (either stable or unstable) and also for a
preliminary study of their bifurcations.

The harmonic balance technique allows to determine with a good
accuracy the main limit cycle characteristics.

HB based technique can be exploited for computing FMs, even in
large-scale systems (Gilli et al.).

Once the limit cycle has been detected through a spectral
technique, the Floquet's multipliers can also be computed via a
time-domain technique. The application to large arrays of nonlinear
oscillators (Chua's circuits) has allowed to determine all the
significant limit cycle bifurcations (Gilli et al.).
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