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Numerical Analysis II. 1 QUADRATURE RULES FOR NUMERICAL INTEGRATION

1 Quadrature rules for numerical integration

1.1 Simple quadrature rules

Polynomials are a good for approximating smooth functions, and can easily be integrated exactly. A
simple quadrature rule is based on the approximation∫ b

a

f(x)dx ≈
∫ b

a

p(x)dx,

where x1, . . . , xn ∈ [a, b] are distinct points and p is the Lagrange interpolation polynomial of degree n−1
of f . That is, p is of degree n− a and

p(xk) = f(xk), k = 1, . . . , n.

The Lagrange Interpolation Theorem guarantees the existence and uniqueness of such a polynomial,
which can be written as

p(x) =

n∑
i=1

f(xi)Li(x),

where the Lagrange polynomials with respect to the points x1, . . . , xn can be defined by setting

Li(x) =
n∏
j=1
j 6=i

x− xj
xi − xj

, if n > 1; L1(x) = 1, if n = 1.

These polynomials have degree n−1, have roots at xj for j 6= i, and take the value 1 at xi. This important
property can be written compactly as

Li(xj) =

{
1 i = j

0 i 6= j
, 1 ≤ i, j ≤ n.

Then we obtain the quadrature weights wi as the integral of the Lagrange polynomial Li:∫ b

a

f(x)dx ≈
∫ b

a

p(x)dx =

n∑
i=1

f(xi)

∫ b

a

Li(x)dx =

n∑
i=1

f(xi)wi.

Example 1.1 (Midpoint rule). A polynomial of degree zero is constant, ans is determined by ts value at
one point. If we take this point to be the midpoint of the interval [a, b], we get a midpoint rule. Here the
weight is equal to the interval length.

points: x1 =
a+ b

2

weights: w1 = b− a.

Example 1.2 (Trapezoidal rule). If we take the quadrature points to be the endpoints of the interval, we
get the trapezoidal rule. The Lagrange polynomials are then L1 = b−x

b−a and L2 = x−a
b−a , resulting in weights

equaling half the interval length.
points: x1 = a, x2 = b

weights: w1 = w2 =
b− a

2
.

Example 1.3 (Simpson rule). For Simpsons rule we have three quadrature points, the two end points
and the midpoint. The weights are determined the same way as befoe.

points: x1 = a, x2 =
a+ b

2
, x3 = b

weights: w1 = w3 =
b− a

6
, w2 =

2

3
(b− a).
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Numerical Analysis II. 1 QUADRATURE RULES FOR NUMERICAL INTEGRATION

Theorem 1.1 (Taylor”s Theorem). Let f : [a, b]→ R and n ∈ N with n > 0. Assume that f (n) exists on
(a, b) and that f (n−1) is coninuous on [a, b]. Let α and β be distinct points of [a, b] and define the Taylor
polynomial of f of degree (n− 1) centered at α by

Pn−1α (x) :=

n−1∑
k=0

f (k)(α)

k!
(x− α)k = f(α) + f ′(α)(x− α) +

f ′′(α)

2!
(x− α)2 + · · ·+ f (n−1)(α)

(n− 1)!
(x− α)n−1.

Then, there is a point η between α and β such that

f(β) = P (n−1)
α (β) +

f (n)(η)

n!
(β − α)n.

Let
Rn−1α (x) := f(x)− Pn−1α (x).

Corollary 1.1. Let f : [a, b] → R and n ∈ N with n > 0. Assume that f (n) exists on (a, b) and that
f (n−1) is continuous on [a, b]. Then, for all x ∈ [a, b],

|Rn−1α (x)| ≤ 1

n!
|x− α|n sup

η∈(a,b)
|f (n)(η)|.

Theorem 1.2 (Error estimate for the midpoint rule). Let f ∈ C2[a, b]. Then∣∣∣∣I(f)− (b− a)f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)3

24
max
x∈[a,b]

|f ′′(x)|.

Proof. We write

f(x) = P 1
a+b
2

(x) +R1
a+b
2

(x) = f

(
a+ b

2

)
+ f ′

(
a+ b

2

)(
x− a+ b

2

)
+R1

a+b
2

(x).

Then, by integrating both sides, we get

I(f) = (b− a)f

(
a+ b

2

)
+ f ′

(
a+ b

2

)∫ b

a

(
x− a+ b

2

)
dx+

∫ b

a

R1
a+b
2

(x)dx =

= (b− a)f

(
a+ b

2

)
+ 0 +

∫ b

a

R1
a+b
2

(x)dx.

Therefore ∣∣∣∣I(f)− (b− a)f

(
a+ b

2

)∣∣∣∣ =

∣∣∣∣∣
∫ b

a

R1
a+b
2

(x)dx

∣∣∣∣∣ ≤
∫ b

a

∣∣∣R1
a+b
2

(x)
∣∣∣ dx ≤

≤ 1

2!
max
η∈[a,b]

|f (2)(η)|
∫ b

a

(
x− a+ b

2

)2

=
(b− a)3

24
max
η∈[a,b]

|f ′′(η)|.

1.2 Composite quadrature rules

Composite quadrature rules can be constructed from simple ones by dividing the interval [a, b] into a
number of subintervals, and applying a simple quadrature rule to each subinterval. This way one easily
obtains a more accurate quadrature rule by increasing he number of quadrature points. For example, we
can divide the interval into N subintervals [ak, bk], k = 1, . . . , N , and apply the trapezoidal rule to each
to obtain ∫ b

a

f(x)dx =

N∑
k=1

∫ bk

ak

f(x)dx ≈
N∑
k=1

(f(ak) + f(bk))
bk − ak

2
.

If we now assume that all the subintervals have the same length, bk − ak = h = b−a
N , and let xk =

a+ (k − 1)h, k = 1, . . . , N + 1, then we get∫ b

a

f(x)dx ≈
N∑
k=1

(f(xk) + f(xk+1))
h

2
= f(x1)

h

2
+

N∑
k=2

f(xk)h+ f(xN+1)
h

2
.

Composite versions of other simple quadrature rules can be derived the same way, with some presented
below. For simplicity, the interval is chosen to be [0, 1], and h = N−1.
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Numerical Analysis II. 1 QUADRATURE RULES FOR NUMERICAL INTEGRATION

Example 1.4 (Composite midpoint rule). In this example

points: xmid
i =

(
i− 1

2

)
h i = 1, . . . , N,

weights: wmid
i = h, i = 1, . . . , N.

Example 1.5 (Composite trapezoidal rule). In this example

points: xtrapi = (i− 1)h i = 1, . . . , N + 1,

weights: wtrap
i =

{
h
2 i = 1, i = N + 1

h 1 < i < N + 1
.

Example 1.6 (Composite Simpsons rule). In this example

points: xSimi = (i− 1)
h

2
i = 1, . . . , 2N + 1,

weights: wSim
i =


h
6 i = 1, i = 2N + 1
4h
6 i = 2, 4, 6, . . . , 2N
2h
6 i = 3, 5, 7, . . . , 2N − 1

.

Theorem 1.3. Let [a, b] = [0, 1] and let f ∈ C2[0, 1]. Then∣∣∣∣∣I(f)−
N∑
i=1

f(xmid
i )wmid

i

∣∣∣∣∣ ≤ h2

24
max
x∈[0,1]

|f ′′(x)|

and ∣∣∣∣∣I(f)−
N+1∑
i=1

f(xtrapi )wtrap
i

∣∣∣∣∣ ≤ h2

12 maxx ∈ [0, 1]
|f ′′(x)|.

If f ∈ C4[0, 1], then ∣∣∣∣∣I(f)−
2N+1∑
i=1

f(xSimi )wSim
i

∣∣∣∣∣ ≤ h4

2880
max
x∈[0,1]

|f (4)(x)|.

Proof. We will only prove the statement about the composite midpoint rule, the rest of the statements
follow in a similar fashion. We have that∣∣∣∣∣I(f)−

N∑
i=1

f(xmid
i )wmid

i

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

∫ xi+1

xi

f(x)dx−
N∑
i=1

f(xmid
i )wmid

i

∣∣∣∣∣ =

=

∣∣∣∣∣
N∑
i=1

(∫ xi+1

xi

f(x)dx− f(xmid
i )wmid

i

)∣∣∣∣∣ .
We can use a previous theorem on [xi, xi+1] to conclude that∣∣∣∣∫ xi+1

xi

f(x)dx− f(xmid
i )wmid

i

∣∣∣∣ ≤ h3

24
max

x∈[xi,xi+1]
f ′′(x)|.

Thus ∣∣∣∣∣I(f)−
N∑
i=1

f(xmid
i )wmid

i

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

(∫ xi+1

xi

f(x)dx− f(xmid
i )wmid

i

)∣∣∣∣∣ ≤
≤

N∑
i=1

∣∣∣∣∫ xi+1

xi

f(x)dx− f(xmid
i )wmid

i

∣∣∣∣ ≤ N∑
i=1

h3

24
max

x∈[xi,xi+1]
|f ′′(x)| ≤ max

x∈[0,1]
|f ′′(x)|

N∑
i=1

h3

24
=

= Nh
h3

24
max
x∈[0,1]

|f ′′(x)| = h2

24
max
x∈[0,1]

|f ′′(x)|.
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Numerical Analysis II. 1 QUADRATURE RULES FOR NUMERICAL INTEGRATION

1.3 Gaussian quadratures

In this section we use orthogonal polynomials to construct quadrature rules of the form∫ b

a

f(x)dx ≈
n∑
j=1

wjf(xj)

with nodes xj and weights wj carefully chosen.

Definition 1.1. A quadrature of the form above is of order p ∈ N0, if forall f ∈ Cp[a, b] the estimate∣∣∣∣∣∣
∫ b

a

f(x)dx−
n∑
j=1

wjf(xj)

∣∣∣∣∣∣ ≤ c max
x∈[a,b]

|f (p)(x)|

holds for some c > 0 independent of f .

Lemma 1.1. A quadrature of the form above is of order p ≥ 1 iff it is exact for all f ∈ Pp−1.

Proof. If a quadrature of the form above is of order p, then it is exact for all f ∈ Pp−1 as f (p) = 0 for
all f ∈ Pp−1. Conversely, suppose that the approximation is exact for all f ∈ Pp−1 and let f ∈ Cp[a, b].
Then, using Taylor’s Theorem, we may write

f(x) = P p−1α (x) +Rp−1α (x),

with P p−1α ∈ Pp−1 and |Rp−1α (x)| ≤ mmaxx∈[a,b] |f (p)(x)|. Therefore∣∣∣∣∣∣
∫ b

a

f(x)dx−
n∑
j=1

wjf(xj)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣P p−1α (x)dx−

n∑
j=1

P p−1α (xj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫ b

a

Rp−1α (x)dx−
n∑
j=1

wjR
p−1
α (xj)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫ b

a

Rp−1α (x)dx−
n∑
j=1

wjR
p−1
α (xj)

∣∣∣∣∣∣ ≤
∫ b

a

|Rp−1α (x)|dx+

n∑
j=1

|wj ||Rp−1α (xj)| ≤

≤ m max
x∈[a,b]

|f (p)(x)|(b− a) +m max
x∈[a,b]

|f (p)(x)|
n∑
j=1

|wj |.

Thus, the quadrature rule is of order p.

Lemma 1.2. Given a distinct set of nodes x1, . . . , xn it is possible to find a unique set of weights
w1, . . . , wn such that the quadrature of the form above is of order p ≥ n.

Definition 1.2. We say that pm ∈ Pm is an mth orthogonal polynomial if pm 6= 0 and pm ⊥ p̂ for all
p̂ ∈ Pm−1.

Definition 1.3. We say that a real polynomial p is monic if the coefficient of the leading term of p equals
1.

Lemma 1.3. For every m ≥ 0, there exists a unique monic mth order orthogonal polynomial pm.
Moreover, any p ∈ Pm can be written as a unique linear combination of p0, . . . , pm.

Proof. We prove the statement by induction. Let p0 = 1. Suppose that p0, . . . , pn has already been
obtained with the desired property. Let q(x) := xn+1 and set

pn+1(x) := q(x)−
n∑
k=0

〈q, pk〉
〈pk, pk〉

pk(x).

One can easily check that pn+1 ∈ Pn+1\Pn and that pn+1 ⊥ pi for all i = 0, . . . , n using the induction
hypothesis. Hence, pn+1 ⊥ p for all p ∈ Pn as p =

∑n
i=0 cipi also by the induction hypothesis. If

p ∈ Pn+1,then p = dn+1pn+1 + q, with q ∈ Pn and thus p =
∑n+1
i=0 dipi, using again the induction

hypothesis. Note that we must have di = 〈p, pi〉 and hence the expansion is unique. This finishes the
induction.

2021.09.22. 6 Áron Erdélyi



Numerical Analysis II. 1 QUADRATURE RULES FOR NUMERICAL INTEGRATION

We finally prove uniqueness of the monic mth orthogonal polynomial. Suppose, by the way of con-
tradiction, that pm and p̃m are two monic mth orthogonal polynomials such that pm 6= p̃m. Then
pm − p̃m ∈ Pm−1 and thus∫ b

a

|pn(x)− p̃m(x)|2dx = 〈pm − p̃m, pm − p̃m〉 = 〈pm, pm− p̃m〉 − 〈p̃m, pm − p̃m〉 = 0,

whence pm = p̃m.

Corollary 1.2. If pm and p̃m are to mth orthogonal polynomials, then there is c 6= 0 sch that pm = cp̃m.
Hence the zeros of mth orthogonal polynomials coincide.

Lemma 1.4. For m ≥ 1, all zeros of an mth orthogonal polynomial pm are contained in (a, b) and they
ae simple.

Theorem 1.4. Let x1, . . . , xn be the zeros of an nth orthogonal polynomial pn and let w1, . . . , wn be
the solution of the Vandermonde system. Then, the corresponding quadrature method, given by the form
above s of order 2n. Furthermore, no quadrature method of the form can exceed this order.

Theorem 1.5. Let n ≥ 1 and suppose that f ∈ C2n[a, b]. Let x1, . . . , xn be the zeros of an nth orthogonal
polynomial pn and let w1, . . . , wn be the solution of the Vandermonde system. Then, there is a number
η ∈ (a, b) such that ∫ b

a

f(x)−
n∑
k=1

wkf(xk) =
f (2n)(η)

(2n)!

∫ b

a

[πn(x)]2dx,

where

πn(x) =

n∏
i=1

(x− xi).

2021.09.22. 7 Áron Erdélyi
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2 Numerical methods for ODEs

2.1 One-step methods

We aim to approximate the solution of

y′(t) = f(t, y(t)), t > t0, y(t0) = y0, (1)

where f : [t0,∞) × Rd, y0 ∈ Rd is a given vector, and y : [t0,∞) → Rd is a continuously differentiable
function which we call the solution of the problem. This is called a Cauchy problem or initial value
problem.

We will always assume, that f is continuous and that it is Lipschitz continuous in the second variable,
uniformly in the first:

||f(t, x)− f(t, y)|| ≤ λ||x− y||, x, y ∈ Rd, t ∈ [t0,∞),

where λ > 0 and || · || denotes any norm in Rd.

2.1.1 The Euler method

In order to derive a simple numerical method for the Cauchy problem we let h > 0 (time step), integrate
(1) from t0 to t0 + h and approximate the integral to get

y(t0 + h) = y(t0) +

∫ t0+h

t0

f(τ, y(τ))dτ ≈ y0 + hf(t0, y0),

with y0 = y(t0). Motivated by this, given a sequence of equidistant time–instances t0, t1 = t0 + h, t2 =
t0 + 2h, . . . we define the approximation

y1 = y0 + hf(t0, y0),

or more generally,
yn+1 = yn + hf(tn, yn), n = 0, 1, . . . (2)

This is called the explicit Euler method.

Convergence of the Euler method. For simplicity, we take the time–step h = hn to be constant
and consider a time interval [t0, t0 + t∗], with t∗ > 0. o define what we mean by convergence we consider
a sequence of approximations

yn := yn,h, n = 0, 1, . . . ,

⌊
t∗

h

⌋
, h > 0, (3)

of y(tn).

Definition 2.1. A method given by (3) is said to be converent if

lim
h→0+

max

n=0,1,...,

⌊
t∗
h

⌋ ||yn,h − y(tn)|| = 0.

Theorem 2.1. Suppose that f : [t0,∞) × Rd → Rd is continuously differentiable and that f is Lips-
chitz continuous in the second variable, uniformly in the first. Then, the Euler method given by (2) is
convergent.

Proof. We take d = 1, for simplicity. Let h > 0 and ei := yi − y(ti), i = 0, 1, . . . ,

⌊
t∗

h

⌋
(here we supress

the h-dependence in the notation). Then, using also that yi = ei + y(ti) we get

ei+1 − ei = yi+1 − yi − (y(ti+1)− y(ti)) = hf(ti, yi)− (y(ti+1)− y(ti))

= hf(ti, y(ti))− (y(ti+1)− y(ti)) + h(f(ti, ei + y(ti))− f(ti, y(ti))).
(4)

Let
gi := hf(ti, y(ti))− (y(ti+1)− y(ti))

2021.09.22. 8 Áron Erdélyi



Numerical Analysis II. 2 NUMERICAL METHODS FOR ODES

ψi = f(ti, ei + y(ti))− f(ti, y(ti)).

The term gi is called the local approximation error. Then we may rewrite (4) as

ei+1 − ei = gi + hψi, i = 0, 1, . . . ,

⌊
t∗

h

⌋
.

We use the Lipschitz condition to obtain

|ψi| = |f(ti, ei + y(ti))− f(ti, y(ti))| ≤ λ|ei|.

Therefore,

|ei+1| ≤ (1 + λh)|ei|+ |gi|, i = 0, 1, . . . ,

⌊
t∗

h

⌋
.

Then, one can easily show, by induction, that the estimate

|en| ≤ (1 + λh)n|e0|+
n−1∑
j=0

(1 + λh)j |gn−1−j |

holds for n = 0, 1, . . . ,

⌊
t∗

h

⌋
, where we define

∑−1
j=0(. . . ) = 0. Using estimates

(1 + λh)n ≤ eλnh ≤ eλt
∗
, n = 0, 1, . . . ,

⌊
t∗

h

⌋
,

and

(1 + λh) ≤ (1 + λh)n−1 ≤ eλ(n−1)h ≤ eλt
∗
, n = 0, 1, . . . ,

⌊
t∗

h

⌋
, j = 0, 1, . . . , n− 1,

we arrive at the inequality

|en| ≤ eλt
∗

|e0|+ n−1∑
j=0

|gn−1−j |

 . (5)

Next, we estimate |gk|. Note that since f is [t0,∞) × Rd continuously differentiable it follows that
y ∈ C2[t0, t0 + t∗]. Therefore we may use Taylor’s theorem to write

y(tk+1)− y(tl) = hy′(tk) +
h2

2
y′′(ξk) = hf(tk, y(tk)) +

h2

2
y′′(ξk),

where ξk ∈ (tk, tk+1). Thus,

|gk| ≤
h

2
|y′′(ξk)| ≤ h2

2
max

s∈[t0,t0+t∗]
|y′′(s)| := h2

2
M, k = 0, 1, . . . , n− 1.

Inserting this into (5) we get

|en| ≤ eλt
∗

|e0|+ n−1∑
j=0

h2

2
M

 = eλt
∗
(
|e0|+ nh

h

2
M

)
≤ eλt

∗
(
|e0|+

t∗M

2
h

)
, n = 0, 1, . . . ,

⌊
t∗

h

⌋
.

As e0 = 0 for the Euler method, we get

max

n=0,1,...,

 t∗
h


|en| ≤ eλt

∗ t∗M

2
h

and hence
lim
h→0+

max

n=0,1,...,

 t∗
h


|en| = 0.
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2.1.2 Crank–Nicolson method and the theta method

A more general approximation procedure can be derived in a similar fashion as in the case of the Euler
method. Let θ ∈ [0, 1]. Again, integrate (1) from t0 to t0 + h and approximate the integral to get

y(t0 + h) = y(t0) +

∫ t0+h

t0

f(τ, y(τ))dτ ≈ y0 + hf(t0, y0)θ + hf(t0 + h, y(t0 + h))(1− θ),

with y0 = y(t0). Motivated by this, given a sequence of equidistant time–instances t0, t0 = t0 + h, t2 =
t0 + 2h, . . . we define the approximation

y0 = y0 + θhf(t0, y0) + (0− θ)hf(t1, y1),

or more generally

yn+1 = yn + θhf(tn, yn) + (1− θ)hf(tn+1, yn+1), n = 0, 1, 2, . . . (6)

The family of methods defined by (6) is called the theta method. We highlight some special cases:

1. When θ = 0, we get
yn+1 = yn + hf(tn, yn), n = 0, 1, 2, . . .

which is the Euler method.

2. When θ = 0, we get
yn+1 = yn + hf(tn+1, yn+1), n = 0, 1, 2, . . .

which is called the implicit Euler or backward Euler method.

3. When θ = 1
2 we get

yn+1 = yn +
1

2
hf(tn, yn) +

1

2
hf(tn+1, yn+1), n = 0, 1, 2, . . .

which is called the Crank–Nicolson method or the trapezoidal rule.

2.2 Multistep methods

In the previous section we considered one step methods. One of the key features of these methods is that
while marching forward in time one discards earlier approximation values and only uses one approximation
value namely the preceding one. In this section we introduce a new class of numerical methods which
might use approximation values from several earlier time-steps and thereby allowing for higher order
approximations. As in the previous section we aim to approximate the solution of (1).

2.2.1 The Adams–Bashford method

Let h > 0 and denote yn the numerical approximation of y(tn), where tn = t0+nh. Let s ≥ 1 be an integer
and suppose that we have already obtained the first s approximations ym of y(tm), m = 0, 1, . . . , s − 1.
We wish to advance the solution from tn+s−1 to tn+s, n = 0, 1, . . . Therefore, we integrate (1) from
tn+s−1 to tn+s to get

y(tn+s) = y(tn+s−1) +

∫ tn+s

tn+s−1

f(τ, y(τ))dτ. (7)

To derive an example of an algorithm that uses the bast s approximation values we use Lagrange
interpolation. We consider the Lagrange interpolation of the function t→ f(t, y(t)) based on the interval
[tn, tn+s−1]withrespecttos points tm, m = n, n+ 1, . . . , n+ s− 1:

f(t, y(t)) ≈ p(t) =

s−1∑
m=1

Lm(t)f(tn+m, y(tn+m)), t ∈ [tn, tn+s−1] (8)

where Lm denotes the Lagrange polynomial

Lm(t) =

s−1∏
l=0
l 6=m

t− tn+l
tn+m − tn+l

.
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Next, if we assume that y is sufficiently smooth there is a good chance that (8) still provides a good
approximation on the interval [tn+s−1, tn+s] which we then insert to (7) to obtain the approximation

y(tn+s) ≈ y(tn+s−1) +

s−1∑
m=0

f(tn+m, y(tn+m))

∫ tn+s

tn+s−1

Lm(τ)dτ.

Let

bm =
1

h

∫ tn+s

tn+s−1

Lm(τ)dτ =
1

h

∫ h

0

Lm(tn+s−1 + τ)dτ, m = 0, 1, . . . , s− 1.

We therefore arrive at the method defined by

yn+s = yn+s−1 + h

s−1∑
m=0

bmf(tn+m, yn+m), n = 0, 1, . . .

This scheme is referred to as the s–step Adams–Bashford Method.

2.2.2 General linear multistep methods

Let h > 0, and consider the general form of an s–step multistep method of the form

s∑
m=0

amyn+m = h

s∑
m=0

bmf(tn+m, yn+m), n = 0, 1, . . . (9)

where am, bm are give constants, independent of n and h. We always take as = 1. When bs = 0, then
the method is called explicit, otherwise it is called implicit.

Definition 2.2. We write that f(x) = O(g(x)) as x → α if there is a C > 0 such that ||f(x)|| ≤ |g(x)|
when x is near α. If α =∞ then the inequality has to hold for x large.

Similar definitions can be stated in case x→ α+, x→ α− and x→ −∞.

We consider the local approximation error of the scheme; that is, how well the solution of (1) satisfies
the algorithm:

s∑
m=0

amy(t+mh)− h
s∑

m=0

bmf(t+mh, y(t+mh)) =

s∑
n=0

amy(t+mh)− h
s∑

m=0

bmy
′(t+mh). (10)

Definition 2.3. We say that the order of a method given by (9) is p ≥ 1, if

ψ(t, y) :=

s∑
m=0

amy(t+mh)− h
s∑

m=0

bmy
′(t+mh) = O(hp+1) as h→ 0

for all sufficient smooth function y and there exists at least one function y for which the rate cannot be
improved.

In order to analyse the order of method given by (9) we introduce the so–called first characteristic
polynomial

ρ(w) =

s∑
m=0

amw
m (11)

and second characteristic polynomial

σ(w) =

s∑
m=0

bmw
m. (12)

Theorem 2.2. The s–step multistep method given by (9) is of order p ≥ 1 iff there exists c 6= 0 such that

ρ(w)− σ(w) lnw = c(w − 1)p+1 +O(|w − 1|p+2) as w → 1.
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Proof. We suppose that y is an analytic function with a radius of convergence of its Taylor series being
larger than sh. In (10) we expand y(t+mh) and y′(t+mh) into Taylor series around t and interchange
sums (which is allowed as there are finitely many, convergent infinite series involved):

ψ(t, y) =

s∑
m=0

am

∞∑
k=1

1

k!
y(k)(t)mkhk − h

s∑
m=0

bm

∞∑
k=0

1

k!
y(k+1)(t)mkhk

=

s∑
m=0

amy(t) +

∞∑
k=1

1

k!
y(k)(t)hk

s∑
m=0

amm
k − h

∞∑
k=1

1

(k − 1)!
y(k)(t)hk−1

s∑
m=0

bmm
k−1

=

s∑
m=0

amy(t) +

∞∑
k=1

1

k!
y(k)(t)hk

(
s∑

m=0

amm
k − k

s∑
m=0

bmm
k−1

)
.

Thus, the method is of order p iff the following conditions hold

s∑
m=0

am = 0;

s∑
m=0

amm
k = k

s∑
m=0

bmm
k−1, k = 1, 2, . . . , p;

s∑
m=0

amm
p+1 6= (p+ 1)

s∑
m=0

bmm
p.

(13)

Let now w = ez. Then w → 1 iff z → 0. Then, by a similar calculation as above, using Taylor series, we
get

ρ(w)− σ(w) lnw = ρ(ez)− zσ(ez) =

s∑
m=0

ame
mz − z

s∑
m=0

bme
mz

=

s∑
m=0

am

( ∞∑
k=0

1

k!
mkzk

)
− z

s∑
m=0

bm

( ∞∑
k=0

1

k!
mkzk

)

=

s∑
m=0

am +

∞∑
k=1

1

k!
zk

(
s∑

m=0

amm
k − k

s∑
m=0

bmm
k−1

)
.

Therefore,
ρ(ez)− zσ(ez) = czp+1 +O(|z|p+2) as z → 0, (14)

for some c 6= 0 iff the conditions is (13) hold. Finally (14) holds iff

ρ(w)− σ(w) lnw = c(lnw)p+1 +O(| lnw|p+2) as w → 1,

which is equivalent to the equation in the theorem as

lnw = w − 1 +O(|w − 1|2) as w → 1,

as the Taylor series of w → lnw around 1 confirms.

Definition 2.4. A polynomial obeys the root condition if all its zeros are contained in the closed unit
disc of the complex plane and its zeros of modulo 1 are simple.

Theorem 2.3 (he Dahlquist equivalence theorem). Suppose that the starting values y1, . . . , ys−1 of (9)
converge to y0 as h→ 0+. Then (9) converges iff it is of order p ≥ 1 and its first characteristic polynomial
ρ obeys the root condition.

Definition 2.5. For a general linear multistep method to converge it has to be at least of order 1. This
property is called consistency and it can be characterized using (13) as

s∑
m=0

am = 0 and

s∑
m=0

amm =

s∑
m=0

bm.

In terms of the characteristic polynomials, this is equivalent to

ρ(1) = 0 and rho′(1) = σ(1).
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Definition 2.6. A liner multistep method is called strongly stable if 1 is the only zero of its first char-
acteristic polynomial ρ of modulus 1. If the method is consistent, then 1 is always a 0 of ρ.

Theorem 2.4. he maximal order of a convergent s–step linear multistep method given by (9) is

⌊
s+ 2

2

⌋
for implicit methods and s for explicit methods.

2.2.3 Backward differentiation formulae

These are especially useful for stiff problems.

Definition 2.7. An s–order s–step method is called a backward differentiation formula (BDF) if its
second characteristic polynomial σ is of the form σ(w) = βw2, for some β ∈ R\{0}.

Theorem 2.5. For BDF we must have

β =

(
s∑

m=1

1

m

)−1
and ρ(w) = β

s∑
m=1

1

m
ws−m(w − 1)m.

Theorem 2.6. The s–step BDF of order s is convergent iff 1 ≤ s ≤ 6.
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3 Runge–Kutta methods

3.1 Introductin to explicit Runge–Kutta methods

A in previous sections we aim to approximate the solution of

y′(t) = f(t, y(t)), t > t0; y(t0) = y0, (15)

where f : [t0,∞)×Rd → Rd, y0 ∈ Rd is a given vector. Similarly to multistep methods we wish to use a
quadrature to approximate the integrated version of (15) but this time on [tn, tn+1]:

y(tn+1) = y(tn) +

∫ tn+1

tn

f(τ, y(τ))dτ = y(tn) + h

∫ 1

0

f(tn + hτ, y(tn + hτ))dτ

≈ y(tn) + h

ν∑
j=1

bjf(tn + cjh, y(tn + cjh)), n = 0, 1, . . .

This suggests the ”method”

yn+1 = yn + h

ν∑
j=1

bjf(tn + cjh, y(tn + cjh)), n = 0, 1, . . .

However we do not have access to y(tn + cjh) and hence we will further approximate them by ξj defined
as follows. We first set c1 = 0 and let ξ1 = yn. Then we define

ξ1 = yn
ξ2 = yn + ha2,1f(tn, ξ1)

ξ3 = yn + ha3,1f(tn, ξ1) + ha3,2f(tn + c2h, ξ2)
...

ξν = yn + h
∑ν−1
i=1 aν,if(tn + cih, ξi)

, (16)

and we finally set

yn+1 = yn + h

ν∑
j=1

bjf(tn + cjh, ξj).

The matrix A = (aj,i)
ν
j,i=1, where the missing elements are set to 0, is called the Runge–Kutta

matrix, while the vectors b = (b1, . . . , bν)T and c = (c1, . . . , cν)T are called Runge–Kutta weights and
Runge–Kutta nodes, respectively. We usually write the coefficients in the form

c A
bT

This s called a Butcher tableau of the Runge–Kutta method, where we do not list the 0 elements of A.

Definition 3.1. Let

ỹn+1 = y(tn) + h

ν∑
j=1

bjf(tn + cjh, ξj),

where ξj are defined as in (16) with yn replaced by y(tn). The order of the Runge–Kutta method p ≥ 1 if
y(tn+1)− ỹn+1 = O(hp+1) as h→ 0 for every sufficiently smooth f and there is f where this rate cannot
be improved.

Corollary 3.1. Let f : Rd → R be twice differentiable in a ball B around a = (a1, . . . , ad) and let
x = (x1, . . . , xd) ∈ B. Then, there is b on the line segment joining a and x such that

f(x) = f(a) +

d∑
k=1

∂f

∂xk
(xk − ak) +

1

2

d∑
j,k=1

∂2f

∂xj∂xk
(b)(xj − aj)(xk − ak).
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3.2 Consistency of Runge–Kutta methods

Definition 3.2. A Runge–Kutta method with Butcher Tableau

c A
bT

is consistent iff
∑ν
j=1 bj = 1.

Proof. First note, that the continuity of f implies that ξi → y(tn) as h→ 0. Also note that

y(tn+1)− y(tn)

h
→ y′(tn) = f(tn, y(tn)), as h→ 0.

Therefore
y(tn+1)− ỹn+1

h
=
y(tn+1 − y(tn))

h
−

ν∑
j=1

bjf(tn + cjh, ξj)

→ f(tn, y(tn))−
ν∑
j=1

bjf(tn, y(tn)) = 0, as h→ 0

iff
∑n
j=1 bj = 1.

Theorem 3.1. If yn = y(tn), then

cj =

j−1∑
i=1

aj,i, 2 ≤ j ≤ ν,

iff
y(tn + cjh)− ξj = O(h2), 2 ≤ j ≤ ν, as h→ 0,

for all ODE with f : [t0,∞)× Rd → Rd is continuously differentiable and satisfying (13).

Corollary 3.2. Let f : [t0,∞) × Rd → Rd e continuously differentiable and satisfy (13). An explicit
Runge–Kutta method with Butcher Tableau

c A
bT

is of order one (at least) if
ν∑
j=1

bj = 1 and cj =

j−1∑
i=1

aj,i, 2 ≤ j ≤ ν.

Proof. First nte the smoothness assumption on f implies that y ∈ C2([tn, tn+1];Rd). Hence, by Taylor’s
theorem

y(tn+1)− y(tn) = y′(tn)h+O(h2), as h→ 0, (17)

and also
y′(tn + cjh) = y′(tn) +O(h), j = 1, . . . , ν as h→ 0. (18)

We then have

y(tn+1)− ỹn+1 = y(tn+1)− y(tn)− h
ν∑
j=1

bjf(tn + cjh, ξj)

= y(tn+1)− y(tn)− h
ν∑
j=1

bj(f(tn + cjh, ξj)− f(tn + cjh, y(tn + cih)))− h
ν∑
j=1

bjf(tn + cjh, y(tn + cih))

= y(tn+1)− y(tn)− h
ν∑
j=1

bj(f(tn + cjh, ξj)− f(tn + cjh, y(tn + cih)))− h
ν∑
j=1

bjy
′(tn + cjh).

(19)

Using the Lipschitz condition on f , we get

||f(tn + cjh, ξj)− f(tn + cjh, y(tn + cjh))|| ≤ λ||ξj − y(tn + cjh)|| ≤ Ch2, j = 1, . . . , ν, (20)
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as h→ 0. Thus, using (17), (18) and (20) in (19) it follows that

y(tn+1)− ỹn+1 = y′(tn)h+O(h2) +O(h3)− hy′(tn)

ν∑
j=1

bj +O(h2) = O(h2) as h→ 0

and the proof is complete.

3.3 Implicit Runge–Kutta methods

Suppose that cj ∈ [0, 1], j = 1, . . . , ν, are distinct. We look for a degree ν polynomial u with u(tn) = yn
that satisfies the differential equation at exactly ν points:

u′(tn + cjh) = f(tn + cjh, u(tn + cjh)), j = 1, . . . , ν. (21)

We then set yn+1 = u(tn+1). We consider the points xi = tn + cjh ∈ [tn, tn+1], i = 1, . . . , ν, and the
corresponding Lagrange polynomials Li(t):

Li(t) =
∏
i 6=j

t− xj
xi − xj

.

We then have

u′(t) =

ν∑
j=1

Ll(t)u
′(tn + clh) =

ν∑
j=1

Ll(t)f(tn + cjh, u(tn + cjh)).

Therefore, integrating from tn to t and using that u(tn) = yn, we get

u(t) = yn +

ν∑
l=1

f(tn + clh, u(tn + clh))

∫ t

tn

Ll(s)ds

= yn + h

ν∑
l=1

f(tn + clh, u(tn + clh))
1

h

∫ t

tn

Ll(s)ds.

(22)

We set

aj,l =
q

h

∫ tn+cjh

tn

Ll(s)ds, j, l = 1, . . . , ν. (23)

An easy calculation shows, using a change of variables, that aj,l does not append on h and n. We define

ξj = u(tn + cjh), j = 1, . . . , ν.

Then (22) gives

ξj = yn + h

ν∑
l=1

f(tn + clh, u(tn + clh))aj,l = yn + h

ν∑
l=1

aj,lf(tn + clh, ξl), k = 1, . . . , ν. (24)

His is an implicit system of equations for ξj , j = 1, . . . , ν. We finally set

bl =
1

h

∫ tn+h

tn

Ll(s)ds =
1

h

∫ tn+1

tn

Ll(s)ds, l = 1, . . . , ν. (25)

Again, bl does not depend on h and n as a change of variables shows. By (22), we then have

yn+1 = u(tn+1) = yn + h

ν∑
l=1

blf(tn + clh, u(tn + clh)) = yn + h

ν∑
l=1

blf(tn + clh, ξl). (26)

The collocation method defined by (23)-(26) is a particular instance of an implicit Runge–Kutta method.
When ci, i = 1, . . . , ν are zeros of a νth orthogonal polynomial on [0, 1], then the method is called a
Gauss–Legendre implicit Runge–Kutte method.

3.4 Gauss–Legrende Runge–Kutta methods

Theorem 3.2. Suppose that the solution of (15) is sufficiently smooth. If cj ∈ [0, 1], j = 1, . . . , ν, are
the zeros of a νth orthogoal polynomial on [0, 1], then the IRK method is given by (23)-(26) is of order
2ν.
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4 Finite Element Method

4.1 The stationary heat equation in 1D

We will use SI units, for example [[K]] for temperature in Kelvin, [m] for length in meter, [J ] for energy.
he stationary temperature u(x) [K] at cross section x [m] of a plate filled with width L [m],

D(−a(x)Du(x)) = f(x), x ∈ I = (0, L). (27)

Here

• D = d
dx

[
1
m

]
is the derivative;

• f(x)
[
J
m3s

]
is the heat flux density of the source;

• u(x) [K] temperature;

• a(x)
[

J
mKs

]
is the thermal diffusivity;

• j(x) = −a(x)Du(x)
[
J
m2s

]
is the heat flux density the x–direction (Fourier’s law).

We suppose that no quantity depends on the coordinates y and z. The same equation also describes heat
conduction in a small rod with length L. Dimension control: the units equal on both sides.

4.1.1 Boundary conditions

At x = L the heat flux in the outward direction is proportional to the temperature difference:

j(L) = kL(u(L)− uL), (28)

where

• uL [K] is the temperature of the environment;

• u(L) [K] is the temperature of the plate at the right boundary section;

• kL
[

J
m2Ks

]
is the heat transfer coefficient.

On the other hand the heat flux satisfies Fourier’s law:

j(L) = −a(L)Du(L).

Therefore,
−a(L)Du(L) = kL(u(L)− uL),

and hence
aDu+ kL(u− ul) = 0 for x = L.

Similarly at x = 0 the heat flux in the outward direction is proportional to the temperature difference:

−j(0) = k0(u(0)− u0), (29)

as −j(0) is the heat flux in the −x–direction. Again by Fourier’s law we have j(0) = −a(0)Du(0). Thus,

a(0)Du(0) = k0(u(0)− u0).

In summary we write the boundary conditions in a compact form as:

aDNu+ k(u− uA) = 0 for x = 0, L. (30)

Here uA is the ambient temperature; that is, uA = u0 respectively uA = uL, the coefficient is k = k0
respectively k = kL, and DN is the directional derivative in the outward direction; that is,

DN = − d

dx
at x = 0, DN =

d

dx
at x = L.

The coefficient k depends on how well the plate is isolated at the boundary.
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Special case 1: k =∞, no isolation. We divide by k,

1

k
aDnu+ u− uA = 0,

and let k →∞ to get 0 + u− uA = 0. Thus

u = uA at x = 0, L.

his boundary condition holds at the boundary which is not isolated, that is at x = 0 or x = L. In this
case the temperature on the non–isolated boundary condition is called Dirichlet boundary condition.

Special case 2: k = 0, perfect isolation. With k = 0 we get

aDNu = 0,

that is, there is no heat flow at the isolated boundary.
As a > 0 one arrives at

DNu = 0 at x = 0, L.

This kind of boundary condition is called Neumann boundary condition.

Boundary value problem. Find u = u(x) such that

−D(aDu) = f x ∈ I = (0, L),
aDNu+ k(u− uA) = g x = 0, L.

(31)

4.2 Weak (variational) formulation

Here we will rewite the boundary value problem (31) in the so called weak form which will lead to a
new solution concept called weak or variational solution. First of all this is essential to set up the finite
element method. Secondly, in many cases the boundary value problem might not have a classical solution.
We multiply the differential equation

−D(aDu) = f

with a smooth function v and integrate by parts on I = (0, L):∫ L

0

fvdx = −
∫ L

0

D(aDu)vdx = − [aDuv]
L
0 +

∫ L

0

aDuDvdx

= a(0)Du(0)v(0)− a(L)Du(L)v(L) +

∫ L

0

aDuDvdv.

Now we use the boundary conditions from (31):

a(0)Du(0) = k0(u(0)− u0)− g0,

−a(L)Du(L) = kL(u(L)− uL)gL.

Therefore ∫ L

0

fvdx = (k0(u(0)− u0)− g0)v(0) + (kL(u(L)− uL)− gL)v(L) +

∫ L

0

aDuDvdx.

We collect the erms that involve the unknown function u on the left hand side and arrive at∫ L

0

aDuDvdx+ k0u(0)v(0) + kLu(L)v(L) =

∫ L

0

fvdx+ (k0u0 + g0)v(0) + (kLuL + gL)v(L).

This equation must be fulfilled for every choice of a smooth function v.

The weak formulation. Find a function u = u(x) such hat the equation∫ L

0

aDuDvdx+ k0u(0)v(0) + kLu(L)v(L) =

∫ L

0

fvdx+ (k0u0 + g0)v(0) + (kLuL + gL)v(L) (32)

holds for all test functions v.
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Numerical Analysis II. 4 FINITE ELEMENT METHOD

4.3 The finite element method in 1D

We will compute an approximate solution y = U(x) that is a piecewise linear function. Therefore we
consider a mesh in the interval I = (0, L):

0 = x1 < x2 < · · · < xi < · · · < xN = L.

We always consider N points (also called nodes) xo and N − 1 intervals Ii = (xi, xi+1) of length hi =
xi+1 − xi.

A continuous piecewise function y = U(x) is completely determined by its nodal values Ui = U(xi).
To represent U we will use basis functions y = φi(x), one for each node xi.

The function y = φi(x) are given the following way: they are continuous, piecewise linear functions
such that

φi(xj) =

{
1 i = j

0 i 6= j
.

A general, continuous, piecewise linear function y = U(x) can be uniquely written as a linear combi-
nation of basis functions:

U(x) =

N∑
i=1

Uiφi(x), with coefficients Ui = U(xi).

Note that both sides of the above equality are continuous, piecewise linear functions and their nodal
values coencide:

U(xj) =

N∑
i=1

Uiφi(xj) = Uj .

We now have a formula that expresses a general, continuous, piecewise linear function y = U(x) using
its nodal values Ui. We aim now to calculate the unknown nodal values Ui so that the function y = U(x)
is an appropriate solution to the boundary value problem. To do so we will use the weak formulation∫ L

0

aDuDvdx+ k0u(0)v(0) + kLu(L)v(L) =

∫ L

0

fvdx+ (k0u0 + g0)v(0) + (kLuL + gL)v(L)

We replace the solution u in the weak formulation with the ansatz U(x) =
∑N
i=1 Uiφi(x) and use test

functions v = φj . We then get

N∑
i=1

Ui

∫ L

0

aDφiDφjdx+ k0U1φj(0) + kLUNφj(L)

=

∫ L

0

fφjdx+ (k0u0 + g0)φj(0) + (kLuL + gL)φj(L), j = 1, . . . , N.

Note that the basic functions φj are not smooth in the classical sense as they are not differentiable at
some of the nodes. However, you may assign any value to φ′j at these nodes as there are only finitely

many of those and the value of the integral
∫ L
0
aDφiDφjdx is going to be unaffected. Next, we use the

notation

aij = aji =

∫ L

0

aDφiDφjdx, bj =

∫ L

0

fφjdx,

and
r11 = k0, rNN = kL, rij = 0, s1 = k0u0 + g0, sN = kLuL + gL, sj = 0,

and arrive at
N∑
i=1

(aij + rij)Ui = bj + sj , j = 1, . . . , N ;

or in matrix form
(A+R)U = b+ s.

This is a linear system of equations of N equations and N unknowns. The matrix R and the vector s
are related to the boundary conditions.

The matrix K := A+R is called the stiffness matrix. The stiffness matrix is symmetric and tridiagonal,
that is kij = 0, except for j = i− 1, i, i+ 1. The vector l := b+ s is called the load vector. The interval
Ii(xi, xi+1) together with its two basis functions φi, φi+1 is called a finite element.
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4.4 Stiff ODE systems and linear stability analysis

4.4.1 Stiff systems

Consider the simple scalar ODE {
y′(t) = λy(t) t > 0

y(0) = y0
,

where λ ∈ R is fixed. The unique solution is given by y(t) = eλty0. If λ < 0, then limt→∞ y(t) = 0
exponentially fast. Let h > 0. We solve the system with the explicit Euler method

yEn+1 = yEn + hλyEn = (1 + hλ)yEn , n = 0, 1, . . .

yielding
yEn = (1 + hλ)ny0, n = 1, 2, . . .

and the implicit Euler method

yIn+1 = yIn + hλyIn+1, N = 0, 1, . . .

yIn = (1− hλ)−ny0, n = 1, 2, . . .

Since λ < 0 and h > 0 we have yIn → 0 as n→∞ for any h > 0. For the explicit Euler method

|1 + hλ| < 1⇔ 0 < h|λ| < 2

and thus

yEn → 0⇔ h <
2

|λ|
.

If h > 2
|λ| , then |yEn | → +∞ in an oscillating fashion. This means that for the implicit Euler method

there is no restriction on the stepsize in order for the method to exhibit the same qualitative behavior
as the solution. This is in contrast to explicit Euler method, for which the stepsize restriction h < 2

|λ| is

necessary to exhibit the same behaviour.
For d ≥ 2 consider the linear system of equations{

y′(t) = Aλy(t) t > 0

y(0) = y0 ∈ Rd
,

where A ∈ Rd×d. The unique solution is given by

y(t) = etAy0 =

( ∞∑
k=0

(tA)k

k!

)
y0 =

∞∑
k=0

tkAky0
k!

,

where the first series converges in any induced matrix norm and the second series converges to any vector
norm. Suppose that A is diagonalisable. Notice that

A2 = M−1DMM−1DM = M−1D2M

and iterating this one sees that
An = M−1DnM, n = 1, 2, . . .

Therefore

y(t) = etAy0 =

∞∑
k=0

tkAky0
k!

=

∞∑
k=0

tkM−1DkMy0
k!

=

∞∑
k=0

tkM−1Dk(My0)

k!

= M−1
∞∑
k=0

tkDk(My0)

k!
= M−1etDMy0.

Definition 4.1. We call a linear system stiff if all the eigenvalues of A have negative real parts and the
ratio of the largest of the real parts of its eigenvalues and smallest of the real parts of its eigenvalues is
”large”.
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4.4.2 Linear stability analysis

In this section we will investigate which methods are suitable for solving stiff systems.

Definition 4.2. The linear stability domain D of the underlying numerical method is the set of all
complex numbers z = hλ ∈ C such that the numerical method with constant stepsize h applied to the
scalar equation {

y′(t) = λy(t) t > 0

y(0) = y0
,

satisfies yn → 0 as n→∞, where yn denotes the approximation of y(tn).

Definition 4.3. A numerical method with linear stability domain D is called A–stable if

C={z : Re z < 0} ⊂ D.

As an immediate consequence we have that if a method is A–stable then yn → 0 for all h > 0 and
Re λ < 0; that is, there is no restriction on the stepsize. For stiff problems, one should generally use
A–stable methods.

Theorem 4.1 (Dahlquist’s second barrier). No consistent explicit linear multistep method is A–stable.
The highest order A–stable linear multistep method is of order 2.

Definition 4.4. A numerical method with linear stability domain D is called A(α)–stable if there is an
α(0, π] such that the finite sector∑

α

= {z = ρe−iθ, ρ > 0, π − α < θ < π + α}

we have
∑
α ⊂ D.

4.5 Initial–boundary value problems and FEM in one spatial variable

4.5.1 Heat equation

Initial–boundary value problem for the heat equation. FInd u = u(x, t) such that

Dtu(x, t)−Dx(a(x)Dxu(x, t)) = f(x, t), x ∈ I = (0, L), t > 0;

aDNu+ k(u− uA(t)) = g(t), x = 0, L;

u(x, 0) = w(x), x ∈ I.

The weak formulation of the heat equation. Find a function u = u(x, t) such that u(x, 0) = w(x)
and for all t > 0, the equation∫ L

0

Dtuvdx+

∫ L

0

aDxuDxvdx+ k0u(0, t)v(0) + kLu(L, t)v(L)

=

∫ L

0

fvdx+ (k0u0(t) + g0(t))v(0) + (kLuL(t) + gL(t))v(L)

holds for all test functions v.

Finite element approximation The FEM approximation is based on the weak formulation. We
replace the solution u in the weak formulation with the ansatz U(x, t) =

∑N
i=1 Ui(t)φi(x) and use test

functions v = φj . This yields

N∑
i=1

U̇i(t)

∫ L

0

φiφjdx+

N∑
i=1

Ui(t)

∫ L

0

aDxφiDjdx+ k0U1(t)φj(0) + kLUN (t)φj(L)

=

∫ L

0

f(x, t)φ(x)dx+ (k0u0(t) + g0(t))φj(0) + (kLuL(t) + gL(t))φj(L), j = 1, . . . , N.
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Numerical Analysis II. 4 FINITE ELEMENT METHOD

Using the notation

aij = aji =

∫ L

0

aDxφiDxφjdx, mij = mji =

∫ L

0

φiφjdx, bj(t) =

∫ L

0

f(x, t)φj(x)dx,

and

r11 = k0, rNN = kL, rij = 0, s1(t) = k0u0(t) + g0(t), sN (t) = kLuL(t) + gL(t), sj = 0.

We arrive at
N∑
i=1

mijU̇i(t) +

N∑
i=1

(aij + rij)Ui(t) = bj(t) + sj(t), j = 1, . . . , N.

In the matrix form this reads as

MU̇(t) + (A+R)U(t) = b(t) + s(t) =MU̇(t) +KU(t) = I(t).

The matrix M is called the mass matrix. This is a linear, first order stiff differential equation system
that would be solved by a time–stepping method suited for stiff problems, such as the backward Euler
method. One needs to supplement this equation by an initial vector U(0) = y. This can be obtained in
various ways. One possibility is to look for a continuous piecewise linear function that is the closest to w
in some sense. Let U(0) =

∑N
i=1 yiφi. We then require that∫ L

0

(
w −

N∑
i=1

yiφi

)
φjdx = 0, j = 1, . . . , N.

This leads to
My = c,

where y = (y1, . . . , yN )T and c = (c1, . . . , cN )T with cj =
∫ L
0
w(x)φj(x)dx.

4.5.2 Wave equation

Initial–boundary value problem for the wave equation. Find u = u(x, t) such that

D2
t u(x, t)− a2D2

xu(x, t) = f(x, t), x ∈ (0, L), t > 0,

τDNu+ ku = 0, x = 0, L,

u(x, 0) = w(x), x ∈ [0, L],

Stu(x, 0) = z(x), x ∈ [0, L].

The weak formulation of the wave equation. Find a function u = u(x, t) such that u(x, 0) = w(x),
Dtu(x, 0) = z(x) and, for all t > 0, the equation∫ L

0

D2
t uvdx+ a2

∫ L

0

DxuDxvdx+
a2k0
τ

u(0, t)c(0) +
a2kL
τ

u(L, t)v(L) =

∫ L

0

fvdx

holds for all test functions v.

Finite element approximation Like before we use the weak formulation with U(x, t) =
∑N
i=1 Ui(t)φi(x)

and use test functions v = φj . This yields

N∑
i=1

Üi(t)

∫ L

0

φiφjdx+

N∑
i=1

Ui(t)a
2

∫ L

0

DxφiDxφjdx+
a2k0
τ

U1(t)φj(0) +
a2kL
τ

UN (t)φj(L)

=

∫ L

0

f(x, t)φj(x)dx, j = 1, . . . , N.

Using the notation

aij = aji = a2
∫ L

0

DxφiDxφjdx, mij = mji =

∫ L

0

φiφjdx,

∫ L

0

f(x, t)φj(x)dx,
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and

r11 =
a2k0
τ

, rNN =
a2kL
τ

, rij = 0,

we arrive at
N∑
i=1

mijÜi(t) +

N∑
i=1

(aij + rij)Ui(t) = bj(t), j = 1, . . . , N.

In the matrix form this yields:
MÜ(t) + (A+R)U(t) = b(t),

with K = A+R,
MÜ(t) +KU(t) = b(t).

Myi = ci, i = 1, 2,

where c1j =
∫ L
0
w(x)φj(x)dx and c2j =

∫ L
0
z(x)φj(x)dx, j = 1, . . . , N .

4.6 Error control: embedded Runge-Kutta methods

The Milne device. The Milne device is a heuristic way of controlling the timestep in a time–stepping
procedure by assessing the local error. Let

κ = ||yn+1 − xn+1||

and our goal is that
||yn+1 − y(tn+1)|| ≤ δ

for some tolerance δ. We suppose that the local errors accumulate at a constant rate and that the sum of
the local errors approximately make up the global error.Therefore we require that κ ≤ hδ in the stepsize
selection. We proceed as follows:

1. With a given stepsize h we calculate yn+1, xn+1 and κ.

2. If κ > hδ, we have h and recalculate yn+1, xn+1 and κ.

3. If κ << hδ we double h and recalculate yn+1, xn+1 and κ.

4. If κ < hδ, accept h and calculate yn+1

Assume that we can choose ĉ ∈ Rν̃−ν and Â ∈ Rν̃−ν×ν̃ such that the Butcher–tableau of the control
method is of form

c A 0

ĉ Â

b̂T

and that Â is strictly lower diagonal. In this case, we say that the first method is embedded in the second
one and together they form a so–called embedded Runge-Kutta pair. We usually write such pair in a
single Butcher-tableau as

c̃ Ã
bT

b̃T

It turns out that embedded Runge–Kutta pairs exists.
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