Theory of nonlinear dynamic systems **Practice 4**

Juhász János juhasz.janos@.itk.ppke.hu

Numeric precision of ode45

- Sources of errors (in general):
	- Matematical error: from the numeric method, higher for big steps
	- Rounding error: from the computer, higher for a lot of steps
	- Balancing between the 2
	- Matlab ode solvers use adaptive stepsize (depending on the "speed of change")
- Absolute tolerance (in Matlab):
	- Default: 1e-6
	- \sim solution is important until then
- Relative tolerance (in Matlab):
	- Default: 1e-3
	- ~number of correct digits

Numeric precision of ode45

- Example:
	- Solve the damped pendulum equation with Max_Time=1500 for
		- $\cdot \; b = 1.98$
		- \cdot b=2.02
	- What kind of fixed point you expect (form analytical solution)?
	- What does the numeric solution show?
	- How could you agree the two?

 An electronic oscillator is an electronic circuit that produces a periodic, oscillating electric signal, often a sine wave or a square wave

$$
\frac{d^2u}{dt^2} + \omega_0^2 u = 0
$$

• Solution of DE:

 $u(t) = U_0 \cos(\omega_0 t + \varphi_0)$

constant amplitude sinusoidal signal, where $\bm{\mathsf{U_o}}$ is the amplitude , ω_o is the frequency and ς_o is the phase.

• Challenge: circuit implementation

• Problems:

- Dependence on the initial conditions (after turning of the circuit the amplitude might change)

- In reality a perfect structure is needed to sinusoidal solution and constant amplitude

- Constant amplitude oscillator cannot be constructed with linear elements only

Conclusion:

- We must ensure constant and stable frequency /amplitude vibration.

- The system has to reach the constant frequency /amplitude in case of any initial conditions.

• Solution:

$$
\ddot{x}-\mu(1-x^2)\dot{x}+x=0
$$

- Test the effects of the μ parameter!
	- $\bullet \mu = 0:0.1:5$
	- μ = 5:10:105
	- \bullet Try to calculate the differential equation for $\mu =$ 500.
		- What do you experience? What could be the solution?

- cannot handle so stiff problems,
- slows down
- good for most "average" problems

1st guess

ode45 ode15s

- for stiff problems
- much smaller time steps for much steeper changes, much bigger in "slower changing" regions

- different methods with differnt heuristics
- they combine diffent order ode solvers
- for more details, see Numeric methods 2 class

Explicit Euler

· Def.:

General task:

$$
\dot{x} = f(x), x(0) = x_0 \in \mathbb{R}^d
$$

$$
\varphi: [0, h_0] \times \mathbb{R}^d \to \mathbb{R}^d
$$

General method:

$$
x_{k+1} = \varphi(h, x_k), k = 0, 1, 2, \dots \leftrightarrow X = \varphi(h, x)
$$

 φ_E explicit Euler method

$$
X = \varphi_E(h, x)
$$
, where $X = x + hf(x)$

Implicit Euler

· Def.:

General task:

$$
\dot{x} = f(x), x(0) = x_0 \in \mathbb{R}^d
$$

$$
\varphi: [0, h_0] \times \mathbb{R}^d \to \mathbb{R}^d
$$

General method:

$$
x_{k+1} = \varphi(h, x_k), k = 0, 1, 2, \dots \leftrightarrow X = \varphi(h, x)
$$

 φ_I implicit Euler method

$$
X = \varphi_I(h, x)
$$
, where $X = x + hf(X)$

Semi-implicit Euler

 \bullet Def.:

Newton equation of $V: \mathbb{R} \to \mathbb{R}$ potential force field

$$
\ddot{x} + V'(x) = 0 \leftrightarrow (PN) \begin{cases} \dot{x} = y \\ \dot{y} = -V'(x) \end{cases}
$$

 φ_S semi – implicit Euler method

$$
\begin{pmatrix} X \ Y \end{pmatrix} = \varphi_S \left(h, \begin{pmatrix} x \ y \end{pmatrix} \right), \text{ where } \begin{cases} X = x + hy \\ Y = y - hV'(x + hy) \end{cases}
$$

$$
\begin{cases}\n\frac{x-x}{h} = y \\
\frac{Y-y}{h} = -V'(X)\n\end{cases}\n\leftrightarrow\n\begin{cases}\nX = x + hy \\
Y = y - hV'(x + hy)\n\end{cases}
$$

Semi-implicit Euler

• Suppl.:

The exact solutions of $\Phi \colon \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$, $\Big(\begin{smallmatrix} t \end{smallmatrix} \Big(\begin{smallmatrix} x \ y \end{smallmatrix} \Big)$ $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \Phi \left(t, \begin{pmatrix} x \\ y \end{pmatrix} \right)$ \mathcal{Y} **conserv**:

- **energy** of $\frac{y^2}{2}$ 2 $+ V(x) =$ y_0^2 $\frac{0}{2} + V(x_0)$
- **area** of *dx dy* at ℝ² phase portrait

This special method conservs the *dx dy* area, according to the det (J)≡ 1, where *J*= $\frac{\partial(X,Y)}{\partial(X,Y)}$ $\partial(x,y)$ $\tilde{\zeta}$

Comparation of numerical methods:

- Always take care of the physics of the problem
- Energy
- \bullet => choose problem specific numerical methods

Euler mehods

- Try different numeric methods (EE, IE, SE) on the prefect string equation!
- Compare the results with ode45 and the analytical solution!

Thank you for your attention!