
Chaos in El Niño

Chaos in Vallis’ asymmetric Lorenz model

for El Niño

Barnabás M. Garaya,b,1, Balázs Indiga

aFaculty of Information Technology, Pázmány Péter Catholic University, Práter
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Abstract

We consider Vallis’ symmetric and asymmetric Lorenz models for
El Niño—systems of autonomous ordinary differential equations in
3D—with the usual parameters and, in both cases, by using rigorous
numerics, locate topological horseshoes in iterates of the respective
Poincaré return maps associated to the pair of the “crescent–shaped
curves” on a horizontal plane. The minimal number of iterates with
the full horseshoe embedded turns out to be two in the symmetric,
and three in the asymmetric case, respectively.

Key words: computer–assisted proof for chaos, El Niño, shift dynamics

AMS Subject Classification: primary 37N30, secondary 34A26, 37B10, 37N10

1Corresponding author.

1



Chaos in El Niño

1 Introduction

The aim of this paper is to give computer–assisted proof for chaos in Vallis’
model [25], [26]

ẋ = By − C(x+ p) , ẏ = xz − y , ż = −xy − z + 1 (1)

for El Niño with parameters B = 102, C = 3, p = 0 in Vallis [25], [26]
and B = 102, C = 3, p = 0.83 in Tung [21]. We follow the standard
Mischaikow–Mrozek–Zgliczynski approach and look for the full shift on two
symbols embedded in some iterates of the Poincaré return map Π = Πp

associated to the section

S = {(x, y, z) ∈ R3 | z = 0.3 and xy < 0.7} , (2)

the subset of a horizontal plane where the vector field points upward. When
doing this and restricting our attention to the pairs of the “crescent–shaped
curves”, an unexpected difference between the symmetric and the asymmetric
case is observed. Please compare Figures 2–3 to Figures 4–5 and see Corollary
1 as well.

The general analysis of (1) is parallel to the one of the classical Lorenz
system in Sparrow [18]. For a = a(p) > 0 sufficiently small and R = R(p) > 0
sufficiently large, formula V (x, y, z) = a(p)x2 + y2 + z2 defines a quadratic
Liapunov function outside the ball of radius R (centered at the origin) and
implies that the point at infinity is repulsive. On the other hand, the diver-
gence is −(C+2), a negative constant. Thus, for (B = 102, C = 3 and) p ∈ R
arbitrarily given, system (1) admits a compact global attractor A = Ap of
measure zero.

Both for p = 0 and p = 0.83, the global attractor Ap looks like a slightly
distorted copy of the standard Lorenz butterfly. (Equilibrium point analysis
leads to the same qualitative results.) Actually, for p = 0, systems (1) and

ẋ = σ(y − x) , ẏ = rx− y − xz , ż = xy − bz (3)

are affinely equivalent [21] — see also Remark 1 below. This is why we feel
justified to term (1) as the asymmetric Lorenz model for El Niño.

The derivation of Vallis’ model is presented in Section 2 below and is
followed by a short survey of El Niño modelling from the view–point of chaos
theory. The main results of the paper are stated in Section 3. Section 4 is
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devoted to the computer–assisted proofs themselves. We follow the standard
Mischaikow–Mrozek–Zgliczynski approach. (The present paper cannot be
considered as a contribution to recent El Niño research. Naturally, Vallis
[25], [26] himself was fully aware of the unrealistic features of his model.)

2 Between reality and mathematical model

The derivation of system (1) is based on a two–point discretization of the 2D
heat advection equation

∂T

∂t
= − ∂(uT )

∂x
− ∂(wT )

∂z
(4)

considered in the west–east cross–section of the equatorial Pacific. The cross–
section is subdivided by a vertical line and a horizontal line. The vertical line
halves the distance between west–east ocean boundaries. The horizontal line
is an acceptable substitute for the thermocline separating the warm upper
layer of the ocean from the cold water below. Averaged temperatures of the
upper ocean layer in the western and eastern Pacific are Tw = Tw(t) and
Te = Te(t), respectively. Deep ocean temperature under the thermocline is
Td = const. Let U be the velocity of the west–east ocean current at the mid-
dle of the upper layer and let W and −W be the velocities of upwelling and
downwelling across the thermocline in the middle of the western and eastern
ocean basin, respectively. The symmetry between upwelling and downwelling
is the result of mass conservation, implying also that U ·∆z = W ·∆x. Please
see the accompanying Figure 1.

Normal velocities are zero at domain boundaries. Hence, centered finite
differences give that

Ṫw = −
U · Tw+Te

2
− 0

∆x
−

0 − W · Tw+Td
2

∆z
− α(Tw − T∗) (5)

and

Ṫe = −
0− U · Tw+Te

2

∆x
−

0 − (−W ) · Te+Td
2

∆z
− α(Tw − T∗) (6)

where the correction terms are due to heat exchange with the overlying at-
mosphere. They express Newtonian damping, with T∗ = const > Td denoting
the temperature to which the ocean would relax in the absence of motion.
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Figure 1: Vallis’ model for heat fluctuations in the west–east section of the
equatorial Pacific. Here ∆x is taken for 7500 kilometers but the value of ∆z
does not need to be specified. See also Remark 2.

In order to extend (5)–(6) to a closed system, an equation for U = U(t)
is needed, too. This equation is

U̇ = β
Te − Tw

∆x
− γ(U − U∗) . (7)

Here −γU represents mechanical damping, the rest of the right–hand side
represents wind produced stress whereas U∗ = const ≤ 0 stays for the av-
erage effect of the trade winds. (The ocean current is driven by the surface
wind which, in turn, is generated by the temperature gradient. Variations in
pressure are neglected.)

The new variables τ and x, y, z in system (5)–(7) are introduced by letting

τ = αt , x(τ) = x(αt) , y(τ) = y(αt) , z(τ) = z(αt) ,

x(τ) =
U(t)

2α ·∆x
, y(τ) =

Te(t)− Tw(t)

2(T∗ − Td)
, z(τ) =

Te(t) + Tw(t)− 2Td
2(T∗ − Td)

.

4



Chaos in El Niño

With τ re–substituted by t at the end of the computation, the standard form
of Vallis’ asymmetric model (1) is readily obtained.

Remark 1. Case p = 0 of (1) is equivalent to the famous Lorenz system.
More precisely, case p = 0 of (1) goes over into

Ẋ = C(Y −X) , Ẏ =
B

C
X − Y −XZ , Ż = XY − Z (8)

by the affine coordinate transformation

x = −X , y = −C
B
Y , z = −C

B
Z + 1 . (9)

With σ = C, b = 1, and r = B
C

, system (8) is nothing else but (3). In
particular, parameters B = 102, C = 3 correspond to the choice σ = 3,
b = 1, r = 34.

With great probability, transformation (9) has remained unnoticed for a
long time. All we know is that it appears in K.K. Tung’s 2007 textbook [21]
on mathematical modelling. The 2006 chaos monograph by N.A. Magnitskii
and V.A. Sidorov [9] contains a detailed analysis of the bifurcation scenarios
of case p = 0 of (1) and many similarities to that of the classical Lorenz
system are mentioned.

As it is clear from the derivation above, (1) cannot be anything else
but a toy model for El Niño. This notwithstanding, the parameter triplets
B = 102, C = 3, p = 0 in Vallis [25], [26] and B = 102, C = 3, p = 0.83 in
Tung [21] carry some physical meaning. Also the chaotic simulation results
in [26] and [21] are not absolutely incompatible with El Niño observations.

However, existence or non–existence of chaos depends on the grid and the
discretization method chosen. As Vallis [26] himself observes, a two–point
upwind scheme—when applied to solve the advection equation (4)—results
in an apparently bistable 3D system of ordinary differential equations. In
fact, considering only the case U∗ = 0 and U > 0, upwind discretization
gives that (please see equations (13a)–(14a) in [26])

Ṫw =
U

∆x
(Td − Tw) − α(Tw − T∗) , Ṫw =

U

∆x
(Tw − Te) − α(Te − T∗) .

Passing, as before, to the new variables τ and x, y, z, one arrives at the system

ẋ = By − Cx , ẏ = x(−3y + z)− y , ż = −x(y + z)− z + 1 . (10)
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(Equation (7) for U was kept and, as before, τ was re–substituted by t at
the end of the computation.) The non–trivial equilibria of system (10) are

E±0 =

(
x±0 ,

C

B
x±0 ,

C

B
(1 + x±0 )

)
where x±0 =

1

2

(
−1±

√
B

C

)
.

Thus x−0 < 0 for B,C > 0 and x+
0 > 0 if and only if B > C. Apply-

ing Routh–Hurwitz criterion, a little algebra shows that equilibrium E+
0 , the

only equilibrium allowed by condition U > 0, is asymptotically stable when-
ever B > C > 0 ([26], with the typing errors corrected).

The situation is the same as with the derivation of the classical Lorenz
equations. System (3) is obtained via keeping the first three coefficients in a
double Fourier expansion when solving the convection equations of Saltzman.
Unfortunately, depending on which Fourier modes are kept, the qualitative
properties of the approximating systems of ordinary differential equations
differ considerably. Not all of them are chaotic and even if chaotic, the dy-
namical behaviour at the onset of chaos varies on a case to case basis. This is
a widely studied area of research [12], [16]. (Returning to equation (4), it is
doubtful if the discrepancies can be resolved by passing to a finer horizontal
grid spacing.)

In our present understanding [4], [17], it is very unlikely that El Niño
phenomena can be adequately modelled by a low–dimensional dynamical
system. Remaining in the realm of “simple” approaches, delayed oscillator
models based on ocean wave dynamics along the thermocline are considered
as more realistic. In what follows τ stays for the time lag between wave
generation and arrival in the eastern basin via reflection off the western ocean
boundary and x = x(t) can be roughly identified with Te = Te(t). In an
interesting paper by Redmond, LeBlanc, and Longtin [15], the Suarez–Schopf
model [19]

ẋ(t) = x(t) + αx(t− τ)− x3(t) (11)

and the Battisti–Hirst model [3]

ẋ(t) = x(t) + αx(t− τ)− β(x(t)− γx(t− τ))3 (12)

are presented in a unified framework. Both are considered as truncated Tay-
lor expansions of the general delay–differential system ẋ(t) = f(x(t), x(t−τ))
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around (0, 0) ∈ R×R. Here again, qualitative dynamics depends heavily on
the truncation. For all reasonable parameter values, equation (11) admits a
compact global attractor. The fine structure of this global attractor is not
fully understood. However, the Poincaré–Bendixson type theorem of Mallet–
Paret and Sell [10] can be applied to show that chaos is excluded, and that
the attractor of slow oscillation is a 2D disc [8]. It is suspected that this 2D
disc attracts an open dense subset of the phase space as in [11]. On the other
hand, when equipped with the original Battisti–Hirst parameters, equation
(12) seems to be chaotic [24]. The claim is supported by strong numerical evi-
dence. The general development of rigorous numerics for infinite–dimensional
problems—in particular, recent advances by Lesssard, Mischaikow, Tucker,
Zgliczynski and their coworkers—suggests that computer–assisted proofs for
topological horseshoes in delay–differential equations will be possible in the
near future. Equation (12) with β = 0 but τ = τ(t, x) has been investigated
in [5].

Remark 2. The thermocline depth in the equatorial Pacific is about 200
meters at the western and about 50 metres at the eastern ocean boundary.
The El Niño phenomenon is essentially a deepening of the thermocline and
an anomalous, Christmas time warming of the coastal waters off Peru and
Ecuador about every 3 to 6 years. Thermocline displacements at the eastern
boundary can be modelled by

ḣE(t) = αAκ(hE(t− τ))− βAκ(hE(t− σ)) + γ cos(ωat) , (13)

a differential–delay equation with two time lags [23]. Here Aκ is a uniformly
bounded family of sigmoid functions (parametrized by κ > 0, the slope at
hE = 0) and ωa is the annual frequency of the idealized seasonal forcing. As
κ is increased, equation (13) follows the quasiperiodic route to chaos. The
quasiperiodic route to chaos is confirmed and refined in (two slightly different
versions of) the Zebiac–Cane model, too [7], [22].

The Zebiac–Cane model plays a central role in the ENSO literature [4],
[17]. It is the first model to make El Niño prediction possible. The extremely
strong 1997/98 El Niño episode was successfully forecasted on the basis of
the Zebiac–Cane model, a coupled atmosphere–ocean model for the entire
tropical Pacific. Note that (12) is a simplification of the Zebiac–Cane model.

In spite of its saintly name, El Niño (while referring to the Christ child)
has a “devilishly irregular behaviour” [7], more complicated than the great
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variety of its mathematical models. Both nature and source of this irregu-
larity are only rudimentarily understood. The available time series are too
short and the data is not accurate enough. The reader is kindly referred
to the “Noise or chaos? Stable or unstable? Linear or nonlinear? Does it
matter and can we tell?” discussion on pages 280–283 of the monograph of
Sarachik and Cane [17].

3 The main results of the present paper

Computer simulation with low resolution suggests that Ap ∩ S is the union
of two crescent–shaped curves. For p = 0 and p = 0.83, we define the upper
and the lower branch of Ap ∩ S as

CSu = {(x, y, 0.3) ∈ A0 | y − 0.207 >
−0.212− 0.207

−3.343− 3.202
(x− 3.202)} , (14)

CAu = {(x, y, 0.3) ∈ A0.83 | y − 0.209 >
−0.199− 0.209

−3.531− 2.855
(x− 2.855)} , (15)

CS` = A0 ∩ S \ CSu , CA` = A0.83 ∩ S \ CAu .
From now on, parameter values p = 0 and p = 0.83 will be referred to by
the upper indices S and A (symmetry versus asymmetry), respectively. The
upper and the lower branches are compact and disjoint subsets of S but they
are not curves at all. The more zooming in, the more details of a Cantor
book structure visible. However, high resolution figures would not help the
heuristics we follow.

To the purposes of the present paper, the set Ap∩S is represented by the
sequence of consecutive upward intersections between the trajectory starting
from the point P ∗ = (0.5, 1, 0.3) ∈ S and the plane of equation z = 0.3. More
precisely, forgetting about the last coordinate of the k–th upward intersection
point

Πk
0(P ∗) = (xSk (P ∗), ySk (P ∗), zSk (P ∗)) = (xSk (P ∗), ySk (P ∗), 0.3) ∈ S ,

the set A0 ∩ S is visualized by the finite sequence

(xSk (P ∗), ySk (P ∗)) ∈ R× R , k = 50, 51, . . . , 100000 .

For Lorenz system (3) with the classical parameters, a celebrated result of
Tucker [20] states that such an identification—in the well-defined technical
sense of robustness and SRB measures—is fully justified.
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Figure 2: The graphs of the Lorenz type maps MS
u,1 (left panel) and MS

`,1

(right panel)

For n = 1, 2, 3 (there is no need of going any further), a quadruple of
Lorenz type maps

M I
i,n : xIk(P

∗)→ xIk+n(P ∗) , I = S,A and i = u, `

is introduced, simply by specifying the respective domains. For I = S,A and
i = u, `, the domain of M I

i,n, n = 1, 2, 3 is chosen for the subsequence with
indices 50 ≤ k ≤ 100000− n such that

(xIk(P
∗), yIk(P

∗), 0.3) ∈ CIi and (xIk+n(P ∗), yIk+n(P ∗), 0.3) ∈ CIi .

Though its domain consists of only a finite set of points, we consider M I
i,n

as if it were defined and continuous on a finite union of open intervals. This
heuristics is made possible by an optical illusion due to the relative denseness
of the actual domains. The graphs of mappings MS

u,1 & MS
`,1, MS

u,2, MA
u,2 &

MA
`,2 and MA

u,3 are shown in Figures 2, 3, 4 and 5, respectively. Observe the
tremendous difference between Figures 3 and 4. This comes as a surprise
because CAu and CSu are pretty much the same (whereas CA` is about 15%
“shorter” than CS` ).

Now we are in a position to state our finding.

Corollary 1. Consider equation (1) with parameters B = 102, C = 3 and
recall that Πn

p denotes the n–th iterate of the Poincaré return map associated
to section (2).

9



Chaos in El Niño

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4
-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.92 -1.77 -1.62

Figure 3: The graph of MS
u,2, with a magnified and rescaled view of a selected

area (for determining the values of δ, γ, β and α)

For p = 0, Π2
p admits a Σ2–chaos on CSu defined in (14). The result does

not hold true for Πp itself, neither on CSu nor on CS` .
For p = 0.83, Π3

p admits a Σ2–chaos on CAu defined in (15). The result
does not hold true for Πp and Π2

p themselves, neither on CAu nor on CA` .

The strategy is to see if elementary chaos results in one dimension apply
for M I

i,1, i.e., for what looks like the graph of the underlying real function
(I = S,A and i = u, `). If not, we pass from M I

i,1 to M I
i,2 etc. The two

intervals obtained in this manner will serve as an educated initial guess in
choosing the critical quadrangles needed for a successful application of The-
orem 1, the core of most computer–assisted proofs for topological horseshoes
in two dimension.
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Figure 4: The graphs of the Lorenz type maps MA
u,2 (left panel) and MA

`,2

(right panel)

4 The proof of Corollary 1

The following theorem is a slight reformulation of the main result in Zgliczyn-
ski [27]. A simple proof (working also in the higher–dimensional setting [2])
is given in [1].

Theorem 1. Set X = R2. With x = (x1, x2) ∈ R×R = X, define

E =
{
x ∈ X

∣∣ 1 ≤ |x1| ≤ 2 , |x2| ≥ 2
}
, OC = {x ∈ X

∣∣ |x1| < 1} ,

R = {x ∈ X
∣∣ 1 ≤ x1 ≤ 2, |x2| ≤ 2} , OR = {x ∈ X

∣∣ x1 > 2} ,
L = {x ∈ X

∣∣ − 2 ≤ x1 ≤ −1, |x2| ≤ 2} , OL = {x ∈ X
∣∣ x1 < −2} ,

a = R ∩ cl(OR) , b = R ∩ cl(OC) , c = L ∩ cl(OC) , d = L ∩ cl(OL) .

Consider a homeomorphism ϕ of L ∪R onto ϕ(L ∪R) and suppose that

ϕ(a) ∪ ϕ(c) ⊂ OR , ϕ(b) ∪ ϕ(d) ⊂ OL , and ϕ(L ∪R) ⊂ X \ E . (16)

Then mapping

σ : Λϕ = cl({ϕ–periodic points with trajectories in L ∪R})→ Σ2

defined by

(σ(x))k =

{
0 whenever ϕk(x) ∈ L
1 whenever ϕk(x) ∈ R for each x ∈ Λϕ , k ∈ Z

11



Chaos in El Niño

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0

Figure 5: The graph of MA
u,3, with a magnified and rescaled view of a selected

area (just for fun; the values of δ ≈ −1.2, γ ≈ −0.97, β ≈ 0.25 and α ≈ 0.7)
can be read from the left panel of the figure

is continuous, onto and satisfies σϕ = Sσ on Λϕ. In particular, ϕ|Λϕ
: Λϕ →

Λϕ is semiconjugate to σ : Σ2 → Σ2, the left shift operator on the space of
doubly infinite 0–1 sequences (equipped with the product topology).

In most applications, including those below, the set–up is homeomorphic
to the horizontal–vertical set–up of Theorem 1 whereas L and R are chosen
for quadrangles. See Figure 6.

Now we are ready to prove the first part of the Corollary. Inspecting the
right panel of Figure 3, our first choice for L and R are

Linit = conv{{δ}× [MS
u,2(δ)−ε,MS

u,2(δ)+ε] , {γ}× [MS
u,2(γ)−ε,MS

u,2(γ)+ε]}

and

Rinit = conv{{β}×[MS
u,2(β)−ε,MS

u,2(β)+ε], {α}×[MS
u,2(α)−ε,MS

u,2(α)+ε]},

respectively. Here δ ≈ −1.86, γ ≈ −1.82, β ≈ −1.73, α ≈ −1.68 with
δ, γ, β, α belonging to the domain of MS

u,2 and constant 0 < ε� 1 has still to
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Figure 6: The critical quadrangles in proving the first part of Corollary 1.
The almost straight dashed line between L and R shows a portion of S ∩
Ms(0, 0, 1), the intersection between S and the stable manifold of equilibrium
(0, 0, 1) ∈ R3.

be specified. The idea is if we had a continuous functionM : [δ, γ]∪[β, α]→ R
with the properties that

M([δ, γ]) ⊃ [δ, γ] ∪ [β, α] , M([β, α]) ⊃ [δ, γ] ∪ [β, α]

(a Li–Yorke sufficient condition for chaos in one dimension) and that both
M |[δ,γ] and M |[β,α] are strictly increasing.

From a purely theoretical view–point, the problem of finding the ap-
propriate quadrangles that satisfy condition (16) is a constraint satisfaction
problem in rigorous global optimization. Requiring that the eight half–lines
(determining the taboo set E) are all vertical, one has to work with 16 pa-
rameters, the coordinates of two general rectangles L and R. With ε = 0.01,
parallelograms Linit and Rinit can serve as initial data for this procedure.
Though the method works for iterates of the classical Hénon mapping [1],
its combination with a rigorous ODE solver seems to be too involved for
us. We follow the pedestrian approach instead and refine Linit and Rinit by
nonrigorous and nonautomatic methods. Also the choice for the horizontal
plane z = 0.3 is the result of an earlier computer experimentation.
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As for the first part of Corollary 1, we set

ϕ = Π2
0 , L = conv{d, c} , R = conv{b, a} (17)

with the straight line segments d, c,b, a ⊂ S chosen for

a = conv{(−1.686,−0.061, 0.3), (−1.686,−0.063, 0.3)} ,
b = conv{(−1.7356,−0.0646, 0.3), (−1.7356,−0.0666, 0.3)} ,
c = conv{(−1.839,−0.07218, 0.3), (−1.822,−0.07346, 0.3)} ,
d = conv{(−1.861,−0.074, 0.3), (−1.861,−0.076, 0.3)} .

See Figure 6 again.
As for the second part of Corollary 1, we set

ϕ = Π3
0.83 , L = conv{d, c} , R = conv{b, a} (18)

with the straight line segments d, c,b, a ⊂ S chosen for

a = conv{(0.66, 0.133, 0.3), (0.66, 0.1357, 0.3)} ,
b = conv{(0.24, 0.1093, 0.3), (0.24, 0.112, 0.3)} ,

c = conv{(−0.95, 0.0314, 0.3), (−0.95, 0.0335, 0.3)} ,
d = conv{(−1.18, 0.0144, 0.3), (−1.18, 0.0165, 0.3)} .

The rigorous ODE solver we use is the VNODE package developed by
Ned Nedialkov [14]. We work with the most current, Literate Programming
C++ version. Given an initial value problem, the solver computes an inter-
val enclosures of the exact solution at various time instance, including the
endpoint of a prescribed time interval. Now suppose that the initial value
belongs to a Poincaré section of an autonomous ordinary differential equa-
tion. When combined with an adaptive time subdivision algorithm, VNODE
can be used to compute two interval enclosures of the exact solution, belong-
ing to time instants slightly less and slightly greater than the return time,
respectively. Geometrically, we arrive at tiny boxes on opposite sides of the
Poincaré section. Lowering the tolerance, the size of these boxes can be
made smaller and smaller. By means of Gronwall inequality, we end up with
a tiny, codimension one interval enclosure of the intersection point between
the exact trajectory and the Poincaré section, an interval which is a subset
of the Poincaré section. In our special case of equation (1), we arrive at a
tiny rectangle on the plane of equation z = 0.3 in R3.
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In order to check if condition (16) is satisfied, VNODE has to be combined
with an adaptive branch and bound space subdivision algorithm as well. In
our special case, the space to be subdivided is two–dimensional.

For both data sets (17) and (18), condition (16) was checked on an eight
core 3.4GHz computer. The total CPU time was slightly longer than two
days.
The program we used can be downloaded at https://github.com/dlazesz/chaos

The negative statements in Corollary 1 follow via the lack of fixed points
for Π0 on CSu and on CS` and via the uniqueness of fixed points for Π2

0.83 on
CAu and on CA` , respectively.

Quadrangles chosen by Mischaikow and Mrozek [13] and by Galias and
Zgliczynsky [6] to locate topological horseshoes in the dynamics of the Lorenz
system—actually, in the dynamics of the second iterate of the respective
Poincaré return maps—were parallelograms. Using the notation of the present
paper (in a somewhat loosely way), all those parallelograms had a nonempty
intersection with CSu and with CS` . Please see Figure 1 in [13] and Figure 3 in
[6].
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