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Neuromorphic Computing Systems

¢ The Human Brain Project in EU plans to use a
supercomputer to recreate everything known about
the human brain — a hugely ambitious goal!

e eading neuroscientists in the US are now
focussed on understanding how the brain works
through the Brain Activity Map (BAM) project, but
it's difficult to peer deeply enough into a brain to
map the activity of every neuron. Because zebrafish
embryos are transparent, the task is easier.

e Understand how neurons that make up the brain
carry out their functions.




Neuromorphic Computing Systems

So the race is on to develop a different kind of chip that more accurately
mimics the way the brain works. So-called neuromorphic chips must be
built from devices that behave like neurons — in other words they
transmit and respond to information sent in spikes rather than in a
continously varying voltage.

One reason the brain is so Is that neural spikes charge only
a small fraction of a neuron as they travel. By contrast, conventional chips
keep each and every transmission line at a certain voltage all the time.

Clearly, recent advancements in memristor technology and spintronics
are making possible entirely new ways to design chips. However, there is
a long way to go before synthetic systems can begin to match the
capability of natural ones.



“more Moore” and “Beyond Moore”
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Data Transfer issue - Energy Consumption

Rough calculation:
- In 22 nm, swapping 1 bit in a transistor has an energy cost:
~ 1 attojoule (10-18 J)
- Moving a 1-bit data on the silicon cost:
~1 picojoule/mm (10-12 ]/ mm)
- Moving a data 10° per second (1 GHz) in silicon has a cost:
1 pJ/mm x 10° s = ~1 milliwatt/ mm
- 64 bit bus @ 1 GHz:
~64 milliwatts/mm (with 100% activity)
- For 1 cm of 64 bitbus @ 1 GHz : 0,64 W/cm

On modern chips, there are about km of wires on chip, even with
low toggle rate, this lead to several Watt/cm?



Removing the memory hierarchy

- What if we have small, fast, low power, persistent
storage cell?

- This will drive re-thinking the complete memory

hierarchy and system architecture.
- Coexistence of data and computational properties
in a single device.

- There are new technologies that have that potential:
MRAM, RRAM, Memristors, ....



Information Processing Devices

: 4 Properties
i e Control Variable | State Variable Output Variable

FET - Novel Materials (III-V, | Electron Charge Charge Charge
Ge, carbon-based, etc.)

SpinFET Electron Charge Spin Charge

Spin-Torque Electron Spin Spin Charge

Spin-Wave Electron Spin Waves Spin Charge

Photon
Tunneling Transistor Electron Charge Charge Charge
Molecular switch Electron or | Charge Charge Charge
Atoms
NEMS Atoms Charge Position Charge
Atomic Switch Atoms Charge Position Electron
Memristor Atoms Charge Charge, Electron
Magnetic Cellular Automata | FM Domain Magnetic dipole Spin FM Domain
Moving Domain Wall FM Domain Magnetic Dipole Spin FM Domain
Multi-Ferroic Tunnel | FM Domain Spin Charge Electron
Junction
Optical or Plasmonics Atoms or | Charge Optical Photons
Electrons Density

Thermal Transistor Phonons Thermal Energy | Temperature | Phonons

Taxonomy for Candidate Information Processing Devices




Breakthrough in Memristor Technology

@ non-volatile memories — low—power, high—density

@ neuromorphic systems — Memristor mimics biological synapse

e As in a living creature the weight of a synapse is adapted by the ionic
flow through it, so the conductance of a memristor is adjusted by the
flux across or the charge through it depending on its controlling source.

@ novel computer architectures — memory and process coexist

e Memristor will play a fundamental role in the realization of novel
neuromorphic computing architectures merging memory and
computation. This fundamental step will begin to bridge the main
divide between biological computation and traditional computation,
because memristor permits to bring data close to computation (the
way biological systems do) and they use very little power to store that
information.



Fundamentals in Memristor

@ non-volatile memories —  low-power, high-density
@ neuromorphic systems —  memristors mimics synapses
@ computer architectures —  memory and processing coexist

Important issues:
@ full understanding of nonlinear dynamics

@ modeling



Memristor - L. Chua (1971)

RANSACTIONS ON CIRCUIT THEORY, VOL. CT-18, NO. 5, SEPTEMBER 1971

Memristor—The Missing Circuit Element
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Memristor - L. Chua and S.

Kang (1976)

(t) = M(w(t))i(t), we R"

dw(t) ,
Y~ hw(e)i(0). 1

Recently, “Memristors” and
“Memristive Devices”

have been used interchangeably

Main properties:
M passivity criterion = M(w(t)) > 0

@ non-volatile memory property = h(w(t),0,t) = 0, Vt

™ v-i pinched hysteresis loop (Lissajous
figure) for any periodic source. The
pinched hysteresis loop shrinks
continuously as the frequency increases
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Memristor - HP Labs (2008
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Memristor-based nonlinear oscillators

Memristor: model comparison

Memristor Model
Comparison

Alon Ascoli, Fernando Corinto, Vanessa Senger, and Ronald Tetzlaff

Reference
model

dw
dt

foit Sinh( |.l | )

Figure 1. Memristor-based circuit used in the optimization
strategy of Section Ill.
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Figure 6. Memristor-based second-order oscillator.
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Figure 12. Memristor-based third-order oscillator.
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Table 4.
Comparison among the memristor models. For sake
of brevity we use/the acronym BM to indicate Biolek’s
\ Memristor.
- Test1 v
Test 2-a v v v
Test 2-b - v
Test 2-c v v -
| Test 3 # # #




Memristor-based nonlinear oscillators

Numerical simulations

R/kQ | C/uF | L/uH | I,/nd n
. 1.5 4 2.5 2.7 1.8

Zero-Crossing property
/

initial conditions: v(0)=10mV, i (0) =10 mA

input: v,(f) = v, sin(2gft) with v, =1.75V
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f-dependence of non-self-crossing type Il loop.



Memristor-based nonlinear oscillators

Experimental demonstration * R, added to measure i, in conjunction with v-v
. Y > G amplifier of gain G

AR b B S~ . jiscrete realization employs diodes D1N4148,
- ' R=15kQ,C=47 uF , L =220 uH

Lo

Top: v (t) =v, sin(2aft), v, =2.5Vand f=10Hz
Bottom:v (1) = GRi. (1) with R, =1kQand G =10 Pinched hysteresis loop



Memristor-based nonlinear oscillators
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B filter

Top: v (t) =v, sin(274ft), v, =2.5Vand f =500 Hz
Bottom: v, (¢) = GRi,(t) with R, =1kQand G =10 Shrinking of the area of the lobes

v, (1)



Nonlinear dynamics



Memristor-based nonlinear oscillators

In Circuit Theory physical quantities of interest are i and v.
However the ideal memristor is univocally described by the g — @ relation:

— circuits based upon it should be analyzed in terms of charge and flux.

Example: derive state egs. by integration of KVLs and KCLs

(dx

dl'l = ax2 - aqm (xl)
<

dx
ER

X, =@, X, = ¢, : states
(a=C",
i 1B =-RL;: parameters
0,(5) =bx +(@=b)n(x), n(x) =2 (x+1l=l5-1) |-

1

Memristor nonlinearity (hp.: b > a > 0):




Memristor-based nonlinear oscillators

The system is characterized by Lure model L(D)x, =-g,(x,), L(D)=

D?* - BD +al
a(D-f)

It exhibits ("Nonlinear dynamics of memristor oscillators”, Corinto et al. 2012)

(a) only one equilibrium, i.e. x, =(0,0),

if a>&3" or b<&B”'

(b) an infinite number of equilibria, i.e.

X E{(x,,x,): x, = ax,,Vx, E[-1,+1]}

f a=gp"
(c) 3 equilibria, i.e.
b-a b-a
X, X, =(/5[))b—§,§/3b—§)jx_ =—X,

if |g< 5/3—1 and p s é:/j—l

3| 4~ pl/%
IZ*’ !
P
A ,/‘
T = I Xol l
-0.5 !
-1 XQ‘F ‘—k

Flux lines and equilibria in case (c)

5/3_1 < Xop < Xy,

Topological constraints:
Xyp <a



Memristor-based nonlinear oscillators

Local stability of equilibria

Jacobian of the system: .

Existence .
region of

3 equilibria

Y P2y

—a de ('xl) o

J = dx, |
-& p

where %

a-b
q,/(x,) =b+——(sgn(x, +1)-sgn(x, - 1))
. g " 1 1 2
The eigenvalues of an equilibrium : ’1+,— = E‘L’ii T° —4A

Local stability the origin x, = (0,0) :

« determinant A = (£ -af)>0 since a<&B™

 stability depends on sign of trace T,=fB-aa’: if la < Ba

-1

« Spiral/nodal behavior depends on sign of 4A — 2

then X, is LU



Memristor-based nonlinear oscillators

Condition for a Hopf bifurcation

Using all the previous results, we have:

: -1 -1 1 . . a_ a, 0 5/))_1 /))a_l
- if §87 <0.256a" < fa” then Xyisan UN Va: 0<a<EB s !

a
. if 0.258a™ <&B' < Ba then X, isan UF for O<a<a, a0 4, 5[5_1 [’)0‘_1 >
an UN for a, <a<&B”' ¢
: -1 -1 : -1 a_ 0 a, =§/3_1 =/30{_1
« if §87 =pPa (deg. case)thenx,isan UF Va: 0<a <& —— >,
e if E87'> Ba' then X, isan UF for 0 <a<aB™
-1 -1
isa SFfor g~ <a<a, a;‘ 0 ﬁ?{ C:Z+ 5/?) >
isaSNfor g, <a<&B™' ¢

Remark: in this case a Hopf supercritical bifurcation occurs for |4 = Bo™




Memristor-based nonlinear oscillators

Local stability of the other two equilibria . Existence . _ ¢
Local stability of X, = (¥X;,,X,,): | region of |
+ determinant A, = a(§-bf)<0since b> &~ | 3 equilibria | ‘j
« Thus the equilibrium is a saddle Vb: b > EB™' | ; | |
« Speed of dynamics along saddle manifolds depends on trace*.
In particular, since 7, = f-ba <0 for b> Ba™", then
: -1 -1 : -1 0 /3)05_1 5/3)_1
a)if &~ >pPa” then 7, <0 Vb:p>E&R . . . ;
b)if £87' = Ba~' (deg. case)then 7, <0 Vb: p>EB™! —t >
* 0 & =pa
c)if £87' < Ba then 7, >0 for E87' <b< Ba™
) : $ ’ > b
7T, < 0 for b> ﬂa 1 0 g/j_l /)70[—1

A’+

Remark: same conclusions may be drawn regarding stability of x_

* if £, < dynamics are faster on w?> than on ¥ M_‘ >

2 2

A, LIy —4A)



Memristor-based nonlinear oscillators

Dynamics on a-b plane for a <£87', b>E&8"' and &3 > fa".

1.5

/x0 is a SF

Xyisan UF =

1.4 —>

1.3/ locus of Hopf Bifurcation —
O 1.2

\X0 is a SN

1.1 b

0.9

X, and x_ are saddles with dynamics on W?° faster than on WY



Memristor-based nonlinear oscillators

Eigenvalues of equilibria for a <&8™', b>&8" and 87" > Ba ™" .

1 ‘ , '

(@) Hopfbif.a=0.8 (b)
05 N \ -
" ¢
o o of closeto birth | . g
% of het. orbit %
a=0.565
-05- ] -05
x0 turns from SF
to SN, a = 0.989
33 02 04 0 01 02 03 04 05 s i 4 -2 0 2
Rry ) Rh )
0’70 :

(a) eigenvalues of x, for 0 <a <&B'and (b) eigenvalues of x, for b>&87" (£=1, B=1, a=1.29



Oscillatory model of neurocomputing

- Oscillations experimentally
observed In visual cortex after
stimulus

- Synchronized oscillations observed
iIn parts of the brain not
geometrically close

- Synchronized oscillations is linked
to association

- Can we build an image recognition
system from coupled oscillators?

Cortex

IXXX.
®

Conventional Neurocomputer Oscillatory Neurocomputer

Hoppensteadt and Izhikevich, Phys Rev L,
VOLUME 82, NUMBER 14, April 5, 1999



What is synchronization”

e Synchronize: to agree in time, to happen at the same time, to represent or
arrange (events) to indicate coincidence or coexistence

e |t is an important concept in: Physics, Biology, Telecommunication, Computer
science, Cryptography, Multimedia, Photography, Music (rhythm)

e Synchronicity is a word coined by the Swiss psychologist Carl Jung to
describe the “temporally coincident occurrences of acausal events.”



What is synchronization”

4 i

“*"Two Os t:lllators"

with a non-line coupling

may give rise to chaos
C 4

but for proper parameter choice

Py -

they may synchronise




A historical perspective
Christiaan Huygens (1658)

‘It i1s quite worth noting that when we

suspended two clocks so constructed from

Synchronization of Pendulum Clocks two hooks imbedded in the same wooden
- beam, the motions of each pendulum in

T opposite swings were so much in agreement
that they never receded the least bit from
each other and the sound of each was

always heard simultaneously. |
Further, if this agreement was disturbed by some interference, it

reestablished itself in a short time. For a long time | was amazed at
this unexpected result, but after a careful examination finally found
that the cause of this is due to the motion of the beam, even
though this is hardly perceptible.”




A historical perspective
Engelbert Kaempfer (1680)

Synchronization in a large population of
oscillating systems

Engelbert Kaempfer (1680)

The glowworms represent another shew, which settle on some Trees, like a
fiery cloud, with this surprising circumstance, that a whole swarm of these
insects, having taken possession of one Tree, and spread themselves over its
branches, sometimes hide their Light all at once, and a moment after make it

appear again with the utmost regularity and exactness

This very early observation reports on synchronization in a targe population of
oscillating systems. The same physical mechanisin that makes the insects to keep
in sync is responsible for the emergence of synchronous clapping in a large
audience or onset of thythms in neuronal populations.




A historical perspective

¢ Sleep-Wake rhythms: biological systems can adjust their rhythms to external
signals. Under natural conditions, biological clocks tune their rhythms (i.e.
synchronize) in accordance with the 24-hour period of the Earth’s daily cycle
(First observed by J.J. Dortous de Mairan, 1729)

e Synchronization of triode oscillators (Appleton, van der Pol, van der Mark,
1922-1928)



The concept of “Synchronization”

¢ In a classical context, synchronization (from Greek: syn = the same, common
and: chronos = time) means adjustment of rhythms of self-sustained periodic
oscillators due to their weak interaction (coupling); this adjustment can be
described in terms of phase locking and frequency entrainment ().

(1) If you have two vibrating objects with the same natural frequency or
corresponding harmonic, they will both have a forced vibration effect on each other.
This process, given time, normally leads to a condition where both objects
synchronize. Of interest, both oscillators do not, necessarily, must have exactly the
same natural frequency. If there is enough "coupling" between the oscillators, they
will sometime "lock-in" with one another at a slightly shifted frequency: the
frequencies become equal or entrained. The onset of a certain relationship between
the phases of these oscillators is often termed phase locking.



What is a self-sustained periodic oscillator ?

1. The oscillator is an active system. It contains an internal
source of energy that is transformed into oscillatory behavior.
Being isolated, it continues to generate the same rhythm until
the source of energy expires. It is described as an
autonomous dynamical system.

2. The form of the oscillation is determined by the parameters
of the system and does not depend on initial conditions.

3. The oscillation is stable to (small) perturbations.

The above properties are characteristic of nonlinear
oscillators



Electronic nonlinear circuits

Example: Two identical coupled Van der Pol oscillators
W =0, , A;=4,

( dxl ( dX2

_ d(x- — _ d(x —
| 9 oy + (xz xl) <dt Wy Yy + (X1 Xz)
d d
% = —a)lx1+/11(,02—x12—y12)y1 % = —W)Xx +ﬂa(,02—x%—y§)y2

Uncoupled: d=0 Coupled: d = 0.1

4

phase difference remains phase difference vanishes



Take home messagge

e Synchronization properties are influenced by the general properties of the
oscillatory network: complex systems can be more or less prone to
synchronize due to their specific features.

e Synchronization requires knowledge of both nonlinear dynamics and of
complex systems.



The dynamics of coupled periodic oscillators:

strong synchronization

Izhikevich and Kuramoto (2006)

Entrainment
wi =w, Vi

Frequency locking

Phase locking

AN

%

J 7



Oscillatory networks

Single oscillator

X,' =Fi(Xi) Xie R™, Fi: R™"—> R™, (i=12,...,n)
has at least one hyperbolic T;-periodic solution ;(t) : R — R™

/F\Q 0i(t) =wit,0; € S* =0, 21, w; =2F

70 \y

Weakly Connected Oscillatory Networks (¢ < 1)
Xi=Fi(X)) + € Gi(X), X=[X,...X)], Gi: R™" - R™

9,’(1‘) —wj t+ ¢i(€t)



Oscillatory networks:
Global dynamic behaviour

Weakly Connected Oscillatory Networks (¢ < 1)

Xi=Fi(X;) + € G(X), X=[X,...X"], G: R™" > R™
9,'(t) =w; t 1 ¢,’(€t)

@ Time—domain techniques do not allow to identify all the
limit cycles (either stable or unstable).
o It would require to consider infinitely many initial conditions.
@ Unstable limit cycles cannot be detected through simulation.

@ By means of Spectral techniques (Describing Function and
Harmonic Balance), the computation of all the limit cycles is
reduced to a non-differential algebraic problem.

@ Such methods are not suitable for characterizing the global
dynamic behavior of complex networks with a large number of
attractors.



Oscillatory networks:
Malkin Theorem

Weakly Connected Oscillatory Networks (¢ < 1)
Xi=Fi(X)) + € Gi(X), X=[X{,...X'], Gj: R™" - R™
0i(t) =w; t+ o¢i(et)

T
y w / ¢ — @j
i — = ' i t L,
b=% [ Qw6 |y (e+22%)| o

T =mcm(Ty, ..., T,)

d—di\ |, b1 — b , bn—di\ ]
(0258 = P (4 252 ) e (04 22

Qi(t) = —[DFi(v(t)) Qi(t), Qi(0)Fi(i(0)) =1




Joint application of the DF and MT

O The periodic trajectories y;(t) of the uncoupled oscillators are
approximated through the describing function technique.

@ Once the approximation of ;(t) is known, a first harmonic
approximation of Q;(t) is computed, by exploiting the linear
adjoint problem and the normalization condition.

O The approximated phase deviation equation is derived by
analytically computing the integral expression given by the

Malkin's Theorem.

The phase equation is analyzed in order to determine the total
number of stationary solutions (equilibrium points) and their
stability properties. They correspond to the total number of limit
cycles of the original weakly connected network.



Applications

@ Synchronous states can be exploited for dynamic pattern
recognition and to realize associative and dynamic memories.
By means of a simple learning algorithm, the phase-deviation
equation is designed in such a way that given sets of patterns
can be stored and recalled. In particular, two models of
WCONSs have been proposed as examples of associative and
dynamic memories.

@ Spiral waves are the most universal form of patterns arising in
dissipative media of oscillatory and excitable nature. By
focusing on oscillatory networks, whose cells admit of a Lur’e
description and are linearly connected through weak couplings,
the occurrence of spiral waves has been studied.



Oscillatory associative memories

International Journal of Bifurcation and Chaos, Vol. 17, No. 12 (2007) 4365-4379 2 4
© World Scientific Publishing Company

WEAKLY CONNECTED OSCILLATORY
NETWORK MODELS FOR ASSOCIATIVE
AND DYNAMIC MEMORIES >

FERNANDO CORINTO, MICHELE BONNIN
and MARCO GILLI

0 20 40 60 80 100 20 40 60 80 100

O

Fig. 1. Weakly connected oscillatory network having a star
topology.

All oscillators are phase locked.

Degree of matching remains above
a threshold.

Thus a better discrimination of
matching patterns.



Oscillatory associative memories

Can oscillatory associative memories
outperform “static” associative memories”?

e Goal: find classes of problem solved only by oscillatory networks

¢ No restrictions about the architecture of the networks



Oscillatory associative memories

Can oscillatory associative memories
outperform “static” associative memories”?

e (Goal: conceive non-boolean spatio-
temporal algorithms to solve a classical
problem in a more efficient (in terms of speed,
POWEr, ...) way

® consider physical constrains



Spin-Torque Oscillatory arrays

— T o Ppattern recognition tasks
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Spin-Torque Oscillatory arrays

The ,traditional” classification method

Feature extraction| Classification '
:> Extraction of low |:> Comparing the feature |:>
Image dimensional, Inout vector with stored Class
meaningful Fegture labeled feature
information vector vectors
The proposed classification
method
Feature extraction Classification
Extraction of low
|:> ] Comparing the |:>
information labeled signatures Class

Input Feature ﬂ ﬁ Signature(s)
vector

The addition of O-CNN arrays Mwer of the architecture

and increase the detection rate.

The OCNN array can transform the input feature vector in a way which helps
classification.



Conclusions and Perspectives

e Simulation with real-life data: Images taken by a mobile robot has been used for
classification with similar results.

e Boundary conditions /lateral input/: with side input, changing the boundary
conditions the properties of the array can be changed, this can be used to
increase the computational strength (programmability) of the array

e OCNN array with different spin oscillators: The usage of two different dynamics in
one network would increase the possible outcomes of one OCNN array

¢ Transient based computation: using the evolution of the phase shift to determine
extra properties about the input vectors

e Synchronization requires knowledge of both nonlinear dynamics and of complex
systems.




Nonlinear analysis tools

@ Differential or integral equations represent suitable
mathematical models of physical systems.
@ Approximate analytical tools are required for studying

(analysis and design) nonlinear dynamical systems describing
electrical circuits, mechanical and biological systems, ...

@ Tools for detecting oscillations



