Theory of nonlinear dynamic systems

Juhász János juhasz.janos@.itk.ppke.hu

Practice 8

Logistic mapping $f(x) = \mu x(1-x)$

where

and

 $0 \le \mu \le 4$ $0 \le x \le 1$

• Biological meaning:

$$\dot{x} = bx - cx^2$$

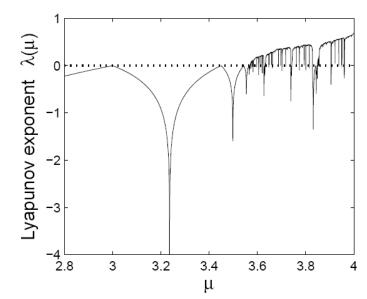
where, b is the birth rate and cx is the death rate in a population.

Order in the chaos

Ljapunov exponent: measuring the chaos

$$\lambda \approx \frac{1}{n} \ln \left[\frac{f^n(x_0 + \epsilon) - f^n(x_0)}{\epsilon} \right] \approx \left| \frac{1}{n} \ln \left[\frac{df^n(x)}{dx} \right|_{x=x_0} \right]$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln |f'(x_i)|$$

- Positive values indicate chaos
- For µ=4 it approximates ln2
- These finding are not dependent to the initial condition

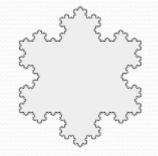


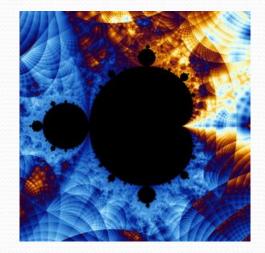
Introduction– fractals I.

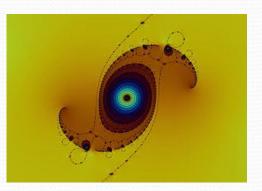
- What does fractal mean?
 - Some kind of shape...
- It is self-similar (smaller parts are resemble to the original shape)
- Its mathematical description is usually simply
- The borders of fractals are "infinitely creased"

Introduction-fractals II.

- Examples:
 - Koch-curve
 - Mandelbrot-set
 - Julia-set
 - Fern shape

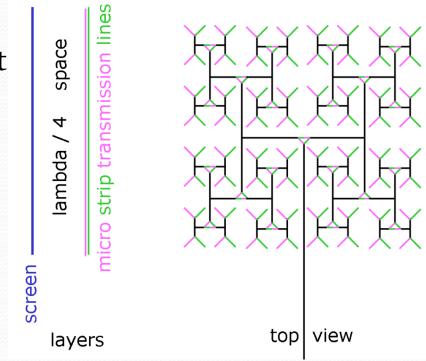






Introduction– fractals III.

- Why are they useful?
 - Simple mathematical equation
 - Low memory requirement
 => graphical applications
 - "natural shapes"
- Bases of compression algorithms
- Tool development: e.g.: antenna
 - maximizing the surface/volume ratio



Cantor set

11 11 11	 	11 11	11 11	нп	пп
	 NN NN				

formula for Cantor set construction:

 $F_{1} = \frac{1}{3}x$ $F_{2} = \frac{2}{3} + \frac{1}{3}x$

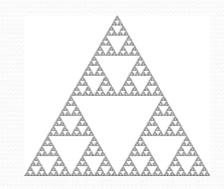
Sierpinski triangle

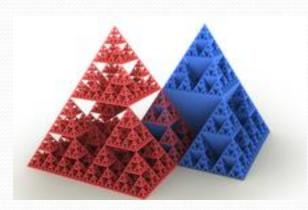
Similar to the Cantor set, but here we cut the middle ¼ of a triangle

• Method:

- 1. Start with an equilateral triangle.
- 2. Subdivide it into four smaller congruent equilateral triangles and remove the central one.
- 3. Repeat step 2 with each of the remaining smaller triangles

• The area tends to zero.





Newton's method

- For finding the roots of equations
- A generalization of Newton's iteration is

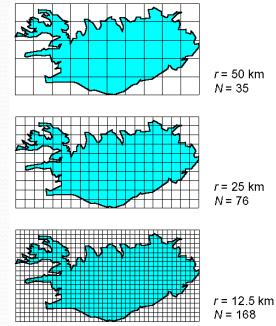
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

- Equations to try: e.g.: x³+1, x³-1, x³-2x+2
- The colors show the sets of initial points (in the complex plain) from which the system converge to the same root
- It can "get stucked" in special cases
- Fractal develops around the roots based on the fate of the initial points around the roots

Fractal dimension

- Dim=log(number of self-similar pieces in the next iteration)/log(magnification factor)
- E.g.:
 - $\text{Dim}_{\text{Cantor}} = \log(2) / \log(3)$
 - $\text{Dim}_{\text{Siepr}} = \log(3) / \log(2)$
- Box-counting dimension:
 - ε :resolution
 - n=1/ε :magnification
 - b :number of boxes with the feature (boundary)

 $\operatorname{Dim}_{\operatorname{Box}} = \lim_{n \to \infty} (\log(b * \varepsilon) / \log n)$



Thank you for your attention!