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Chaos vs. Randomness 

 
 

 Do not confuse chaotic with random: 

Random: 

– irreproducible and unpredictable 

Chaotic: 

– deterministic  - same initial conditions lead to 

same final state… but the final state is very 

different for small changes to initial conditions 

–  difficult or impossible to make long-term 

predictions 
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Fundamental properties of deterministic 

chaos 

 Sensitive dependence on initial conditions 

 Existence of attractors – chaotic limit sets 

 Existence of a countable infinity of unstable 

periodic orbits within the attractor 

 Existence of dense orbit in the attractor 

 Fractal structure in the state space 
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Background 

 

 

Newton, Liebniz 
 

 Deterministic Cause, Effect 
 

 Calculus, Continuity 
 

 “Very Similar” Cause  

  “Very Similar” Effect 
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Beginner’s guide to chaos 
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What is chaos 
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Chaos properties 



The simplest example: One-dimensional non-linear maps  

- the logistic map 

Phenomenology: 

- Initial conditions, fixed points and linear stability 
- Bifurcation analysis, period doubling 
- Bifurcation diagrams 
- Chaos 

Conclusions 

Analysis: 
-Lyapunov exponents 

-Stretching and folding 

Chaos is aperiodic long-term behavior in a deterministic 

system that exhibits sensitive dependence on initial conditions  

Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 



One-dimensional maps 

One-dimensional maps, definition: 

       - a set  V (e.g. real numbers between 0 and 1) 

       - a map of the kind  f:VV 

Linear maps: 

- a and b are constants 

- linear maps are invertible with no ambiguity   no chaos 

Non-linear maps: The logistic map 
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One-dimensional maps 
Non-linear maps: The logistic map 

with 

Discretization of the logistic equation for the dynamics  

of a biological population x 
Motivation:  

b: birth rate (assumed constant) 

cx: death rate depends on population (competition for food, …) 

How do we explore the logistic map? 
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Simple Model, Complex Dynamics 

 
Robert M. May  

   Simple mathematical models 

with very complicated 

dynamics,  

   Nature 261 (1976) 459-467. 

 General Paradigm 

      for 

 Emergence of Chaos 

  

 Distinguish Deterministic Chaos 

 from Stochastic Flux ? Chaos and bifurcations - November 7th, 2013 
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Geometric representation 

x 

f(x) 

0 1 

1 

0.5 

 

 

 

Evolution of a map:  

1) Choose initial conditions 

2) Proceed vertically until you 

hit f(x)  

3) Proceed horizontally until 

you hit y=x 

4) Repeat 2) 

5) Repeat 3) 

        . 

        : 

Evolution of the logistic map 

fixed point ? 
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Phenomenology of the logistic map 

y=x 

f(x) 

0 1 

1 

0.5 

y=x 

f(x) 

0 1 

1 

0.5 

0 1 0.5 

1 

0 1 0.5 

1 

fixed point 

fixed point 

2-cycle? chaos? 

a) b) 

c) 
d) 

What’s going on?    Analyze first  a)  b  then b)  c) , … Chaos and bifurcations - November 7th, 2013 
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Geometrical representation 

x 

f(x) 

0 1 

1 

0.5 

x 

f(x) 

0 1 

1 

0.5 

fixed point Evolution of the logistic map 

How do we analyze the existence/stability of a fixed point? 
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Fixed points 

-  Condition for existence: 

-  Logistic map: 

-  Notice: since    the second fixed point exists only for     

Stability 

-  Define the distance of       from the fixed point  

-  Consider a neighborhood of   

- The requirement                          implies  

Logistic map? 

Taylor expansion 
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Stability and the Logistic Map 

-  Stability condition: 

-  First fixed point: stable (attractor) for   

-  Second fixed point: stable (attractor) for   

x 

f(x) 

0 1 

1 

0.5 

x 

f(x) 

0 1 

1 

0.5 

-  No coexistence of 2 stable fixed points for these parameters 

   (transcritical biforcation) 
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Period  doubling 

x 

f(x) 

0 1 

1 

0.5 

Evolution of the logistic map 

0 1 0.5 

1) The map oscillates 

between two  

values of x 

2) Period doubling: 

Observations: 
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Period  doubling 

0 1 0.5 and thus: 

 

- At            the fixed point       becomes unstable,

 since 

 

 

-Observation: an attracting 2-cycle starts   

  (flip)-bifurcation  

  The points are found solving the equations 

These points form a 2-cycle for 

However, the relation                             suggests they 

are fixed points for the iterated map  

Stability analysis for             :  

and thus:  

For                         , loss of stability and bifurcation to a 4-cycle 

> 

Why do these points appear?  
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Bifurcation diagram 

Plot of fixed points vs  
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Bifurcation diagram Plot of fixed points vs  

Observations: 

1) Infinite series of period doublings  

      at pitchfork-like (flip) bifurcations 

2) After a point  

 

 

       chaos seems to appear 

3) Regions where stable periodic  

    cycles exist occur for  

What is general? 
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Metric Universalities 

M. Feigenbaum 

 Feigenbaum Number   

 Feigenbaum Ratios 

 

 Periodicity 

  Sequence 

 

 Quantitative 

 Identicality 
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Bifurcation diagram 

General points: 

 

1) Period doubling is a quite general route to chaos (other possibilities, e.g. intermittency) 

 

2) Period doublings exhibit universal properties, e.g. they are characterized by certain numbers that do not 

depend on the nature of the map. For example, the ratio of the spacings between consecutive values of         

at the bifurcation points approaches the universal “Feigenbaum” constant. The latter occurs for all maps 

that have a quadratic maximum 

 

 

 

 

 

3) Thus, we can predict where the cascade of period doublings ends, and something else starts 

4) The something else looks chaotic, however, can we quantify how chaotic really is? 

How do we characterize/quantify chaos?     

Chaos: rapid divergence of nearby points in phase space 

 

 

Measure of divergence: Lyapunov exponent  

Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 



Lyapunov exponent 
One-dimensional system with initial conditions 

One dimensional systems 

After n steps 

and  with   

After n  iterations, their divergency is approximately 

- If               there is convergence  no chaos 

- If                there is divergence  chaos 

Thus:  

(chain rule) 

Logistic map 
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Stretching and folding  
Beginning of the lecture: “Chaos: is aperiodic long-term behavior in a deterministic 

system that exhibits sensitive dependence on initial conditions ” 

0 1/2 1 

      However, in general it is necessary to have a mechanism to keep chaotic trajectories 

within a finite volume of phase-space, despite the expoential divergence of 

neighboring states 

1/2 0 1 

“stretching” (divergence) for (0,1/2) 

“folding” (confinement) for (0,1/2) 

    - “stretching+folding” is responsible for 

loss of information on initial 

conditions as the iteration number 

(time) increases 

    - for 1D maps, non-linearity makes 

“time”-inversion ambiguous  loss 

of information 
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Conclusions  

Chaos 

- the logistic map 

Phenomenology: 

- Initial conditions, fixed points and linear stability 
- Bifurcation analysis, period doubling 
- Bifurcation diagrams 
- Chaos 

Conclusions 

Analysis: 
-Lyapunov exponents 

-Stretching and folding 
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Lorenz system 
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Trajectories in the Lorenz system 
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Quote from Lorenz (1993) 

 “One other study left me with mixed feelings.  

Otto Roessler of the University of Tübingen 

had formulated a system of three differential 

equations as a model of a chemical reaction.  

By this time a number of systems of 

differential equations with chaotic solutions 

had been discovered, but I felt I still had the 

distinction of having found the simplest.  

Roessler changed things by coming along 

with an even simpler one.  His record still 

stands.” 
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Roessler system 
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Do Computers in Chaos Studies Make any Sense? 

Shadowing Lemma: Although a 

numerically computed chaotic trajectory 

diverges exponentially from the true 

trajectory with the same initial 

coordinates, there exists an errorless 

trajectory with a slightly different initial 

condition that stays near ("shadows") the 

numerically computed one. Therefore, the 

fractal structure of chaotic trajectories 

seen in computer maps is real.  
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More examples of chaotic systems 
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Chua’s circuit 
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The Double Scroll 

http://images.google.com/imgres?imgurl=www.curvuspro.ch/common/images/gallery/complete/lorentz.gif&imgrefurl=http://www.curvuspro.ch/english/curvuspro/gallery/3dgallery.html&h=370&w=436&prev=/images?q=strange+attractor&svnum=10&hl=zh-CN&lr=&ie=UTF-8&oe=UTF-8
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Period doubling in Chua’s circuit 

Remember 

logistic map? 

VVmSGmSgrmHLnFCnFC c 1,1124.0,879.0,86.30,12,32.21,75.5 2121 

)1503,1558(~R

If we have those constant parameters as follows: 

And then change R: 

http://www.geo.uni-bonn.de/members/hattendorf/html/misc/nonlindyn/logistic_map/logistic_map.jpg


Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Period-3  - Intermittency 

 

VVmSGmSgrmHLnFCnFC c 1,1124.0,879.0,86.30,12,32.21,75.5 2121 

Constant parameters same as previous ones: 

And then change R: )1503,1502(~R

Still logistic map, let’s 

zoom in part of it: 
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Period adding 

VVmSGmSgrmHLnFCnFC c 1,1124.0,879.0,86.30,12,32.21,75.5 2121 

Constant parameters same as previous ones: 

And then change R: )1493,1389(~R
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Gallery of attractors in Chua’s circuit 
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Chua’s circuit is UNIVERSAL 

 
 CLAIM: Chua’s circuit is a universal model to simulate other nonlinear systems 

because it is: 

linearly topological conjugate to C/ε 0 class.  












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11,

1;

1

10

1
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xxA

xbxA
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xd








What is C class? 

What is ε 0 ? 

It’s a set of conditions constraining C class 

with… a lot of math. 

What is topological 

conjugacy? 

If we have )(),( ygxf and 








 )(

)(

1 yhx

xhy
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 This system demonstrates features of chaotic 

motion: 

 

 

 

 Convert equation to a dimensionless form: 

 

) cos(    sin   
2 

2 

f w q 
q q 

    t A mg 
dt 

d 
c 

dt 

d 
ml D 

) cos(   sin 0 t f 
dt 

d 
q 

dt 

d 
D 

w q 
q w 

   

Mechanical Example… A Pendulum 
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System by Arneodo 
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Sprott’s circuit 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Chaotic Inductor-Diode Circuit 

Testa, Perez, & Jeffries (1982) 

LdI/dt = Vo sin wt - V 

[Co + IoaT(1-aV)e-aV] dV/dt = I - Io(1-e-aV) 
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 This system demonstrates features of chaotic 

motion: 

 

 

 

 Convert equation to a dimensionless form: 

 

) cos(    sin   
2 

2 

f w q 
q q 

    t A mg 
dt 

d 
c 

dt 

d 
ml D 

) cos(   sin 0 t f 
dt 

d 
q 

dt 

d 
D 

w q 
q w 

   

An Example… A Pendulum 
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1
0 3 2 1

1

2
2 1

3
3

cos sin

D

D

dx
f x x qxd

x dt
dt

dx
x x

dt
x t

dx

dt

q

q

w
w


     

 
   

 
 

 


 3 dynamic variables: w, q, t 

 the non-linear term:  sin q 

 this system is chaotic only for certain values 

of  q, f0 , and wD 

 In the examples: 

–  wD = 2/3, q = 1/2, and  f0 near 1 
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Sensitive dependence on initial condition 

 

 starting at 1, 1.001, and 1.000001 rad: 
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f0 = 1.35 
f0 = 1.48 

f0 = 1.45 
f0 = 1.49 

f0 = 1.47 
f0 = 1.50 
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Bifurcations -1 
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Bifurcations -2 
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Saddle-node bifurcation 
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Saddle-node bifurcation 
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Pitchfork bifurcation 
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Transcritical bifurcation 
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Hopf bifurcation 
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Hopf bifurcation - 2 
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Hopf bifurcation -3 
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Summary of normal forms 
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Catastrophic bifurcations 
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Properties of maps 
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Period doubling 
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Period doubling – logistic map 

 a=2.95 

 

 a=3.95 
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Circle map 
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Quasiperiodic routes in the circle map 
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Mode locking 
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Arnold’s tongues 
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Devil’s staircase 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Universality 
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What have we learned so far 

 In deterministic systems there exist irregular motions – they do 
not converge to any equilibrium point, periodic or quasi-periodic 
orbit – thye have many „random-like” properties (continuous 
spectra, ergodicity, mixing, „uncertainty due to sensitive 
dependence on initial conditions or parameters); 

 Such motions can be observed in nonlinear, continuous-time, 
autonomous systems of at least third order, nonlinear contiuous 
driven systems of at least second order or discrete-time 
nonlinear systems (maps) of any order (we have seen many 
examples); 

 Fundamental feature of chaos – sensitive dependence on initial 
conditions; 

 Chaos appears in a system via a sequence of bifurcations 
(„route”) – most common are period-doubling (Feigenbaum) 
sequence, period-adding, torus break-down, intermittencies; 

 How can we recognize chaotic motion in practice? 
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Quantifying dynamics 
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Lyapunov  Exponents 
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Lyapunov A. M. (1857-1918) 

Alexander Lyapunov was born 6 June 1857 in Yaroslavl, Russia 
in the family of the famous astronomer M.V. Lyapunov, who 
played a great role in the education of Alexander and Sergey. 

Aleksandr Lyapunov was a school friend of Markov and later a 
student of Chebyshev at Physics & Mathematics department 
of  Petersburg University which he entered in 1876. He 
attended the chemistry lectures of D.Mendeleev.  

In 1885 he brilliantly defends his MSc diploma “On the 
equilibrium shape of rotating liquids”, which attracted the 
attention of physicists, mathematicians and astronomers of 
the world. 

The same year he starts to work in Kharkov University at the 
Department of Mechanics. He gives lectures on Theoretical 
Mechanics, ODE, Probability. 

In 1892 defends PhD. In 1902 was elected to Science 
Academy.  

After wife’s death 31.10.1918 committed suicide and died 
3.11.1918. 
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What is “chaos”? 

 Chaos – is an aperiodic long-time behavior 
arising in a deterministic dynamical system that 
exhibits  

a sensitive dependence on initial conditions. 

Trajectories which do not 
settle down to fixed points, 
periodic orbits or 
quasiperiodic orbits as t∞  

The system has no random or 
noisy inputs or parameters – the 
irregular behavior arises from  
system’s nonliniarity 

The nearby trajectories separate 
exponentially fast  

Lyapunov Exponent > 0 
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Non-wandering set 

  - a set of points in the phase space having the following 

property: All orbits starting from any point of this set come 

arbitrarily close and arbitrarily often to any point of the set. 

 Fixed points: stationary solutions; 

 Limit cycles: periodic solutions; 

 Quasiperiodic orbits: periodic solutions with at least two 

incommensurable frequencies; 

 Chaotic orbits: bounded non-periodic solutions.  

Appears only in nonlinear systems  
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Attractor 

 A non-wandering set may be stable or unstable  

 Lyapunov stability: Every orbit starting in a neighborhood of 
the non-wandering set remains in a neighborhood.  

 Asymptotic stability: In addition to the Lyapunov stability, 
every orbit in a neighborhood approaches the non-wandering set 
asymptotically.  

 Attractor: Asymptotically stable minimal non-wandering sets. 

 Basin of attraction: is the set of all initial states approaching 
the attractor in the long time limit.  

 Strange attractor: attractor which exhibits a sensitive 

dependence on the initial conditions.  
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Sensitive dependence on the initial conditions  

 Definition: A set S 

exhibits sensitive 

dependence if r>0 s.t. 

>0 and xS y s.t 

|x-y|< and |xn-yn|>r for 

some n. 

pendulum A:  = -
140°,   d/dt = 0 
pendulum B:  = -
140°1',  d/dt = 0 
 
Demonstration 

The sensitive dependence of the 
trajectory on the initial conditions 
is  a key element of deterministic 
chaos! 

However… 

http://monet.physik.unibas.ch/~elmer/pendulum/p4ab.htm
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Sensitivity on the initial conditions also happens 

in linear systems  

 SIC leads to chaos only if the 

trajectories are bounded (the system 

cannot blow up to infinity). 

 With linear dynamics either SIC or 

bounded trajectories. With 

nonlinearities could be both.  

xn+1= 2xn 
But this is “explosion 
process”, not the 
deterministic chaos!   

Why?  

There is no boundness.  

(Lagrange stability) 

There is no folding without nonlinearities!  
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The Lyapunov Exponent 

 A quantitative measure of the sensitive dependence on 
the initial conditions is the Lyapunov exponent  . It is 
the averaged rate of divergence (or convergence) of two 

neighboring trajectories in the phase space.   
 Actually there is a whole spectrum of Lyapunov 

exponents. Their number is equal to the dimension of the 
phase space. If one speaks about the Lyapunov 
exponent, the largest one is meant.  
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x0 

p1(0) 

t - time flow 
p2(t) 

p1(t) 

p2(0) 

x(t) 

Definition of Lyapunov Exponents 

 Given a continuous dynamical system in an n-dimensional phase 

space, we monitor the long-term evolution of an infinitesimal n-

sphere of initial conditions. 

 The sphere will become an n-ellipsoid due to the locally deforming 

nature of the flow.  

 The i-th one-dimensional Lyapunov exponent is then defined as 

following:    
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On more formal level 

 The Multiplicative Ergodic Theorem of Oseledec states that this limit 

exists for almost all points x0 and almost all directions of infinitesimal 

displacement  in the same basin of attraction. 
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 Order: λ1> λ2 >…> λn 

 The linear extent of the ellipsoid grows as 2λ1t 

 The area defined by the first 2 principle axes grows as 

2(λ1+λ2)t  

 The volume defined by the first 3 principle axes grows as 

2(λ1+λ2+λ3)t  and so on… 

 The sum of the first j exponents is defined by the long-

term exponential growth rate of a j-volume element.   
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Signs of the Lyapunov exponents 

 Any continuous time-dependent DS without a 
fixed point will have 1 zero exponents. 

 The sum of the Lyapunov exponents must be 
negative in dissipative DS   at least one 
negative Lyapunov exponent. 

 A positive Lyapunov exponent reflects a 
“direction” of stretching and folding and 
therefore determines chaos in the system. 
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The signs of the Lyapunov exponents provide a qualitative picture of a 

system’s dynamics  

 1D maps: ! λ1=λ:  
– λ=0 – a marginally stable orbit; 

– λ<0 – a periodic orbit or a fixed point; 

– λ>0 – chaos. 

 3D continuous dissipative DS: (λ1,λ2,λ3) 
– (+,0,-) – a strange attractor; 

– (0,0,-) – a two-torus; 

– (0,-,-) – a limit cycle; 

– (-,-,-) – a fixed point. 
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The sign of the Lyapunov Exponent 

 <0 - the system attracts to a fixed 

point or stable periodic orbit. These 
systems are non conservative 
(dissipative) and exhibit 
asymptotic stability. 

 =0 - the system is neutrally 

stable. Such systems are 
conservative and in a steady state 
mode. They exhibit Lyapunov 
stability.  

 <0 - the system is chaotic and 

unstable. Nearby points will diverge 
irrespective of how close they are.  
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Computation of Lyapunov Exponents 

 Obtaining the Lyapunov exponents from a system with 

known differential equations is no real problem and was 

dealt with by Wolf.  

 In most real world situations we do not know the 

differential equations and so we must calculate the 

exponents from a time series of experimental data. 

Extracting exponents from a time series is a complex 

problem and requires care in its application and the 

interpretation of its results.  
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Calculation of Lyapunov spectra from ODE (Wolf 

et al.) 

 A “fiducial” trajectory (the center of the sphere) is 
defined by the action of nonlinear equations of motions 
on some initial condition. 

 Trajectories of points on the surface of the sphere are 
defined by the action of linearized equations on points 
infinitesimally separated from the fiducial trajectory. 

 Thus the principle axis are defined by the evolution via 
linearized equations of an initially orthonormal vector 
frame {e1,e2,…,en} attached to the fiducial trajectory 
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Problems in implementing: 

 Principal axis diverge in magnitude. 

 In a chaotic system each vector tends to fall 

along the local direction of most rapid growth. 
(Due to the finite precision of computer calculations, the collapse 

toward a common direction causes the tangent space orientation of 

all axis vectors to become indistinguishable.) 

Solution
: Gram-Schmidt reorthonormalization (GSR) 

   procedure! 
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GSR: 

 The linearized equations act on 

{e1,e2,…,en} to give a set 

{v1,v2,…,vn}. 

 Obtain {v’1,v’2,…,v’n}. 

 Reorthonormalization is 

required when the magnitude 

or the orientation divergences 

exceeds computer limitation. 
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 GSR never affects the direction of the first vector, so v1 
tends to seek out the direction in tangent space which is 

most rapidly growing, |v1|~ 2λ1t; 
  v2 has its component along v1 removed and then is 

normalized, so v2 is not free to seek for direction, 
however… 

 {v’1,v’2} span the same 2D subspace as {v1,v2}, thus this 
space continually seeks out the 2D subspace that is 

most rapidly growing |S(v1,v2)|~2(λ1+λ2)t …  
|S(v1,v2…,vk)|~2(λ1+λ2+…+λk)t  k-volume  

 So monitoring k-volume growth we can find first k 
Lyapunov exponents. 
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Example for Henon map 

 An orthonormal frame of 

principal axis vectors 

{(0,1),(1,0)} is evolved by 

applying the product Jacobian 

to each vector: 
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Result of the procedure: 

 Consider: 

 J  multiplies each current axis vector, which is the initial vector 
multiplied by all previous Js. 

 The magnitude of each current axis vector diverges and the angle 
between the two vectors goes to zero. 

 GSR corresponds to the replacement                   of 
each current axis vector. 

 Lyapunov exponents are computed from        the growth 
of length of the 1-st vector       and the area. 

1=0.603; 2=-2.34  
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Lyapunov spectrum for experimental data 

(Wolf et al.) 

 Experimental data usually consist of discrete 

measurements of a single observable. 

 Need to reconstruct phase space with delay coordinates 

and to obtain from such a time series an attractor whose 

Lyapunov spectrum is identical to that of the original one. 
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Procedure for 1 
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Procedure for 1+2 
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Implementation Details 

 Selection of embedding dimension and delay 

time: emb.dim>2*dim. of the underlying attractor, delay must be 

checked in each case.  

 Evolution time between replacements: maximizing 

the propagation time, minimizing the length of the replacement 

vector, minimizing orientation error. 

 Henon attractor: the positive exponent is obtained within 5% 

with 128 points defining the attractor. 

 Lorenz attractor: the positive exponent is obtained within 3% 

with 8192 points defining the attractor. 
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Finite-Time Lyapunov Exponent 
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SVD 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Lyapunov exponents for maps 
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Lyapunov exponents for flows 
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Time Horizon 

 When the system has a positive ,  there is a time horizon beyond 

which prediction breaks down (even qualitative). 

 Suppose we measure the initial condition of an experimental system 

very accurately, but no measurement is perfect – let |0| be the error. 

 After time t: |(t)|~|0|e
t, if a is our tolerance, then our prediction 

becomes intolerable when |(t)|a and this occurs after a time 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Demonstration 

 No matter how hard we work to reduce 
measurement error, we cannot predict longer 
than a few multiples of 1/.   

t=0, 
2 initial conditions 
almost 
indistinguishable  

 

t=thorizon 

Prediction 
fails out here 

|0| 

|(t)|~|0|e
t 
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Example 

 So, after a million fold improvement in the initial 

uncertainty, we can predict only 2.5 times longer! 
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Some philosophy  

 The notion of chaos seems to conflict with that attributed 

to Laplace: given precise knowledge of the initial 

conditions, it should be possible to predict the future of 

the universe. However, Laplace's dictum is certainly true 

for any deterministic system. 

 The main consequence of chaotic motion is that given 

imperfect knowledge, the predictability horizon in a 

deterministic system is much shorter than one might 

expect, due to the exponential growth of errors.  
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State-space reconstruction 
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Henon reconstruction 
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Lorenz reconstruction 
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Embedding 
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Delay reconstruction 
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Delay reconstruction for Lorenz systems 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Euclid dimension 

 In Euclid geometry, dimensions of objects are 

defined by integer numbers.  

 0 - A point  

 1 - A curve or line  

 2 - Triangles, circles or surfaces  

 3 - Spheres, cubes and other solids 
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 For a square we have N^2 self-similar pieces for the 

magnification factor of N 

   dimension=log(number of self-similar pieces)  

    /log(magnification factor) 

                    =log(N^2)/logN=2 

   For a cube we have N^3 self-similar pieces 

 dimension=log(number of self-similar pieces)  

    /log(magnification factor) 

                    =log(N^3)/logN=3 

 

 Sierpinski triangle consists of three self-similar pieces 

with magnification factor 2 each 

 dimension=log3/log2=1.58 
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APPLIED CHAOS 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Removing chaos 

 Heart defibrillation – „hardware reset” 
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What is ICD (Implantable Cerdioverter 

Defibrillator) Therapy?  

• ICD Therapy consists of pacing, 

cardioversion, and defibrillation therapies 

to treat brady and tachy arrhythmias. 

• An external programmer is used to 

monitor and access the device 

parameters and therapies for each 

patient. 
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Goals of ICD Therapy  

 Termination of ventricular 

tachycardia or fibrillation 

 Treatment of co-morbidities 

of AT/AF and heart failure 

– Prevention of life-

threatening episodes 

of VT/VF 

• Reduction of sudden 
cardiac death 

• Improvement in quality  

 of life 

• Prolongation of life 

– Expanding the 
understanding and 
management of 
sudden cardiac death 

(SCD)  

 

TODAY FUTURE 
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Medtronic Implantable Defibrillators (1989-2003) 

  209 cc 120 cc 80 cc 80 cc 72 cc 54 cc 

62 cc 49 cc 39.5 cc 39.5 cc 36 cc 

83% size reduction since 1989! 

38 cc 39.5 cc 
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Atrium & 
Ventricle 

 Bradycardia sensing  

 Bradycardia pacing 

Atrium  

 AT/AF tachyarrhythmia 
detection 

 Antitachycardia pacing 

 Cardioversion 

Ventricle 

 VT/ VF detection 

 Antitachycardia pacing 

 Cardioversion 

 Defibrillation  

Therapies Provided by Today’s 

Dual-Chamber ICDs 
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Achieving Cardiac Resynchronization 

Goal: Atrial synchronous  
biventricular pacing 
Transvenous approach for left ventricular lead via 
coronary sinus 
Back-up epicardial approach 

Right Atrial 

Lead 

Right Ventricular 

Lead 

Left Ventricular 

Lead 



InSync Marquis ™ ICD & Cardiac 

Resynchronization System 

 Powerful ICD & Resynchronization 
Therapy 

– Powerful 30 J therapy 

– Fast charge times  

– Proven cardiac resynchronization therapy for 
patients with ventricular dysynchrony 

 Better, Faster & Easier  

 Heart Failure Patient Management 

– 14 months of patient specific data provided by 
Cardiac Compass ™ trends 

– Follow up efficiency with RapidRead™ 
telemetry, Leadless ™ ECG, Painless High 
Voltage lead impedance 

 

 Implant Confidence & Efficiency 

– Most complete family of left-heart leads & 
delivery systems 

– Lead placement flexibility, enhanced telemetry 
distance, one-stop defibrillation testing 

 

 

Charge Times:  5.9 sec BOL / 7.5 ERI 

Output:  30 Joules 

Size:  38 cc, 77 g, 14 mm 
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Evolution of ICD Therapy:   

1980 to Present 

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

90 000

1980 1985 1990 1995 2000 2005

Number of Worldwide ICD Implants Per Year 

First Human 

Implant 

FDA 

Approval of 

ICDs 

•Transvenous Leads 

•Biphasic Waveform 

Smaller 

Devices 

Dual-Chamber 
ICDs 

Size 
Reduction 

AVID 

CASH 

CIDS 

 AT Therapies 

 MUSTT 

ICDs  
with  
Cardiac   
Resynch 

1980 

1985 

1989 

1993 

1996 

1997/8 

1999 

2000 

2002 

1988 

Tiered 

Therapy 
 MADIT 

 Steroid-eluting Leads 

 Increased Diagnostic and 

   Memory Capacity 

 

MADIT-II 

  

     2004     

    SCD-HeFT  

 

COMPANION 
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Future ICD Technology 

 Enhanced automaticity: 

– Device software that suggests programming options to the 

clinician based on the patient’s history and demographics 

 Continued reductions in device size: 

– Will require advancements in battery, capacitor and circuitry 

technology and/or decreasing the delivered energy output. 
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Control concept – eliminate chaos! 

 

 Switch onto one of the unstable periodic 
orbits existing within the attractor 

 Feasible because every trajectory is dense 
on the attractor ie. It will eventually pass 
arbitrarily close to any of these unstable 
orbits 

 Possible stabilization by very small energy 
perturbation (sensitive dependence on initial 
condition) 

 Best to use the Poincare section concept  and 
apply control on the section plane 
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Bifurcation diagram for the logistic map 
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Existence of unstable periodic orbits 
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New approach 

 Continuous analysis of heart waveforms and  

extraction of features of arrythmia 

 Identification of unstable periodic orbit(s) 

 Calculation of control signal 

 Delivery of control signal to the heart 
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Ott-Grebogi-Yorke scheme 
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OPF chaos controller 
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Electronic chaos controller 
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Control of chaos in Chua’s circuit 
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Control of chaos in the Colpitts oscillator 
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Cardiac chaos 
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Controlling atrial fibrillation in humans 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Chaos-based epilepsy treatment 
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Unstable fixed points 
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Anti-control „off” 
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Anti-control „on” 
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Chaos anti-control 
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Laboratory experiments 
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Targetting 
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Infinitesimal dynamics 
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PDF evolution 
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Estimation of Lyapunov exponents 
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Recursive QR decomposition 
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Recursive QR decomposition -2 



Chaos and bifurcations - November 7th, 2013 

© Maciej J. Ogorzalek 

Recursive QR decomposition -3 
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Conjecture of Kaplan-Yorke 
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Convergence 
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Consistency test 1 (Henon) 
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Consistency test 2 (Lorenz) 
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Box-counting dimension 
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Renyi dimension 
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Information dimension 
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Correlation dimension  
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Implementation of the algorithm 
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Minimum data 
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Oseledec theorem 
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Global Lyapunov exponents 
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Finite-time Lyapunov exponents 
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Sensitive dependence on initial conditions 
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Logistic map 
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Logistic map 

 a=2.8 

 

 a=3.25 
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Logistic map (continued) 

 a=3.5 

 

 a=3.8 

 


