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Aims of this lecture

Study of the asymptotic oscillatory behavior in nonlinear
dynamic systems

Spectral methods (Harmonic Balance and Describing Function
technique)

Examples of continuous-time nonlinear dynamic systems (Van
der Pol circuit and Chua circuit)
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Nonlinear systems/circuits: limit cycles

d x

d t
“ f px , tq x P Rn, t P R`

A solution xptq “ Φpt, x0q is said to be periodic if there exists T
such that:

@ t : Φpt ` T , x0q “ Φpt, x0q

The image of Φpt, x0q in the state-space (or phase-space) Rn is
called periodic trajectory or limit cycle γ of period T .
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Eigenvalues: λ12 = ±jω ω =
1√
LC

The circuit presents infinitely many non-isolated cycles with the
same frequency. The cycle amplitude depends on the initial
conditions.

A. Ascoli, M. Biey, F. Corinto and M. Righero

An Introduction to synchronization in complex systems Part II - Periodic oscillations

The circuit presents infinitely many non-isolated cycles with the
same frequency. The cycle amplitude depends on the initial
conditions.
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Linear systems/circuits: limit cycles

v
C

 

i
L
 

The energy in the circuit is:

wptq “ 0.5 L i2L ` 0.5C v2C , ñ
dw

dt
“ C vC

dvC
dt

` L iL
diL
dt

“ 0

The following trajectories satisfy the state equation

0.5 L i2Lptq ` 0.5C v2C ptq “ 0.5 L i2Lp0q ` 0.5C v2C p0q “ costant
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LC Rn

î(v) = −v + k v3i+

−

v

dv

dt
= −

1

C
[i + ı̂(v)]

di

dt
=

v

L

The circuit presents a single limit cycle, that attracts all the
trajectories.

A. Ascoli, M. Biey, F. Corinto and M. Righero

An Introduction to synchronization in complex systems Part II - Periodic oscillations

Figure: Van der Pol circuit

ı̂pvq “ ´v ` k v3

dv

dt
“ ´

1

C
ri ` ı̂pvqs

di

dt
“

v

L

The circuit presents a single limit cycle, that attracts all the
trajectories.
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Equilibrium point analysis

Equilibrium point x “ pv , iq “ p0, 0q

J “

¨

˚

˝

1

C
´

1

C
1

L
0

˛

‹

‚

λ12 “
1

2C
˘

1

2LC

a

L2 ´ 4LC

#

L ă 4C unstable focus

L ą 4C unstable node

The circuit has no stable equilibrium points. It can be shown that
voltage and current are bounded as t Ñ 8.
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Bounded state

Let us consider the state function

V pv , iq “ 0.5Cv2 ` 0.5Li2 ñ
dV

dt
“ vpv ´ kv3q

It follows that
.
vptq is bounded
..

......

...1 if vptq Ñ 8 then V pv , iq Ñ 8, but this is impossible as
dV
dt ă 0, @|v | ă 1?

k
...2 As a consequence, vptq Û 8 as t Ñ 8, i.e.
...3 DM such that |vptq| ă M, @t
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Bounded state

.
iptq is bounded
..

......

...1 if iptq Ñ ˘8 then dv
dt „ ´ i

C , because vptq is bounded.

...2 if iptq Ñ ´8 then dv
dt ą 0, ñ vptq Ñ `8 is impossible (as

vptq is bounded)
...3 if iptq Ñ `8 then dv

dt ă 0, ñ vptq Ñ 0, ñ di
dt “ v

L Ñ 0 is
impossible (due to the assumption iptq Ñ `8)

...4 it follows that DM such that |iptq| ă M, @t
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Limit cycle

L “
9

2
C “ 1 k “ 1
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Time waveforms
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Computation of limit cycles

Determination of all the periodic limit cycles (either stable
and unstable) and their stability properties (Floquets
multipliers FMs)

In large scale dynamical systems the sole time–domain
numerical simulation does not allow to identify all the limit
cycles (either stable and unstable)
It would require to consider infinitely many initial conditions
Unstable limit cycles cannot be detected through simulation

By means of Spectral methods, the computation of all the
limit cycles is reduced to non-differential (sometimes
algebraic) problem.

Harmonic Balance Technique
Describing Function Technique



. . . . . .

Nonlinear Oscillators

Limit Cycles

Computation of limit cycles: Time-domain methods

If the system possesses a stable cycle γ, we can try to find it by
numerical integration (simulation). If the initial point for the
integration belongs to the basin of attraction of γ, the computed
orbit will converge to γ in forward time. Such a trick will fail to
locate a saddle cycle, even if we reverse time.

there exist different time domain methods especially to directly
locate periodic orbits even if they are saddle or unstable cycles. The
problem of finding the steady state is converted into a
boundary-value problem, to which the standard approaches, such as
shooting methods and finite-difference methods, can be applied.

Φpt0 ` T , x0q “ Φpt0, x0q “ x0, where the minimum cycle period T
is usually unknown. An extra phase condition has to be added in
order to select a solution among all those corresponding to the cycle.
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Spectral methods

Computation of limit cycles: Spectral methods

...1 Harmonic Balance (HB) and Describing function (DF)
techniques permit

to determine the set of all stable and unstable limit cycles.
to provide an accurate characterization of each limit cycle

- A. I. Mees, Dynamics of feedback systems, John Wiley, New
York, 1981.

...2 Floquet’s multipliers permit
to investigate limit cycle stability and bifurcations. They can
be determined by exploiting either a time-domain or a
frequency domain approach.

- F. Bonani and M. Gilli, “Analysis of stability and bifurcations
of limit cycles in Chua’s circuit through the harmonic balance
approach,” IEEE Transactions on Circuits and Systems: Part
I, vol. 46, pp. 881-890, 1999.
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Spectral methods

Computation of limit cycles: Spectral methods

.
Fundamental concepts
..

......

1) A periodic solution Φpt, x0q “ xptq “ xpt ` T q P Rn can be
expanded through the Fourier series

xptq “ A0 `

8
ÿ

k“1

Ak cospkωtq ` Bk sinpkωtq ω “
2π

T

A0 “
1

T

ż T

0

xptqdt P Rn

Ak “
2

T

ż T

0

xptq cospkωtqdt P Rn

Bk “
2

T

ż T

0

xptq sinpkωtqdt P Rn
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Computation of limit cycles: Spectral methods

.
Fundamental concepts
..

......

2) Approximated representation of xptq by means of a finite
number of N harmonics

xptq « A0 `

N
ÿ

k“1

Ak cospkωtq ` Bk sinpkωtq
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Computation of limit cycles: Spectral methods

.
Fundamental concepts
..

......

3) Given a non autonomous nonlinear dynamical system
dx
dt “ f px , tq, the r.h.s f px , tq can be expanded through the
Fourier series by using N harmonics

f px , tq “ F0 `

N
ÿ

k“1

FAk
cospkωtq ` FBk

sinpkωtq ω “
2π

T

F0 “
1

T

ż T

0

f px , tqdt P Rn

FAk
“

2

T

ż T

0

f px , tq cospkωtqdt P Rn

FBk
“

2

T

ż T

0

f px , tq sinpkωtqdt P Rn
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Computation of limit cycles: Spectral methods

.
Fundamental concepts
..

......
4) Substitute xptq and f px , tq in dx

dt “ f px , tq, i.e.

d

dt

¨

˝A0 `

N
ÿ

k“1

Ak cospkωtq ` Bk sinpkωtq

˛

‚ “ F0 `

N
ÿ

k“1

FAk
cospkωtq ` FBk

sinpkωtq

A set of 2N ` 1 nonlinear algebraic equations is obtained, by
equating the coefficients of the constant term and of the
harmonics cospkωtq, sinpkωtq

F0pA0,A1, . . . ,AN ,B1, . . . ,BNq “ 0

FBk
pA0,A1, . . . ,AN ,B1, . . . ,BNq “ ´kωAk

FAk
pA0,A1, . . . ,AN ,B1, . . . ,BNq “ kωBk

with 1 ď k ď N.



. . . . . .

Nonlinear Oscillators

Limit Cycles

Spectral methods

Computation of limit cycles: Spectral methods

.
Harmonic Balance (1 ď k ď N)
..

......

F0pA0,A1, . . . ,AN ,B1, . . . ,BNq “ 0

FBk
pA0,A1, . . . ,AN ,B1, . . . ,BNq “ ´kωAk

FAk
pA0,A1, . . . ,AN ,B1, . . . ,BNq “ kωBk

2N ` 1 equations in 2N ` 1 unknowns

.
Describing Function (N “ 1)
..

......

F0pA0,A1,B1q “ 0

FB1pA0,A1,B1q “ ´ωA1

FA1pA0,A1,B1q “ ωB1

2N ` 1 equations in 2N ` 1 unknowns
xptq “ A0 ` A1 cospωtq ` B1 sinpωtq
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Duffing equation

DF Technique: Duffing

d2yptq

dt2
` α

dyptq

dt
` npyptqq “ β cospωtq,

where nonlinearity npyptqq “ yptq3.

- Let us approximate yptq with one harmonic only:

yptq « A1 cospωtq ` B1 sinpωtq

Note: A0 “ 0 from simulations.

Unknowns are A1 and B1 (ω is given).

- Express nonlinearity npyptqq as a Fourier series:

npyptqq « NB
1 sinpωtq ` NA

1 cospωtq ` NB
3 sinp3ωtq ` NA

3 cosp3ωtq,
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Duffing equation

Duffing

Coefficients NA
1 , N

B
1 , N

A
3 and NB

3 are given by

NA
1 “

2

T

ż T

0

npyptqq cospωtqdt “
3

4
A1pA2

1 ` B2
1 q

NB
1 “

2

T

ż T

0

npyptqq sinpωtqdt “
3

4
B1pA2

1 ` B2
1 q

NA
3 “

2

T

ż T

0

npyptqq cosp3ωtqdt “
1

4
A1pA2

1 ´ 3B2
1 q

NB
3 “

2

T

ż T

0

npyptqq sinp3ωtqdt “
1

4
B1p3A2

1 ´ B2
1 q
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Duffing

- Using yptq « A1 cospωtq ` B1 sinpωtq

dyptq

dt
“ ´A1ω sinpωtq ` B1ω cospωtq,

d2yptq

dt2
“ ´A1ω

2 cospωtq ´ B1ω
2 sinpωtq

Neglect npyptqq’s 3rd harmonic: npyptqq « NA
1 cospωtq ` NB

1 sinpωtq.

Equating coefficients in d2yptq

dt2 ` α dyptq

dt ` npyptqq “ β cospωtq yields

´A1ω
2 ` αB1ω ` NA

1 ´ β “ 0

´B1ω
2 ´ αA1ω ` NB

1 “ 0
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Duffing equation

Duffing

Use NA
1 “ 3

4A1pA2
1 ` B2

1 q, NB
1 “ 3

4B1pA2
1 ` B2

1 q:

A1ω
2 ´

3

4
A3
1 ´

3

4
A1B

2
1 ´ αB1ω ` β “ 0

B1ω
2 ´

3

4
B3
1 ´

3

4
A2
1B1 ` αA1ω “ 0

Letting ω “ 1, α “ 0.08 and β “ 0.2 yields

A “ 1.07287

B “ 0.608554
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Lur’e systems

Computation of limit cycles for Lur’e systems

L - 1 ( D )

n (  ·  )

s ( t ) x ( t )

LpDqxptq ` nrxptqs “ sptq, xptq P R

If the systems admits of a periodic solution of period T , then xptq
can be expanded through the Fourier series

xptq “ A0 `

8
ÿ

k“1

Ak cospkωtq ` Bk sinpkωtq ω “
2π

T
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Lur’e systems

Examples

Third order oscillator

LpDq “
D3 ` p1 ` αqD2 ` βD ` αβ

α pD2 ` D ` βq
npxq “ ´

8

7
x `

4

63
x3

Second order oscillator

LpDq “
LCD2 ´ LD ` 1

kLD
npxq “ x3
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Lur’e systems

The harmonic balance (HB) technique

1. The state is represented through a finite (N) number of
harmonics

xptq “ A0 `

N
ÿ

k“1

Ak cospkωtq ` Bk sinpkωtq

2. The term LpDqxptq yields:

LpDqxptq “ Lp0qA0 `

N
ÿ

k“1

tRerLpjkωqsAk ` ImrLpjkωqsBku cospkωtq

`

N
ÿ

k“1

tRerLpjkωqsBk ´ ImrLpjkωqAku sinpkωtq
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Lur’e systems

The harmonic balance (HB) technique

3. The term nrxptqs yields (by truncating the series to N
harmonics):

nrxptqs “ C0 `

N
ÿ

k“1

Ck cospkωtq ` Dk sinpkωtq

C0 “
1

T

ż T

0
n

«

A0 `

N
ÿ

k“1

Ak sinpkωtq ` Bk cospkωtq

ff

dt

Ck “
2

T

ż T

0
n

«

A0 `

N
ÿ

k“1

Ak sinpkωtq ` Bk cospkωtq

ff

cospkωtq dt

Dk “
2

T

ż T

0
n

«

A0 `

N
ÿ

k“1

Ak sinpkωtq ` Bk cospkωtq

ff

sinpkωtq dt
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Lur’e systems

The harmonic balance (HB) technique

3. The term sptq yields (by truncating the series to N
harmonics):

sptq “ P0 `

N
ÿ

k“1

Pk cospkωtq ` Qk sinpkωtq

P0 “
1

T

ż T

0
sptq dt

Pk “
2

T

ż T

0
sptq cospkωtq dt

Qk “
2

T

ż T

0
sptq sinpkωtq dt
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Lur’e systems

The harmonic balance (HB) technique

4. A set of 2N ` 1 nonlinear equations is obtained, by equating
the coefficients of the constant term and of the harmonics
cospkωtq, sinpkωtq

Lp0qA0 ` C0pA0, ...,BNq “ P0

RerLpjkωqsAk ´ ImrLpjkωqsBk ` Ck pA0, ...,BNq “ Pk 1 ď k ď N

ImrLpjkωqsAk ` RerLpjkωqsBk ` DkpA0, ...,BNq “ Qk 1 ď k ď N

5. Autonomous systems: the term A1 is assumed to be equal
to zero (i.e. the phase of the first harmonic of xptq is
arbitrarily fixed); since ω is unknown, the system has an equal
number [p2N ` 1q] of equations and unknowns.
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DF Technique: Van der Pol oscillator

The Van der Pol equation (see Fig. 1) is described by the following
autonomous system:

9x “
1

C

´ x

R
´ k npxq ´ y

¯

9y “
1

L
x ,

where nonlinearity npxq “ x3.

Step 1: Expression for Lpsq is

Lpsq “
kLRs

LCRs2 ´ Ls ` R

Step 2: Approximate xptq as xptq « B1 sinpωtq.

A0 “ 0 from simulations, A1 “ 0 since phase may be chosen arbitrarily.

Unknowns are B1 and ω.
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Van der Pol oscillator

Step 3: express npxptqq “ x3 as a Fourier Series:

npxptqq “ pB1 sinpωtqq3 « N1 sinpωtq ` N3 sinp3ωtq,

where N1 and N3 are

N1 “
2

T

ż T

0

npxptqq sinpωtqdt “
3

4
B3
1

N3 “
2

T

ż T

0

npxptqq sinp3ωtqdt “ ´
1

4
B3
1

Step 4: Write differential equation for Lur’e system:

xptq ` LpDqnpxptqq “ 0,

where xptq « B1 sinpωtq and npxptqq « N1 sinpωtq (3ω neglected, since

Fourier series for npxptq and xptq are of same order)
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Van der Pol oscillator

Step 4 (contd): express LpDqnpxptqq as

LpDqnpxptqq “ LpDqN1 sinpωtq “ N1RetLpjωqu sinpωtq ` N1ImtLpjωqu cospωtq.

Insert this into B1 sinpωtq ` LpDqnpxptqq “ 0 and equate coefficients:

B1 ` N1RetLpjωqu “ 0,

N1ImtLpjωqu “ 0

Expressions for RetLpjωqu and ImtLpjωqu are

RetLpjωqu “
´kRL2ω2

R2p1 ´ LCω2q2 ` pLωq2
, ImtLpjωqu “

kLR2ωp1 ´ LCω2q

R2p1 ´ LCω2q2 ` pLωq2

ImtLpjωqu “ 0 yields ω “ 1?
LC

B1 ` 3
4B

3
1RetLpjωqu “ 0 gives B1 “ 2?

3kR
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The circuit

Figure: Chua’s circuit

C1
dV1

dt
“

V2 ´ V1

R
´ iRpV1q

C2
dV2

dt
“

V1 ´ V2

R
` I3

L
dI3
dt

“ ´V2
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Chua’s circuit

The circuit model

Chua’s circuit is described by the following autonomous nonlinear
dynamical systems

9x1 “
dx1
dτ

“ α p´x1 ` x2 ´ npx1qq

9x2 “
dx2
dτ

“ x1 ´ x2 ` x3

9x3 “
dx3
dτ

“ ´βx2,

where τ “ tR´1C´1
2 and

x1 “ V1, x2 “ V2, x3 “ RI3,

npx1q “ RiRpV1q “ γx1 ` δx31 .

α “ C2C
´1
1 , β “ R2C2L

´1,

γ “ ´8{7, δ “ 4{63.
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Chua’s circuit

Equilibria
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Figure: Equilibria: x1 values

There are three equilibria:

x̄ “ px̄1, x̄2, x̄3q “ p´1.5, 0, 1, 5q,

x̃ “ px̃1, x̃2, x̃3q “ p0, 0, 0q,

x̂ “ px̂1, x̂2, x̂3q “ p1.5, 0,´1, 5q.
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Chua’s circuit

Matlab code

function ry, ts=Chua

γ “ ´8{7; δ “ 4{63; α “ 5; β “ 15;
x0 “ r0.5, 0.1, ´0.5s;
tspan=r0 : 0.01 : 200s;
options = odeset(’RelTol’,1e ´ 12,’AbsTol’,1e ´ 12,’Jacobian’,@J);
rt, ys = ode15s(@f ,tspan,x0,options);
plot(yp:, 1q,yp:, 2q,’b’)

function dydt “ f pt, xq
n “ r´α ˚ gpxp1qq 0 0s1;
A “ r´α α 0 ; 1 ´ 1 1 ; 0 ´ β 0s;
dydt “ A ˚ x ` n;
end

function dfdx “ Jpt, xq
dfdx “ r´α ˚ p1 ` δ ` 3 ˚ δ ˚ xp1q.ˆ2q α 0 ; 1 ´ 1 1 ; 0 ´ β 0s;
end

function y “ gpxq
y “ γ ˚ x ` δ ˚ x.ˆ3;
end

end
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Chua’s circuit

Numerical simulations for α “ 5, β “ 15
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Figure: Evolution towards x̂ “ p1.5, 0,´1, 5q.
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Figure: Evolution towards x̄ “ p´1.5, 0, 1, 5q.
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Chua’s circuit

Numerical simulations for α “ 8, β “ 15

Figure: Evolution towards a stable limit cycle located at x1 ą 1 and x3 ă ´1.
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Chua’s circuit

Numerical simulations for α “ 8, β “ 15

Figure: Evolution towards a stable limit cycle located at x1 ă ´1 and x3 ą 1.
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Chua’s circuit

Numerical simulations for α “ 9, β “ 15
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Figure: Stable period-2 cycle mostly located at x1 ą 1 and x3 ă ´1.
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Figure: Stable period-2 limit cycle mostly located at x1 ă ´1 and x3 ą 1.
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Numerical simulations for α “ 9.1, β “ 15

Figure: Stable single-scroll chaotic attractor mostly located at x1 ą 1 and x3 ă ´1.
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Numerical simulations for α “ 9.1, β “ 15

Figure: Stable single-scroll chaotic attractor mostly located at x1 ă ´1 and x3 ą 1.
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Numerical simulations for α “ 9.5, β “ 15

Figure: Stable double-scroll chaotic attractor located at |x1| ď 2 and |x3| ď 3.
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Numerical simulations for α “ 9.5, β “ 15
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Figure: x1pτq and x3pτq contributing to the development of the double-scroll
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Chua’s circuit: Computation of limit cycles

The parameters α and β are chosen in such a way that the Chua’s
circuit exhibits (e.g. α “ 8 and β “ 15):

Three unstable equilibrium points (denoted by P`, P´, P0

and corresponding to x “ ˘1.5 and to x “ 0 respectively).

Two stable asymmetric limit cycles (denoted by A` and A´)
mainly lying in the regions x ą 1 and x ă ´1 respectively.

One stable symmetric limit cycle (denoted by S s).

One unstable symmetric limit cycle (denoted by Su).
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Chua’s circuit: Complex dynamic behavior
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Chua’s circuit: Lur’e model

$

’

’

&

’

’

%

dx
dt “ ´αx ` αy ´ αnpxq

dy
dt “ x ´ y ` z

dz
dt “ ´βy

State equations can be cast in a Lur’e model

LpDqxptq “ ´αnrxptqs

Lpsq “
s3 ` p1 ` αqs2 ` βs ` αβ

s2 ` s ` β

npxq “ ´
8

7
x `

4

63
x3
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Efficient HB implementations

1. Consider the time samples vectors

yptq “ LpDqxptq

y “ rypt0q, ypt1q, ..., ypt2Nq, ypt2N`1qs1

x “ rxpt0q, xpt1q, ..., xpt2Nq, xpt2N`1qs1

s “ rspt0q, spt1q, ..., spt2Nq, spt2N`1qs1

tp “
T

2N ` 1
p p “ 1, . . . , 2N ` 1
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Efficient HB implementations

2. Impose that the HB equation be satisfied for t “ tp

yptpq ` nrxptpqs “ sptpq, p “ 1, . . . , 2N ` 1

that in vector notation yields

y ` nrxs “ s

with

nrxs “ r nrxpt1qs, nrxpt2qs, ...,nrxpt2N`1qs s1
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Efficient HB implementations

x “ Γ´1X , X “ rA0, A1, ...,AN , B1, ...,BN s1

Γ´1 “

»

—

—

—

–

1 γc1,1 γs1,1 . . . γc1,N γs1,N
1 γc2,1 γs2,1 . . . γc2,N γs2,N
...

...
...

...
...

1 γc2N`1,1 γs2N`1,1 . . . γc2N`1,N γs2N`1,N

fi

ffi

ffi

ffi

fl

γcp,q “ cospqωtpq “ cos

ˆ

q2πp

2N ` 1

˙

γsp,q “ sinpqωtpq “ sin

ˆ

q2πp

2N ` 1

˙
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Efficient HB implementations

y “ Γ´1 Ωpωq X

Ωpωq “

»

—

—

—

—

—

—

—

–

Lp0q 0 0 . . . 0 0
0 R1 I1 . . . 0 0
0 ´I1 R1 . . . 0 0
...

...
...

...
...

0 0 0 . . . RN IN
0 0 0 . . . ´IN RN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Rk “ RetLpjkωqu, Ik “ ImtLpjkωqu

nrxs “ nrΓ´1X s
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Efficient HB implementations

y ` nrxs “ s

Γ´1 Ωpωq X ` nrΓ´1X s “ s

Ωpωq X ` Γ nrΓ´1X s “ Γ s

The 2N ` 1 equations in the 2N ` 1 unknowns X can be solved
without performing any integrals.
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Limit cycle stability

Limit cycles may present the same stability characteristics of
equilibrium points: they may be stable, unstable or behave as
saddles.

The stability of limit cycles is studied through the Poincarè
map, that reduces the stability property of a limit cycle to
those of a nonlinear discrete system.

The stability can also be studied through spectral techniques.
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Periodic limit cycle: final remarks

...1 The describing function technique is very effective for detecting the
existence of limit cycles (either stable or unstable) and also for a
preliminary study of their bifurcations.

...2 The harmonic balance technique allows to determine with a good
accuracy the main limit cycle characteristics.

...3 HB based technique can be exploited for computing FMs, even in
large-scale systems (Gilli et al.).

...4 Once the limit cycle has been detected through a spectral
technique, the Floquet’s multipliers can also be computed via a
time-domain technique. The application to large arrays of nonlinear
oscillators (Chua’s circuits) has allowed to determine all the
significant limit cycle bifurcations (Gilli et al.).
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