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MATLAB Basics

�• MATLAB can be thought of as a super-powerful 
graphing calculator

Remember the TI-83 from calculus? 
With many more buttons (built-in functions)

�• In addition it is a programming language
MATLAB is an interpreted language, like Java
Commands executed line by line



Help/Docs

• help

The most important function for learning MATLAB on 
your own

�• To get info on how to use a function:
» help sin

Help lists related functions at the bottom and links to 
the doc

�• To get a nicer version of help with examples and easy-to-
read descriptions:
» doc sin

�• To search for a function by specifying keywords:
» doc + Search tab
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Scripts: Overview

�• Scripts are 
collection of commands executed in sequence
written in the MATLAB editor
saved as MATLAB files (.m extension)

�• To create an MATLAB file from command-line
» edit helloWorld.m

�• or click

Courtesy of The MathWorks, Inc. Used with permission.



Scripts: the Editor

* Means that it's not saved
Line numbers

Comments

MATLAB file 
path

Help file

Possible breakpoints

Debugging tools
Real-time 
error check

Courtesy of The MathWorks, Inc. Used with permission.



Scripts: Some Notes

�• COMMENT!
Anything following a % is seen as a comment
The first contiguous comment becomes the script's help file
Comment thoroughly to avoid wasting time later

�• Note that scripts are somewhat static, since there is no 
input and no explicit output

�• All variables created and modified in a script exist in the 
workspace even after it has stopped running



Exercise: Scripts

Make a helloWorld script

�• When run, the script should display the following text: 

�• Hint: use disp to display strings. Strings are written 
between single quotes, like 'This is a string'

Hello World!
I am going to learn MATLAB!



Exercise: Scripts

Make a helloWorld script

�• When run, the script should display the following text: 

�• Hint: use disp to display strings. Strings are written 
between single quotes, like 'This is a string'

�• Open the editor and save a script as helloWorld.m. This is 
an easy script, containing two lines of code:
» % helloWorld.m

» % my first hello world program in MATLAB

» disp('Hello World!');

» disp('I am going to learn MATLAB!');

Hello World!
I am going to learn MATLAB!
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Variable Types

�• MATLAB is a weakly typed language
No need to initialize variables!

�• MATLAB supports various types, the most often used are
» 3.84

64-bit double (default)
» ‘a’

16-bit char

�• Most variables you�’ll deal with will be vectors or matrices of 
doubles or chars

�• Other types are also supported: complex, symbolic, 16-bit 
and 8 bit integers, etc. You will be exposed to all these 
types through the homework



Naming variables

�• To create a variable, simply assign a value to a name:
» var1=3.14

» myString=‘hello world’

�• Variable names
first character must be a LETTER
after that, any combination of letters, numbers and _
CASE SENSITIVE! (var1 is different from Var1) 

�• Built-in variables. Don�’t use these names!
i and j can be used to indicate complex numbers

pi has the value 3.1415926�…

ans stores the last unassigned value (like on a calculator)

Inf and -Inf are positive and negative infinity 

NaN represents �‘Not a Number�’



Scalars

�• A variable can be given a value explicitly
» a = 10

shows up in workspace!

�• Or as a function of explicit values and existing variables 
» c = 1.3*45-2*a

�• To suppress output, end the line with a semicolon
» cooldude = 13/3;



Arrays

• Like other programming languages, arrays are an 
important part of MATLAB

• Two types of arrays

(1) matrix of numbers (either double or complex)

(2) cell array of objects (more advanced data structure)

MATLAB makes vectors easy!
That’s its power!



Row Vectors

�• Row vector: comma or space separated values between 
brackets
» row = [1 2 5.4 -6.6]

» row = [1, 2, 5.4, -6.6]; 

�• Command window:

�• Workspace:

Courtesy of The MathWorks, Inc. Used with permission.



Column Vectors

�• Column vector: semicolon separated values between 
brackets 
» column = [4;2;7;4]

�• Command window:

�• Workspace:

Courtesy of The MathWorks, Inc. Used with permission.



size & length

�• You can tell the difference between a row and a column 
vector by:

Looking in the workspace
Displaying the variable in the command window
Using the size function

�• To get a vector's length, use the length function



Matrices

�• Make matrices like vectors

�• Element by element
» a= [1 2;3 4];

�• By concatenating vectors or matrices (dimension matters)
» a = [1 2];

» b = [3 4];

» c = [5;6];

» d = [a;b];

» e = [d c];

» f = [[e e];[a b a]];

» str = ['Hello, I am ' 'John'];

Strings are character vectors

1 2
3 4

a =



Exercise: Variables

Get and save the current date and time
�• Create a variable start using the function clock
�• What is the size of start? Is it a row or column?
�• What does start contain? See help clock
�• Convert the vector start to a string. Use the function 

datestr and name the new variable startString
�• Save start and startString into a mat file named 

startTime



Exercise: Variables

Get and save the current date and time
�• Create a variable start using the function clock
�• What is the size of start? Is it a row or column?
�• What does start contain? See help clock
�• Convert the vector start to a string. Use the function 

datestr and name the new variable startString
�• Save start and startString into a mat file named 

startTime

» help clock

» start=clock;

» size(start)

» help datestr

» startString=datestr(start);

» save startTime start startString
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Basic Scalar Operations

�• Arithmetic operations (+,-,*,/)
» 7/45
» (1+i)*(2+i)
» 1 / 0
» 0 / 0

�• Exponentiation (^)
» 4^2
» (3+4*j)^2

�• Complicated expressions, use parentheses
» ((2+3)*3)^0.1

�• Multiplication is NOT implicit given parentheses
» 3(1+0.7) gives an error

�• To clear command window
» clc



Built-in Functions

�• MATLAB has an enormous library of built-in functions

�• Call using parentheses �– passing parameter to function
» sqrt(2)

» log(2), log10(0.23)

» cos(1.2), atan(-.8)

» exp(2+4*i)

» round(1.4), floor(3.3), ceil(4.23)

» angle(i); abs(1+i);



Exercise: Scalars

You will learn MATLAB at an exponential rate! Add the 
following to your helloWorld script:

�• Your learning time constant is 1.5 days. Calculate the number of 
seconds in 1.5 days and name this variable tau

�• This class lasts 5 days. Calculate the number of seconds in 5 days 
and name this variable endOfClass

�• This equation describes your knowledge as a function of time t:

�• How well will you know MATLAB at endOfClass? Name this 
variable knowledgeAtEnd. (use exp)

�• Using the value of knowledgeAtEnd, display the phrase: 

�• Hint: to convert a number to a string, use num2str

/1 tk e τ−= −

At the end of 6.094, I will know X% of MATLAB



Exercise: Scalars

» secPerDay=60*60*24;

» tau=1.5*secPerDay;

» endOfClass=5*secPerDay

» knowledgeAtEnd=1-exp(-endOfClass/tau);

» disp(['At the end of 6.094, I will know ' ... 
num2str(knowledgeAtEnd*100) '% of MATLAB'])



Transpose

�• The transpose operators turns a column vector into a row 
vector and vice versa
» a = [1 2 3 4+i]
» transpose(a)
» a' 
» a.'

�• The ' gives the Hermitian-transpose, i.e. transposes and 
conjugates all complex numbers

�• For vectors of real numbers .' and ' give same result



Addition and Subtraction

�• Addition and subtraction are element-wise; sizes must 
match (unless one is a scalar):

�• The following would give an error
» c = row + column

�• Use the transpose to make sizes compatible
» c = row’ + column
» c = row + column’

�• Can sum up or multiply elements of vector
» s=sum(row);
» p=prod(row);

[ ]
[ ]
[ ]

12 3 32 11

2 11 30 32

14 14 2 21   

−
+ −

=

12 3 9
1 1 2
10 13 23
0 33 33

−
− =

− −
−



Element-Wise Functions

�• All the functions that work on scalars also work on vectors
» t = [1 2 3];

» f = exp(t);

is the same as
» f = [exp(1) exp(2) exp(3)];

�• If in doubt, check a function�’s help file to see if it handles 
vectors elementwise

�• Operators (* / ^) have two modes of operation
element-wise
standard



Operators: element-wise

�• To do element-wise operations, use the dot: . (.*, ./, .^). 
BOTH dimensions must match (unless one is scalar)!
» a=[1 2 3];b=[4;2;1];

» a.*b, a./b, a.^b all errors

» a.*b', a./b’, a.^(b’) all valid

[ ]
4

1 2 3 2
1

1 4 4
2 2 4
3 1 3
3 1 3 1 3 1

.* ERROR

.*

.*

=

=

× × = ×

1 1 1 1 2 3 1 2 3
2 2 2 1 2 3 2 4 6
3 3 3 1 2 3 3 6 9

3 3 3 3 3 3

.*

.*

=

× × = ×

2 2

2 2

1 2 1 2
2

3 4 3 4
.^

Can be any dimension

=



Operators: standard

�• Multiplication can be done in a standard way or element-wise
�• Standard multiplication (*) is either a dot-product or an outer-

product
Remember from linear algebra: inner dimensions must MATCH!!

�• Standard exponentiation (^) can only be done on square matrices 
or scalars

�• Left and right division (/ \)  is same as multiplying by inverse
Our recommendation: just multiply by inverse (more on this 
later)

[ ]
4

1 2 3 2 11
1

1 3 3 1 1 1

*

*

=

× × = ×

1 1 1 1 2 3 3 6 9
2 2 2 1 2 3 6 12 18
3 3 3 1 2 3 9 18 27

3 3 3 3 3 3

*

*

=

× × = ×

1 2 1 2 1 2
2

3 4 3 4 3 4
^ *

Must  be square to do powers

=



Exercise: Vector Operations

Calculate how many seconds elapsed since the start of 
class

�• In helloWorld.m, make variables called secPerMin, 
secPerHour, secPerDay, secPerMonth (assume 30.5 days 
per month), and secPerYear (12 months in year), which 
have the number of seconds in each time period.

�• Assemble a row vector called secondConversion that has 
elements in this order: secPerYear, secPerMonth, 
secPerDay, secPerHour, secPerMinute, 1.

�• Make a currentTime vector by using clock
�• Compute elapsedTime by subtracting currentTime from 

start

�• Compute t (the elapsed time in seconds) by taking the dot 
product of secondConversion and elapsedTime (transpose 
one of them to get the dimensions right)



Exercise: Vector Operations

» secPerMin=60;

» secPerHour=60*secPerMin;

» secPerDay=24*secPerHour;

» secPerMonth=30.5*secPerDay;

» secPerYear=12*secPerMonth;

» secondConversion=[secPerYear secPerMonth ... 
secPerDay secPerHour secPerMin 1];

» currentTime=clock;

» elapsedTime=currentTime-start;

» t=secondConversion*elapsedTime';



Exercise: Vector Operations

Display the current state of your knowledge
�• Calculate currentKnowledge using the same relationship as 

before, and the t we just calculated:

�• Display the following text:

/1 tk e τ−= −

At this time, I know X% of MATLAB



Exercise: Vector Operations

Display the current state of your knowledge
�• Calculate currentKnowledge using the same relationship as 

before, and the t we just calculated:

�• Display the following text:

» currentKnowledge=1-exp(-t/tau);

» disp(['At this time, I know ' ... 
num2str(currentKnowledge*100) '% of MATLAB']);

/1 tk e τ−= −

At this time, I know X% of MATLAB



Automatic Initialization

�• Initialize a vector of ones, zeros, or random numbers
» o=ones(1,10)

row vector with 10 elements, all 1
» z=zeros(23,1)

column vector with 23 elements, all 0
» r=rand(1,45)

row vector with 45 elements (uniform [0,1])
» n=nan(1,69)

row vector of NaNs (useful for representing uninitialized 
variables)

The general function call is:
var=zeros(M,N);

Number of rows Number of columns



Automatic Initialization

�• To initialize a linear vector of values use linspace
» a=linspace(0,10,5) 

starts at 0, ends at 10 (inclusive), 5 values

�• Can also use colon operator (:)
» b=0:2:10 

starts at 0, increments by 2, and ends at or before 10
increment can be decimal or negative

» c=1:5

if increment isn�’t specified, default is 1

�• To initialize logarithmically spaced values use logspace
similar to linspace, but see help



Exercise: Vector Functions

Calculate your learning trajectory
�• In helloWorld.m, make a linear time vector tVec that has 

10,000 samples between 0 and endOfClass
�• Calculate the value of your knowledge (call it 

knowledgeVec) at each of these time points using the same 
equation as before:

/1 tk e τ−= −



Exercise: Vector Functions

Calculate your learning trajectory
�• In helloWorld.m, make a linear time vector tVec that has 

10,000 samples between 0 and endOfClass
�• Calculate the value of your knowledge (call it 

knowledgeVec) at each of these time points using the same 
equation as before:

» tVec = linspace(0,endOfClass,10000);

» knowledgeVec=1-exp(-tVec/tau);

/1 tk e τ−= −



Vector Indexing

�• MATLAB indexing starts with 1, not 0
We will not respond to any emails where this is the 
problem.

�• a(n) returns the nth element

�• The index argument can be a vector. In this case, each 
element is looked up individually, and returned as a vector 
of the same size as the index vector.
» x=[12 13 5 8];

» a=x(2:3); a=[13 5];

» b=x(1:end-1); b=[12 13 5];

[ ]13 5 9 10a =

a(1)    a(2)    a(3)   a(4)



Matrix Indexing

�• Matrices can be indexed in two ways
using subscripts (row and column)
using linear indices (as if matrix is a vector)

�• Matrix indexing: subscripts or linear indices

�• Picking submatrices
» A = rand(5) % shorthand for 5x5 matrix

» A(1:3,1:2) % specify contiguous submatrix

» A([1 5 3], [1 4]) % specify rows and columns

14 33
9 8

b(1)

b(2)

b(3)

b(4)

14 33
9 8

b(1,1)

b(2,1)

b(1,2)

b(2,2)



Advanced Indexing 1

�• To select rows or columns of a matrix, use the :

» d=c(1,:); d=[12 5];

» e=c(:,2); e=[5;13];

» c(2,:)=[3 6];  %replaces second row of c

12 5
2 13

c =
−



Advanced Indexing 2

�• MATLAB contains functions to help you find desired values 
within a vector or matrix
» vec = [5 3 1 9 7]

�• To get the minimum value and its index:
» [minVal,minInd] = min(vec);

max works the same way

�• To find any the indices of specific values or ranges
» ind = find(vec == 9);

» ind = find(vec > 2 & vec < 6);

find expressions can be very complex, more on this later

�• To convert between subscripts and indices, use ind2sub, 
and sub2ind. Look up help to see how to use them.



Exercise: Indexing

When will you know 50% of MATLAB?
�• First, find the index where knowledgeVec is closest to 0.5. 

Mathematically, what you want is the index where the value 
of                            is at a minimum (use abs and min).

�• Next, use that index to look up the corresponding time in 
tVec and name this time halfTime.

�• Finally, display the string:                                    
Convert halfTime to days by using secPerDay

0.5knowledgeVec −

I will know half of MATLAB after X days



Exercise: Indexing

When will you know 50% of MATLAB?
�• First, find the index where knowledgeVec is closest to 0.5. 

Mathematically, what you want is the index where the value 
of                            is at a minimum (use abs and min).

�• Next, use that index to look up the corresponding time in 
tVec and name this time halfTime.

�• Finally, display the string:                                    
Convert halfTime to days by using secPerDay

» [val,ind]=min(abs(knowledgeVec-0.5));

» halfTime=tVec(ind);

» disp(['I will know half of MATLAB after ' ... 
num2str(halfTime/secPerDay) ' days']);

0.5knowledgeVec −

I will know half of MATLAB after X days



Outline

(1) Getting Started
(2) Scripts 
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Did everyone sign in?



Plotting

�• Example
» x=linspace(0,4*pi,10);

» y=sin(x);

�• Plot values against their index
» plot(y);

�• Usually we want to plot y versus x
» plot(x,y);

MATLAB makes visualizing data 
fun and easy! 



What does plot do?

�• plot generates dots at each (x,y) pair and then connects the dots 
with a line

�• To make plot of a function look smoother, evaluate at more points  
» x=linspace(0,4*pi,1000);

» plot(x,sin(x));

�• x and y vectors must be same size or else you�’ll get an error
» plot([1 2], [1 2 3])

error!!

10 x values:

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1000 x values:



Exercise: Plotting

Plot the learning trajectory
�• In helloWorld.m, open a new figure (use figure)
�• Plot the knowledge trajectory using tVec and 

knowledgeVec. When plotting, convert tVec to days by 
using secPerDay

�• Zoom in on the plot to verify that halfTime was calculated 
correctly



Exercise: Plotting

Plot the learning trajectory
�• In helloWorld.m, open a new figure (use figure)
�• Plot the knowledge trajectory using tVec and 

knowledgeVec. When plotting, convert tVec to days by 
using secPerDay

�• Zoom in on the plot to verify that halfTime was calculated 
correctly

» figure

» plot(tVec/secPerDay, knowledgeVec);



End of Lecture 1
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Hope that wasn’t too much!!
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