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What is synchronization?
• Synchronize: to agree in time, to happen at the same 

time, to represent or arrange (events) to indicate 
coincidence or coexistence

• It is an important concept in: Physics, Biology, 
Te l e commun i c a t i on , Compu te r s c i ence , 
Cryptography, Multimedia, Photography, Music 
(rhythm)

• Synchronicity is a word coined by the Swiss 
psychologist Carl Jung to describe the “temporally 
coincident occurrences of acausal events.”
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A historical perspective 
Christiaan Huygens (1658)
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Synchronization: a historical perspective

Further, if this agreement was disturbed by some interference, it 
reestablished itself in a short time. For a long time I was amazed at this 
unexpected result, but after a careful examination finally found that the 
cause of this is due to the motion of the beam, even though this is 
hardly perceptible.”

“It is quite worth noting that when we 
suspended two clocks so constructed from two 
hooks imbedded in the same wooden beam, the 
motions of each pendulum in opposite swings 
were so much in agreement that they never 
receded the least bit from each other and the 
sound of each was always heard simultaneously. 



A historical perspective
Engelbert Kaempfer (1680)
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Synchronization: a historical perspective



A historical perspective
• Sleep-Wake rhythms: biological systems can 

adjust their rhythms to external signals. Under 
natural conditions, biological clocks tune their 
rhythms (i.e. synchronize) in accordance with 
the 24-hour period of the Earth’s daily cycle
(First observed by J.J. Dortous de Mairan, 1729)

• Synchronizat ion of tr iode osc i l lators 
(Appleton, van der Pol, van der Mark,
1922-1928)
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Synchronization: a historical perspective
Mutual synchronization of cardiac pacemaker cells       

(E.E. Verheijek et al., “Pacemaker synchronization of electrically coupled rabbit sinoatrial  node 
cells,” J. Gen. Physiol., vol. 11 I , pp. 95-112, January 1998)

A historical perspective



• In a classical context, synchronization (from Greek: 
syn = the same, common and: chronos = time) 
means adjustment of rhythms of self-sustained 
periodic oscillators due to their weak interaction 
(coupling); this adjustment can be described in terms 
of phase locking and frequency entrainment (1).
(1) If you have two vibrating objects with the same natural frequency or corresponding 
harmonic, they will both have a forced vibration effect on each other. This process, given 
time, normally leads to a condition where both objects synchronize. Of interest, both 
oscillators do not, necessarily, must have exactly the same natural frequency. If there is 
enough "coupling" between the oscillators, they will sometime "lock-in" with one another at 
a slightly shifted frequency: the frequencies become equal or entrained. The onset of a 
certain relationship between the phases of these oscillators is often termed phase locking.

The concept of “Synchronization”



1. The oscillator is an active system. It contains an internal 
source of energy that is transformed into oscillatory 
behavior. Being isolated, it continues to generate the same 
rhythm until the source of energy expires. It is described as 
an autonomous dynamical system.

2. The form of the oscillation is determined by the 
parameters of the system and does not depend on initial 
conditions.

3. The oscillation is stable to (small) perturbations.

The above properties are characteristic of 
nonlinear oscillators

What is a self-sustained periodic 
oscillator ?
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Example: Colpitts oscillator

VC1

Time

Period 10.1 µs
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Example: Colpitts oscillator

VC1

Time

Period 10.1 µs



Electronic nonlinear circuits!"#$%&'(#)%"*+(%"#,-
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Example: Two identical coupled Van der Pol oscillators
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phase difference vanishes
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The coupled oscillators synchronize: two different interpretations

Example: Two identical coupled Van der Pol oscillators
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phase synchronization complete (or identical) synchronization

generalization: to non identical systems

limitation: to systems where a phase 
can be defined  rhythmic behavior

generalization: to systems with any behavior

limitation: to identical or approximately
identical systems



Synchronization in chaotic oscillators
Modern concept covers also chaotic systems; in this 
case one distinguishes between different forms of 
synchronization (complete, lag, generalized, phase, 
imperfect), the most notable being complete (or 
identical) and phase synchronization [*].
Example: Phase synchronization of two coupled 
chaotic oscillators
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Modern concept covers also chaotic systems; in this 
case one distinguishes between different forms of 
synchronization (complete, lag, generalized, phase, 
imperfect), the most notable being complete (or 
identical) and phase synchronization (but in this case 
chaos must be rhythmic) [*].
Example:

Phase synchronization of two coupled chaotic oscillators

[*] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, The Synchronization 
of Chaotic Systems, Physics Reports 366, pp. 1-101, 2002
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imperfect), the most notable being complete (or 
identical) and phase synchronization (but in this case 
chaos must be rhythmic) [*].
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of Chaotic Systems, Physics Reports 366, pp. 1-101, 2002



Synchronization: why ?
• Synchronization phenomena are pervasive in biology and 

are related to several central issues of neuroscience [1].

• Synchronization may allow distant sites in the brain to 
communicate and cooperate with each other. For 
example, synchronization between areas of the visual 
cortex and parietal cortex, and between areas of the 
parietal and motor cortex was observed during the 
visual-motor integration task in awake cats [2].
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Synchronization: why ?
Synchronization is a parameter of a (possibly complex) network which 
gives important insight in observable phenomena in real networks. 

Synchronization phenomena are pervasive in biology and are  related 
to several central issues of neuroscience [1].

Synchronization may allow  distant sites in the brain to communicate 
and cooperate with each other. For example, synchronization between 
areas of the visual cortex and parietal cortex, and between areas of the 
parietal and motor cortex was observed during the visual-motor 
integration task in awake cats [2].

_____________________
[1] W. Singer and C. M. Gray, “Visual features integration and the temporal correlation hypothesis,” Annual Rev. Neurosci., 
vol. 18, pp. 555–586, 1995.

[2] P. R. Roelfsema, A. K. Engel, P. Knig, and W. Singer, “Visuomotor integration is associated with zero time-lag 
synchronization among cortical areas,” Nature, vol. 385, pp. 157–161, 1997



Synchronization: why ?
• Direct participation of synchrony in a cognitive task 

was experimentally demonstrated in humans [3].

• Synchronization may help protect interconnected 
neurons f rom the influence o f random 
perturbations (intrinsic neuronal noise) which 
affect all neurons in the nervous system [4].
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Synchronization: why ?
Direct participation of synchrony in a cognitive task was 
experimentally demonstrated in humans [3]. 

Synchronization may help protect  interconnected neurons 
from the influence of random perturbations (intrinsic 
neuronal noise) which affect all neurons in the nervous 
system [4].

_____________________

[3] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, “Perception’s shadow: Long 
distance synchronization of human brain activity,” Nature, vol. 397, pp. 430–433, 1999.

[4] N.Tabareau, J-J. Slotine, Q. Pham, “How synchronization protects from noise”,  PLoS Computational Biology, pp. 1-9, 
Vol. 6, N. 1, 2010



Synchronization: why ?
• Spiking neurons, like any other physical, chemical, or biological 

oscillators, can synchronize and exhibit collective behavior that is 
not intrinsic to any individual neuron. 

• Partial synchrony in cortical networks is believed to generate 
various brain oscillations, such as the alpha and gamma EEG 
(electroencephalography) rhythms. However, increased synchrony 
may result in pathological types of activity, such as epilepsy. 

• Coordinated synchrony is needed for locomotion and swim pattern 
generation in fish. Depending on the circumstances, synchrony can 
be good or bad, and it is important to know what factors 
contribute to synchrony and how to control it.
(Extracted from: E. M. Izhikevich , Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Ch. 10, MIT Press, Cambridge, MA, USA, 2007)



Take home messagge
• Synchronization properties are influenced 

by the general properties of the oscillatory 
network: complex systems can be more or 
less prone to synchronize due to their 
specific features.

• Synchronization requires knowledge of 
both nonlinear dynamics and of 
complex systems.



The dynamics of coupled periodic 
oscillators: strong synchronization

!"#$%&'(#)%"*+(%"#,-

./$)0*123*4511 116,*7)89*: ;)/,*&)*<08##$%")(=*: >%0)#8(")(%*&)*?%$)"%

In-phase synchronization

Anti-phase synchronization

Examples
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In-phase synchronization

Anti-phase synchronization

Examples
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Synchronization with an arbitrary phase shift

No synchrony



Oscillatory networks



Oscillatory networks:
Global dynamic behaviour



Oscillatory networks:
Malkin Theorem



Joint application of the DF and MT



Applications



Oscillatory model of neurocomputing

- Oscillations experimentally observed 
in visual cortex after stimulus
- Synchronized oscillations observed in 
parts of the brain not geometrically 
close
- Synchronized oscillations is linked to 
association
- Can we build an image recognition 
system from coupled oscillators?

Hoppensteadt and Izhikevich, Phys Rev L, VOLUME 
82, NUMBER 14, April 5, 1999



Oscillatory associative memoriesInternational Journal of Bifurcation and Chaos, Vol. 17, No. 12 (2007) 4365–4379
c© World Scientific Publishing Company

WEAKLY CONNECTED OSCILLATORY
NETWORK MODELS FOR ASSOCIATIVE

AND DYNAMIC MEMORIES

FERNANDO CORINTO, MICHELE BONNIN
and MARCO GILLI

Department of Electronics,
Politecnico di Torino, Corso Duca degli Abruzzi 24,

I-10129 Torino, Italy

Received December 11, 2006; Revised February 6, 2007

Several studies in neuroscience have shown that nonlinear oscillatory networks represent bio-
inspired models for information and image processing. Recent studies on the thalamo-cortical
system have shown that weakly connected oscillatory networks (WCONs) exhibit associative
properties and can be exploited for dynamic pattern recognition. In this manuscript we focus
on WCONs, composed of oscillators that adhere to a Lur’e like description and are organized
in such a way that they communicate one another, through a common medium. The main
dynamic features are investigated by exploiting the phase deviation equation (i.e. the equation
that describes the phase variation of each oscillator, due to weak coupling). Firstly a very
accurate analytic expression of the phase deviation equation is derived, by jointly describing
the function technique and the Malkin’s Theorem. Furthermore, by using a simple learning
algorithm, the phase-deviation equation is designed in such a way that given sets of patterns
can be stored and recalled. In particular, two models of WCONs are presented as examples of
associative and dynamic memories.
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tive and dynamic memories.

1. Introduction

Historically, the mechanisms of synaptic adapta-
tion and neuronal unit models have been the sub-
ject of many theoretical works in neuroscience. It is
widely accepted that natural and artificial biolog-
ical systems can be accurately mimicked by neu-
ral networks in which neurons, modeled as the
McCulloch–Pitts neuronal units [Hopfield, 1982]
or “integrate and fire” cells [Kandel et al., 2000],
are coupled via adaptive synapses. Experimental
observations have shown that if the neuronal activ-
ity, given by the accumulation (integration) of the
spikes from the other neurons via the synapses, is
greater than a certain threshold then the neuron
fires repetitive spikes, otherwise the neuron remains
quiescent [Kandel et al., 2000].

A different approach for describing neuronal
activity consists of modeling neurons with periodic
oscillators, where the phase of each oscillator plays
the role of the spike time [Kandel et al., 2000].
Oscillatory neuronal activity can be recognized in
several biological systems, including central pat-
tern generators, visual and olfactory systems, etc.
Indeed, recent studies in neuroscience have shown
that some significant features of the visual sys-
tems [Gray et al., 1989; Engel et al., 1992], like
the binding problem [Roskies, 1999], can be inves-
tigated by exploiting nonlinear oscillatory network
models [Schillen & König, 1994]. Some studies on
the thalamo-cortical system have also suggested
new architectures for neurocomputers, that con-
sist of coupled arrays of oscillators, with a periodic
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Fig. 1. Weakly connected oscillatory network having a star
topology.

Let us assume that each cell Oi is a dynam-
ical system of order m described by (2). The
cells Oi (1 ≤ i ≤ n) interact only through the
master cell that supplies the signal Gi(X0,X) to
each cell, where Gi : Rm×(n+1) → Rm and
X0 ∈ Rm is the state vector of the master cell
whose dynamics is described by the following mth
order ODE:

Ẋ0 = F0(X0). (7)

Star WCONs, composed by n cells and one
master cell, are then described by (0 ≤ i ≤ n):

Ẋi = Fi(Xi) + εGi(X0,X), (8)

where G0(X0,X) = 0.
It is worth observing that Eq. (8) allows us to

model also WCONs subjected to an external input
X0 (in the case under study X0 is generated by the
master cell).

We assume that each uncoupled cell and the
master cell adhere to a Lur’e representation [Gene-
sio & Tesi, 1993], and in particular that their state
equations can be recast as follows (0 ≤ i ≤ n):

ẋi = Ai
11 xi + Ai

12 Xb
i + fi(xi)

Ẋb
i = Ai

21 xi + Ai
22 Xb

i

where xi ∈ R is a scalar component of Xi, Xb
i ∈

Rm−1 represents the collection of the other com-
ponents of Xi, Ai

11 ∈ R, Ai
12 ∈ R1,m−1, Ai

21 ∈
Rm−1,1, Ai

22 ∈ Rm−1,m−1 and fi(·) is a scalar

Lipschitz nonlinear function. This allows one to
rewrite Eqs. (8) in terms of a sole scalar variable xi:

Li(D)xi(t) = fi[xi(t)], (0 ≤ i ≤ n) (9)

where Li(D) is a rational function of the first order
time-differential operator D (see [Gilli et al., 2005a]
for a detailed description of a WCON having Lur’e
type cells).

If the coupling between each cell and the cen-
tral system involves only the scalar variables xi,
that is the central cell receives the signals xi (with
1 ≤ i ≤ n) and provides each oscillator a corre-
sponding signal:

ui(t) = gi(x0(t),x(t)),

x(t) = [x1(t), x2(t), . . . , xn(t)]T , gi : Rn+1 → R
(10)

then the resulting star WCON is described by the
following simplified system of Lur’e like equations:

L0(D)x0(t) = f0[x0(t)] (11)

Li(D)xi(t) = fi[xi(t)] + ε gi(x0(t),x(t)),

(1 ≤ i ≤ n) (12)

It turns out that only one component of Gi

(1 ≤ i ≤ n) is different from zero, i.e.

Gi(X0,X) = (gi(x0,x), 0, . . . , 0)T (13)

whereas all the components of G0 are zero:

G0(X0,X) = (0, 0, . . . , 0)T . (14)

According to these assumptions, we focus on a
set of parameters and initial conditions such that,
in the absence of coupling, each cell exhibits at least
one asymptotically stable limit cycle with angular
frequency ωi. It follows that, if the angular fre-
quencies ωi are commensurable then the method,
based on jointly describing function technique and
the Malkin’s Theorem, provides an explicit way for
deriving the ODE governing the evolution of the
phase deviations.

The application of the first two steps requires
to develop an accurate approximation of γi(t) and
Qi(t) by exploiting the describing function tech-
nique. Proofs and details of the approximations of
γi(t) and Qi(t) can be found in [Gilli et al., 2005a],
whereas the following subsection outlines only the
main results. In the last subsection the phase devi-
ation equation for a star WCON is derived.
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Fig. 3. Top left: Phase pattern to be recognized given as initial condition of (32) designed according to (35); Top right:
Recognition of a stored phase pattern; Down: Evolution of the trajectory described by (32) and (35).

the global convergence properties of (32) trained in
accordance with (35). Thus, (32) with the simple
Hebbian learning rule can be used to realize and
design Hopfield–Grossberg-like associative memo-
ries [Hoppensteadt & Izhikevich, 1999]. Numerical
simulations have also confirmed that the storage
capacity of the oscillatory associative memory is
equivalent to that of the Hopfield memory.

The one-to-one correspondence between the
equilibrium points of the phase deviation equations
and the limit cycles of the WCON implies that
the WCONs can store and retrieve oscillatory pat-
terns, consisting of periodic limit cycle with suitable
phase relations among the oscillators. Nevertheless,
the oscillating state variables xi(t), describing each
oscillator of the WCON, is not binary. The binary
information is only codified in the phases of xi(t),
that can be 0 or π.

As proposed in [Itoh & Chua, 2004], the state
variables xi(t) can assume binary values by consid-
ering the sign of xi(t), i.e. by adopting as WCON
output the function sgn(xi(t)). This allows us to
establish the phase relations by looking at the

outputs of the WCON. In particular, we have that
two oscillators, described by xi(t) and xj(t), are in-
phase (anti-phase) if and only if sgn[xi(t)xj(t)] > 0
(sgn[xi(t)xj(t)] < 0). If this rule is not true then
the WCON’s output consists of a sequence of binary
patterns, thereby implying that phase relations are
not 0 or π.

5. Dynamic Memories

As shown in the previous section, a WCON with
binary state can be easily obtained by considering
the sign of the state variables xi(t) as output of each
oscillator.

Let us consider a star WCON in which the mas-
ter cell provides to each cell the following signal,
according to [Itoh & Chua, 2004]:

gi(x0(t), x1(t), . . . , xn(t))

=




n∑

j=1

Cijsgn(xj(t))



 |x0(t)|− xi(t) (39)

where sgn(·) denotes the sign function.
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All oscillators are phase locked.
Degree of matching remains above a 
threshold.
Thus a better discrimination of 
matching patterns.



Oscillatory associative memories

• Goal: find classes of problem solved only by 
oscillatory networks

• no restrictions about the architecture of the 
networks

Can oscillatory associative memories outperform 
“static” associative memories?



• Goal: conceive non-boolean spatio-temporal 
algorithms to solve a classical problem in a more 
efficient (in terms of speed, power, ...) way
• consider physical constrains

Can oscillatory associative memories outperform 
“static” associative memories?

Oscillatory associative memories



Spin-Torque Oscillatory arrays
to design phase shift for previously given coupling strengths
and/or input currents. As it can be seen on Figure 5 the phase-
shift depends linearly on the input current and hyperbolically
on the coupling weight.

V. APPLICATION EXAMPLE: EDGE DETECTION

In this section we will show a simple example: how a two
dimensional cellular array of spin torque oscillators based on
the dynamics described in equation (34) and (35) can be used
for edge detection.

We can easily define a mapping between the pixel intensities
of the image and the input currents of the oscillators. This way
the input current of every oscillator will be proportional to
the color intensity of a pixel on a two dimensional grayscale
image. Using (34) and (35) we can calculate the coupling
weights in the array in a way, that after the synchronization
of the array (when all oscillators are synchronized), the phase
shifts between the oscillators will depend only on the input
current differences between neighboring oscillators.

Using this coupling we can detect the color differences
between neighboring oscillators. With the tuning of the cou-
pling weights we can also adjust the level how the phase
shift will depend on the intensity differences and also on the
spatial density of intensity differences. This means we can
detect intensity changes on images considering not only the
differences in values but spatial changes as well. This gives
possibility to perform edge detection on grayscale images and
considering the spatial changes we can implement horizontal
or vertical edge detection as well. A simple example of this
task can be seen on Fig. 6

The computation can be done with the usage of STOs
exclusively: without using any CMOS logic or non nano-
devices.

Based on this example and the equations, a cellular array
of spin oscillators could be used for noise reduction, filtering,
change detection or edge detection in image processing tasks.
The implementation of change detection for grayscale images
is straightforward when the input current is proportional to
the color intensity. Oscillatory behavior could be used also in
associative memories as it was shown for general oscillators
in [8].

VI. CONCLUSION

In this paper we have investigated the dynamics of weakly
coupled spin torque oscillator networks. We have shown how
the phase shifts between the oscillators can be calculated
analytically with a closed formula, without simulating the
differential equation system. Based on these dynamics we
have designed a simple cellular network, which is capable
of detection of spatial changes. The detection depends not
only on the differences in the values but also on the distances
between the different elements. This paper shows a simple
example (based on simulations), how a cellular array of spin
oscillators could be used in practice to solve problems.

(a) Input (b) Output

(c) Thresholded output (d) Horizontal edge
detection

Figure 6. We can see the input image on the upper left figure. On figure (b)
we can see an intermediate result, the synchronization of the oscillators. We
have selected the first (most upper left oscillator as a reference) the colors
are reflecting the phase shifts between the oscillators, the blue oscillators
are synchronized in phase with the first oscillator. The red oscillators have a
phase-shift around 12 degrees. On figure (c) we can see a thresholded version
of figure (b). On the last image we can see a different spatial coupling, which
detects the horizontal edges only.
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Spin-Torque Oscillatory arrays

The addition of O-CNN arrays can enhance the computational power of the architecture and 
increase the detection rate.
The OCNN array can transform the input feature vector in a way which helps classification.



Conclusions and Perspectives
• Simulation with real-life data: Images taken by a mobile robot has been 

used for classification with similar results.

• Boundary conditions /lateral input/: with side input, changing the 
boundary conditions the properties of the array can be changed, this can 
be used to increase the computational strength (programmability) of the 
array

• OCNN array with different spin oscillators: The usage of two different 
dynamics in one network would increase the possible outcomes of one 
OCNN array

• Transient based computation: using the evolution of the phase shift to 
determine extra properties about the input vectors

• Synchronization requires knowledge of both nonlinear dynamics 
and of complex systems.



Nonlinear analysis tools

Differential or integral equations represent suitable
mathematical models of physical systems.

Approximate analytical tools are required for studying
(analysis and design) nonlinear dynamical systems describing
electrical circuits, mechanical and biological systems, ...

Tools for detecting oscillations

A. Ascoli, M. Biey, F. Corinto and M. Righero
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Nonlinear systems/circuits: limit cycles

d x

d t
= f (x , t) x ∈ Rn, t ∈ R+

Definition: A non-constant solution x(t) = Φ(t, x0) is said to be
periodic if there exists T such that:

∀ t : Φ(t + T , x0) = Φ(t, x0)

The image of Φ(t, x0) in the state-space (or phase-space) Rn is
called periodic trajectory or limit cycle of period T .
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Linear systems/circuits: limit cycles

LC

i+

−

v
dv

dt
= −

i

C

di

dt
=

v

L

Eigenvalues: λ12 = ±jω ω =
1√
LC

The circuit presents infinitely many non-isolated cycles with the
same frequency. The cycle amplitude depends on the initial
conditions.
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Nonlinear systems/circuits: limit cycles

LC Rn

î(v) = −v + k v3i+

−

v

dv

dt
= −

1

C
[i + ı̂(v)]

di

dt
=

v

L

The circuit presents a single limit cycle, that attracts all the
trajectories.
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Equilibrium point analysis

Equilibrium point x = (0, 0)

J =





1

C
−

1

C

1

L
0





λ12 =
1

2C
±

1

2LC

√
L2 − 4LC

{
L < 4C unstable focus

L > 4C unstable node
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Limit cycle
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Time waveforms
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In most circumstances it is not possible to derive explicitly the limit
cycle. Numerical simulations are useful to ’discover’ limit cycles.

Theorems may be used to prove the existence of a limit cycle in
planar systems (Liénard’s Theorem and Bendixson’s Theorem).
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Computation of limit cycles

Determination of all the periodic limit cycles (either stable
and unstable) and their stability properties (Floquet’s
multipliers – FMs)

In large scale dynamical systems the sole numerical simulation
does not allow to identify all the limit cycles (either stable and
unstable)

It would require to consider infinitely many initial conditions
Unstable limit cycles cannot be detected through simulation

By means of Spectral Techniques, the computation of all the
limit cycles is reduced to non-differential (sometimes algebraic)
problem.

Harmonic Balance Technique
Describing Function Technique

A. Ascoli, M. Biey, F. Corinto and M. Righero
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Computation of limit cycles: Time-domain methods

If the system possesses a stable cycle γ, we can try to find it by
numerical integration (simulation). If the initial point for the
integration belongs to the basin of attraction of γ, the computed
orbit will converge to γ in forward time. Such a trick will fail to
locate a saddle cycle, even if we reverse time.

there exist different time domain methods especially to directly
locate periodic orbits even if they are saddle or unstable cycles. The
problem of finding the steady state is converted into a
boundary-value problem, to which the standard approaches, such as
shooting methods and finite-difference methods, can be applied.

Φ(t0 + T , x0) = Φ(t0, x0) = x0, where the minimum cycle period T
is usually unknown. An extra phase condition has to be added in
order to ’select’ a solution among all those corresponding to the
cycle.
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Computation of limit cycles: Perturbation methods

Applicable to nonlinear ODEs that have periodic solutions and
a small parameter

Method of averaging
Regular perturbation
Multiple scales
Picard iteration

A. Ascoli, M. Biey, F. Corinto and M. Righero
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Spectral methods for Lur’e systems

!
" !
" # #

$ " $ % $ #

% " & #
' " & #

L(D)x(t) + n [x(t)] = s(t), x(t) ∈ R

If the systems admits of a periodic solution of period T , then x(t)
can be expanded through the Fourier series

x(t) = A0 +
∞∑

k=1

Ak cos(kωt) + Bk sin(kωt) ω =
2π

T
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Examples

Third order oscillator

L(D) =
D3 + (1 + α)D2 + βD + αβ

α (D2 + D + β)
n(x) = −

8

7
x +

4

63
x3

Second order oscillator

L(D) =
LCD2 − LD + 1

kLD
n(x) = x3

A. Ascoli, M. Biey, F. Corinto and M. Righero

An Introduction to synchronization in complex systems Part II - Periodic oscillations



The harmonic balance (HB) technique

1. The state is represented through a finite (N) number of
harmonics

x(t) = A0 +
N∑

k=1

Ak cos(kωt) + Bk sin(kωt)

2. The term L(D)x(t) yields:

L(D)x(t) = L(0)A0 +
N
∑

k=1

{Re [L(jkω)]Ak + Im [L(jkω)]Bk} cos(kωt)

+
N
∑

k=1

{Re [L(jkω)]Bk − Im [L(jkω)]Ak} sin(kωt)

A. Ascoli, M. Biey, F. Corinto and M. Righero
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The harmonic balance (HB) technique

3. The term n [x(t)] yields (by truncating the series to N

harmonics):

n [x(t)] = C0 +
N∑

k=1

Ck cos(kωt) +Dk sin(kωt)

C0 =
1

T

∫ T

0
n

[

A0 +
N
∑

k=1

Ak cos(kωt) + Bk sin(kωt)

]

dt

Ck =
2

T

∫ T

0
n

[

A0 +
N
∑

k=1

Ak cos(kωt) + Bk sin(kωt)

]

cos(kωt) dt

Dk =
2

T

∫ T

0
n

[

A0 +
N
∑

k=1

Ak cos(kωt) + Bk sin(kωt)

]

sin(kωt) dt
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The harmonic balance (HB) technique

3. The term s(t) yields (by truncating the series to N

harmonics):

s(t) = P0 +
N∑

k=1

Pk cos(kωt) + Qk sin(kωt)

P0 =
1

T

∫ T

0
s(t) dt

Pk =
2

T

∫ T

0
s(t) cos(kωt) dt

Qk =
2

T

∫ T

0
s(t) sin(kωt) dt
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The harmonic balance (HB) technique

4. A set of 2N + 1 nonlinear equations is obtained, by equating
the coefficients of the constant term and of the harmonics
cos(kωt), sin(kωt)

L(0)A0 + C0(A0, ...,BN ) = P0

Re[L(jkω)]Ak − Im [L(jkω)]Bk + Ck(A0, ...,BN) = Pk 1 ≤ k ≤ N

Im [L(jkω)]Ak +Re[L(jkω)]Bk + Dk(A0, ...,BN) = Qk 1 ≤ k ≤ N

5. Autonomous systems: the term A1 is assumed to be equal
to zero (i.e. the phase of the first harmonic of x(t) is
arbitrarily fixed); since ω is unknown, the system has an equal
number [(2N + 1)] of equations and unknowns.

A. Ascoli, M. Biey, F. Corinto and M. Righero
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The describing function (DF) technique

The state is represented through a single harmonic (with
amplitude B and frequency ω) and a bias (A)

x(t) = A0+B1 sin(ωt) = A+B sin(ωt), (A,B ,ω unknowns)

The nonlinear term n [x(t)] is approximated up to the first
harmonic

n [x(t)] = N0 + N1 sin(ωt)

N0 =
1

T

∫ T

0
n [A+ B sin(ωt)] dt

N1 =
2

T

∫ T

0
n [A+ B sin(ωt)] sin(ωt) dt

2

T

∫ T

0
n [A+ B sin(ωt)] cos(ωt) dt = 0 (single − valued functions)
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The describing function (DF) technique

By substituting in L(D)x(t) + n[x(t)] = 0 we obtain the
following nonlinear algebraic system:

L(0)A + N0(A,B) = 0

BRe{L(jω)} + N1(A,B) = 0

Im{L(jω)} = 0

The conditions under which the describing function technique
yields rigorous results are rather restrictive (Mees et al.).
However in most cases it works (Gilli et al.).

Limit cycle stability and bifurcations can be studied through
approximate methods based on the DF technique (see
(Genesio and Gilli) for the extension to large scale dynamical
systems).
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Computation of limit cycles: Examples

Duffing’s equation

Van der Pol circuit

Chua’s circuit

A. Ascoli, M. Biey, F. Corinto and M. Righero
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Efficient HB implementations

1. Consider the time samples vectors

y(t) = L(D)x(t)

y = [y(t1), ..., y(t2N ), y(t2N+1)]
′

x = [x(t1), ..., x(t2N ), x(t2N+1)]
′

s = [s(t1), ..., s(t2N ), s(t2N+1)]
′

tp =
T

2N + 1
p p = 1, . . . , 2N + 1
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Efficient HB implementations

2. Impose that the HB equation be satisfied for t = tp

y(tp) + n [x(tp)] = s(tp), p = 1, . . . , 2N + 1

that in vector notation yields

y + n [x ] = s

with

n [x ] = [ n [x(t1)], n [x(t2)], ...,n [x(t2N+1)] ]
′

A. Ascoli, M. Biey, F. Corinto and M. Righero
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Efficient HB implementations

x = Γ−1X , X = [A0, A1, ...,AN , B1, ...,BN ]
′

Γ−1 =





1 γc1,1 γs1,1 . . . γc1,N γs1,N
1 γc2,1 γs2,1 . . . γc2,N γs2,N
...

...
...

...
...

1 γc2N+1,1 γs2N+1,1 . . . γc2N+1,N γs2N+1,N





γcp,q = cos(qωtp) = cos

(
q2πp

2N + 1

)

γsp,q = sin(qωtp) = sin

(
q2πp

2N + 1

)
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Efficient HB implementations

y = Γ−1 Ω(ω) X

Ω(ω) =





L(0) 0 0 . . . 0 0
0 R1 I1 . . . 0 0
0 −I1 R1 . . . 0 0
...

...
...

...
...

0 0 0 . . . RN IN
0 0 0 . . . −IN RN





Rk = Re{L(jkω)}, Ik = Im{L(jkω)}

n [x ] = n [Γ−1X ]

A. Ascoli, M. Biey, F. Corinto and M. Righero
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Efficient HB implementations

y + n [x ] = s

Γ−1 Ω(ω) X + n [Γ−1X ] = s

Ω(ω) X + Γ n [Γ−1X ] = Γ s

The 2N + 1 equations in the 2N + 1 unknowns X can be solved
without performing any integrals.
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Limit cycle stability

Limit cycles may present the same stability characteristics of
equilibrium points: they may be stable, unstable or behave as
saddles.

The stability of limit cycles is studied through the Poincarè
map, that reduces the stability property of a limit cycle to
those of a nonlinear discrete system.

Example: Piece-wise linear Van der Pol oscillators

The stability can also be studied through spectral techniques.
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Limit cycle stability

Autonomous systems:

dx(t)

dt
= f (x)

Limit cycle solution of period T detected through HB

γ(t + T ) = γ(t) = A0 +
N∑

k=1

[Ak cos(kωt) + Bk sin(kωt)]

γ(t),Ak,Bk ∈ Rn

Variational equation:

dx̃(t)

dt
= P(t)x̃(t), (x(t) = x̃(t) + γ(t))

P(t) = Df [γ(t)] is the Jacobian evaluated at the limit cycle

A. Ascoli, M. Biey, F. Corinto and M. Righero
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Limit cycle stability

Floquet multipliers µi (eigenvalues of the Poincarè map) can
be numerically evaluated as the eigenvalues of:

exp[P(tM)∆]exp[P(tM−1)∆] . . . exp[P(t1)∆]

tp = p T
M = p∆

One Floquet multipliers is always unitary, the other ones
determine the stability characteristics of the limit cycle.
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Limit cycles in arrays of oscillators: Applications

1 Real time image processing.
1 Multiscale analysis and image pre-processing (PDE based

methods).
2 Medical applications: mammography, echo-cardiography.
3 Stereoscopic vision.

2 Bio-inspired models.
1 Visual system: retina model.
2 Tactile system.
3 Audio system.
4 Talamo-cortical system (networks of weakly coupled

oscillators): associative memories.

3 CNN Universal Machine: analog algorithms.
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