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Synchronize: to agree in time, to happen at the same
time, to represent or arrange (events) to indicate
coincidence or coexistence

It is an important concept in: Physics, Biology,
Telecommunication, Computer science,
Cryptography, Multimedia, Photography, Music
(rhythm)

Synchronicity is a word coined by the Swiss
psychologist Carl Jung to describe the “temporally
coincident occurrences of acausal events.”




but for proper parameter choice

they may synchronise




“lIt is quite worth noting that when we
suspended two clocks so constructed from two
mepentuun cock - hooks imbedded in the same wooden beam, the

Harokavim sedliatonum

Synchronization of Pendulum Clocks

e MOtioNs of each pendulum in opposite swings
===/ were so much in agreement that they never
Lo receded the least bit from each other and the

sound of each was always heard simultaneously.

Further, if this agreement was disturbed by some interference, it
reestablished itself in a short time. For a long time | was amazed at this
unexpected result, but after a careful examination finally found that the
cause of this is due to the motion of the beam, even though this is
hardly perceptible.”




Synchronization in a large population of
oscillating systems

Engelbert Kaempfer (1680)

The glowworms represent another shew, which settle on some Trees, like a
fiery cloud, with this surprising circumstance, that a whole swarm of these
insects, having taken possession of one Tree, and spread themselves over its
branches, sometimes hide their Light all at once, and a moment after make it
appear again with the utmost regularity and exactness

This very early observation reports on synchronization in a targe population of
oscillating systems. The same physical mechanisin that makes the insects to keep
in sync is responsible for the emergence of synchronous clapping in a large
audience or onset of thythms in neuronal populations.




Sleep-VWVake rhythms: biological systems can
adjust their rhythms to external signals. Under
natural conditions, biological clocks tune their
rhythms (i.e. synchronize) in accordance with
the 24-hour period of the Earth’s daily cycle
(First observed by ].J. Dortous de Mairan, |729)

Synchronization of triode oscillators

(Appleton, van der Pol, van der Mark,
1922-1928)




Mutual synchronization of cardiac pacemaker cells

&0
0nS 2aS
membrane 0t
potential
(mV) 40 -‘
<50
50
coupling '\
curent 0 = l T
(pA) \/ \/
-50
40
02n0S 0 ns
mambrane 0 -‘ i
potential
(mv) 40 1
-80
50
Loupling 4 I '
current 0 =D\ e - Faunm
o8 “/ N/
-50
D , 0] 1
time {s) tirme (%)

Fig. 4. Mutual synchronization of two
single isolated rabbit sinoatrial node
cells studied with the coupling clamp
technique. Action potentials are shown
in blue and red, and the intercellular
coupling current in green. The coupling
conductance is increased from 0 nS (un-
coupled conditions) to 10 nS. Note that a
coupling conductance as small as 0.2 nS
15 sufficient for frequency entrainment.
At 10 nS, the action potentials show full
waveform entrainment

(E.E. Verheijek et al., “Pacemaker synchronization of electrically coupled rabbit sinoatrial node
cells,” J. Gen. Physiol., vol. 11 |, pp. 95-112, January 1998)




® |n a classical context, synchronization (from Greek:

syn = the same, common and: chronos = time)
means adjustment of rhythms of self-sustained
periodic oscillators due to their weak interaction

(coupling); this adjustment can be described in terms
of phase locking and frequency entrainment (),

(I) If you have two vibrating objects with the same natural frequency or corresponding
harmonic, they will both have a forced vibration effect on each other. This process, given
time, normally leads to a condition where both objects synchronize. Of interest, both
oscillators do not, necessarily, must have exactly the same natural frequency. If there is
enough "coupling”" between the oscillators, they will sometime "lock-in" with one another at
a slightly shifted frequency: the frequencies become equal or entrained. The onset of a
certain relationship between the phases of these oscillators is often termed phase locking.




|. The oscillator is an active system. It contains an internal
source of energy that is transformed into oscillatory
behavior. Being isolated, it continues to generate the same
rhythm until the source of energy expires. It is described as
an autonomous dynamical system.

2. The form of the oscillation is determined by the
parameters of the system and does not depend on initial
conditions.

3.The oscillation is stable to (small) perturbations.

The above properties are characteristic of
nonlinear oscillators




lectronic nonlinear circuits

Example: Colpitts oscillator
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Example: Two identical coupled Van der Pol oscillators
The coupled oscillators synchronize: two different interpretations

for the phases @; = tan” ! (& for the states
2
_ N 2 2 .
= O —
phase synchronization complete (or identical) synchronization

generalization: to non identical systems | generalization: to systems with any behavior

limitation: to systems where a phase limitation: to identical or approximately
can be defined - rhythmic behavior identical systems




Modern concept covers also chaotic systems; in this
case one distinguishes between different forms of
synchronization (complete, lag, generalized, phase,
imperfect), the most notable being complete (or
identical) and phase synchronization [].

Example: Phase synchronization of two coupled

- - [*] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, The Synchronization
Ch aOtI C OSCI I |at0 rS of Chaotic Systems, Physics Reports 366, pp. 1-101, 2002




Synchronization phenomena are pervasive in biology and
are related to several central issues of neuroscience [1].

Synchronization may allow distant sites in the brain to
communicate and cooperate with each other. For
example, synchronization between areas of the visual
cortex and parietal cortex, and between areas of the
parietal and motor cortex was observed during the
visual-motor integration task in awake cats [2].

[1] W. Singer and C. M. Gray, “Visual features integration and the temporal correlation hypothesis,” Annual Rev. Neurosci.,
vol. 18, pp. 555-586, 1995.

[2] P. R. Roelfsema, A. K. Engel, P. Knig, and W. Singer, “Visuomotor integration is associated with zero time-lag
synchronization among cortical areas,” Nature, vol. 385, pp. 157-161, 1997




® Direct participation of synchrony in a cognitive task
was experimentally demonstrated in humans [3].

® Synchronization may help protect interconnected
neurons from the influence of random
perturbations (intrinsic neuronal noise) which
affect all neurons in the nervous system [4].

[3] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, “Perception’s shadow: Long
distance synchronization of human brain activity,” Nature, vol. 397, pp. 430—433, 1999.

[4] N.Tabareau, J-J. Slotine, Q. Pham, “How synchronization protects from noise”, PLoS Computational Biology, pp. 1-9,
Vol. 6, N. 1, 2010




Spiking neurons, like any other physical, chemical, or biological
oscillators, can synchronize and exhibit collective behavior that is
not intrinsic to any individual neuron.

Partial synchrony in cortical networks is believed to generate
various brain oscillations, such as the alpha and gamma EEG
(electroencephalography) rhythms. However, increased synchrony
may result in pathological types of activity, such as epilepsy.

Coordinated synchrony is needed for locomotion and swim pattern
generation in fish. Depending on the circumstances, synchrony can

be good or bad, and it is important to know what factors
contribute to synchrony and how to control it.

(Extracted from: E. M. Izhikevich , Dynamical Systems in Neuroscience:The Geometry of Excitability and Bursting, Ch. 10, MIT Press, Cambridge, MA, USA, 2007)
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® Synchronization properties are influenced
by the general properties of the oscillatory
network: complex systems can be more or
less prone to synchronize due to their
specific features.

® Synchronization requires knowledge of
both nonlinear dynamics and of
complex systems.
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Single oscillator

X,' =Fi(X;)) XieR™, Fi: R™"—> R™ (i=1,2,..,n)
has at least one hyperbolic T;-periodic solution v;(t) : R — R™

/r\. Oi(t) = wj t, 0,’ (S 51 — [Oa 27!'[, Wi = 2%

0 \

Weakly Connected Oscillatory Networks (¢ < 1)
Xi = Fi(X;) + € G(X), X=I[X{,...X!], Gi: R™" - R™




e Al et 2 ottt s bt e et e

Weakly Connected Oscillatory Networks (¢ < 1)

Xi=Fi(X;) + € G(X), X=I[X{,...X']', Gi: R™" > R
0i(t) = wj t+ ¢i(et)

@ Time—domain techniques do not allow to identify all the
limit cycles (either stable or unstable).
e It would require to consider infinitely many initial conditions.
@ Unstable limit cycles cannot be detected through simulation.

@ By means of Spectral techniques (Describing Function and
Harmonic Balance), the computation of all the limit cycles is
reduced to a non-differential algebraic problem.

@ Such methods are not suitable for characterizing the global
dynamic behavior of complex networks with a large number of

attractors.




Weakly Connected Oscillatory Networks (¢ < 1)

Xi=Fi(X;) + € G(X), X=I[X{,...X'], G;j: R™" > R
0i(t) = wi t+ oi(et)

Phase deviation equation

.
S 18 G ¢ — o
Pi = T/o Qi(t) G |v|t+ » dt,
T =mcm(Ty, ..., Tp)
. — . — . /
(4 20 = o (e 4 00) Ly (4 2
w w1 Wn

Qi(t) = —[DFi(vi() Qi(t), QL(0)Fi(7i(0)) =1

o, .\"‘.‘n -".‘,'.?* AN
T g
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@ The periodic trajectories ;(t) of the uncoupled oscillators are
approximated through the describing function technique.

@ Once the approximation of ~;(t) is known, a first harmonic
approximation of Q;(t) is computed, by exploiting the linear
adjoint problem and the normalization condition.

© The approximated phase deviation equation is derived by
analytically computing the integral expression given by the
Malkin's Theorem.

The phase equation is analyzed in order to determine the total
number of stationary solutions (equilibrium points) and their
stability properties. They correspond to the total number of limit
cycles of the original weakly connected network.
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@ Synchronous states can be exploited for dynamic pattern
recognition and to realize associative and dynamic memories.
By means of a simple learning algorithm, the phase-deviation
equation is designed in such a way that given sets of patterns
can be stored and recalled. In particular, two models of
WCONs have been proposed as examples of associative and
dynamic memories.

@ Spiral waves are the most universal form of patterns arising in
dissipative media of oscillatory and excitable nature. By
focusing on oscillatory networks, whose cells admit of a Lur'e
description and are linearly connected through weak couplings,
the occurrence of spiral waves has been studied.




- Oscillations experimentally observed
in visual cortex after stimulus

- Synchronized oscillations observed in
parts of the brain not geometrically
close

- Synchronized oscillations is linked to
association

- Can we build an image recognition
system from coupled oscillators!?

Cortex
O‘p ez. L)

9,

Thalamus

Conventional Neurocomputer Oscillatory Neurocomputer

Hoppensteadt and Izhikevich, Phys Rev L,VOLUME
82, NUMBER 14, April 5, 1999
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WEAKLY CONNECTED OSCILLATORY
NETWORK MODELS FOR ASSOCIATIVE
AND DYNAMIC MEMORIES

FERNANDO CORINTO, MICHELE BONNIN
and MARCO GILLI

O1

Fig. 1. Weakly connected oscillatory network having a star
topology.

time

Time Time

All oscillators are phase locked.
Degree of matching remains above a
threshold.

Thus a better discrimination of
matching patterns.




Can oscillatory associative memories outperform
“static”’ associative memories!
® (Goal: find classes of problem solved only by

oscillatory networks

® no restrictions about the architecture of the
networks




Can oscillatory associative memories outperform
“static”’ associative memories!

e Goal: conceive non-boolean spatio-temporal
algorithms to solve a classical problem in a more
efficient (in terms of speed, power, ...) way

e consider physical constrains
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Spin-Torque Oscillatory arrays

The ,traditional” classification method

Feature extraction Classification
|:"'> Extraction of low :> Comparing the feature |:>
Imaae dimensional, vector with stored
: meaningful Flnp;.:t labeled feature Class
information b vectors
vector

The proposed classification
method

Feature extraction
a 2 ; Classification

‘:D Extraction of low '
dimensional, ~ Comparing the ,:>
Image meaningful signature with stored
information labeled signatures Class

Input Feature ﬂ ﬁ Signature(s)
vector

The addition of O-CNN arrays can enhance the computational power of the architecture and
increase the detection rate.
The OCNN array can transform the input feature vector in a way which helps classification.




Simulation with real-life data: Images taken by a mobile robot has been
used for classification with similar results.

Boundary conditions /lateral input/: with side input, changing the
boundary conditions the properties of the array can be changed, this can
be used to increase the computational strength (programmability) of the
array

OCNN array with different spin oscillators: The usage of two different
dynamics in one network would increase the possible outcomes of one

OCNN array

Transient based computation: using the evolution of the phase shift to
determine extra properties about the input vectors

Synchronization requires knowledge of both nonlinear dynamics
and of complex systems.




Nonlinear analysis tools

@ Differential or integral equations represent suitable

mathematical models of physical systems.
@ Approximate analytical tools are required for studying

(analysis and design) nonlinear dynamical systems describing
electrical circuits, mechanical and biological systems,

@ Tools for detecting oscillations




—— =f(x,t) x€R", tcR"

Definition: A non-constant solution x(t) = @®(t, xg) is said to be
periodic if there exists T such that:

Vit: Sp(t + T,X()) — @(t,Xo)

The image of ®(t,xp) in the state-space (or phase-space) R" is
called periodic trajectory or limit cycle of period T.




Eigenvalues: A\ = Hjw w =

The circuit presents infinitely many non-isolated cycles with the
same frequency. The cycle amplitude depends on the initial
conditions.




dv 1

di v
d L

The circuit presents a single limit cycle, that attracts
trajectories.

all the
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@ In most circumstances it is not possible to derive explicitly the limit
cycle. Numerical simulations are useful to 'discover’ limit cycles.

@ Theorems may be used to prove the existence of a limit cycle in
planar systems (Liénard’s Theorem and Bendixson's Theorem).




Computation of limit cycles

@ Determination of all the periodic limit cycles (either stable
and unstable) and their stability properties (Floquet's
multipliers — FMs)

@ In large scale dynamical systems the sole numerical simulation

does not allow to identify all the limit cycles (either stable and
unstable)

@ It would require to consider infinitely many initial conditions
@ Unstable limit cycles cannot be detected through simulation

@ By means of Spectral Techniques, the computation of all the
limit cycles is reduced to non-differential (sometimes algebraic)
problem.

@ Harmonic Balance Technique
@ Describing Function Technique
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Computation of limit cycles: Time-domain methods

@ If the system possesses a stable cycle v, we can try to find it by
numerical integration (simulation). If the initial point for the
integration belongs to the basin of attraction of +, the computed
orbit will converge to ~ in forward time. Such a trick will fail to
locate a saddle cycle, even if we reverse time.

there exist different time domain methods especially to directly
locate periodic orbits even if they are saddle or unstable cycles. The
problem of finding the steady state is converted into a
boundary-value problem, to which the standard approaches, such as
shooting methods and finite-difference methods, can be applied.

b(to+ T,x0) = P(ty, xo) = X9, where the minimum cycle period T
Is usually unknown. An extra phase condition has to be added in
order to 'select’ a solution among all those corresponding to the
cycle.




Computation of limit cycles: Perturbation methods

@ Applicable to nonlinear ODEs that have periodic solutions and
a small parameter

@ Method of averaging
@ Regular perturbation
@ Multiple scales
@ Picard iteration
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Spectral methods for Lur'e systems

s(?) —; LD) x(;)

L(D)x(t) + n[x(t)] = s(t), x(t) € R

If the systems admits of a periodic solution of period T, then x(t)
can be expanded through the Fourier series

x(t) = Ao+ » Aicos(kwt) + Bysin(kwt)  w= "=
k=1
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Third order oscillator
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The harmonic balance (HB) technique

1. The state is represented through a finite (N) number of
harmonics

N
x(t) = Ap + Z Ag cos(kwt) + By sin(kwt)
k=1

2. The term L(D)x(t) yields:

N
L(D)x(t) = L(0)As + Y {Re[L(jkw)]Ax + Im[L(jkw)]By} cos(kwt)
k=1

N

n {Re[L(jkw)]Bx — Im[L(jkw)]Ax} sin(kwt)
k=1




The harmonic balance (HB) technique

3. The term n[x(t)] yields (by truncating the series to N
harmonics):

N
n[x(t)] = Co+ »  Cycos(kwt) + Dy sin(kwt)

1T
:7/0"
2 T
:7/071
> T
:7/0,7,

k=1

N
Ay + Z Ay cos(kwt) + By sin(kwt)
k=1

N
Ay + Z Ay cos(kwt) + By sin(kwt)
k=1

N
Ao + ZAk cos(kwt) + By sin(kwt)
k=1

dt

cos(kwt) dt

sin( kwt) dt



The harmonic balance (HB) technique

3. The term s(t) yields (by truncating the series to N
harmonics):

N
s(t) = Py + Z P cos(kwt) + Q sin(kwt)

k=1
1 T
Po = = t) dt
0 T /s s(t)
2 T
P. = — s(t) cos(kwt) dt
T Jo
2 T
Qe = - s(t) sin(kwt) dt




The harmonic balance (HB) technique

4. A set of 2N + 1 nonlinear equations is obtained, by equating

the coefficients of the constant term and of the harmonics
cos(kwt), sin(kwt)

L(0)Ao +  G(Ao,--sBy) = Fo
Re[L(jkw)]Ax — Im[L(jkw)]Bx + Cik(Ao,..,By) = P 1< k<N
Im[L(jkw)]Ax + Re[L(jkw)]Bx + Dk(Ao,....Bn) = Q 1<k<N

5. Autonomous systems: the term A;p is assumed to be equal
to zero (i.e. the phase of the first harmonic of x(t) is
arbitrarily fixed); since w is unknown, the system has an equal
number [(2N + 1)] of equations and unknowns.




The describing function (DF) technique

@ The state is represented through a single harmonic (with
amplitude B and frequency w) and a bias (A)

x(t) = Ao+ Bisin(wt) = A+ Bsin(wt), (A, B,w unknowns)

@ The nonlinear term n[x(t)] is approximated up to the first
harmonic
n[x(t)] = No + Ny sin(wt)

No

%/OTn[A—I—Bsin(wt)] dt

N1

)
;/O n [A+ Bsin(wt)] sin(wt) dt

2 T
- / n [A 4+ Bsin(wt)] cos(wt) dt =0 (single — valued functions)
0




@ By substituting in L(D)x(t) + n[x(t)] = 0 we obtain the
following nonlinear algebraic system:

L(0)A + No(A, B) = 0
BRe{lL(jw)} + Ni(A,B) = 0
ImL(jw)} = 0

@ The conditions under which the describing function technique
yields rigorous results are rather restrictive (Mees et al.).
However in most cases it works (Gilli et al.).

@ Limit cycle stability and bifurcations can be studied through
approximate methods based on the DF technique (see
(Genesio and Gilli) for the extension to large scale dynamical
systems).
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Computation of limit cycles

INg S equation

@ Duff
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@ Van der Pol ¢

@ Chua’
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Efficient HB implementations

1. Consider the time samples vectors

y(t) = L(D)x(t)

y =[y(t1),....y(tan), y(tans1)]’
x = [x(t1),...,x(tan), x(tons1)]
s = [s(t1), ..., s(ton), 5(t2N+1)]/

t, = —=1,....2N +1
p 2N_|_1P P ; ; =+




Efficient HB implementations

2. Impose that the HB equation be satisfied for t = t,
y(tp) + nix(tp)] = s(tp), p=1,...,2N+1
that in vector notation yields

y+mnlx]=s
with

nlx] = [nlx(a)], nlx(t)], ... nlx(t2n41)] |




1 712,1 72,1 71C,/v Vf,N |
—1_ 1 V2.1 V2.1 72C,N 7§,N
C
1 Ton+1.1 7§N+1,1 72CN+1,N 7§N+1,N_
2P
ve = cos(qwt,) = cos il
P;q ( P) ON +1
s . q2mp
Yp.q = sin(qwtp) =sin

2N +1




L(0 0
0 R
0 —/
Qw) = | . .1
0 0
0 0

)

.. 0 0
.. 0 0
.. 0 0
.. Ry Iy
.. —Iy Rn




y+nlx]=s

QW) X+ nlX]=s

QW)X+ T aliX]=Ts

The 2N 4+ 1 equations in the 2N + 1 unknowns X can be solved
without performing any integrals.




Limit cycle stability

@ Limit cycles may present the same stability characteristics of
equilibrium points: they may be stable, unstable or behave as

saddles.

@ The stability of limit cycles is studied through the Poincare
map, that reduces the stability property of a limit cycle to
those of a nonlinear discrete system.

@ Example: Piece-wise linear Van der Pol oscillators

@ The stability can also be studied through spectral techniques.




Limit cycle stability

@ Autonomous systems:
dx(t)
dt
@ Limit cycle solution of period T detected through HB

= f(x)

N
Y(t+ T)=(t) = Ag+ Y [Agcos(kwt) + Bysin(kwt)]
k=1
v(t), Ak, Bk € R"
@ Variational equation:
dx(t)

= POR(1), (x(1) = (1) + (1))

P(t) = Df|[y(t)] is the Jacobian evaluated at the limit cycle




Limit cycle stability

@ Floquet multipliers u; (eigenvalues of the Poincare map) can
be numerically evaluated as the eigenvalues of:

exp|P(tm)A]exp[P(tm-1)A] . .. exp[P(t1)A]

-
@ One Floquet multipliers is always unitary, the other ones
determine the stability characteristics of the limit cycle.




Limit cycles in arrays of oscillators: Applications

@ Real time image processing.

@ Multiscale analysis and image pre-processing (PDE based
methods).

@ Medical applications: mammography, echo-cardiography.

@ Stereoscopic vision.

@ Bio-inspired models.

@ Visual system: retina model.

@ Tactile system.

@ Audio system.

@ Talamo-cortical system (networks of weakly coupled
oscillators): associative memories.

© CNN Universal Machine: analog algorithms.
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