
6.094
Introduction to Programming in MATLAB

Danilo �Š epanovi

IAP 2010

Lecture 1: Variables, Scripts,

and Operations

Outline

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Command Window

Current directory

Workspace

Command History

Courtesy of The MathWorks, Inc. Used with permission.

MATLAB Basics

�• MATLAB can be thought of as a super-powerful
graphing calculator

Remember the TI-83 from calculus?
With many more buttons (built-in functions)

�• In addition it is a programming language
MATLAB is an interpreted language, like Java
Commands executed line by line

Help/Docs

• help

The most important function for learning MATLAB on
your own

�• To get info on how to use a function:
» help sin

Help lists related functions at the bottom and links to
the doc

�• To get a nicer version of help with examples and easy-to-
read descriptions:
» doc sin

�• To search for a function by specifying keywords:
» doc + Search tab

Outline

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Scripts: Overview

�• Scripts are
collection of commands executed in sequence
written in the MATLAB editor
saved as MATLAB files (.m extension)

�• To create an MATLAB file from command-line
» edit helloWorld.m

�• or click

Courtesy of The MathWorks, Inc. Used with permission.

Scripts: the Editor

* Means that it's not saved
Line numbers

Comments

MATLAB file
path

Help file

Possible breakpoints

Debugging tools
Real-time
error check

Courtesy of The MathWorks, Inc. Used with permission.

Scripts: Some Notes

�• COMMENT!
Anything following a % is seen as a comment
The first contiguous comment becomes the script's help file
Comment thoroughly to avoid wasting time later

�• Note that scripts are somewhat static, since there is no
input and no explicit output

�• All variables created and modified in a script exist in the
workspace even after it has stopped running

Exercise: Scripts

Make a helloWorld script

�• When run, the script should display the following text:

�• Hint: use disp to display strings. Strings are written
between single quotes, like 'This is a string'

Hello World!
I am going to learn MATLAB!

Exercise: Scripts

Make a helloWorld script

�• When run, the script should display the following text:

�• Hint: use disp to display strings. Strings are written
between single quotes, like 'This is a string'

�• Open the editor and save a script as helloWorld.m. This is
an easy script, containing two lines of code:
» % helloWorld.m

» % my first hello world program in MATLAB

» disp('Hello World!');

» disp('I am going to learn MATLAB!');

Hello World!
I am going to learn MATLAB!

Outline

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Variable Types

�• MATLAB is a weakly typed language
No need to initialize variables!

�• MATLAB supports various types, the most often used are
» 3.84

64-bit double (default)
» ‘a’

16-bit char

�• Most variables you�’ll deal with will be vectors or matrices of
doubles or chars

�• Other types are also supported: complex, symbolic, 16-bit
and 8 bit integers, etc. You will be exposed to all these
types through the homework

Naming variables

�• To create a variable, simply assign a value to a name:
» var1=3.14

» myString=‘hello world’

�• Variable names
first character must be a LETTER
after that, any combination of letters, numbers and _
CASE SENSITIVE! (var1 is different from Var1)

�• Built-in variables. Don�’t use these names!
i and j can be used to indicate complex numbers

pi has the value 3.1415926�…

ans stores the last unassigned value (like on a calculator)

Inf and -Inf are positive and negative infinity

NaN represents �‘Not a Number�’

Scalars

�• A variable can be given a value explicitly
» a = 10

shows up in workspace!

�• Or as a function of explicit values and existing variables
» c = 1.3*45-2*a

�• To suppress output, end the line with a semicolon
» cooldude = 13/3;

Arrays

• Like other programming languages, arrays are an
important part of MATLAB

• Two types of arrays

(1) matrix of numbers (either double or complex)

(2) cell array of objects (more advanced data structure)

MATLAB makes vectors easy!
That’s its power!

Row Vectors

�• Row vector: comma or space separated values between
brackets
» row = [1 2 5.4 -6.6]

» row = [1, 2, 5.4, -6.6];

�• Command window:

�• Workspace:

Courtesy of The MathWorks, Inc. Used with permission.

Column Vectors

�• Column vector: semicolon separated values between
brackets
» column = [4;2;7;4]

�• Command window:

�• Workspace:

Courtesy of The MathWorks, Inc. Used with permission.

size & length

�• You can tell the difference between a row and a column
vector by:

Looking in the workspace
Displaying the variable in the command window
Using the size function

�• To get a vector's length, use the length function

Matrices

�• Make matrices like vectors

�• Element by element
» a= [1 2;3 4];

�• By concatenating vectors or matrices (dimension matters)
» a = [1 2];

» b = [3 4];

» c = [5;6];

» d = [a;b];

» e = [d c];

» f = [[e e];[a b a]];

» str = ['Hello, I am ' 'John'];

Strings are character vectors

1 2
3 4

a =

Exercise: Variables

Get and save the current date and time
�• Create a variable start using the function clock
�• What is the size of start? Is it a row or column?
�• What does start contain? See help clock
�• Convert the vector start to a string. Use the function

datestr and name the new variable startString
�• Save start and startString into a mat file named

startTime

Exercise: Variables

Get and save the current date and time
�• Create a variable start using the function clock
�• What is the size of start? Is it a row or column?
�• What does start contain? See help clock
�• Convert the vector start to a string. Use the function

datestr and name the new variable startString
�• Save start and startString into a mat file named

startTime

» help clock

» start=clock;

» size(start)

» help datestr

» startString=datestr(start);

» save startTime start startString

Outline

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Basic Scalar Operations

�• Arithmetic operations (+,-,*,/)
» 7/45
» (1+i)*(2+i)
» 1 / 0
» 0 / 0

�• Exponentiation (^)
» 4^2
» (3+4*j)^2

�• Complicated expressions, use parentheses
» ((2+3)*3)^0.1

�• Multiplication is NOT implicit given parentheses
» 3(1+0.7) gives an error

�• To clear command window
» clc

Built-in Functions

�• MATLAB has an enormous library of built-in functions

�• Call using parentheses �– passing parameter to function
» sqrt(2)

» log(2), log10(0.23)

» cos(1.2), atan(-.8)

» exp(2+4*i)

» round(1.4), floor(3.3), ceil(4.23)

» angle(i); abs(1+i);

Exercise: Scalars

You will learn MATLAB at an exponential rate! Add the
following to your helloWorld script:

�• Your learning time constant is 1.5 days. Calculate the number of
seconds in 1.5 days and name this variable tau

�• This class lasts 5 days. Calculate the number of seconds in 5 days
and name this variable endOfClass

�• This equation describes your knowledge as a function of time t:

�• How well will you know MATLAB at endOfClass? Name this
variable knowledgeAtEnd. (use exp)

�• Using the value of knowledgeAtEnd, display the phrase:

�• Hint: to convert a number to a string, use num2str

/1 tk e τ−= −

At the end of 6.094, I will know X% of MATLAB

Exercise: Scalars

» secPerDay=60*60*24;

» tau=1.5*secPerDay;

» endOfClass=5*secPerDay

» knowledgeAtEnd=1-exp(-endOfClass/tau);

» disp(['At the end of 6.094, I will know ' ...
num2str(knowledgeAtEnd*100) '% of MATLAB'])

Transpose

�• The transpose operators turns a column vector into a row
vector and vice versa
» a = [1 2 3 4+i]
» transpose(a)
» a'
» a.'

�• The ' gives the Hermitian-transpose, i.e. transposes and
conjugates all complex numbers

�• For vectors of real numbers .' and ' give same result

Addition and Subtraction

�• Addition and subtraction are element-wise; sizes must
match (unless one is a scalar):

�• The following would give an error
» c = row + column

�• Use the transpose to make sizes compatible
» c = row’ + column
» c = row + column’

�• Can sum up or multiply elements of vector
» s=sum(row);
» p=prod(row);

[]
[]
[]

12 3 32 11

2 11 30 32

14 14 2 21

−
+ −

=

12 3 9
1 1 2
10 13 23
0 33 33

−
− =

− −
−

Element-Wise Functions

�• All the functions that work on scalars also work on vectors
» t = [1 2 3];

» f = exp(t);

is the same as
» f = [exp(1) exp(2) exp(3)];

�• If in doubt, check a function�’s help file to see if it handles
vectors elementwise

�• Operators (* / ^) have two modes of operation
element-wise
standard

Operators: element-wise

�• To do element-wise operations, use the dot: . (.*, ./, .^).
BOTH dimensions must match (unless one is scalar)!
» a=[1 2 3];b=[4;2;1];

» a.*b, a./b, a.^b all errors

» a.*b', a./b’, a.^(b’) all valid

[]
4

1 2 3 2
1

1 4 4
2 2 4
3 1 3
3 1 3 1 3 1

.* ERROR

.*

.*

=

=

× × = ×

1 1 1 1 2 3 1 2 3
2 2 2 1 2 3 2 4 6
3 3 3 1 2 3 3 6 9

3 3 3 3 3 3

.*

.*

=

× × = ×

2 2

2 2

1 2 1 2
2

3 4 3 4
.^

Can be any dimension

=

Operators: standard

�• Multiplication can be done in a standard way or element-wise
�• Standard multiplication (*) is either a dot-product or an outer-

product
Remember from linear algebra: inner dimensions must MATCH!!

�• Standard exponentiation (^) can only be done on square matrices
or scalars

�• Left and right division (/ \) is same as multiplying by inverse
Our recommendation: just multiply by inverse (more on this
later)

[]
4

1 2 3 2 11
1

1 3 3 1 1 1

*

*

=

× × = ×

1 1 1 1 2 3 3 6 9
2 2 2 1 2 3 6 12 18
3 3 3 1 2 3 9 18 27

3 3 3 3 3 3

*

*

=

× × = ×

1 2 1 2 1 2
2

3 4 3 4 3 4
^ *

Must be square to do powers

=

Exercise: Vector Operations

Calculate how many seconds elapsed since the start of
class

�• In helloWorld.m, make variables called secPerMin,
secPerHour, secPerDay, secPerMonth (assume 30.5 days
per month), and secPerYear (12 months in year), which
have the number of seconds in each time period.

�• Assemble a row vector called secondConversion that has
elements in this order: secPerYear, secPerMonth,
secPerDay, secPerHour, secPerMinute, 1.

�• Make a currentTime vector by using clock
�• Compute elapsedTime by subtracting currentTime from

start

�• Compute t (the elapsed time in seconds) by taking the dot
product of secondConversion and elapsedTime (transpose
one of them to get the dimensions right)

Exercise: Vector Operations

» secPerMin=60;

» secPerHour=60*secPerMin;

» secPerDay=24*secPerHour;

» secPerMonth=30.5*secPerDay;

» secPerYear=12*secPerMonth;

» secondConversion=[secPerYear secPerMonth ...
secPerDay secPerHour secPerMin 1];

» currentTime=clock;

» elapsedTime=currentTime-start;

» t=secondConversion*elapsedTime';

Exercise: Vector Operations

Display the current state of your knowledge
�• Calculate currentKnowledge using the same relationship as

before, and the t we just calculated:

�• Display the following text:

/1 tk e τ−= −

At this time, I know X% of MATLAB

Exercise: Vector Operations

Display the current state of your knowledge
�• Calculate currentKnowledge using the same relationship as

before, and the t we just calculated:

�• Display the following text:

» currentKnowledge=1-exp(-t/tau);

» disp(['At this time, I know ' ...
num2str(currentKnowledge*100) '% of MATLAB']);

/1 tk e τ−= −

At this time, I know X% of MATLAB

Automatic Initialization

�• Initialize a vector of ones, zeros, or random numbers
» o=ones(1,10)

row vector with 10 elements, all 1
» z=zeros(23,1)

column vector with 23 elements, all 0
» r=rand(1,45)

row vector with 45 elements (uniform [0,1])
» n=nan(1,69)

row vector of NaNs (useful for representing uninitialized
variables)

The general function call is:
var=zeros(M,N);

Number of rows Number of columns

Automatic Initialization

�• To initialize a linear vector of values use linspace
» a=linspace(0,10,5)

starts at 0, ends at 10 (inclusive), 5 values

�• Can also use colon operator (:)
» b=0:2:10

starts at 0, increments by 2, and ends at or before 10
increment can be decimal or negative

» c=1:5

if increment isn�’t specified, default is 1

�• To initialize logarithmically spaced values use logspace
similar to linspace, but see help

Exercise: Vector Functions

Calculate your learning trajectory
�• In helloWorld.m, make a linear time vector tVec that has

10,000 samples between 0 and endOfClass
�• Calculate the value of your knowledge (call it

knowledgeVec) at each of these time points using the same
equation as before:

/1 tk e τ−= −

Exercise: Vector Functions

Calculate your learning trajectory
�• In helloWorld.m, make a linear time vector tVec that has

10,000 samples between 0 and endOfClass
�• Calculate the value of your knowledge (call it

knowledgeVec) at each of these time points using the same
equation as before:

» tVec = linspace(0,endOfClass,10000);

» knowledgeVec=1-exp(-tVec/tau);

/1 tk e τ−= −

Vector Indexing

�• MATLAB indexing starts with 1, not 0
We will not respond to any emails where this is the
problem.

�• a(n) returns the nth element

�• The index argument can be a vector. In this case, each
element is looked up individually, and returned as a vector
of the same size as the index vector.
» x=[12 13 5 8];

» a=x(2:3); a=[13 5];

» b=x(1:end-1); b=[12 13 5];

[]13 5 9 10a =

a(1) a(2) a(3) a(4)

Matrix Indexing

�• Matrices can be indexed in two ways
using subscripts (row and column)
using linear indices (as if matrix is a vector)

�• Matrix indexing: subscripts or linear indices

�• Picking submatrices
» A = rand(5) % shorthand for 5x5 matrix

» A(1:3,1:2) % specify contiguous submatrix

» A([1 5 3], [1 4]) % specify rows and columns

14 33
9 8

b(1)

b(2)

b(3)

b(4)

14 33
9 8

b(1,1)

b(2,1)

b(1,2)

b(2,2)

Advanced Indexing 1

�• To select rows or columns of a matrix, use the :

» d=c(1,:); d=[12 5];

» e=c(:,2); e=[5;13];

» c(2,:)=[3 6]; %replaces second row of c

12 5
2 13

c =
−

Advanced Indexing 2

�• MATLAB contains functions to help you find desired values
within a vector or matrix
» vec = [5 3 1 9 7]

�• To get the minimum value and its index:
» [minVal,minInd] = min(vec);

max works the same way

�• To find any the indices of specific values or ranges
» ind = find(vec == 9);

» ind = find(vec > 2 & vec < 6);

find expressions can be very complex, more on this later

�• To convert between subscripts and indices, use ind2sub,
and sub2ind. Look up help to see how to use them.

Exercise: Indexing

When will you know 50% of MATLAB?
�• First, find the index where knowledgeVec is closest to 0.5.

Mathematically, what you want is the index where the value
of is at a minimum (use abs and min).

�• Next, use that index to look up the corresponding time in
tVec and name this time halfTime.

�• Finally, display the string:
Convert halfTime to days by using secPerDay

0.5knowledgeVec −

I will know half of MATLAB after X days

Exercise: Indexing

When will you know 50% of MATLAB?
�• First, find the index where knowledgeVec is closest to 0.5.

Mathematically, what you want is the index where the value
of is at a minimum (use abs and min).

�• Next, use that index to look up the corresponding time in
tVec and name this time halfTime.

�• Finally, display the string:
Convert halfTime to days by using secPerDay

» [val,ind]=min(abs(knowledgeVec-0.5));

» halfTime=tVec(ind);

» disp(['I will know half of MATLAB after ' ...
num2str(halfTime/secPerDay) ' days']);

0.5knowledgeVec −

I will know half of MATLAB after X days

Outline

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Did everyone sign in?

Plotting

�• Example
» x=linspace(0,4*pi,10);

» y=sin(x);

�• Plot values against their index
» plot(y);

�• Usually we want to plot y versus x
» plot(x,y);

MATLAB makes visualizing data
fun and easy!

What does plot do?

�• plot generates dots at each (x,y) pair and then connects the dots
with a line

�• To make plot of a function look smoother, evaluate at more points
» x=linspace(0,4*pi,1000);

» plot(x,sin(x));

�• x and y vectors must be same size or else you�’ll get an error
» plot([1 2], [1 2 3])

error!!

10 x values:

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1000 x values:

Exercise: Plotting

Plot the learning trajectory
�• In helloWorld.m, open a new figure (use figure)
�• Plot the knowledge trajectory using tVec and

knowledgeVec. When plotting, convert tVec to days by
using secPerDay

�• Zoom in on the plot to verify that halfTime was calculated
correctly

Exercise: Plotting

Plot the learning trajectory
�• In helloWorld.m, open a new figure (use figure)
�• Plot the knowledge trajectory using tVec and

knowledgeVec. When plotting, convert tVec to days by
using secPerDay

�• Zoom in on the plot to verify that halfTime was calculated
correctly

» figure

» plot(tVec/secPerDay, knowledgeVec);

End of Lecture 1

(1) Getting Started
(2) Scripts
(3) Making Variables
(4) Manipulating Variables
(5) Basic Plotting

Hope that wasn’t too much!!

MIT OpenCourseWare

http://ocw.mit.edu

6.094 Introduction to MATLAB®

January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.094�Introduction to Programming in MATLAB
	Course Layout
	Course Layout
	Outline
	Getting Started
	Making Folders
	Customization
	MATLAB Basics
	Help/Docs
	Outline
	Scripts: Overview
	Scripts: the Editor
	Scripts: Some Notes
	Exercise: Scripts
	Exercise: Scripts
	Outline
	Variable Types
	Naming variables
	Scalars
	Arrays
	Row Vectors
	Column Vectors
	size & length
	Matrices
	save/clear/load
	Exercise: Variables
	Exercise: Variables
	Exercise: Variables
	Exercise: Variables
	Outline
	Basic Scalar Operations
	Built-in Functions
	Exercise: Scalars
	Exercise: Scalars
	Transpose
	Addition and Subtraction
	Element-Wise Functions
	Operators: element-wise
	Operators: standard
	Exercise: Vector Operations
	Exercise: Vector Operations
	Exercise: Vector Operations
	Exercise: Vector Operations
	Automatic Initialization
	Automatic Initialization
	Exercise: Vector Functions
	Exercise: Vector Functions
	Vector Indexing
	Matrix Indexing
	Advanced Indexing 1
	Advanced Indexing 2
	Exercise: Indexing
	Exercise: Indexing
	Outline
	Plotting
	What does plot do?
	Exercise: Plotting
	Exercise: Plotting
	End of Lecture 1

