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Introduction to Dynamical Systems

Nothing in Nature is random... A thing appears random
only through the incompleteness of our knowledge.

Spinoza
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\Chaosys. Randomness

e Do not confuse chaotic
2andom:

— Irreproducible and unpredictable
Chootic:

— deterministic - same initial conditions lea
same final state... but the final state is ve
different for small changes to initial condi

— difficult or impossible to make long-term
predictions

random:
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Fundamental properties of deterministic
chaos

Sensitive dependence on initial conditions

Existence of attractors — chaetic limit sets

Existence of a countable infinity of unstable
periodic orbits within the attractor

Existence of dense orbit in the attractor
Fractal structure in the state space
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MODELING AND DYNAMICAL SYSTEMS

e Modeling is fundamental to analysis and understanding of
physical, biological, and social systems.

Basic assumption: internal states described by a few observables.

Mathematical idealization: process leads to geometric characterization

of idealized states (state-space model).

Conventional interpretation: assumed correspondence between actual

states and geometric model points.

¢ Dynamical systems are a primary paradigm for modeling.

— A dynamical system is one in which a set of internal parameters (called

states) obeys a set of temporal rules.

— Study of dynamical systems divides into applied dynamics, mathematical

dyvnamics, experimental dynamics.
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STATE VARIABLE REPRESENTATIONS

e | ime series — scalar variable versus time
— Traditional approach, used especially in statistical contexts

e Phase space — state variables with time as a parameter
— Geometric perspective provides several benefits

Phase space (2-D)




CONTINUOUS (ANALOG) DYNAMICAL SYSTEMS

e State depends continuously on time ¢.

e Governing rule is usually an ordinary or partial differential
eqn.:

dx/dt =: Xx = F(X) (autonomous or unforced)
ODE

X = F(x.,t) (nonautonomous or forced)

PDE

future

F: vector field (smooth)

‘—trajectory Representative
X velocity

X: third-order ODE
F tangent to trajectory at x 2
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DISCRETE (DIGITAL) DYNAMICAL SYSTEMS

e State depends on discrete set of times ¢t,.

e Governing rule is usually a difference equation (DE):

Xpt+1 = D (Xp) (autonomous)

Xpt1 = q)()(n,tn) (nonautonomous)

with X, = X(tn).

future
< state transition map

Representative
Xn. present state

third-order DE

Xn_|_11 next state
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ackground

Newton, Liebniz
Deterministic Cause,
Calculus, Continuity

“Very Similar” Cause
“Very Similar” Effect
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Beginner's guide to chaos

Over the last decade, physicists, biologists, astronomers
and economists have created a new way of understanding
the growth of complexity in nature. This new science,
called chaos, offers a way of seeing order and pattern where
formerly only the random, erratic, the unpredictable — in
short, the chaotic — had been observed.

James Gleick®
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What Is chaos

e CGChaos is bounded, random-like behavior in a deterministic
dynamical system — that is, “noise” with an underlying
order.

e Example: progression from order to disorder in a flowing
stream

Smooth laminar flow Stable vortex detachment

— — sy
S DN s e

C
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Chaos properties

e Characteristic features
— Essentially continuous, possibly banded Fourier spectrum.
— Sensitivity to initial conditions: nearby orbits diverge very rapidly.

— Ergodicity and mixing of the orbits

* ergodicity — each orbit visits entire chaotic region infinitely often

* mixing — any region of initial states quickly dispersed throughout

chaotic region

e Important observations
— System can be continuous or discrete, but must be nonlinear.
— System can be forced or unforced, dissipative or lossless.

— Continuous system must be third-order or higher; discrete or PDE

system can be any order.
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IS aperiodic long-term behavior in a deterministic
system that exhibits sensitive dependence on initial conditions

The simplest example: One-dimensional non-linear maps
- the logistic map

Phenomenology:

- Initial conditions, fixed points and linear stability

- Bifurcation analysis, period doubling
- Bifurcation diagrams

- Chaos

Analysis:
-Lyapunov exponents
-Stretching and folding

Conclusions
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One-dimensional maps, definition:
-aset V (e.g. real numbers between 0 and 1) [(IEEE|
- a map of the kind f:V-2V

Linear maps: Tpi1 = ATy, + b
- a and b are constants

- linear maps are invertible with ne.ambiguity = no chaos

Non-linear maps: The logistic map
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Non-linear maps: The logistic map

with

Motivatidaiscretization of the logistic equation for the dynamics
of a biological population x

b: birth rate (assumed constant)

cX: death rate depends on population'(competition forfood, ...)
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Simple Model, Complex Dynamics

Robert M. May

Simple mathematical models
with very complicated
dynamics,

Nature 261 (1976) 459-467.
General Paradigm

for
Emergence of Chaos

Distinguish Deterministic Chaos
fl’O m %@Q@ﬁﬂ&ﬁoﬁm%e%er 7th, 2013
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Evolution of a map: u=08, x,=07
1) Choose initial conditions

2) Proceed vertically until you

hit f(x)

3) Proceed horizontally until

you hit y=x

4) Repeat 2)

5) Repeat 3)

| n=08, x,=07
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Second fixed point: stable (attractor) for EESETEEEE
No coexistence of 2 stable fixed points for these parameters
(transcritical biforcation)

n=08, x,=07

@ M aciej :| Ugorzalek



Observations:

1) The map oscillates
between two
values of x

MaUIRSURNISNNeNs 2) Period doubling:




- At the fixed point M becomes unstabl
since

-Observation: an attracting 2-cycle starts -

(flip)-
The points are found solving the equations

ra = iy (1= )

INRUILIS: ry = pg(l — )

t10=(14pE/p2—2u—3)/2u

suggests they
f2 ()
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Infinite series of period doublings
0.8
0.6
0.41]
0.29

at pitchfork-like (flip) bifurcations

2) After a point

chaos seems to appear
3) Regions where stable periodic

1

cycles exist occur for
0

o

Observations:

1)




Metric Universalities

M. Feigenbaum

Feigenbaum Number
Feigenbaum Ratios

Periodicity
Seguence

Quantitative
Identicality

THIS YEAR
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General points:

1)

2)

)
4)

Chaos: rapid divergence of nearby points in phase space

Measure of divergence: Lyapunov exponent

Period doubling is a quite general route to chaos (other possibilities, e.g. intermittency)

Period doublings exhibit universal properties, e.g. they are characterized by certain numbers that do not
depend-on the nature of the map. For example, the ratio of the spacings between consecutive values of
at the bifurcation points aoaches the universal “Feigenbaum” constant. The latter occurs for all maps
that have a quadratic maximum

e — M

lim = 4.669201609. ...

k—o0 Hi+1 — Hi

Thus, we can predict where the cascade of period doublings ends, and something else starts
The something else looks chaotic, however, can we guantify how chaotic really is?
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One-dimensional system with initial conditions and with (5

Thus: NI 1 f™(xo+€) — () df™(x) ]
AN~—-n|l—=- £ = > 7
n € r=xrp

1 n—1
(chainrule) iR FMEN]

T— n

1—=0

Lyapunov exponent A(u)
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Beginning of the lecture: “Chaos: is aperiodic long-term behavior in a deterministic
system that exhibits sensitive dependence on initial conditions ”

However, in general it is necessary to have a mechanism to keep chaotic trajectories
within-a-finite volume of phase-space, despite the expoential divergence of
neighboring states

1/2 1
“stretching” (divergence) for (0,1/2)
- “folding” (confinement) for (0,1/2)
)

- “stretching+folding” is responsible for
loss of information on initial
conditions as the iteration number

112

1 (time) increases

) .

- for 1D maps, non-linearity makes
“time”-inversion ambiguous = loss

of information
)
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Chaos
- the logistic map

Phenomenology:

- Initial conditions, fixed points and linear stability

- Bifurcation analysis, period doubling
- Bifurcation diagrams

- Chaos

Analysis:
-Lyapunov exponents
-Stretching and folding
Conclusions

Chaos and bifurcations - November 7th, 2013
© Maciej J. Ogorzalek



Lorenz system

e One of the first strange attractors discovered in the
natural sciences (Lorenz, 1963).

— T hird-order autonomous dvnamical system modeling thermal convection
and flow in viscous fluid or atmosphere (o, B, R are physical
parameters).

z—oc(y—=z), y=Rx—y—xz, 2=—-Bz+zxy

— y(0)=0

} ( x(0),z(0) ) = (10,30)
—— y(0) = 0.01

]

i

Lorenz Attractor Sensitivity to
(0 =10, B = 2 p— 28) Initial Conditions
? 31
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Trajectories in the Lorenz system
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Quote from Lorenz (1993)

“One other study left me with mixed feelings.
Otto Roessler of the University of Tubingen
had formulated a system of three differential
equations as a model of a chemical reaction.
By this time a number of systems of
differential equations with chaotic solutions
had been discovered, but | felt | still had the
distinction of having found the simplest.
Roessler changed things by coming along
with an even simpler one. His record still
stands.”
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Roessler system

e Dynamical system (third-order autonomous; Rossler,
1976)

Po— -~ T = T l ‘:':l =~ e
z=—(y+z), y zt+oy, 2 5+~(:r 1)

Sx(t + dt)

55' Stretching
Folding \

- ox(t)

uw=>5.7 Stretch & fold

Initial state: operation
(_1: O} O)
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Do Computers.in Chaos Studies Make any Sense?

Although a
BN A5 Ry numerically computed chaotic trajectory
fg;i'l&f?f;iniflfﬁfjgﬁ‘) div_erges exponentially fr_or_n_the true
Einegri?ﬁ'ﬁﬁifﬁi?ﬁ;?fub.e traject_ory with the same initial
precison, both orginating coordinates, there exists an errorless
SO (rajcctory with a slightly different initial
TR T 6 B condition that stays near. ("'shadows") the
numerically computed one.:Lherefore, the
fractal structure of chaotic trajecteries

seen in computer maps is real.

y0F

True trajectory
from x

Noisy
trajectory
from x

Initial
condition x

Slightly True trajectory

different

s ,
from xj

Chaos and bifurcations - initial condition x{,
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2.1 Henri Poincare

Birth of Chaos Theory

In 1887 the King of Sweden offered a
prize to the person who could answer the
question ” .

Poincare, a French mathematician, won
the prize with his work on the
problem

He considered, for example, just the Sun,
Earth and Moon orbiting in a plane under
their mutual gravitational attractions

Like the pendulum, this system has some

Mewton solved the 2-body problem

Introducing a Poincare section, he saw

that must occur
These would then give rise to and
unpredictability B Poincaré showed that the 3-body

problem is essentially ‘unsolvable’
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Kpew = F : X }

2.5 Poincare
Section

To examine chaos, Poincare
used the idea of a section

This cuts across the phase-
space orbits

The original system flows in
continuous time

On the section, we observe _ Vnew =
steps in A —

The flow is replaced by what
is called an

The dimension of the phase-
space is reduced by one @
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More examples of chaotic systems
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Chua’s circuit

Rich spectrum of strange attractors.

Linear circuit plus PWL resistor makes for simple realization and
replication.

Novel flexible synthesis circuit developed for negative PWL resistor.

Described by third-order, unforced, continuous ODE, where g(ve1)
represents PWL characteristic for Gy

_ 1. | 1. dif, 1 .
Vo1 = (Tl[u- —g(ver)]s v = a(u - Guep), —— = _f(“m +wveo + Rip)

dt

GN: AI
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\The Double Scroll
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Period doubling in Chua'’s circuit

If we have those constant parameters as fotlows:

C,=5.75nF,C, =21.32nF, L =12mH, r =30.86¢2, g, =—0.879mS, G, =-0.1124mS,V, =1V

PO RUINERTCESH R ~ (1558,1503)2

Remember
logistic map?

Logistic Map

Chaos and bifurcations - November 7th, 2013
© Maciej J. Ogorzalek


http://www.geo.uni-bonn.de/members/hattendorf/html/misc/nonlindyn/logistic_map/logistic_map.jpg

Period-3 - Intermittency

Constant parameters same as previous Ones:

C,=5.75nF,C, =21.32nF,L =12mH, r =30.86¢2, g, =—0.879mS, G, =-0.1124mS,V, =1V

AU RUINENTEIHE R ~ (1502,1503)Q

Still logistic map, let’s
zoom in part of it:

I il
:i1|ii![F[ l Mh“uf

Hilnry
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Period adding

Constant parameters same as previous Ones:

C,=5.75nF,C, =21.32nF,L =12mH, r =30.86¢2, g, =—0.879mS, G, =-0.1124mS,V, =1V

ORIV ERINEE R ~ (1389,1493)Q2
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Gallery of-attractors in Chua’s circuit
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Chua’s-circuit is UNIVERSAL

CLAIM: Chua’s circuit is a universal model to simulate other nonlinear systems
because it is:

linearly topological conjugate to C/&_jclass.

What is C class?

It’s a set of conditions constraining C class

i ?
Whatis € with. .. a lot of math.

y =h(x)
What is topological If we have ERCIReI€)] and {xzhl(y)

iEIMeI¢)] are topological conjugate iff:
{g(y)= h(f (h™(y))

conjugacy?

f(x)=h"(g(h(x)))
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Mechanical Example... A Pendulum

This system demonstrates features of chaotic
motion:

d’0 dé .
+c—+mgsinf = A cos(w,t +

mi

Convert equation to a dimensionless form:

dw dé .
—+qg—+sinf = f. cos(w .t
i th 0 (@wpt)
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System by Arneodo

Fixed points:

Jacobi matrix:;
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Sprott’s circuit
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Chaotic Inductor-Diode Circuit
Testa, Perez, & Jeffries (1982)

T” s @t

Ldl/dt =V, sin et - V

[C, + l,aT(1-aV)e*V] dV/dt=1- 1 (1-e*V)
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An Example::-: A Pendulum

This system demonstrates features of chaotic
motion:

d’0 dé .
+c—+mgsinf = A cos(w,t +

mi

Convert equation to a dimensionless form:

dw dé .
—+qg—+sinf = f. cos(w .t
i th 0 (@wpt)
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3 dynamic variables: w, 0, t

Sin 6
this system is chaotic only for certain values
of q,f,, and o,

In the examples:
- op=2/3,q=1/2,and fynear 1

.
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Sensitive dependence on initial condition

Lal
)
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T
m
-
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Total Energu
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Bifurcations -1

Difurcation is Latin for "forking into two”, and probably derives from the fact that in some
cases, such as a pitchfork bifurcation, the orbit zeems to "fork” from period one to penod two

A bifurcation iz & qualitative change in the dynamics of a syatem that occurs when a confro
parameter is varied

A bifurcation point is the point in the parameter space where the bifurcation occurs
Typically, a bifurcation occurs when an aftractor becomes unstable
difurcations are classified according to how stability is lost
difurcation types: saddie node, pitchfork, franscritical hopf
In a map:
¢ real eigenvalue leaves unit circle at +1: saddle node {or fold)
» real eigenvalue leaves unit circle at -1: pitchfork (or flip)
# conjugate complex eigenvalues leave unit circle simulianecusly: hopf
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Bifurcations -2

The particular way in which stability is lost depends on the symmetry properties of the
Jacobian matrix
Investigate when the eigenvalues of the Jacobkian cross the imaginary axis
Consider the algebraic properties of the Jacobian matrix J
# An antisymmetric J haz pure imaginary eigenvalues
A symmefric J has pure real eigenvalues
Complex eigenvalues lead to a rotational flow nearby the fixed point
Typically perturbations to the fixed point will spiral inte the fixed point before the
bifurcation and will spiral out to a limit cycle afterwards
Real eigenvalues imply an absence of rotation
Typically, perturbations about such a fixed point flow directly towards the fixed po
before the bifurcation and flow directly outwards to ancther equilibrium afterward
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Saddle-node bifurcation

A real eigenvalue passes
through the origin

A saddle coalesces with a node
and they are annihilated

Consider

no fixed points

fixed points at

ll.' [ =
Eigenvalue A = —2x

sl

S0 - Hr'? iz stable and

: i3 unstahle

..I_.'
ETy (0,0} iz a zaddle node
pifurcation point
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Saddle-node bifurcation
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Pitchfork bifurcation

Consider

Jacobian is u + 3ar”

Eigenvalues A = u at = = 0 and

1 2 at I, —::l."l'q

o < U supercritical pitchfork
pifurcation

= [ subcritical pitchfork bifur-
cation
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Transcritical bifurcation

Conzsider

Fixed points at = =0,z
Eigenvalueis A=puatz =10
A= —patr=u

(x,u) = (0,0} is a franscritical
bifurcation

Branches swap stability
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Hopf bifurcation

A pair of complex conjugate eigenvalues crosses the imaginary axis away from the real line
Az a result, the fixed point becomes a limit cycle
Congider system in polar coordinates

In rectangular coordinates
1 '.'.-. . I — wy
| |

T -l -!II-.I-!II —_— .l'
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Hopf bifurcation - 2

Linearization about origin gives
= =

Eigenvalues A = —a £ 1w

Hopf bifurcation at a = 0 conjugate pair of eigenvalues cross imaginary axis
Properties of hopf bifurcation
# Occurs at fixed point
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Hopf bifurcation -3
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Summary of normal forms

Saddle node bifurcation

Tranzcritical bifurcation

Pitchfork Bifurcation

Hopf bifurcation
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Catastrophic bifurcations

A bifurcation iz “subtle” if a amall change in the control parameter gives rize to a small
thange in the behaviour

A hifurcation is “catastrophic” if @ small change in the confrol parameter causes a large
thange in the behaviour

An example of a catasirophic bifurcation i3 the saddle-node bifurcation whers a nods (3 sink
or source) and a saddle (a hyperbolic fired point) coalesce, leaving no fixed point

When a new attractor appears which is unrelated to the existing attractors, the result can be
a catastrophic change in the evolution of the trajectories

For example, if a system has two distinct stable fixed points and one loses its stability, then
the ystem will jump to the remaining fixed point

Chaos and bifurcations - November 7th, 2013
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Properties of maps

If rp iz a fixed point of f, then it is alzo a fixed point of f™:

If o, & fixed point of f, becomes unstable, then it is unstable in f™ since

LFE a4
i

o
i
_ gy Py

_ d
I'.. 1 ——
dx

d
dx

pecause of the cham rule:

d rFL
dr.

where ; is the kth terate of o and using the result
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Alzo known as subharmonic bifurcation gince doubling the period halves the frequenc
Az control parameter varied you pass through sequence of period-doubling bifurcatio
chaos

First found in noninvertible 1D maps

Consider logistic mag

For a < 1 one fixed point at =

When a > 1 two fixed points and | £/(0)| = 1 = instability

Other fixed pointat ro =1 — 1/a anc

it
1

When a > 3, =g becomes unstable and a period-2 orbit forms (pitchfork bifurcation)

| | i
- |
Il & L

5,

Period-2 orbit is fixed point of f{ f(x))

For a /= 3.45 period-4 orbit forms
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Period doubling
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Period doubling — logistic map

a=2.95 a=3.95
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Circle map

The circle map iz a one-dimensional map which maps the circle onto itself

_ K .
0 — sin 278 mod 1

2w

where 12 is an externally applied frequency and K controls the strength of the nonlinearity

Conzider the linear case when K =0, giving

If £ = 2/5 = 0.4, then the system will return to its original value after five iterations, having
made two revolutions

If €2 is rational, then it is known as the map winding number = W = E
1

If the winding number iz a rational number W = p/q (p and g integers), then the map is
cyclic or periodic

If the winding number iz irrational, then & does not return exactly to itz initial value and the
motion iz quasiperiodic
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Quasiperiodic routes in the circle map

Behaviour in (K, £2) parameter space:
# K = 1: Arnold tongues of rational W separated by regions of imational W
# K > 1. map noninvertible, chaotic and nonchaofic regions interwoven
# K = 1: regions of irrational W form a cantor set

U=l K=[B0 =i K=1.00

2

'IJ:I:
omr
naf
oif
u:
on

e a2 0O =d O0H 1B bt 02 04 D4 98 1B

Y= K=1.20 fi=khdQ k=150

I
bk YR EE

e d2 O od OB 1D b A2 M &4 98 10
K K
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Mode locking

If the nonlinear term is added (K £ (), the map can display periodic motion when £2 is
rrationa

The motion will be periodic iz some finite region surmounding each rational {3
Periodic motion in response to irrational forcing is known as mode locking

For K £ 0, the winding number iz defined as

Consider the ( K, ) parameter space with regions of periodic mode-locked parameter
space plotted around rational £ {correzponding to map winding numbers W)

These regions widen upwards from 0 at K’ = 0 fo a finite width at K = 1

The regions surrounding each rational number is known a3 an Arnold fongue

At K = 0 the tongues form an isclated set of measure zero

At K =1, the tongues form a Cantor set of dimenzion D) = 0.087

For K = 1, the tongues overlap and the map becomes noninvertible
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Arnold’s tongues
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Devil's stalrcase

At K = 1 only rational winding

numbers are availahle -

The mode-locking implies that

the winding number is 0.8
ndependent of the initial

condition 0.6
. : WiEk)

A graph of W versus £2 displays

a monotonic increasing staircase
for which the simplest rational
numbers have the largest steps
The devil’s sfaircase
continuously maps the interva
10.1] onto itself but is constant
almost everywhere

It has a dimension [ = 0.87
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Universality

Cuadratic map
<41 !I.!';|:|. — I'm :'
Let a,, be value of a where number of fixed points changes from 27— 1 {g 27

. scale like a.. — a, <3~ whenn = 1, or

Where aq. 3.5699456 _ . .

Distances, d,, of point in 2™ cycle closesito =

When i S

¢ and o« are Feigenbsum consiants

4 6692016051 . .. 2 S0200TETHOD. ..
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What have we learned so far

In deterministic systems there exist irregular motions — they do
not converge to any equilibrium point, periodic or quasi-periodic
orbit — thye have many ,random-like” properties (continuous
spectra, ergodicity, mixing, ,uncertainty due to sensitive
dependence on initial conditions or parameters);

Such motions can be observed in nonlinear, continuous-time,
autonomous systems of at least third order, nonlinear contiuous
driven systems of at least second order or discrete-time
nonlinear systems (maps) of any order (we have seen many
examples);

Fundamental feature of chaos — sensitive dependence on initial
conditions;

Chaos appears in a system via a sequence of bifurcations
(,route”) — most common are period-doubling (Feigenbaum)
sequence, period-adding, torus break-down, intermittencies;
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Quantifying dynamics
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Lyapunov Exponents
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Lyapunov-A. M. (1857-1918)

Alexander Lyapunov-was born 6 June 1857 in Yaroslavl, Russia
| in the family of the famous astronomer M.V. Lyapunov, who
played a great role in the education of Alexander and Sergey.

Aleksandr Lyapunov was a school friend of Markov and later a
student of Chebyshev at Physics & Mathematics department
of Petersburg University which he entered in 1876. He
attended the chemistry lectures of D.Mendeleew:

In 1885 he brilliantly defends his MSc diploma “On the
equilibrium shape of rotating liquids”, which attracted the
attention of physicists, mathematicians and astronomers of
the world.

The same year he starts to work in Kharkov University at the
Department of Mechanics. He gives lectures on Theoretical
Mechanics, ODE, Probability.

In 1892 defends PhD. In 1902 was elected to Science
Academy.

After wife’ s death 31.10.1918 committed suicide and died
3.11.1918.
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Whatis “chaos”?

— is[an aperiodic long-time behavior ]

arising in aldeterministic |[dynamical system that
exhibits

a[sensitive dependence on |initial conditions.]

A 4

Trajectories which do not
settle down to fixed points,
periodic orbits or

The nearby trajectories separate
exponentially fast

I quasiperiodic orbits as t—00

A 4

The system has no random or
noisy inputs or parameters — the
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Non-wandering set

- a set of points in the phase space having the following
property: All orbits starting from any paoint of this set come
arbitrarily close and arbitrarily often to any point of the set.
Fixed points: stationary solutions;

Limit cycles: periodic solutions;

Quasiperiodic orbits: periodic solutions with at least two
Incommensurable frequencies;

Chaotic orbits: bounded non-periodic solutions.

Chaos and bifurcations - November 7th, 2013
© Maciej J. Ogorzalek



Attractor

A non-wandering set may be stable or unstable

Every orbit starting in a neighborhood of
the non-wandering set remains in a neighborhood.

In addition to the Lyapunov stability,

every orbit in a neighborhood approaches the non-wandering set
asymptotically.

Asymptotically stable minimal non-wandering sets.

IS the set of all initial states approaching
the attractor in the long time limit.

attractor which exhibits a sensitive
dependence on the initial conditions.
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Sensitive dependence on the initial conditions

AsetS
exhibits sensitive
dependence if 3r>0 s.t.

1000
g 800 pendulum B Ve>0 and VxeS Jy s.t
o 600 K
5 400 | x-y|<e and IXn'yn|>r for
= some n.
S5 0
%—200 \,\//\\j \j
_é’ pendulum A

10 12 4
time (sec)

pendulum A: ¢ = - Th_e sensitive dep_er)c_lence of_ Fhe
140° , dp/dt=0 trajectory on the initial conqw_lor_\s
pendulum B: ¢ = - IS a key element of deterministic
140° Vs tdpladt = O chaos!
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Sensitivity-on the initial conditions also happens
In linear systems

Why?

There is no boundness.

But this is “explosion
process”, not the
deterministic chaos!

Xn+1= 2Xn

(Lagrange, stability)

1. step: ralling out falding

SIC leads to chaos only if the
trajectories are bounded (the system

cannot blow up to infinity). I:l —
With linear dynamics either SIC or t
bounded trajectories. With S RAREperte

nonlinearities could be both. after the 2. step:

There is no folding without nonlinearities!
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The Lyapunov Exponent

A quantitative measure of the sensitive dependence on
the initial conditions is It is

the averaged rate of divergence (or convergence) of two
neighboring trajectories in the phase space.

Actually there Is a whole spectrum of Lyapunov
exponents. Their number is equal to the dimension of the
phase space. If one speaks about the Lyapunov
exponent, the largest one is meant.
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Definition of Lyapunov Exponents

Given a continuous dynamical system in.an n-dimensional phase
space, we monitor the long-term evolution of an infinitesimal n-
sphere of initial conditions.

The sphere will become an n-ellipsoid due to the locally deforming
nature of the flow.

The i-th one-dimensional Lyapunov exponent is then defined as
following:

0 Xy

f- time flow

Chaos and bifurcations - November 7th,
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On more formal level

Consider a map M in an n-dimensional phase space, ry an initial condition, x, the

corresponding orbit.

Consider an infinitesimal displacement from zy in the direction of tangent vector vy then

the evolution of the tangent vector is:
Yn = DM"(x0)y0,

where DM"(xq) = DM(x,,_1) - ... DM(zy)

Define a Lyapunov exponent for initial condition xy, and initial orientation of the in-

finitesimal displacement given by uy = yy/|yp|:

L(zg,up) = limp oo = In(|yn|/|ve|) = limp—.co + In [ DM™(zq) - ug).

The Multiplicative Ergodic Theorem of Oseledec states that this limit
exists for almost all points x, and almost all directions of infinitesimal
displacement in the same basin of attraction.
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Order: A;> A, >...> A,

The linear extent of the ellipsoid-grows as 2!

The area defined by the first 2 principle axes grows as
2(M+A)t

The volume defined by the first 3 principle axes.grows as
2M+ha*A3)t gnd so on...

The sum of the first | exponents is defined by thelong-
term exponential growth rate of a J-volume element.
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Signs-of the Lyapunov exponents

Any continuous time-dependent DS without a
fixed point will have >1 zero exponents.

The sum of the Lyapunov exponents must be
negative in dissipative DS = 3 at least one
negative Lyapunov exponent.

A positive Lyapunov exponent reflects a
“direction” of stretching and folding and
therefore determines chaos in the system.

Chaos and bifurcations - November 7th, 2013
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The signs of the Lyapunov-exponents provide a qualitative picture of a
system’ s dynamics

1D maps: 3! A=A:

— A=0 — a marginally stable orbit;

— A<O — a periodic orbit or a fixed point;

— A>0 — chaos.

3D continuous dissipative DS: (A,A,,A3)
— (+,0,-) — a strange attractor,

— (0,0,-) — a two-torus;

— (0,-,-) — a limit cycle;

- (-,-,-) — a fixed point.
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The sign of the Lyapunov Exponent

7\.<O - the system attracts to a fixed
point or stable periodic orbit. These

systems are non conservative
(dissipative) and exhibit
asymptotic stability.

(attracting fixed point)
A-<0

A=0 - the system is neutrally

stable. Such systems are
conservative and in a steady state
mode. They exhibit Lyapunov

stability.

7\.)0 - the system is chaotic and

unstable. Nearby points will diverge
Irrespective of how close they are.
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Computation of Lyapunov Exponents

Obtaining the Lyapunov exponents from a system with
known differential equations is no real problem and was
dealt with by Wolf.

In most real world situations we do not know the
differential equations and so we must calculate the
exponents from a time series of experimental data:
Extracting exponents from a time series is a complex
problem and requires care in its application and the
Interpretation of its results.
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Calculation of Lyapunov spectra from ODE (Wolf
etal.)

A “fiducial” trajectory (the center of the sphere) is
defined by the action of nonlinear equations of motions
on some initial condition.

Trajectories of points on the surface of the sphereare
defined by the action of linearized equations on points
Infinitesimally separated from the fiducial trajectory.

Thus the principle axis are defined by the evolution via
linearized equations of an initially orthonormal vector
frame {e,,e,,...,e,} attached to the fiducial trajectory
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Problems-in implementing:

Principal axis diverge in magnitude.

In a chaotic system each vector tends to fall

along the local direction of most rapid growth.

(Due to the finite precision of computer calculations, the collapse
toward a common direction causes the tangent space orientation of
all axis vectors to become indistinguishable.)

Solution

Gram-Schmidt.reorthonormalization (GSR)
Chapar(gigggu E@e‘lmber 7th, 2013
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GSR:

The linearized equations act on
{e,,e,,...,e } to give a set
{Vi,Vy,...,V )

Obtain {v' ;,v',,...,v" .}

Reorthonormalization is
required when the magnitude
or the orientation divergences
exceeds computer limitation.
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GSR never affects the direction of the first vector, so v,
tends to seek out the direction in tangent space which is

most rapidly growing, [v1][~2M;

V, has its component along v, removed and then is
normalized, so v, is not free to seek for direction,
however...

{v' ;v ,} span the same 2D subspace as {v;;\.}, thus this
space continually seeks out the 2D subspace that is

most rapidly growing |S(v,,v,)|~2A 1+t
IS(V4,Vs. ..,V )|~ 2(A1HA2t NI k_yolume

So monitoring k-volume growth we can find first k
Lyapunov exponents.
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Example for Henon map

X, =1-14X2 1Y, An orthonormal frame of
principal axis vectors
{(0,1),(1,0)} is evolved by

o - applying the product Jaeobian
( Ot ) — g, 0 to each vector:

_,n' J. 9.
(on)

Y?l—l—l — 03){71

The linearization of this map is:

0 Yn. +1

where J, =

and X, is the (n — 1)st iterate of

an arbitrary initial condition X;.

or by regrouping the terms:

Chaos and bifurcatio
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Result of the procedure:

Consider:

J multiplies each current axis vector, which is theinitial vector
multiplied by all previous Js.

The magnitude of each current axis vector diverges and the angle
between the two vectors goes to zero.

GSR corresponds to the replacement
each current axis vector.

Lyapunov exponents are computed from
of length of the 1-st vector and the

7\,1 c_hQs.ﬁﬂarpar}wQ oo, 2013
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Lyapunov_spectrum for experimental data
(Wolf et al.)

Experimental data usually consist of discrete
measurements of a single observable.

Need to reconstruct phase space with delay coordinates
and to obtain from such a time series an attractor whose
Lyapunov spectrum is identical to that of the original ane.
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Procedure for A,

Given the time series x(¢). Choose m a dimension of the phase space and 7 - a delay
time: a point on the attractor is given by: {z(t),z(t + 7),...,z(t + [m — 1]7)}.

. Take the initial point {z(%g),...,z(to + [m — 1]7)}. Find the nearest neighbor (in the

Euclidean sense) and denote the distance between them L(Zg).

2. At time t1: L(tg) — L'(t1). We want (¢ — tp) to be small enough so that only small

scale attractor structure to be examined.

3. Look for a new data point s.t.: a) its separation L(t;) form the evolved fiducial point
is small; b) the angle between evolved and replacement elements is small. If cannot

find such point - retain used points.

. Repeat the procedure until the fiducial trajectory has traversed the entire data and

estimate:

LN
Z log, Tt y)

fu—fn

where M is the total number of replacement steps.




Procedure for A,+A,

The procedure is similar:
. Take the initial point {z(tp),...,z(to + [m — 1|7)}. Find the 2 nearest neighbors and
denote the defined by these 3 points area as A(tp).
2. At time £1: A(tg) — A'(t1).

3. Look for a 2 new points to obtain a smaller A(#;) that best preserves the A'(¢,) orien-

tation.

. Propagation and replacement steps repeated until the fiducial trajectory has traversed

the entire data and estimate:

© Maciej J. Ogorzalek



Implementation Detalils

Selection of embedding dimension and delay

time: emb.dim>2*dim. of the underlying attractor, delay must be
checked in each case.

Evolution time between replacements: maximizing
the propagation time, minimizing the length of the replacement
vector, minimizing orientation error.

Henon attractor: the positive exponent is obtained within 5%
with 128 points defining the attractor.

Lorenz attractor: the positive exponent is obtained within'3%
with 8192 points defining the attractor.

Chaos and bifurcations - November 7th, 2013
© Maciej J. Ogorzalek



Finite-Time Lyapunov Exponent

The evolution of an infinitesimal uncertainty over a finite time At is determined by the

linear propagator M (xq, At) along the trajectory z(t), that is:

e(tg + At) = M(xg, At)e(to)

where zg = z(tg) and, for a flow,

M(zo, At) — exp( ft T )

For discrete time maps, the linear propagator is simply the product of the Jacobians

along the trajectory:
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The linear dynamics are most easily examined through the singular value decomposition
(SVD) of M:
M=UxvT

where U and V are orthogonal and ¥ = diag(o1,09,...,0,) s.t. 01> 02> ... > 0, > 0

With this ordering, the first singular vectors correspond to the direction which will have
grown the most between ty and ty + At. The right singular vectors v; are "initial time”
singular vectors defined at g evolve into the left singular vectors w; at time to + At. Under
the action of M:

_ﬂ’j_r'U.L:_ = 0O;U;
For a given r and At, the o; define The finite-time Lyapunov exponents:

1
Ai(z, At) = > log, o;

The Global Lyapunov Exponent A = lima; .o Ai(z, At) for almost all z and almost

all initial orientations eq.
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Lyapunov exponents for maps

—
0. 00
UL UL

0.0045,

Finite time Lyapunov exponent specirum (in bytes per unit time) for - = 21, The |ast
columns contain Liryep @nd associated confidence intervals derived from the Lyapur

EXponents
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Lyapunov exponents for flows

:. .'Il iT) ,;

Conf. Int.

Conf. Int.

1.3067
-0.0001
-21.0233

00051, +0.0047
-0.0002, +0.0002
0.0048, +0.0052

-0.0003, +0.0002

Moore-Spiege

0.2461
-0.000%
-1.6875

-0.0568, +0.0539
-0.0108, +0.0087
-0.0575, +0.0608

-0.0434, +0.0445

Riossler

0.1285

0.0001
-14.1358

-0.0216, +0.0202
0.0044, +0.0034
0.0415, +0.0538

-0.0019, +0.0017

Finite time Lyapunov exponent spectrum (in bytes per unit fime) for r = 2%, except for the
Lorenz system superscripted by +, for which + = 2% The last two columns contain Dpyap

and azsociated confidence intervals derived from the Lyapunov exponents
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Time-Horizon

When the system has a positive A, there.is a time horizon beyond
which prediction breaks down (even qualitative).

Suppose we measure the initial condition of an experimental system
very accurately, but no measurement is perfect — let |5, be the error.

After time t: |5(t)|~|0,|€™, if a is our tolerance, then ourprediction
becomes intolerable when |5(t)|>a and this occurs after a time

th.u:-“'i..ziun ~ C)( A\ In
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Demonstration

//\\L/-
: @ \
No matter how hard we work to reduce

measurement error, we cannot predict longer
than a few multiples of 1/
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Example

Let a = 1077, initial error ||0g|| = 10~ then

~ 11,1073  4In10
th, orizon ™ hl 107 )\

[f we improve initial error to ||dp]| = 10~ then

10=3 _ 10In10

~ 1
Lhorizon = hl 10—-13 — \

So, after a million fold improvement in the initial
uncertainty, we can predict only 2.5 times longer!
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Some philosophy

The notion of chaos seems to conflict with that attributed
to Laplace: given precise knowledge of the initial
conditions, it should be possible to predict the future of
the universe. However, Laplace's dictum is certainly true
for any deterministic system.

The main consequence of chaotic motion is that given
Imperfect knowledge, the predictability horizon ina
deterministic system is much shorter than one might
expect, due to the exponential growth of errors.

Chaos and bifurcations - November 7th, 2013
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State-space reconstruction

Ta improve .|r:IE'5t3r:|i'g of a particular dynamica
= Unknown
rvations (univariate, multivariate, spatic-temporal)
where each vector uniquely defines a state

should not have self-intersechons

ns are causaed by using an insufficient dimension

BXira state Veclor components using aelays (or aer Watives)
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Henon reconstruction

Two-dimensional Heénon map in the (2, ¥) space:

Farameater values:

Consider observations of the x variable, { =,

Dne can substitute delayed values of 2 for the y variable
nvestigate dynamics in (Zn—1, Tn ) madel state space

Works perfectly in the case of the Henon map since the system equations can also be
expressed as

.-..|:_| J 1 r'.-:..|_] - '-:.-..I-:

HKnowled ge of 2n—1 and zn allows one to determine Trel

Chaos and bifurcations - November 7th, 2013
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| orenz reconstruction

Onrimal dynamacz Fecomziructed dvnamacs
F: oA — PiA)

[EENSErEmmeEnr
funcmom
h: A—= K delar

coaTdizace:
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Embedding

Lorenz 83 mode

This can also b= wrntien as

M S50 Or.
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Delay reconstruction

Derivatives are sensiiive 1o noise (especially higher orders)

One can also obtain derivatives by fitting polynomials locally in time
Similar infarmation 15 obtained using delay coordingte veckrs

Consider a discrete time senes 2

Diefine M -dimensional veciors
Xi

These vectors define a model sfale space

Faor sufficiendy large dimension M, trajectones in model state space are wopologically
equivalent io trajectones in system siate space

One can also reduce noise by applying filters o coordinates (2.g9. SVD)
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Delay reconstruction for Lorenz systems
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Euclid dimension

In Euclid geometry, dimensions of objects are
defined by integer numbers.

0 - A point

1 - A curve or line

2 - Triangles, circles or surfaces

3 - Spheres, cubes and other solids

Chaos and bifurcations - November 7th, 2013
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For a square we-have N"2 self-similar pieces for the
magnification factor of N

dimension=log(number of self-similar pieces)
/log(magnification factor)

=log(N*2)/logN=2
For a cube we have N/3 self-similar pieces

dimension=log(number of self-similar pieces)
/log(magnification factor)

=log(N"3)/logN=3

Sierpinski triangle consists of three self-similar pieces
with magnification factor 2 each

dimension=log3/log2=1.58

Chaos and bifurcations - November 7th, 2013
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APPLIED CHAOS

Chaos and bifurcations - November 7
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Removing chaos

Heart defibrillation — ,hardware reset’

Chaos and bifurcations - November 7th, 2013
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What is ICD-(Implantable Cerdioverter
Defibrillator) Therapy?

s  ICD Therapy consists of pacing,
? cardioversion, and defibrillation therapies
to treat brady and tachy arrhythmias.

—  An external programmer is.used to
' . \* monitor and access the device
Q parameters and therapies for each
patient.

Chaos and bifurcations - November 7t
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Goals of ICD Therapy

TODAY FUTURE

Termination of ventricular

tachycardia or fibrillation — Prevention of life-
Treatment of co-morbidities - threatening episodes

of AT/AF and heart failure SIS

/

B
Reduction of sudden E .
cardiac death I cLIeHNg The

. . understanding and

Improvement in quality management of
of life sudden cardiac death
Prolongation of life (SCD)

7
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Medtronic Implantable Defibrillators (1989-2003)

120 cc 80 cc 80 cc

49 cc 39.5cc 39.5cc 39.5cc 38 cc

83% et eaiotionsmeoe 1989!
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\TherapiesProvided by Today’s

Dual-Chamber ICDs

Atrium

& AT/AF tachyarrhythmia
detection

¢ Antitachycardia pacing

¢ Cardioversion

L\

Atrium &
Ventricle

e Bradycardia sen

Ventricle
¢ VT/ VF detection
4 Antitachycardia pacing

e Bradycardia paci

¢ Cardioversion

o o . Chaos and bifurcations - November 7th, 2013
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Achieving Cardiac Resynchronization

Goal: Atrial synchronous
biventricular pacing

Transvenous approach for left ventricular lead via

coronary sinus

Back-up epicardial approach

Chaos and bifurcations - November 7th, 2013
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mar uis ™ ICD & Cardiac

Resync%mzatlon System

« Better, Faster & Easi

Heart Failure Patient

— 14 months of patient specifi
Cardiac Compass ™ tren

— Follow up efficiency with Ra
telemetry, Leadless ™ ECG,
Voltage lead impedance

= Implant Confidence & Efficienc
Charge Times: 5.9 sec BOL / 7.5 ERI — Most complete family of left-heart |
Output: 30 Joules SeNER SEEIn

, — Lead placement flexibility, enhance
Size: 38cc, 779,14 mm distance, one-stop defibrillation testin
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Evolution of ICD Therapy:

19@)“[0 Present

. Number of Worldwide ICD Implants Per Year

90 000
80 000
70 000
60 000
50 000
40 000
30 000
20 000
10 000

0

1980

1980

=sFirst Human
Implant

1989

1985

*FDA
Approval of
ICDs

1988

=Tiered
Therapy

*Transvenous Leads
*Biphasic Waveform

1993

=Smaller
Devices

1985 Chaos and H_Igl%lons Novenmpgygg, 2013
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2002

2000

=|CDs
with
Cardiac

1997/8

=Dyal-Chamber
CDs

= AT Therapies
» MUSTT

1996

= MADIT

= Steroid-eluting Leads

= Increased Diagnostic and
Memory Capacity

2000

Resynch

*MADIT-II

2004
SCD-HeFT




Future ICD Technology

Enhanced automaticity:

— Device software that suggests programming options to the
clinician based on the patient’ s history and demographics

Continued reductions In device size:

— Will require advancements in battery, capacitor and circuitry
technology and/or decreasing the delivered energy output.

Chaos and bifurcations - November 7th, 2013
© Maciej J. Ogorzalek



Switch onto one of the unstable periodic
orbits existing within the attractor

Feasible because every trajectory is dense
on the attractor ie. It will eventually pass
arbitrarily close to any of these unstable
orbits

Possible stabilization by very small energy
perturbation (sensitive dependence on initial
condition)

Best to use the Poincare section concept and
apply control on the section plane
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Bifurcation diagram for the logistic map
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New approach

Continuous analysis of heart waveforms and
extraction of features of arrythmia

|dentification of unstable periodic orbit(s)
Calculation of control signal
Delivery of control signal to the heart
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Ott-Grebogi-Yorke scheme
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point after fgrameter,
perturbation P
‘I'I. ':i

t | n+1 ifarates,
. with farametey,
n+1 iterate | Jparamate

without | r:-?:ﬁurb ation

mrturijatinnj

n—-th |itd:+r atf

Chaos and bifurcations - November 7th, 2013
© Maciej J. Ogorzalek



OPFE chaos controller

ﬁ;:’l';':lrl:; chaotic
generator system

] return Poincare
window map section
comparator detector detector

offset - goal position
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Electronic chaos controller
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Control of chaos in Chua’s circuit

Oritput BulTers

w “]L

EbulTer fir |,

Chua's Dscllalor Interfsce Circuit
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Figure 23: Period-4 orbit stabilized in Chua'’s circuit wsing improwved chaos controller
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Control of chaos in the Colpitts oscillator
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MAP (arb. units)
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Controlling-atrial fibrillation in humans
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mraswepsy treatment
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\Unstable fixed points
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\\Laberatory experiments

R A -— ~
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Targetting

ISEE3 MANEUVERS FROM LAUNCH
" TOHALO ORBIT
TO COMET EXPLORATION

i ' DELTA 234
LAUNCHED AUGUST 12, 178
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Infinitesimal dynamics

The evolution of a perturbation (£} about an initial condition xp |
m-dimensional Taylor expansion about xo:

where g5 = €(t5) and repeated indices denote summation

First order approximation describing the linear evolution of the perturbed trajectory i

o (c(t) }elt),
where elements of the Jacobian matrix [T are given by 7,
The accuracy of this approximation depends on

(1) the particular initial condition xg,

(i} the magnitude of 3 and

[1ii) the orientation of g
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The uncertainty after an arbitrary time + = kAd may be linearly approximated by
...'.L"l{ .:'"ll._. y

where Adixg, ) is the linear propagsfor defined as

Mixg, 7

The magnitude of the
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Estimation-of Lyapunov exponents

The finite ime Lyapunav expanen ﬁ.‘ ! depend on the singular values of

A (xn, kAL ‘h*f*-:“h&r -‘h*f'-:,.h&r
Mixg, AT o Mgy, AT Mlxg_q, At)

For short imes, singular value decomposition (SVD) may be used to determine this 5
value spectrum
For longer times, computation of the matrix product A (xo, kAt) may be complicated
# 1) becoming singular, and
# i) having individual elements which become extremely large, thereby causing
numerical overflow problems
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Recursive QR decomposition

-] C o=it an arbkitrary atrix X vields
The QR decomposition of an arbitrary matrix X yields
b QR

where O is an orthogonal matrix and R s an upper-triangular matrix

A factonsed product of = mafrices
A A —1 -
I2 recursively replaced by »n QR decompositions
A.‘—L—j l:—-!I]:_{i'
where i I and = : i, yielding
F. Y OnRaR,,_ - -R.R,.
Applying this recursive QR decomposition yields
A1
where the superscnpt denotes the recursive iteration step

Chaos and bifurcations - November 7th, 2013
© Maciej J. Ogorzalek




Recursive QR decomposition -2

A new matrix A'Y satisfying
A®

is computed which has the same R mafrices as A" but has the mafrix Q," on the

i

S

AW —rURY CRMRIVQY

The matrices A'Y and A'? have the same eigenvalues because of their relationshi
shown above
Thiz process of (AR decomposition is repeated p times yielding the sequence of mafri

.|!'.|.j ALZ)
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Recursive QR decomposition -3

SES, '-.'!:';;,:: converges fo the identity and AP is then upper-triangular

The Lyapunov exponents are related to the diagonal elements of the R s:

R

This results from the fact that the eigenvalues of a product of upper-triangular matrices

aquals the product of the eigenvalues of the individual matrices
In practice, numerncal calculations with ¢ < 10 are usually sufficient to obtain elements of

r-e-r'l .'II-'.I-'i':I-' |:'|Lf'.=_" I.:I'_-,:' eas than 1:|_|'i
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Conjecture of Kaplan-Yorke

Kaplan & Yorke (1979) conjectured that there is a relationship between the Lyapunov
exponents and the fractal dimension of a typical chaotic atfractor

The Kaplan-Yorke dimension (or Lyapunov dimension) is defined as

]
Li8

1=1
The conjecture states that Dy ., = Ly, the information dimension

where k is defined such that 3" _ A; >0and 3 .0

While the conjecture may be proved for some 21} maps, counter-examples exist for h
dimensional systems
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Convergence

11518 a =1H
Iw:;:i 1-_1 ]

Lyapunov spectra for the |keda map: (a) convergence of .“.'-1"- with iteration time &, (b) PDF
of A;"" for k = 21% (c) convergence of A, with iteration time k, and (d) PDF of Ag (k) for
k= 21%_In both (a) and (c), the dashed lines reflect the 5%, 50%, and 95% percentiles, and

the solid line is the mean (A"
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Consistency test 1 (Henon)

Henon map: Do =1.2, Dy yap = Dy = D = 1.2583 and D = 1.26
satisfies Renyi dimensions: I}y < Iy < Dy

In digsipative systems, the state space volume coniracts at the rate given by the sum
Lyapunov exponents

Thiz contraction can be equated with that from the stability analyziz formula for maps:
:|,|"_ :;IF V " .

Equating these gives:

The Hénon map has contant contraction everywhere given by [detJ
log, |detd| = —1.7370

. L -,. [ il
Estimated Lyapunov exponents: %24 Ay = —1.T364
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Consistency test 2 (Lorenz)

Recall that the Lorenz equations are

where o =10, b =8/3 and » = 28
The state space volume contracts at the rate given by the sum of the Lyapunov exponents

This contraction can be equated with that from the stability analysis formula for flows:
Vit + 7) = exp|{ V. T7 IV (E)

Equating these gives:

1"‘: Ay = log, exp( WV .T)

The Lorenz flow has constant confraction everywhere given by
VI =—loc+1+b)=—(104+1+ )= —%" and logy exp(V.T) = —19.7168

&
o

Estimated Lyapunov exponents: %7, Ay = —10.T167
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Box-counting dimension

The boe-counfing oimenson of 3 sel-similar point 561 & calculaled by counting the number
af Myper-cubes N (<) of sige ¢ reguired to cover the s21.

~or 3 Geli-elmilar 881 N ) o « Do agc — 0amd

Recall the Invariant meazure du [x) genarated by chaotic dynamics on an atiracto
Lel pulx) = (g ., duix) denate the prodatiltty of inding 3 point along a fypical ot in 3
nall B, jx) of ralus ¢ around x
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Renyi dimension

Renmyl (197 1] defined a3 family of gensralisad dimsnsions (Fenyl dimensions) winich d
ihe way reghans with different gensltles are weighted

Thess gimersions ghve mare welght o reglons which are vished mare frequently ana
cortaln larger fracions of the measure

A generalsed comelation Integral Is definea by

50 thal for a s2if-slmliar s&t, £ gl&p o0& i
The Renyl dimensans are then ghen oy

ATIEME f.':; % 4 decreasing funcion ofg: L., < LDk = h

1=

A measure for whikch J-.-:- valres with g 15 called a mutaca! messurs

= ([, the box-counting cimenson L1, & recoversd
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Information dimension

Appiving I'HaplErs rule yields the imarmation dimension [

where (lnp,} I= e average Informalon needed (o specly 3 point x wih 3CCUracy «
Mote thal the local scaling of Tie natural measure In 3 small ball B, (x) ks described by I,

LEL e pointwis= dmension Of the Measure u 3l x be

o s |8y )]

a|x) = Em

 can b2 shown that I x |6 5ome point on a Wyplcal ordl, Men ax) = Iy and therefore

11 [ By fx)] = 2™
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Correlation dimension

The comeahicn oimensan [ty may be eslimated from experimental dala. This may b«
ty first wrsing

Caple) = | duix) | | du(ypBic—|x -¥
#Tere & |6 he Heaviside step function. @z) = (1 Fzx < Jand Sfz) = 111z = 1
v
=1

Far a finlke sequence of polnts Ho; b L5 (<] m3y be approximated o

5 Q| x4

Expect Car) to scale ke a power law: ©

. . §ilp o ot I
Lef dqfr, N} = — 223007 and dafine

= = -]
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Implementation of the algorithm

~ansiger the plot of bog '.'._-: r, N ) VErsUS log ¢
Need 10 Bnd 3 scalng region over Which the slope IS consant

COMMEEDONE 10 3 [isiesu N dyfc, N) versus «

~or expenimental observatons, the estimation ks also lImibed oy nalse al smal ¢
Chlimation ks Imied at ange « by the fnike size of he Jtlractar (L) — 0 3% ¢ becames
greater than the size of the aliracion)

crMierla suggest thal number of data points required N, grows exponentaly whin the
dimiengion ;.

¢ Teonis cotterion: & - 1030
¢ Smiih ertterdon: N - D
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Minimum data

gne daka are uniformiy clsbtribifed an the unit interval

Prohi|= -

Wie want iy > QA where

"5 i
5: '.-1:;-_':_ l_'_

T o |.'|-||::-'-:1|: 1
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H&non two-dimensional mag: A

-.l
e 114= 1

valllgs a = 1.4 and
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Oseledec theorem

Ox)= Em O)x, kAt)

[ B L
anere XT denotes the ranspase ol X
Oiseledec | 19630) proved thal If the ImE & — oo exisls, en under @ wite range of o
ihe elgenyvalues of Ox ) are Independent of x for aimos? all x Im the 5ame basin of &
An m~dimenslonal dynamical system thus Nas m Lyapunoy exponents, Ay, i = 1,12, .
defned via ¢, the eigemvalues of CYx ), 85 Aq = log, (], 1= 1,2, .. m; Dy coment
|1|| - |1|_| r:r i o II
The elgenvalues of the mairx A4 Thdares mply the squanes of the singuiar values ¢
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Global Lyapunov exponents

n the Imi & — oo, e logarithm of the first singuiar value of Adjx, At), o1 approaches the
frst global Lyapunov expanent, A

All Lyapunow exponsme are expressad using the logarlthm 1o the base wo, thes the
exponems fEave unils of bits per sesana

Lyapunoy exponems are ofien used for he characterksation of 3 dvnamical syslem’s
nenaviowr. The classfcations for a three-dimensionral fiow are as follows:

Classifcatar Topologizal cimension

Fixed paint atirachor Fd 2
Limit cycie afratia HE
Twio-ianus antrachor Wi
Chaoths albracio ureg

A gwnamizal syslem |6 gald to be chaclic T there exists average expanslon fior at 1east one
direction and almost every xq, thatls, f Ay = 0
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Finite-time Lyapunov exponents

The finite fime Lyapunov exponents are defined as

Mot that the finite fime Lyapunov exponent A} describes the maximum possible lin
growth over the time = = kAt for which the linear propagator was defined

The growth for imes shorter (longer) than kAt need not be smaller (larger) than thos
implied by A"

Finitz time Lyapunov exponents are statistical estimates and as such should be
accompanied by an evaluafion of their uncertainty

Thig iz particularly important when determining the sign of the leading global Lyapunc
exponent, A
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Sensitive dependence on initial conditions

An exploration of sensiivity to initial conditions involves investigating perfurbations ak
fiducial frajectory xit), which originates at the initial condition x;

Vhile each initial condition uniquely determines its future trajectory in a deterministic
system, imperfect measurements of inttial conditions give rise to & PDF of consiatent
conditions

The evolution of this PDF depends on both the initial shape of the PDF and the inifia
ocation in state space

The disparity between trajectories arizing from different (but equally likely) initial cond
comesponds with the POF spreading out over the system's atiractor

Even in the case of a perfect model and a perfect intial PDF (all members on the sys!
attractor), predictability is eventually lost when the PDF is indistinguishable from the
system's invariant measure
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Logistic map

e Originated as a population dynamics model (Verhulst, 1844 & 1847).
e Dynamical system (1-D map): z,41 = pza(l —xp) =: f(zp). 0 < p < 4

e Sample orbits from this map’s rich set of dynamics:

X ;

B Bl

ORDER CHAOS

bt
Xa <1 :.f(xn}

X; :f (xo). ‘%é’ T x

n

Stable fixed point z. Unstable fixed point z.
fl(ze)| < 1
w < 4
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Logistic map

a=2.8 a=3.25
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Logistic map (continued)

a=3.5 a=3.8
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