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 Remember the fine structures of the attractors? 

 How can we measure the attracting limit set? 
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   “I coined fractal from the Latin adjective fractus. The corresponding Latin 

verb frangere means "to break" to create irregular fragments. It is therefore 

sensible - and how appropriate for our need ! - that, in addition to 

"fragmented" (as in fraction or refraction), fractus should also mean 

"irregular", both meanings being preserved in fragment. ”   

     

Fractal – “broken, fragmented, irregular” 

B. Mandelbrot  :  

The fractal Geometry of Nature, 1982 
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Fractal geometry: the language of nature 

 Euclid geometry: cold and dry 

 Nature: complex, irregular, fragmented 

 

     “Clouds are not spheres, mountains are not cones, 

coastlines are not circles, and bark is not smooth, nor 

does lightning travel in a straight line.” 
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Notion of length 
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Spiral 1 is infinitely long but Spiral 2 isn’t. 

 Quarter circles of progressively decreasing radius. 

 s1 = πa1/2 

 s2 = πa2/2 

 

 

 Length = 

 

 

 

 

 

 If ai = 1, q, q2, q3, …, qi-1,…, then length is finite (right one, q=0.95). 

 If ai = 1, 1/2, 1/3, 1/4, …,1/i,…, then length is infinite (left one). 
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Definition: Self-similarity 

– A geometric shape that has the property of self-similarity, that is, each part of 

the shape is a smaller version of the whole shape.  

                               Examples: 
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In nature – snow-flakes 
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Another example: Cantor Set 

 The oldest, simplest, most famous fractal  

1 We begin with the closed interval [0,1].  

2 Now we remove the open interval (1/3,2/3);  

    leaving two closed intervals behind.  

3  We repeat the procedure, removing  

       the "open middle third" of each  

    of these intervals 

4     And continue infinitely.  

 

 Fractal dimension: 

       D = log 2 / log 3 = 0.63… 

 Uncountable points, zero length 
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The Cantor set 

• German mathematician Georg Cantor (1845-1918) 

• The Cantor set— a perfect, nowhere dense subset 

• Start with a unit interval 

• Take away the open middle third 

• Take away the open middle third from each remaining segment 

• Repeat indefinitely 

 

 

 

 

 

• The final invariant set is the Cantor set. 

 

• G. Cantor, über unendliche, lineare Punktmannigfaltigkeiten V, Mathematische Annalen 21 
(1883) 545–591. 

0 1 
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The Cantor set 

• Triadic expansion 

• The Cantor set is the set of points in [0,1] for which there is a triadic 

expansion that does not contain the digit ‘1’. 

• e.g., 1/3 is 0.02222222…, 2/3 is 0.2, etc. 

• The triadic number 0.0200222000202022200022002 is in the Cantor set. 

• Address 

• Let L denote the left middle third, and R denote the right middle third. We 

can represent every segment of the Cantor set by an address like LR, LL, 

LLR, etc. 

 

•               L               R  

•      LL     LR       RL       RR 

•  LLL  LLR LRL  LRR  RLL  RLR   RRL  RRR 
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Zero length but infinitely many 

points 

 Having as many points as the interval [0,1] 

 Every point in [0,1] can be represented as a binary number, e.g., 0.01001110101.  

 For each number in [0,1] in binary form, we replace symbolwise 1 by 2. E.g., 0.001 

(binary)  0.002 (triadic). Then, 

– Each point in [0,1] corresponds to a point in the Cantor set. 

– The Cantor set has as many points as the interval [0,1] has.  

 

 But zero length 
 The length of the Cantor set is limn(2/3)n = 0. 

 

  

¥
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Sierpinski Gasket 

 Start with a solid triangle. Mark the 

midpoint of each side. Then, join 

them to partition 4 triangles. 

 Remove the middle one. 

 Repeat the process infinitely. 

 The invariant set is the Sierpinski 

Gasket. 

 

 AREA = 0 

 Infinitely many points 
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Koch curve 

 Helge von Koch (Sweden, 1904) introduced a curve 
which is infinitely long but can be drawn in finite area. 

 

 CONSTRUCTION: 

 Start with a unit interval. 

 Replace middle third by two  
segments of equal length 

 Repeat infinitely. 

 

 Length=limn(4/3)n  

 

 

  

¥
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mathematical fractal: Koch Snowflake 

 

 Step One. 

     Start with a large equilateral triangle.  

 Step Two. 

    Make a Star.  

1. Divide one side of the triangle into  

     three parts and remove the middle section.  

2.  Replace it with two lines the same  

     length as the section you removed.  

3.  Do this to all three sides of the triangle.  

 Repeat this process infinitely. 

 

 The snowflake has a finite area bounded  

     by a perimeter of infinite length!  

 

 



Fractals and Applications - November 8th, 2013 © Maciej J. Ogorzałek 

Constructing fractals by iterative reduction and 

translation 

 The Koch curve can be constructed 

mathematically by an iterative process applied to 

any arbitrary object X. 

 Define four transformations 

 w0(X):  scale 1/3, rotate 0, translate (+0,+0) 

 w1(X):  scale 1/3, rotate +60o, translate (+1/3,+0) 

 w2(X):  scale 1/3, rotate –60o, translate (+1/2,+√3/6) 

 w3(X):  scale 1/3, rotate 0, translate (+2/3,+0) 

 

 Define the transformation 

– W(X) = w0(X)  w1(X)  w2(X)  w3(X). 
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Defining the Koch curve 

 We have an iterative function 

– Xn+1 = W(Xn) 

 The Koch curve is the invariant set, K, satisfying 

– W(K) = K 

 i.e., the solution K of this equation is the Koch curve. 

 

 So, it doesn’t matter what the initial object is! Clearly what we have 
achieved a simple coding method that encodes a complex Koch 
curve into some transformation parameters. 

 APPLICATIONS: Image coding. 



Fractals and Applications - November 8th, 2013 © Maciej J. Ogorzałek 

Self-similarity revisited 

Self-similarity in the Koch curve 
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Sierpinski Gasket re-defined 

 We may define another W(X) for 

     the Sierpinski Gasket. 

 Define three transformations 
 w0(X):  scale 1/3, translate (+0,+0) 

 w1(X):  scale 1/3, translate (+1/2,+0) 

 w2(X):  scale 1/3, translate (+1/4,+√3/4) 

 Define W(X) as  

 W(X) = w0(X)  w1(X)  w2(X). 

• The Sierpinski Gasket is the solution of 
W(X)=X. 

• In practice it is the object that remains 
after many iterations  

 under W(X).  
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The problem of measuring fractals 

 Benoit Mandelbrot, “How long is the coast of Britain?” Science 155 

(1967), 636-638. 

 Border of Spain and Portugal: 

– A Spanish encyclopedia says 616 miles. 

– A Portugese encyclopedia says 758 miles. 

 Coast of Britain: 

– Various sources claim it between 4500 and 5000 miles! 

 

Problem of measuring fractal objects 
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Euclid dimension 

 In Euclid geometry, dimensions of objects are 

defined by integer numbers.  

 0 - A point  

 1 - A curve or line  

 2 - Triangles, circles or surfaces  

 3 - Spheres, cubes and other solids 



 For a square we have N^2 self-similar pieces for the 

magnification factor of N 

   dimension=log(number of self-similar pieces)      

/log(magnification factor) 

                    =log(N^2)/logN=2 

   For a cube we have N^3 self-similar pieces 

 dimension=log(number of self-similar pieces)      

/log(magnification factor) 

                    =log(N^3)/logN=3 

 

 Sierpinski triangle consists of three self-similar pieces with 

magnification factor 2 each 

 dimension=log3/log2=1.58 
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Dimension of a two dimensional sqaure 
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Fractal dimension 

 Fractal dimension can be non-integers 

 Intuitively, we can represent the fractal dimension 

as a measure of how much space the fractal 

occupies.  

 

 Given a curve, we can transform it into 'n' parts (n 

actually represents the number of segments), and 

the whole being 's' times the length of each of the 

parts. The fractal dimension is then :  

                  d = log n / log s 
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Scaling/dimension of the von Koch curve 

 

 Scale by 3 – need four 

self-similar pieces 

 D=log4/log3=1.26 
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Length of the coastline of Britain 
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Real world fractals 

         A cloud, a mountain, a flower, a tree  

                        or a coastline…  

                 The coastline of Britain 
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Practical measurements 

 There is no formula for coastlines, or defined 
construction process. 

 The shape is the result of millions of years of 
tectonic activities and never stopping erosions, 
sedimentations, etc. 

 

 In practice we measure on a geographical map. 

 

 Measurement procedure: 
– Take a compass, set at a distance s (in true units). 

– Walk the compass along the coastline. 

– Count the number of steps N. 

– Note the scale of the map. For example, if the map is 
1:1,000,000, then a compass step of 1cm 
corresponds to 10km. So, s=10km. 

– The coast length ≈ sN. 

100km 50km 
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The Hong Kong coast 

 Apply the procedure with different s. 

 Results: 

– The measured length increases with 

decreasing s. 

 
 Compass step s Length u 

 2km  43.262km 

 1km  52.702km 

 0.5km  60.598km 

 0.1km  69.162km 

 0.02km  87.98km 
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Power law of measurement 

 If we plot log(u) versus log(1/s), we can see that  
 

– log(u) = d log(1/s) + k 

which is equivalent to 

– u = c (1/s)d 

 

 The slope is d. 

 

 For the Hong Kong coast, 
d ≈ 0.14. 

 For a circle, d=0. 

 

 We expect the length u  
continues to increase as 
we decrease s. 
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Length of the Koch curve 

Earlier on, we found the length of the Koch curve to be infinity. 

Can we measure it in a similar way as we did for the British coast? 

 

If s=1, u=1. 

If s=1/3, u=4. 

If s=1/9, u=16, etc. 

So, u  as s  0.  

Clearly, we have 

 log u = d log(1/s) + k 

Here, d = 0.2619 
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So, how long is it? —An ill-posed question! 

 We may say that the coastline and the Koch curve (and all fractals) have 

practically no length! 

 It depends on the size of the measuring instrument. 

 What is meaningful is the value of d, which measures the level of 

convolution of the curve. So, the Hong Kong coast can be less 

convoluted than the Koch curve. 

 

 Many biological structures are organized in a fractal way to fit an infinite 

length within finite area or volume. 

– Blood capillaries 

– Kidney vessels 

– --> SPACE-FILLING FRACTALS 
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Dimension 

 The question of “how long” can be ill-posed, as we have seen. 

 Similarly, measurement of areas and volumes could be 

meaningless. 

 What seems to be relevant is the d in the power law. 

 This d is related to the concept of DIMENSION. 

 

– Self-similarity dimension 

– Compass dimension 

– Box-counting dimension 

FRACTAL DIMENSION 
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Self-similarity 

broccoli romanesco  
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Self-similarity dimension 

 Fractals are self-similar. Assume that a  
fractal object is n copies of itself scaled  
down by a factor of s. 

 So, we can define a power law as 

 

– n = (1/s)D 
 

 Examples: 

 The Koch curve copies itself 4 times with scaling factor of 3. (n=4, s=3, 
and  D = 1.2619) 

 A line copies itself N times with scaling factor N, where N can be any 
integer. (n=s=N and D=1) 

 A square copies itself N2 times with scaling factor N, where N can be any 
integer. (n= N2, s=N and D=2) 

 

 D = self-similarity dimension 

broccoli romanesco  
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More examples 

 Sierpinski Gasket: 

– s = 2 (scaling) 

– n = 3 (copy number) 

– Hence, D = log(n)/log(1/s) = 1.585 

 

 Cantor set: 

– s = 3 (scaling) 

– n = 2 (copy number) 

– Hence, D = log(n)/log(1/s) = 0.6309 
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Relation between D and d 

 Two power laws: 

– Number of self copies     n = (1/s)D  or  log(n)=D log(1/s) 

– Total length     u = (1/s)d  or  log(u)=d log(1/s) 

 

 When measuring u, we simply use 

– u = n x s   or    log(u) = log(n) + log(s) 

 

 

 Thus, we have    d log(1/s) = D log(1/s) + log(s) 

– i.e.,  D = 1 + d 
– The HK coast has a fractal dimension of 1+0.14=1.14 

– We may define 1+d as the COMPASS dimension. 
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Compass dimension 

 Start with a length (or area, etc) measurement. 

 Find d in the power law u = (1/s)d. 

 Then, the dimension found by adding 1 to d is the compass dimension 

— another way to find fractal dimension. 

 

 Just a different way of computation 

– For mathematical fractals like the Cantor set and Koch curve, the self-

similarity dimension and the compass dimension are identical. 

– For natural fractals like coastlines, no self-similarity dimension can be found. 

So, compass dimension becomes useful. 
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Are organisms fractal? 

 M. Sernetz et al. (1985 paper in J. Theoretical Biology) 

 Contrary to common belief, metabolic rate is not proportional 

to body weight. Instead, it fits in a power law relationship. 

m = cwa 

 

 
 Slope a ≈ 0.75 

Metabolic rate Body 
weight 

child lung 
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Dimension of organisms 

 We can deduce the fractal dimension from a ≈ 
0.75. 

 Suppose r is the scaling factor (like s). Since 
weight is  r3, the power law can be modified to 
m = cr3a. 

 Thus, D = 3a ≈ 2.25. 

 The body is not a solid volume, it is 
rather a fractal (highly convoluted 
surface) of dimension 2.25! 

– Would the dimension change when an 
organ malfunctions? 

– Is the dimension different for different 
animals? 

Horse kidney 



Fractal Geometry of the Heart and 

Circulatory Structures 

. 
 the main areas where fractal geometry can be seen 

in the circulatory system are: 

  Arteries and veins - Their cells and organization 

display the properties of fractals, such as the power-

law distribution in the diameter distribution of arteries 

and veins. 

  Organization of heart muscle groups - Show 

properties of self-similarity, fine structure, etc. 

Branching of certain muscles inside the heart 

 - resemble the bifurcations seen in fractals such as the 

Feigenbaum plot 

  His-Purkinje network - The branches and bifurcation 

of this electrical system are essential to human biology 

and resilience. 

  The tendons that connect the tricuspid valve to the 

papillary muscles. - These again show bifurcation 

along with other fractal properties. 

  The aortic valve leaflets  - These are layered providing 

a huge surface area, while keeping a small volume 

How does the fractal structure 

help? 

-The fractal structure of the veins, 

   arteries, and heart muscles 

help protect the circulatory 

system from the strong, 

violent pumping of the human 

heart. 

 -The fractal structure, which is 

usually unnecessary, can 

come into play when the His-

Purkinje network is damaged. 

This helps the heart be 

resilient and resistant to 

damage. 

- The fractal geometry of the 

heart could possibly save us 

everyday.  
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Cantor square 

 

 Fractal dimension: d = log 4 / log 3 = 1.26  

 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

Sierpiński Fractals  

 Named for Polish 

mathematician Waclaw 

Sierpinski 

 

 

 Involve basic geometric 

polygons 
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Sierpinski Chaos Game 

Starting Point 

Vertex 2 

Vertex 1 

Vertex 3 

Midpoint New Starting Point 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

Sierpinski Chaos Game 

 100 pts 
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Sierpinski Chaos Game 

 1000 pts 
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Sierpinski Chaos Game 
Fractal dimension = 1.8175… 

 20000 pts 
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Menger’s sponge 
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IFS (Iterated Function Systems) 

Here, (x,y) is a point on the image,  

          (r,s) tells you how to scale and reflect the image at the  various points, 

          (theta,phi) tells you how to rotate, 

          (e,f) tells you how to translate the image. 

Various Fractal Images are produced by differences in these values, 

or by several different groups of values. 
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IFS (continued) 

Remember that matrix from the previous slide? Lets rewrite it as  

a system of two equations : 

 

x` = rcos(theta)x – ssin(phi)y + e  

y` = rsin(theta)x + scos(phi)y + f 

 

(x,y) being the pair we are transforming, and (x`,y`) being the 

point in the plane where the old (x,y) will be transformed to. 

 

EVERY Transformation follow this pattern. So for file transmission, all we need 

to include would be the constants from above : r,s,theta,phi,e,f, x,y 

This greatly simplifies the Task parsing. 

 

On return you would only need to include the (x,y)->(x`,y`)  
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Julia set 
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The Mandelbrot Set 

 The Mandelbrot set is a connected set of points in the complex plane 

 Calculate: Z1 = Z0
2 + Z0, Z2 = Z1

2 + Z0, Z3 = Z2
2 + Z0 

 If the sequence Z0, Z1, Z2, Z3, ... remains within a distance of 2 of the 

origin forever, then the point Z0 is said to be in the Mandelbrot set.  

 If the sequence diverges from the origin, then the point is not in the 

set 
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Colored Mandelbrot Set 

 The colors are added to the points that are not 

inside the set. Then we just zoom in on it 
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Fractals in biology 
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Space-filling curve (SFC) definition 

Curves that pass through every point of an n-dimensional region 

with positive area (for n=2) or volume (for n=3), such as the unit 

square Ω in R2 or the unit cube in R3, are called space-

filling curves. 

 

Two main characteristics: 

• continuous 

• surjective 

 

It can be shown that if f generates a space-filling curve, then it 

can not be bijective. 
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Contents 

1. Basic notions 

2. Types of space-filling curves 

1. The Hilbert space-filling curve 

2. The Peano space-filling curve 

3. The Sierpinski space-filling curve 

4. The Lebesgue space-filling curve 

3. Application of space-filling curves 
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The Hilbert curve: geometric generation 

 If I can be mapped continuously on Ω, then after partitioning 

I into four congruent subintervals and Ω into four congruent 

subsquares, each subinterval can be mapped continuously 

onto one of the subsquares. This partitioning can be carried 

out ad infinitum. 

 The subsquares must be arranged such that adjacent 

subintervals are mapped onto adjacent subsquares. 

 Inclusion relationship: if an interval corresponds to a square, 

then its subintervals must correspond to the subsquares of 

that square. 

 This process defines a mapping  , called the 

Hilbert space-filling curve. 

( )hf I
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The Hilbert curve: geometric generation 

1 

2 3 

4 

3 

2 1 

4 

16 

3/4 
1/4 

2/4 
4/4 

0 
4/16 

3/16 
2/16 

1/16 
16/16 

1 

0,0 0,0 

1,1 1,1 

1st iteration 2nd iteration 3rd iteration 
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The Hilbert curve: geometric generation 

6th iteration 
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The Hilbert curve: geometric generation 

The mapping   is surjective: with every sequence of 

nested closed squares corresponds a sequence of nested 

closed intervals that define a unique .  

 

The mapping     is continuous: in the n-th iteration I 

is partitioned in       subintervals, thus 

 

 

The mapping     is nowhere differentiable. 

:hf I 

0t I

: onto

hf I 
22 n

2

1 2 1 2 1 2, 1/ 2 ( ) ( ) 5 / 2n n

h ht t I t t then f t f t     

: onto

hf I 
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The Hilbert curve: a complex representation [Sagan] 

 Establish a formula to calculate the exact coordinates of an 

image point if 

 

 

 Use complex representation         , and affine 

transformations to wich Ω will be subjected recursively. 

 Give an orientation to each subsquare such that the exit 

point of a subsquare coincides with the entry point of the 

next subsquare.  

2 2/ 2 , 0,1,2,3,..., 0,1,2,3,...2n nt k n k  

z  Z 
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The Hilbert curve: a complex representation 

0 1 0 1 
1

2
0 1 

1

2

1

4

3

4

0th iteration 1st iteration 2nd iteration 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

The Hilbert curve: a complex representation 

0

1

2
z zih

1

1

2 2

i
z z h

2

1 1

2 2 2

i
z z  h

3

1
1

2 2

i
z zi   h

1 1 1

0 0 0

2 2 2

0 1 01 1 1 1

1 0 02 2 2 2

x x x
H h

x x x

        
          

        
: h

1 1 1

1 1 1

2 2 2

1 0 01 1 1 1

0 1 12 2 2 2

x x x
H h

x x x

        
          

        
: h

1 1 1

2 2 2

2 2 2

1 0 11 1 1 1

0 1 12 2 2 2

x x x
H h

x x x

        
          

        
: h

1 1 1

3 3 3

2 2 2

0 1 21 1 1 1

1 0 12 2 2 2

x x x
H h

x x x

        
          

        
: h

The four basic transformations (2 dimensional case): 
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The Hilbert curve: a complex representation 

 Represent   as 

         ,   , ad infinitum: 

 

 

 

 For finite quaternaries (edges of subintervals in nth 

iteration): 

t I 4 1 2 30 ..., 0,1,2 3jt q q q with q or 

1 2
( )h q qf t  h h

1 2 3
( ) lim ...

nh q q q q
n

f t


 h h h h

1
( )h qf t  h

1 2 34 1 2 3

0
(0 ... ) ...

0nh n q q q qf q q q q
 

  
 

h h h h

1 2 34 1 2 3 0 0 0(0 ... ) ... ...
nh n q q q qf q q q q  h h h h h h h
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The Hilbert curve: a complex representation 

 continued... 

 

 

 

 

 

 

 Taking into account some properties of       :  

1 2 3 0 1 2 3 1

0 1 2 3 1

1

.

4 1 2 3

1

0 1
... ... ...

0 2

1
(0 ...) ...

2

n j j

h

j j

n

q q q q q q q q q qj
j

f is cont

h q q q q q qj
j

H H H H H h

f q q q H H H H H h











   
    

  

 
   

 





h h h h

jqH

0 3

4 1 2 3 0 3

1

1
(0 ...) ,

2

j j

j

e e

h qj
j

f q q q H H h




 
  

 


´ (mod 2), 0 3kj jwith e number of k s preceding q k or 
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The Hilbert curve: a complex representation 

 Further simplifications of the formula are possible... 

 

 An example: 

(0,0) 

(5/8,3/ 4)

3h

2h

0h

4 2 0 3

0 5/8
(0 203)

0 3/ 4
hf

   
    

   
h h h
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Approximating polygons for the Hilbert curve 

The polygonal line that runs through the points 

 

is called the nth approximating polygon or a discrete space filling 

curve. 

Parametrization: 

 

 

 

         converges uniformly to the Hilbert curve  

2 2 2 2 2(0), (1/ 2 ), (2 / 2 ), (3/ 2 ),..., ((2 1) / 2 ), (1),n n n n n

h h h h h hf f f f f f

2 2

2 2 2 2

2 2 2

1 1
: : ( ) 2 ( ) ( ) 2 ( ) ( ),

2 2 2 2

/ 2 ( 1) / 2 , 0,1,2,3,...2 1

n n

n n h hn n n n

n n n

k k k k
p I p t t f t f

for k t k k

 
     

    

{ }np
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The Hilbert curve: representation through 

grammars 

 Make use of four distinct templates to generate the discrete 

Hilbert curve: H,A,B and C.  

 These templates will be translated to a first iteration of the 

curve according to a fixed scheme. 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

The Hilbert curve: representation through 

grammars 

 

 

 

 The resulting rules and transitions can be used to implement 

the recursive construction of the discrete Hilbert curve. 
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The Peano curve: definition 

        with 

 

 

 

 

 

 is surjective and continuous on I, and represents a SFC. 

 

 More interesting: geometric generation according to Hilbert 

2 2 4

1 31

3 1 3 5

3 1 2 3 4

3 2 4

0 ( )( )...
(0 ...)

0 ( )( )...

2 ( 0,1,2) .

t t t

p t tt

j j j

t k t k t
f t t t t

k t k t

with kt t t and k is the th it of k 





 
   

 

  

:pf I  
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The Peano curve: a complex representation 

 Define orientation of the sub-squares: 

 

 

 

 

 

 

 

 Define similarity transforms: 

 

 

with 

0 1

1 1 1
, ,...

3 3 3 3

i
z z z z    p p

1 1

2 2

1 1
, 0,1,...8

3 3
j j j

x x
P p j

x x

   
     

   
p
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The Peano curve: a complex representation 

 Use ternary representation of  : 

 

 

 

 

 

 Continue as with Hilbert´s curve... 

 

 

 we get the same result as in Peano´s definition 

3 1 2 2 2 2 9 1 2 3 4 2 1 20 ... ... 0 (3 )(3 )...(3 )...n n n nt t t t t t t t t t    

1 2 3 4 2 1 23 3 3( ) lim ...
n np t t t t t t

n
f t

  


 p p p

t I
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Approximating polygons for the Peano curve 
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The Peano curve: representation through 

grammars 
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The Sierpinski curve: generation 

 Partition I into    congruent subintervals and 

 into congruent subtriangles. 

 

 

 

 

 

 

 

 In deriving an algabraic representation it is easier to 

divide I into  subintervals, thus using quaternaries: 

(2,0)(0,0)

(1,1)

t 

n=0 n=1 n=2 

2n

2n

t

22 n

0 1 2 14 1 2 3
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(0 ...) ...

2 j js q q q q qj
j

f q q q S S S S s
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The Sierpinski curve: generation 

with similarity transforms: 

0

1

2

3

/ 2

/ 2 1

/ 2 1

/ 2 1

z z
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z zi i
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The Sierpinski curve: generation 

 Taking into account some properties of   : 

4 1 2 3

1

1
(0 ...) ( 1)

2

j j

js qj
j

f q q q S s
 




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
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The Sierpinski curve: approximating polygons 

(2,0)(0,0)

(1,1)

t 

n=0 n=1 n=2 n=3 
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The Sierpinski curve: generation 

Originaly defined as a map     from I onto 

 , but it can be considered as a map 

from I onto a right isosceles triangle . 

sf

 
2

1,1

t
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The Lebesgue curve: generation and 

approximating polygons 

1st iteration 4th iteration 2nd iteration 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

Essential properties for applications: 

 Finite area – infinite perimeter ! 

 Self-similarity (same properties and shapes at 

different scales) 
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   Physical relations for capacitors 

  

Both electrodes have a surface A (in m2) separated by 
distance d (in m). The applied voltage DU (in Volt) creates 
an electric field E = DU/d storing the electrical energy. 
Capacitance C in Farad (F) and stored energy J in Ws is: 

 

 

 

 
 

 

where er (e.g. 1 for vacuum or 81 for water) is the relative dielectric 
constant which depends on the material placed between the two 
electrodes and e0 = 8.85·10-12 F/m is a fundamental constant. 
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How to create capacitors with larger C? 

 

 

 Create capacitors with very large areas A – 

    technologies to create fractal-type surfaces 

 

 Use designs taking advantage of lateral 

capacitance in integrated circuits 
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Electrochemically modified glassy carbon is a promising material to be used in 

electrochemical capacitors. Oxidation of the surface of a glassy carbon electrode 

results in a porous layer with very large capacitance and fairly low internal 

resistance when using an aqueous electrolyte. 

 
 

 

 

 

 

 

 

 

 

 

 
 Paul Scherrer Institute in Villigen, Switzerland - Rüdiger Kötz and his group have 

developed an electrode in collaboration with the Swiss company Montena (Maxwell).  
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 a) Micrograph of a cross section through a supercapacitor electrode.The white stripe is a 

part of the 30 µm thick metallic carrier-foil (total foil is 0.1 m wide, 2 m long). On both 
sides carbon particles provide a complex fractal surface responsible for the high 
capacity.The space taken by the green resin used to fix the delicate carbon structure 
before cutting and to provide a good contrast for imaging is normally filled with the 
electrolyte (an organic solvent containing salt ions). 
b) Borderline of the cross section through the electrode surface in (a) to be analyzed by 
the box-counting procedure, illustrated for a tiling with 128 squares:M = 56 squares (filled 
with light blue colour) are necessary to cover the borderline.Their side lengths are N = 
11.3 (square root of 128) times smaller than the length scale of the whole picture. 
c) The box-counting procedure is repeated with a computer program for different N.The 
average fractal dimension of the borderline is the gradient of the straight line 
approximating the measured points in this Log(M) over Log(N) plot, giving D   1.6.This 
same dimension was measured in the lengthinterval covering nearly 3 decades between 
0.6 mm (length of micrograph in Figs 2a, b) and about 1 µm (fine structure in Fig. 2d). 
d) Carbon particles as seen with an electron microscope show roughness also in the 1 µm 
scale. It is assumed that the above indicated fractal dimension D holds over the entire 
range of 8 decades between the macroscopic scale (i.e. the geometric size of the order of 
0.1 m) and the microscopic scale (i.e. the micropores in the order of 1 nm = 1·10–9 m).The 
electrode surface is therefore multiplied by 108*0.6 or about 60’000 when compared to the 
normal two-dimensional surface of 0.2 m2.  
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 800 F boostcap by montena SA utilizing PSI electrode. 

 Capacitor module with 2 x 24 capacitors resulting in 60 V , 60 F with 
an overall internal resistance of < 20 mOhm.  
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 Supercapacitor module for HY-LIGHT. 
Capacitance: 29 F 

Power: 30 - 45 kW for 20 - 15 sec ;  Weight: 53 kg  
 HY-LIGHT accelerates to 100km/h in 12 seconds 
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Antenna properties 

 Radiation pattern variation for a linear antenna 

with changing frequency – antennas are narrow-

band devices! 
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fractal antenna is an antenna that uses a self-similar 

design to maximize the length, or increase the perimeter 

(on inside sections or the outer structure), of material that 

can receive or transmit electromagnetic signals within a 

given total surface area. For this reason, fractal antennas 

are very compact, are multiband or wideband, and have 

useful applications in cellular telephone and microwave 

communications. 

Fractal antenna response differs markedly from traditional 

antenna designs, in that it is capable of operating optimally 

at many different frequencies simultaneously. Normally 

standard antennae have to be "cut" for the frequency for 

which they are to be used—and thus the standard antennae 

only optimally work at that frequency. This makes the 

fractal antenna an excellent design for wideband 

applications. 

http://en.wikipedia.org/wiki/Antenna_(electronics)
http://en.wikipedia.org/wiki/Cellular_telephone
http://en.wikipedia.org/wiki/Microwave
http://en.wikipedia.org/wiki/Wideband
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 The first fractal antennas were arrays, and not 
recognized initially as having self similarity as 
their attribute. Log-periodic antennas are arrays, 
around since the 1950's (invented by Isbell and 
DuHamel), that are such fractal antennas. They 
are a common form used in TV antennas, and are 
arrow-head in shape. Antenna elements made 
from self similar shapes were first done by 
Nathan Cohen, a professor at Boston University, 
in 1988. Most allusions to fractal antennas make 
reference to these 'fractal element antennas'. 

http://en.wikipedia.org/wiki/Log-periodic_antenna
http://en.wikipedia.org/wiki/Log-periodic_antenna
http://en.wikipedia.org/wiki/Log-periodic_antenna
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John Gianvittorio - UCLA 
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Fractal antenna design 
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 Fractal antennas have superior multiband performance 

and are typically two-to-four times smaller than traditional 

aerials.  

 Fractal antennas are the unique wideband enabler—one 

antenna replaces many. 

 Multiband performance is at non-harmonic frequencies, 

and at higher frequencies the FEA is naturally broadband. 

Polarization and phasing of FEAs also are possible.  
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Fractal Antenna   

 Practical shrinkage of 2-4 times are realizable for acceptable 

performance.  

 Smaller, but even better performance 
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Visualization of antenna (the brown layer) 

integrated on a package substrate 

AiP integrated on Bluetooth® adapter 
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GPS / GSM Antenna 
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 Detailed Product Description  

 Features: 

 1) Item no.: GS-205 

 2) Frequency: GPS 1,575MHz ± 3MHz 

 3) Band width: ±5MHz 

 4) Impedance: 50Ω 

 5) SWI: 1.5:1 

 6) Gain: >3dBi 

 7) Cable: RG-174 

 8) Frequency: GSM 890-960MHz, 1,710-1,990MHz 

 9) Impedance: 50Ω 

 10) SWI: <2 

 11) Gain: 2.15dBi 

 12) Cable: RG-174 

 13) Frequency: 76-110MHz (FM), 525-1,700kHz (AM) 

 14) Gain: +20dB (FM), +5dB (AM) 

 15) Impedance: 75 ohms 

 16) Cable: 3C-2V 

 17) Voltage: 10-14V 

 20) Fits for VW, GM, Audi, BWM and Peugeot 
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G-Antetech Industrial Co., Ltd   
 Detailed Product Description  

 Item no.: GS-208 Frequency:  

 GPS 1,575MHz+/-3MHz  

 Band width: +/-5MHz  

 Impedance: 50Ω SWIR: 1.5:1  

 Gain: >3dBi  

 Cable: RG174  

 Frequency: 76-110MHz (FM), 525-1,700MHz (AM)  

 Gain: +20dB (FM), +5dB (AM)  

 Impedance: 75Ω Cable: 3C-2V  

 Voltage: 10-14V Cable length: 8"  

 Dia. of installation hole: diameter 15mm 
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Shanghai Sky Year Technology Co., Ltd.  

 The only patented AM/FM roof mounted shark fin antenna 

that completely integrates GPS, GSM, AMPS/PCS and 

satellite radio frequencies  
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Data Compression 

 A color full-screen GIF image of Mandelbrot Set occupies about 35 

kilobytes 

 Formula z = z^2 + c, 7 bytes! (99.98% ) 

 It could work for any other photos as well  

 The goal is too find functions, each of which produces some part of 

the image.  
 IFS (Iterated function system) is the key. 

 

 

 

 



RF ID applications 

 RFID tag antenna, dubbed 
Tagtenna antenna for 900 MHz. 

 

 

 Readtenna RFID antenna that is 
1/3 the form factor area of a patch 
antenna of equal performance. This 
FEA is a microstrip patch based on 
a fractalised ground plane and a 
Sierpinski carpet fractal. 

 

 

TagtennaTM and ReadtennaTM antennas are available in evaluation kits from Fractal Antenna Systems, Inc.  

The antennas are protected by US patents 6140975, 6127977, and 6104349 and pending patents US and foreign. 

Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 



Enhanced Read-out distance 

In a recent study carried out by researchers at the Tampere University of Technology's Rauma 

Research Unit, in Finland, a fractal UHF RFID handheld reader antenna performed better than 

traditional antenna designs. The research findings were published in a paper entitled "Read Range 

Performance Comparison of Compact Reader Antennas for a Handheld UHF RFID Reader," in the 

April 2007 edition of the online magazine IEEE Applications & Practices.  
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http://www.rauma.tut.fi/index.php?pid=1
http://www.rauma.tut.fi/index.php?pid=1
http://www.rfidjournal.com/glossary/163
http://www.rfidjournal.com/glossary/126
http://www.rfidjournal.com/glossary/129
http://www.rfidjournal.com/glossary/8
http://www.rfidjournal.com/glossary/134


How far can we scale down the fractal 

structures? 

What is the smallest feature size of a 

microelectonic fractal object? 

 

HARD LIMIT !!! 

FRACTAL ELECTRODYNAMICS !! 
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Fractal electrodynamics 

The angles radiate a spherical wave with phase center at the vertex. Each angle not 

only radiates, but also receives the signal radiated by other angles. As a 

consequence, part of the signal does not follow the wire path, but takes “shortcuts” 

that start at a radiating angle. The length of the path traveled by the signal is, 

therefore, shorter than the total wire length. The higher iteration number in the Koch 

antenna, the more angles it has and the closer to each other they are, so the more 

signal takes shortcuts and the less signal follows the whole curve path.  
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Near fields in the time domain in the vicinity of a single-iteration Koch 

monopole (K1) with short-pulse excitation. The sharp angles of the pre-

fractal curve become the center of spherical wave radiation, which 

corroborates the coupling or shortcut effect hypothesis. 
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Entering nano and tera  

If we cannot decrease the feature size what is 

the use of fractal geometries? 

 

Change the fractal paradigm!  

Do not build „artificial” fractals – 

Use fractal nature of surfaces created in new technologies!  
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 Rogers et al, Nature 2006 
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         Short Channel nanonet transistors 
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Stick – fan model 
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Long channel nanonet transistors 
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After : Lectures of  M. A. Alam 

Electrical and Computer Engineering, Purdue University 

2009 NCN@Purdue‐Intel Summer School 



Fractal analysis of quantum dots 
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One of  very few descriptors is 

 

       FRACTAL DIMENSION !! 
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Fractal capacitors in nano structures 
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Double cylinder capacitor 
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After: 

THz fractal antennas for electrical and optical semiconductor emitters 

and receptors 

L. CHUSSEAU, C. GAUBERT, A. GIANI, D. GASQUET, F. GARET†, 

F. AQUISTAPACE†, L. DUVILLARET†, J.-L. COUTAZ† and W. KNAP‡ 

 CEM2, UMR n5507 CNRS, Universitee Montpellier II, FRANCE 

†LAHC, Universit ęe de Savoie, FRANCE 

‡GES, UMR n5650 au CNRS, Universite Montpellier II, France 
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APPLICATIONS 

 

Encoding images 
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APPLICATIONS 

Fractal from Iterative Function System 

 IFS  

– Multiple Reduction Copy Machine 

Blueprint for 
Barnsley’s fern 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

MRCM (IFS machine) 

 Repeat the copying process xn+1=W(xn) 

5 times 10 times eventually 
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Very high compression ratio 

 The whole fern is compressed to four set of numbers 

 

   Translation rotation  scaling 

   e f f  r s 

 1 0 1.6 -2.5 -2.5 0.85 0.85 

 2 0 1.6 49 49 0.3 0.34 

 3 0 0.44 120 -50 0.3 0.37 

 4 0 0 0 0 0 0.16 

 

 If each number needs 32 bits to represent, then we need 32x24 bits for the 
coding. If the picture is mxn pixels,  

 the compression rate = mxn/32x24 !!   VERY HIGH! 
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Question: how long does decoding take? 

 Suppose  

– The initial rectangle is 500x200 pixels 

– reduction factor = 0.85 

 We want the object to shrink to one pixel in N steps. 

– 500 * 0.85N = 1 

 Thus, N ≈ 39. 

 In each step, 4 times more rectangles are drawn. So, we need to draw 

– 1 + 4 + 42 + 43 + 44 + … + 439 = (439-1)/3  objects 

– i.e., ≈ 3 x 1023 objects 

 Suppose the computer draws 1 million rectangles per second. We need about 3x1017 

sec or 1010 years to complete! 
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Problems 

 How to decode in reasonably short time with 

reasonably good resolution? 

 

 

 

 

 How to encode an image? 

Deterministic (brute-force) approach 
Chaos approach 
Adaptive cut approach 

Similarity method 
- No efficient or general approach 
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Decoding 

 IFS machine:   y = w1(x) U w2(x) U w3(x) 

 

 Chaos approach: 
– Iterate randomly, with weighted probability for each transformation 

 

 Adaptive cut approach: 
– Stop iterating when neighboring points are close enough. 
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Decoding 

IFS 
262,144 

Chaos (equal prob) 
100,000 

Chaos (weighted prob) 
100,000 

Adaptive cut 
198,541 
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Example 
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Examples 

The Transformation Attractor Zoom in 
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Contractive Mapping 

Let (X,d) be a metric space.  

A map w: XX is contractive    

if there exists a constant s[0, 1),  

such that  x, yX : 

 

 

s is called the contraction factor of w. 

  

             

),( ))(),(( yxdsywxwd 
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An Example of Contractive Mapping 
 Let d be the Euclidean distance.  

Let w(x) = x/2  

Then it is easy to see that s = 1/2,  

Therefore w is a contractive mapping. 
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Contractive Mapping Theorem 

 If w is a contractive mapping  

then there exists a unique x*  

such that   

  w(x*)= x*    

and for any xX,  

   limn d(w(n)(x), x*) = 0  
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Contractive Mapping 

Proving the uniqueness of the fixed point by contradiction: 

 

Assume the fixed point is not unique.  

Let x* and y* be the two fixed points 

 

Since w is contractive,  d(w(x*), w(y*)) ≤ s d(x*, y*) 

But x*, y* are fixed points, so LHS = d(x*, y*). 

This is a contradiction because s < 1. 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

Iterated Function System 

 An IFS consists of  

– a complete metric space (X, d)  

– a set of contractive mappings wn defined on X. 

   i.e. {X, wn: n=1,…,N} 
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Hausdorff Distance 

 

 

 

 

For a metric space  

),(),(),(

),(),(

 iff0),(

CAhCBhBAh

ABhBAh

BABAh







) , ( min max ) , ( 

)) , ( ), , ( max( ) , ( 

b a d B A d 

A B d B A d B A h 

b a 

 

 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

Definition of Fractal Transform 

 Let (H(X), h) denote the metric space, s.t. 

– H(X) consists of nonempty compact subsets of X  

– h is the Hausdorff Distance 

 The fractal transform associated with an IFS is 

defined as W: H(X)H(X) 

 

 

    

              for all BH(X) 

  


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i
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The Contraction Mapping Theorem for Fractal 

Transform 

 If wi are contractive with the contraction factor si. 
Then W is also contractive with contraction factor  

 

 

 W is contractive, by contraction mapping theorem, 
there exists a unique fixed point A i.e. 

 

 

 

 A is called the attractor of the IFS.  
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Fractal Transform 

 For all BH(X), limnW(n)(B) = A 

 

 What does this say about coding? 

 

 Encode an image I by with the IFS of I 

 Decode the image by I = limnW(n)(J) where J is 

any random image. 
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Example 

 wi’s are usually chosen to be affine 

transformations 
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Example 

 Consider an IFS of the form {R2; w1,w2,w3} 
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Example (cont.) 

 A is completely described by W and is 

independent of B 

0 x 

y 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

Fractal Encoding  

 Problem definition: 
 
Given the image I,  
Find an IFS s.t. its attractor is I. 

 

 Several methods have been adopted 

 Not solved in general case. 

 The Collage Theorem provides a guideline. 
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The Collage Theorem 

 For a set C and a contractive transform W with 

attractor A, there exists s[0, 1),  

 

 

 

 IOW, to make C and A close, it is sufficient to 

make C and W(C) close. 

 W(C) is called the collage of C. 
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Proving Collage Theorem 
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The Collage theorem 

 In terms of each mapping wi, 

 

 

 

 

 

 wi can be found by partitioning C into parts Ci, s.t. each 

part is approximated by the contractive transformation wi 

of the whole set C.  
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Local Iterated Function Systems 

 Intuitions: 

– Natural images generally do not contain parts that are 

affine transforms of the whole image. 

– Different parts of the image may become similar under 

certain affine transformation.  
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Local Iterated Function Systems 
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Local Iterated Function Systems 

 IFS  

– approximates each part of the image by a transformed 

version of the whole image 

 local IFS  

– approximates each part of the image by a transformed 

version of the another part of the image 
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Implementation Issues 

 How to segment the image? 

 What transformations to use? 

 How to find the parameters of the transformations? 

 Where to find the matching segments? 
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Encoding Images 

 Given an image f  

 How to find w1,w2,…,wN s.t. f is the fixed point of W?  

 

 Partition f into N range blocks Ri   

 Find the domain blocks Di and wi(.) 

 that minimize the distance d(Ri,wi(Di)), i = 1 ,…, N 

– The best matching domain Di is said to cover the range 

Ri 
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Machine Problem 3 

 Original Image 128 x 128 

 Range blocks 4 x 4  1024 blocks (non-overlapping) 

 Domain blocks 8 x 8  121 x 121 

      =14641 (overlapping) 

 Need to compare 14641 squares with each of the 1024 

range blocks 

 Since the size of domain block is 4 times the size of range 

block, we need to down-sample.  
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Machine Problem 3 

 wi include  

– translation and down-sampling 

 

 

 

 

– adjust contrast a and brightness b 
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Encoding Images = Finding wi 

Search for best Spatial Transformation 

Search for best Grayscale Transformation 

  a =  
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Things you can do for extra credits 

 Add rotation and flip  

– Eight types of spatial transformations: 

– 1   ---> Rotate counterclockwise 0 degree.            

– 2   ---> Rotate counterclockwise 0 degree and flip.   

– 3   ---> Rotate counterclockwise 90 degree.           

– 4   ---> Rotate counterclockwise 90 degree and flip.  

– 5   ---> Rotate counterclockwise 180 degree.          

– 6   ---> Rotate counterclockwise 180 degree and flip. 

– 7   ---> Rotate counterclockwise 270 degree.          

– 8   ---> Rotate counterclockwise 270 degree and flip.  
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Things you can do for extra credits 

 Solve both a and b analytically 

– Minimize 

 

 

– By setting the partial derivatives to zero 

therefore   
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Results 

 Left: original  

 Right: after first iteration 
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Results 

 Left: after the second iteration 

 Right: After the tenth iteration 
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Other Ways to Partition the Image 



Fractals and Applications - November 8th, 2013 

© Maciej J. Ogorzałek 

Other Ways to Partition the Image 

 Motivation:  

– Different regions should be covered by different sizes of range 

blocks. 

 Quadtree partitioning 

– Divide a square into 4 equally sized sub-squares. 

– Repeat divisions recursively until the squares are small enough. 
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An Example of Quadtree Partitioning 
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Other Ways to Partition the Image 

 Motivation:  

– Use rectangular instead of square 

 HV-Partitioning 

– A rectangular image is recursively partitioned either 

horizontally or vertically to form two new rectangles. 

– More flexibility than Quadtree 

– Can make the partitions share certain similar structures. 
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An Example of HV-Partitions 

 HV-Partitions 
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Results Using HV-Partitions 
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Other Ways to Partition the Image 

 Triangular partitioning 

– A rectangular image is divided diagonally into two 

triangles. 

– Each triangle is recursively subdivided into 4 triangles 

by joining 3 partitioning points on the sides of the 

original triangle. 

 

 

 

– More flexible: triangles can have self-similarities. 

– The artifacts do not run horizontally and vertically. 
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Comparing Different Ways to Partition an Image 

 

quad tree 

5008 squares 

HV-partition 

2910 rectangles 

triangular partition 

2954 triangles 
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Fractal Zoom 

 Resolution Independence 
– Decoded image can have higher resolution than the original image. 

 The additional resolution is generated because the 
domain block is larger than its range block. 

 Assumption: details of the domain block is also similar to 
details of the range block, 
– although details of the range block are not given in the original 

image. 
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Fractal Zoom 

 Left: Decoding at 4 times its encoding size 

 Right: Original image enlarged to 4 times the size  
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Fractal Zoom 
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Fractal Zoom 
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Manhattan capacitor structures 
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Capacitance density comparison 
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