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Combinatorial Methods 1 BASIC GRAPH THEORY

1 Basic graph theory

1.1 Basic definitions

Definition 1.1 (Undirected Simple Graph). A graph is a pair G = (V,E) where

• V is the set of vertices,

• E is the set of edges.

Each edge connects exactly two vertices. The number |V | of vertices is called the order of G.

Definition 1.2 (Subgraph). Graph G′ = (V ′, E′) is a subgraph of G = (V,E), if G′ is a graph, moreover
V ′ ⊆ V and E′ ⊆ E. This relation is denoted by G′ ⊆ G.

Definition 1.3 (Induced subgraph). Graph G′ = (V ′, E′) is an induced subgraph of G = (V,E), if
V ′ ⊆ V and E′ = {e ∈ E | e ⊆ V ′}.

Definition 1.4 (Neighborhood of vertex).

NG(v) = {v′ ∈ V (G) | vv′ ∈ E(G)}.

Definition 1.5 (Degree). In a simple undirected graph:

d(v) = |{e ∈ E(G) | v ∈ e}| = |NG(v)|.

Definition 1.6 (Regular graphs). Graph G is k–regular if d(v) = k ∀v ∈ V (G).

Definition 1.7 (Path). A subgraph v0, e1, v1, . . . , ek, vk is a path from v0 to vk in G if the vertices
v0, v1, . . . , vk are all distinct, and if k > 1 then ei = {vi−1, vi} and ei ∈ E(G) ∀i ∈ {1, 2, . . . , k}. The
length of a path is the number of it’s edges.

Definition 1.8 (Connected graph). Graph G is connected if there exists a path from v to v′ for every
v, v′ ∈ V (G).

Definition 1.9 (Component). The induced subgraph G[V ′] is a component of G if it is connected, and
∀v ∈ V (G)\V ′, the subgraph G[V ′ ∪ v] is disconnected.

Definition 1.10 (Cycle). A subgraph v0, e1, v1, . . . , ek, vk is a cycle in G if v0 = vk, ei = {vi−1, vi},
ei ∈ E(G) ∀i ∈ {1, 2, . . . , k} and vi 6= vj for any i, j ∈ {1, 2, . . . , k} where i 6= j.

Definition 1.11 (Bipartite graph). Graph G = (V,E) is bipartite if there exists A,B ⊆ V such that
A ∪B = V , A ∩B = ∅, and E ⊆ {vavb | va ∈ A, vb ∈ B}.

Definition 1.12 (Tree). Graph G is a tree if it is connected and contains no cycle as a subgraph.

Definition 1.13 (Complement). The complement of graph G is defined as

G = (V (G), {{v1, v2} | v1, v2 ∈ V (G), v1v2 /∈ E(G)}).

1.2 Special significant graphs

Definition 1.14 (Empty graph, En).

En = ({1, 2, . . . , n}, ∅).

Definition 1.15 (Path graph, Pn).

Pn = ({1, 2, . . . , n}, {{vi, vi+1} | ∀i ∈ {1, 2, . . . , n− 1}}).

Definition 1.16 (Cycle graph, Cn). For n ≥ 3,

Cn = ({1, 2, . . . , n}, {{vi, vi+1} | ∀i ∈ {1, 2, . . . , n− 1}} ∪ {{1, n}}).

Definition 1.17 (Complete graph, K,n).

Kn = ({1, 2, . . . , n}, {{v1, v2} | v1, v2 ∈ {1, 2, . . . , n}}).

Definition 1.18 (Complete bipartite graph, Kp,q).

Kp,q = ({a1, a2, . . . , ap, b1, b2, . . . , bq}, {{ai, bj} | 1 ≤ i ≤ p, 1 ≤ j ≤ q}).
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1.3 Graph parameters

Definition 1.19 (Maximum degree of G, ∆).

∆(G) = max
v∈V (G)

d(v).

Definition 1.20 (Minimum degree of G, δ).

δ(G) = min
v∈V (G)

d(v).

Definition 1.21 (Clique). An induced subgraph G[V ′] is called a clique in G if it is a complete graph.

Definition 1.22 (Clique number, ω).

ω(G) = max
G[V ′] is a clique in G

|V ′|.

Proposition 1.1.
ω(G) ≤ ∆(G) + 1

Definition 1.23 (Clique covering). The induced subgraphs G[V1], G[V2], . . . , G[Vk] form a clique covering

of G if
⋃k

i=1 Vi = V (G), and G[Vi] is a clique forall i ∈ {1, 2, . . . , k}.

Definition 1.24 (Clique covering number, θ).

θ(G) = min
G[V1],...,G[Vk] is a clique covering in G

k.

Definition 1.25 (Independent vertex set). A set V ′ ⊆ G(V ) of vertices is independent if ∀v1, v2 ∈
V ′, {v1, v2} /∈ E.

Definition 1.26 (Independence number, α).

α(G) = max
V ′ is an independent set in G

|V ′|.

Proposition 1.2.
α(G) ≤ θ(G).

Definition 1.27 (Transversal). A set V ′ ⊆ V (G) is a transversal of G if ∀e ∈ E(G) : e ∩ V ′ 6= ∅.

Definition 1.28 (Transversal number, τ).

τ(G) = min
V ′ is a transversal set in G

|V ′|.

Theorem 1.1. For every graph G
τ(G) + α(G) = |V (G)|.

Proof. If V ′ is a transversal, then V (G)\{V ′} is an independent set. Assume by contradiction that it is
not independent,

∃v1v2 ∈ V (G)\V ′, v1v2 = e1 ∈ E(G).

This would mean that e1 is not covered by V ′, so V ′ is not a transversal. This means that

α(G) ≥ |V (G)\V ′| = |V (G)| − |V ′|, ∀V ′ transversal.

If |V ′| = τ(G), then α(G) ≥ |V (G)| − τ(G). If I is an independent set, then V (G)\I is a transversal.
Assume by contradiction that it is not a transversal, then

∃v3, v4 ∈ I, e2 = v3v4 ∈ E(G),

then I is not independent.

τ(G) ≥ |V (G)\I| = |V (G)| − |I|, ∀I independent set.

If |I| = α(G), then τ(G) ≥ V (G)− α(G).
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Corollary 1.1. By the proof, if I is a maximal independent vertex set, then V (G)\I is a minimal
transversal.

Definition 1.29 (Vertex coloring). A mapping ϕ : V → {1, 2, . . . , k} is called a coloring with k colors,
or a k–coloring of G.

Definition 1.30 (Proper vertex coloring). A coloring ϕ is called a proper coloring of G if {v1, v2} ∈
E(G) =⇒ ϕ(v1) 6= ϕ(v2).

Definition 1.31 (Chromatic number, χ).

χ(G) = min
G has a proper k–coloring

k.

Proposition 1.3.
χ(G) ≥ ω(G).

Definition 1.32 (Matching). A set E′ ⊆ E(G) is a matching if ∀e1, e2 ∈ E′ : e1 ∩ e2 = ∅.

Definition 1.33 (Matching number, ν).

ν(G) = max
E′ is a matching in G

|E′|.

Theorem 1.2.
ν(G) ≤ τ(G).

Definition 1.34 (Edge coloring). A mapping ϕ : E → {1, 2, . . . , k} is called an edge coloring with k
colors, or k–coloring of edges.

Definition 1.35 (Proper edge coloring). An edge coloring ϕ is called a proper edge coloring of G, if
∀e1, e2 ∈ E(G) with e1 ∩ e2 6= ∅ we have ϕ(e1) 6= ϕ(e2).

Definition 1.36 (Chromatic index, χ′).

χ′(G) = min
G has a proper k–coloring of edges

k.
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2 Interval systems

2.1 Basic definitions

Definition 2.1 (Finite closed interval).

[a, b] = {x ∈ R | a ≤ x ≤ b}.

Definition 2.2 (Interval system).
J = {Ii = [a, b] | i ∈ K},

where K is a set of indeces.

2.2 Helly’s theorem

Theorem 2.1 (Helly’s theorem, general). Let F be a set system containing only closed, bounded, convex
sets in Rd. If any d + 1 members of F have a nonempty intersection, then the whole system has a
nonempty intersection.

If d = 1, we are talking about intervals.

Theorem 2.2 (Helly’s theorem on intevrals). Let I be an interval system, where any 2 intervals share
a point.

∃p ∈ R : ∀Ii ∈ I : p ∈ Ii.

Proof. Let L = ai be the rightmost left endpoint, and R = bj be the leftmost right endpoint of the
intervals in I.

1. If they are the endpoints of the same interval, then

[L,R] ⊆
⋂

Ik∈I
Ik.

2. If they are endpoints of different intervals in the set, then by assumption

[ai, bi] ∩ [aj , bj ] 6= ∅,

and by the definition of ai and bj

aj ≤ ai, ≤ bj ≤ bi.

This means that L ≤ R, then

[L,R] ⊆
⋂

Ik∈I
Ik.

2.3 Transversals and matchings

Definition 2.3 (Transversal of an interval system). A transversal of an interval system I is a set T ⊆ R
such that

∀Ii ∈ I : Ii ∩ T 6= ∅.

In other words T contains at least one point in every interval.

Definition 2.4 (Transversal number of an interval system, τ).

τ(I) = min
T is a transversal set of I

|T |.

Definition 2.5 (Matching of an interval system). A subsystem M of I is called a matching if

∀Ii, Ij ∈M : i 6= j =⇒ Ii ∩ Ij = ∅.

In other words the intervals in M are pairwise disjoint.

2021.09.22. 6 Áron Erdélyi
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Definition 2.6 (Matching number of an interval system, ν).

ν((I)) = max
M is a matching of I

|M|.

Theorem 2.3. For any set system S,
ν(S) ≤ τ(S).

Proof. LetM be a maximal matching in S. A transversal T covers S, so it also coversM. The pairwise
disjoint elements of M require seperate covering points in T . This implies

ν(S) = |M| ≤ |T |.

This holds for every transversal, even the smallest one: ν(S) ≤ τ(S).

Algorithm 2.1. Algorithm to determine τ and ν for interval systems:

1. Arrange the intervals in a list in the order of increasing right ends. Let T = ∅, M = ∅.

2. Take the first interval and put it into M.

3. Take the right end bj of the first interval and put it into T .

4. Delete all intervals from the list that contain bj.

5. If the list is not empty, go to Step 2, otherwise stop.

Theorem 2.4. For every interval system I:

ν(I) = τ(I).

Proof. Let T and M be the transversal and matching returned by Algorithm 2.1, |T | = |M |. By definition
τI ≤ |T | and |M | ≤ ν(I). From Theorem 2.3 we know that ν(I) ≤ τ(I).

τ(I) ≤ |T | = |M | ≤ ν(I) ≤ τ(I) =⇒ τ(I) = ν(I).

2.4 Decomposition into intersecting subsystems

Definition 2.7 (Intersecting subsystem). A set system is called intersecting if any two members of it
have a nonempty intersection.

k(S) is the minimum number of intersecting subsystems the S system can be decomposed into.

Theorem 2.5. For any set system S,

ν(S) ≤ k(S) ≤ τ(S).

Proof. No two disjoint sets can belong to the same intersecting. This implies

ν(S) ≤ k(S).

Let T be a minimal transversal (|T | = τ(S)). ∀x ∈ T the sets containing the point is an intersecting
subsystem. Because T covers every set, taking this for all x ∈ T se get a decomposition into intersecting
subsystems of size |T |. A minimal decomposition may be smaller, giving us

k(S) ≤ τ(S).

Corollary 2.1. For any interval system I,

ν(I) = k(I) = τ(I).

Proof.
ν(I) ≤ k(I) ≤ τ(I) = ν(I)

Algorithm 2.2. Algorithm to determine τ and ν and minimal decomposition of I into intersecting
subsystems for interval systems:
Replace Step 4 of Algorithm 2.1 with

4. If bi ∈ Ij, the put Ij into K(bi), and delete them from the list.
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2.5 Decomposition to matchings

Definition 2.8 (Proper coloring of set systems). A proper coloring of a set system S is a coloring of the
sets, such that ∀A,B ∈ S if A ∩B 6= ∅, the colors of A and B are different.

Proposition 2.1. Sets in a matching can have the same color.

Proper coloring defines a decomposition into matchings. A proper coloring with the minimum amount
of color is the same as a minimal decomposition into matchings.

Algorithm 2.3. Algorithm to determine χ for interval systems:

1. Arrange the intervals in a list in the order of increasing left ends: I1, I2, . . . , In. Let i = 0.

2. Assign Ii the smallest possible color that is, to the smallest integer which has not been assigned to
any intervals intersecting Ii. If i < n i := i+ 1, otherwise stop.

Definition 2.9 (Maximum degree of an interval system, ∆). The maximum degree of an I interval
system is the maximum number of intervals in I sharing a point. Denoted by ∆(I).

Definition 2.10 (Minimum degree of an interval system, q). The minimum degree of an I interval
system is the minimum number of matchings I can be decomposed into. Denoted by q(I).

Theorem 2.6. For any interval system I

∆(I) = q(I).

Proof. Proved in two steps:

1. There are ∆(I) intervals sharing a point, which musht have different colors.

q(I) ≥ ∆(I).

2. Since the intervals are ordered according to their left endpoints, for every index pair i < j the
intevral Ii meets Ij = [aj , bj ] if and only if Ii contains aj . Since aj is incident to at most ∆(I)
intervals, one of them being Ij itself, when it gets colored, at most ∆(I)− 1 intervals intersecting
it have been colored previously. This means that at most ∆(I) colors are applied in a minimal
coloring:

q(I) ≤ ∆(I).

Consequently,
q(I) = ∆(I).

2021.09.22. 8 Áron Erdélyi



Combinatorial Methods 3 SEQUETIAL COLORING

3 Sequetial coloring

3.1 Intercestion graph of an interval system

Definition 3.1 (Intersection graph of a set system). The intersection graph G(S) of a set system S has
one vertex for each set Si ∈ S moreover two vertices vi and vj are adjacent in G(S) if and only if the
corresponding members Si and Sj of S have a nonempty intersection.

Proposition 3.1. Any simple graph can be obtained as an intersection graph.

Definition 3.2 (Interval graph). A graph which is an intersection graph of some interval system is called
an interval graph.

Proposition 3.2. Not every simple graph can be an interval graph.

Proposition 3.3. Connections between the parameters of an interval system I and its intersection graph
G(S):

1. Maximum number of intersecting subgraphs in I are the same as the maximum clique number in
G(I):

∆(I) = ω(G(I)).

2. Minimal number of decompositions to intersecting subsystems in I is the same as the minimum
number of covering with cliques in G(I):

k(I) = θ(G(I))

3. The maximum number of mathcings in I is the same as the maximum number of independent vertex
sets in G(I):

ν(I) = α(G(I)).

4. The minimum number of decomposition into matchings in I is the same as the minimum propper
vertex coloring in G(I):

q(I) = χ(G(I)).

Proof. Proofs of the connections:

1. The maximum number of intervals in I that share a point is the same as the maximum number of
intervals that are pairwise intersecting, which is the maximum number of vertices in G(I) that are
pairwise adjacent.

2. Decomposition of I into intersecting subsystems is the same as covering of G(I) with the minimum
number of cliques.

3. A maximum mathcing in I is the maximum cardinality of independent subsystems, which is equal
to the maximum cardinality of an independent vertex set in G(I).

4. The minimum cardinality of a decomposition of I into matchings is the number of colors used in a
proper coloring of the intervals which is equal to the minimum number of colors needed for a proper
coloring of G(I).

Theorem 3.1. For any interval graph G

χ(G) = ω(G), θ(G) = α(G).

Proof. For any interval system I we have seen that

τ(I) = k(I) = ν(I), q(I) = ∆(I).

From this we get

χ(G(I)) = q(I) = ∆(I) = ω(G(I)), θ(G(I)) = k(I) = ν(I) = α(G(I)).
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3.2 Sequential coloring

3.2.1 Bounds for the chromatic number

Proposition 3.4 (Lower bound for the chromatic number). For any graph G

ω(G) ≤ χ(G).

Proof. The vertices of a clique are pairwise adjacent, meaning that a maximum clique requires ω(G)
colors.

Algorithm 3.1 (Upper bound for the chromatic number – First Fit coloring). For a graph G = (V,E)
let us consider e vertex order v1, v2, . . . , vn. We color the vertices in this order. ∀vi ∈ V gets the smallest
not forbidden color. This method returns a proper coloring of G, and gives an upper bound to χ(G).

Proposition 3.5. For any graph G
χ(G) ≤ ∆(G) + 1

Proof. At the coloring of vi ∈ V (G) colors that are less than d(vi) are forbidden. For vi d(vi) + 1 colors
are enough. To color all vertices max d(vi) + 1 = ∆(G) + 1 colors are enough.

Depending on the vertex order the First Fit coloring can apply χ(G) colors, or much more colors than
necessary.

Definition 3.3 (Backward degree). Given a graph G and a vertex order v1, v2, . . . , vn let d−(vi) denote
the number of neighbors of vi which precede it:

d−(vi) = |{vj | vivj ∈ E(G), j < i}|.

Definition 3.4 (Coloring number, col). The coloring number col(G) of graph G is the minimum of the
maximum value of d−(vi) over all vertex orders:

col(G) = min
vertex orders

max{d−(vi) + 1 | 1 ≤ i ≤ n}.

Theorem 3.2. For every graph G,
χ(G) ≤ col(G)

Proof. Consider an optimal vertex order v1, v2, . . . , vn of G and color the vertices using the First Fit
algorithm. As every vertex vi is preceded by d−(vi) of its neighbors, when we color vi not more than
d−(vi) colors are forbidden for vi. Then vi gets a color which is not greater than d−(vi)+1. By definition
d−(vi) + 1 ≤ col(G) for every vi hence First Fit yields a coloring with at most col(G) colors and we
conclude χ(G) ≤ col(G).

Proposition 3.6. For any graph G, col(G) is a better upper bound than ∆(G) + 1.

Proof.

col(G) = col(G) = min max{d−(vi) + 1} ≤ col(G) = min max{∆(G) + 1} = min{∆(G) + 1} = ∆(G) + 1.

For graph G, col(G) can be exactly χ(G), or much larger than χ(G).

Theorem 3.3. For any graph the coloring number can be deretmined in polynomial time.

Proof. We construct the following order of the n vertices of G:

1. Choose a vertex of minimum degree in G and let it be called vn. This will be the last vertex n the
order.

2. Then for every i = n − 1, n − 2, . . . , 1 select a vertex of minimum degree in the subgraph induced
by the remaining vertices V (G)\{vj | j > i}. Let it be called vi.
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This procedure results in a vertex order v1, v2, . . . , vn. We prove that this is an optimal one.
Consider any optimal order of the vertices. If it is v1, v2, . . . , vn, there is nothing to prove. Otherwise

select the largest index i where the two orders differ. In the original order we have vi and in the
optimal one we have vk with k < i. In the optimal order place vi after vk. By this change d−(vi) may
increase but it cannot be higher than d−(vk) was before the modification, since vi has minimum degree
in V (G)\{vj | j > i}. Otherwise for a vertex vl with l > i the degree d−(vl) does not change, while for
a vl with l < i, d−(vl) either decreases or remains the same. Consequently, max d− does not increase
and the order remains optimal. Repeating this procedure, at each turn the largest index where the order
ant the optimal one differ will be smaller by at least 1, and finally the optimal one is transformed into
v1, v2, . . . , vn preserving the optimality.

Minimum search in a set of size n, n− 1 times is of order O(n2), which is polynomial time.
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4 Chordal graphs

4.1 Chordal graphs and simplicial order

Definition 4.1 (Chordal graph). A graph is chordal if ir contains no induced cycle of length greater than
3.

Definition 4.2 (Simplicial vertex). A vertex v is simplicial in G if and only if any two of its neighbors
are adjacent.

Definition 4.3 (Simplicial order). A simplicial order of G is an order v1, v2, . . . , vn of its vertices such
that for every 1 ≤ i ≤ n− 1, vertex vi is simplicial in the subgraph induced by vi+1, vi+2, . . . , vn.

Theorem 4.1. A graph has a simplicial order if and only if every induced subgraph of it has a simplicial
vertex.

Proof. If every induced subgaph og G has a simplicial order then nothing blocks us to choose an arbitrary
simplicial vertex in G and furhter one in the subgraph induced by the remaining vertices, and so on.
Finally we have a simplicial order definitely.

On the other hand assuming a simplicial order v1, v2, . . . , vn of G for every induced subgraph G′ ⊆ G,
the vertex of G′ which has the smallest index in the order above is surely simplicial in G′.

Algorithm 4.1. Computation of a simplicial order on a graph G:

1. For i = 1, 2, . . . , n:
Let Gi be the subgraph induced by V (G)\{vj : j < i}.

• If there is no simplicial vertex in Gi then G has no simplicial order. Stop.

• Otherwise let vi be an arpitrary simplicial vertex of Gi.

2. If all the n iterations have been executed, the output is v1, v2, . . . , vn, which is a simplicial order of
G.

Theorem 4.2. For any graph G, the following statements are equivalent:

1. G is chordal;

2. G has a simplicial order;

3. G is the intersection graph of a collection of subtrees of some tree T .

Corollary 4.1. Every interval graph is chordal.

Proof. An interval system can be viewed as a set of subpaths of a path. Then, it is a collection of subtrees
of a special tree. Thus interval graphs which are precisely their intersection graphs. Consequently they
are chordal graphs.

Algorithm 4.2. Building a subtree representation of a chordal G, we proceed in inverse simplicial order:
vn, . . . , v1.

1. Vertex vn is represented by the one–vertex subtree {x1} of the tree T consisting of only this vertex.

2. vi is simplicial in the graph spanned by vi, vi+1, . . . , vn = Gi.

• If vi has neighbors in Gi, they form a clique, which means that ∃xj common point of the trees.

– If only those subtrees contain xj that represent a neighbor of vi, then Ti = {xj}.
– If ∃k such that xj ∈ Tk, but {vi, vk} /∈ E(G), then Ti = {xl}, where xl is a new vertex,

connected to xj as a leaf. Moreover xl is added to every tree representing a neighbor of vi.

• If vi has no neighbors in Gi, then Ti = {xl}, where xl is a new vertex, a leaf on an arbitrary
vertex of the tree, and the other subtrees ar unchanged.
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4.2 Algorithms for chordal graphs

Proposition 4.1. For every graph G
α(G) ≤ θ(G),

where α(G) is the independence number, and θ is the clique covering number of G.

Proof. If v1, v2 /∈ E(G), then v1 and v2 cannot be covered by the same clique. This implies that to cover
a maximum independent vertex set, more than or equal to α(G) cliques required. From this we get that
to cover the vertex set V (G), that is a greater set than the maximum independent vertex set, more than
or equal to α(G) cliques are required.

Algorithm 4.3. Determination of α and θ:

1. Compute a simplicial order of the vertices, I = ∅, K = ∅.

2. If vi is the first vertex in the simplicial order, put vi into I.

3. Ki = vi ∪N(vi) is a clique, put it into K.

4. Delete the vertices of Ki from the simplicial order.

5. If the list is not empty, go to Step 2.

Theorem 4.3. For every chordal graph
α(G) = θ(G),

and these parameters can be computes in polinomial time.

Proof.
|I| = θ(G) ≤ |K| =≤ α(G) ≤ θ(G).

Computation time of the simplicial order is O(n2), and the complexity of the algorithm above is also
O(n2), hence the computation of α(G) and θ(G) is of order O(n2).

Definition 4.4 (Forward degree of a vertex). Let v1, v2, . . . , vn an order of the vertices of G, then in
relation to this the forward degree of vi is

d+(vi) = |{vj | vj ∈ N(vi), j > i}|.

Theorem 4.4. For any chordal graph G and simplicial order v1, v2, . . . , vn,

ω(G) = max
i=1,...,n

{d+(vi) + 1}.

Proof. Consider a chordal graph G and a simplicial order v1, v2, . . . , vn. Then for every 1 ≤ i ≤ n, vertex
vi is simplicial in the subgaph induced by {vi, vi+1, . . . , vn}. Thus, a clique of d+(vi) + 1 vertices surely
occurs in G implying that

ω(G) ≥ d+(vi) + 1

holds for every i. Then,
ω(G) ≥ max

1≤i≤n
{d+(vi) + 1}

holds as well.
On the other hand, for a clique of ω vertices consider the vertex vi which is the earliest one among

them in the order. For this vertex, d+(vi) = ω(G)− 1 holds and we have

ω(G) ≤ max
1≤i≤n

{d+(vi) + 1}.

Algorithm 4.4. To compute ω(G) and χ(G) of a chordal graph G:

1. Consider a simplicial order of G.

2. Apply the First Fit coloring according to the inverse order.
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Theorem 4.5. For any chordal graph G

ω(G) = χ(G) = col(G)

and can be computed in polynomial time.

Proof. In the algorithm, when vi is colored

• d+(vi) neighbors are already colored.

• These neighbors form a clique, d+(vi) colors are forbidden, plus one color is needed. The algorithm
will use max1≤i≤n{d+(vi) + 1} colors.

By definition χ(G) ≤ max{d+(vi) + 1}, and for any graph ω(G) ≤ χ(G), and for any chordal graph
ω(G) = max{d+(vi) + 1}, meaning that

ω(G) = χ(G).

Like before, the computation complexity of the algorithm is of order O(n2).
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5 Tree decompositions

Definition 5.1 (Tree decomposition). Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn}
and edge set E. A tree decomposition of G is a pair (T,S), where T = (X,F ) is a tree graph with node
set X = {x1, x2, . . . , xm} and edge set F , and S = {S1, S2, . . . , Sm} is a set system over V , indexed
according to the nodes of T , that satisfies the following three requirements:

1. Every vertex vi ∈ V of G occurs in some set Sk ∈ S.

2. The two ends of any edge vivj of G occur together in some set Sk ∈ S.

3. If vi ∈ Sk′ and vi ∈ Sk′′ for two indices k′, k′′, then vi ∈ Sk also holds whenever the node xk is on
the xk′ − xk′′ path in T .

Definition 5.2 (Width of a tree decomposition). The width of a tree decomposition

w(T,S) = max
Sk∈S

{|Sk| − 1}.

Definition 5.3 (Tree width). The tree width of a graph G is the smallest width of its tree decompositions.

tw(G) = min
(T,S) is a tree dexomposition of G

{max
Sk∈S

{|Sk| − 1}}.

Theorem 5.1. For any graph G

tw(G) = min
G⊆H chordal

{ω(H)− 1}.

Corollary 5.1. For any graph G

• tw(G) = 0 iff G has no edges.

• tw(G) = 1 iff G has at least 1 edge but no cycles.

• tw(G) ≥ 2 iff G has at least 1 cycle.

Corollary 5.2. If G is chordal
tw(G) = ω(G)− 1

5.1 Creating a tree decomposition

Let G = (V,E) be an arbitrary (simple, undirected) graph.

1. Finding a chordal subgraph H of G. Edges have to be inserted into the graph as long as it contains
chordless cycles longer than 3.

2. Finding a tree representation. This can be done in the way described in the previous chapter.

3. Finding the sets Sk. Formally this step can be done by setting S = {S1, . . . , Sm}, where

Sk := {vi | xk ∈ Ti}

for all 1 ≤ k ≤ m. That is in the set assigned to xk we list the vertices of G with the indices of
subtrees containing xk.

Lemma 5.1. The pair (T,S) constructed above satisfies the requirements of a tree decomposition.

Proof. Proved in three parts:

1. Every tree representing the vertices is nonempty, therefore each vertex of G occurs in at least one
Si, verifying the first condition.

2. If vivj is an edge in G, then it is an edge oh H as well. The definition of intersection graph then
implies that Ti and Tj share a vertex, say xk. And then vi and vj occur together in Sk according
to the construction. This ensures that the second condition holds.

3. Finally, the occurrences of any vi in the sets Sk correspond to the nodes of xk which are contained
in the subtree Ti. That is, those occurrences form a subtree of T , implying that the entire path
connecting any two of them is inside the set of occurrences. This verifies the third condition.
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5.2 Nice tree decomposition

Definition 5.4 (Nice tree decomposition). Suppose that (T,S) is a tree decomposition of G. It is called
a nice tree decomposition if the following further conditions are met, too:

1. Viewing T as a rooted tree every node of T has at most two children.

2. Each node is one of the following types:

• start node: xk has no children;

• forget node: xk has exactly one child, say xk′ , and Sk = Sk′\{vi} for some vi ∈ V ;

• introduce node: xk has exactly one child, say Xk′ , and Sk = Sk′ ∪ {vi} for some vi ∈ V ;

• join node: xk has exactly two children, say xk′ and xk′′ , and Sk = Sk′ = Sk′′ .

5.3 Largest independent set

For each node xk we compute values in a table. The rows correspond to subsets S of Sk that are
independent vertex sets in G.

The first column specifies the independent subset S ⊆ Sk. The second column contains the maximal
cardinality of independent sets I in Gk for which I∩Sk = S. The third column contains a possivle subset
S′ at the child xk′ of xk for which there is an independent set I attaining the maximal α(G) value in the
2. column so that I ∩ Sk = S and I ∩ Sk′ = S′.

5.3.1 Computation steps

• start node: no predecessors. α in the table xk row S = |S| = |I|.

• forget node: Sk = Sk′ − {vi}, S can originate from 2 possible subsets of Sk′ . S
′ is the one where

α is maximal in table xk′ . α in the table xk row S = α in the table xk′r rows S′.

• introduce node: Sk = Sk′ ∪ {vi}.

– If vi /∈ S, then S′ = S. α in the table xk row S = α in the table xk′ row S′.

– If vi ∈ S, then S′ = S\{vi}, which means vi is an additional element in I. α in the table xk
row S = α in the table xk row S′ + 1

• join node: Sk = Sk′ = Sk′′ , meaning that S′ = S, ∀S ⊆ Sk independent sets. α in table xk row
S = (α in table xk′row S) + (α in table xk′′ row S)− |S|.
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6 Bipartite graphs

Proposition 6.1. G is a bipartite graph iff G contains no cycles of odd length.

Theorem 6.1. Bipartite graphs can be recognized in O(n+ c) steps.

Proof. Apply Breath–First search (BFS). For every vertex it determines the distance from the root layers
– vertices with identical distances from the root.

The edges of G cannot connect vertices from layers at distance of more than 1.

Proposition 6.2. G is a bipartite graph iff there is no edge connecting vertices belonging to the same
layer of the BFS tree.

Proof. Two parts:

1. If there is an edge uw connecting vertices in the same layer

• Let v be the lowest common ancestor of u and w in the BFS tree.

• u and w are both of distance d from v.

• The paths vu and vw in the BFS tree with the edge uw form an odd cycle of length 2d+ 1.

2. if there is an odd cycle, let u and w be one of the highest and lowest points in the tree. The cycle
provides two paths in G connecting u and w one of them is of even length, the other is odd.

It is not possible that all of the edges are connecting neighboring layers, so there must be a forbidden
edge.

The BFS is of complexity O(n+ e).

6.1 Maximum matchings in bipartite graphs

Theorem 6.2 (König). For any bipartite graph G

τ(G) = ν(G)

and optimal sets can be determined efficiently.

Theorem 6.3. ][Hall’s marrige theorem] If G = (A,B,E) a bipartite graph, where |A| = |B| and the
Hall–condition holds for A:

|X| ≤ N(X),

there is a perfect mathcing in G.

Theorem 6.4. In the bipartite graph G = (A,B,E) there is a matching covering the vertex set A iff
Hall’s condition holds for A.

6.2 Edge coloring of graphs

Proposition 6.3. If G = (A,B,E) is a k–regular bipartite graph, there exists a perfect matching.

Proof. E(G) = k · |A| = k · |B| which means that |A| = |B|. The edges coming from X go to at least |X|
vertices in B, meaning that Hall’s condition holds.

Theorem 6.5. If G = (A,B,E) is a k–regular bipartite graph, then

χ′(G) = k.

Proof. Induction by k:

• k = 1: G is a matching, 1 color is enough.

• k → k+1: We assume that k–regulars can be colored by k colors. If G is k+1–regular, there exists
a perfect matching M . G\{M} is a k–regular bipartite graph. By using a k coloring for the edges
of G\{M} and one other color for the perfect matching. This is a coloring of G with k + 1 colors.
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We have seen that for the edge coloring of a k–regular bipartite graph k colors are enough, meaning
χ′(G) ≤ k. In general χ′(G) ≥ ∆(G) = k. This gives us

χ′(G) = k = ∆(G).

Theorem 6.6. For an arbitrary bipartite graph G = (A,B,E),

χ′(G) = ∆(G).

Proof. Since χ′ ≥ ∆ holds for every graph, it is sufficient to prove that G has an edge coloring with ∆
colors. The crucial point is the extension of G by some edges and vertices to obtain a ∆–regular bipartite
graph G′. Then, by the previous theorem there is an edge coloring of G′ with ∆ colors. Finally we delete
some appropriately chosen edges and vertices, and we obtain a proper edge coloring of G with ∆ colors.

The extension of G can be obtained in several ways. For example:

1. If |A| > |B|, extend B with |A| − |B| new vertices. If |B| > |A|, do it the other way around.

2. While we have nonadjacent vertex pairs (ai, bj) with ai ∈ A and bj ∈ B and with degrees d(ai) < ∆
and d(bj) < ∆, extend G by the edge aibj .

3. If Step 2 cannot be applied, the vertices with degree smaller than ∆ form a complete bipartite
graph whose partite classes are SA and SB . It is clear that |SA| ≤ ∆ and |SB | ≤ ∆. Then, put ∆
new vertices into A and B each (these form vertex sets NA and NB) and create some edges between
SA and NB such that every vertex in SA has degree ∆ and the degrees in NB differ by at most
one- A similar procedure is executed for SB and NA.

4. Finally, take vertex v from NA of degree smaller than ∆ and connect it to ∆− d(v) vertices of NB

such that the degrees in NB differ by at most one. This ensures that all such vertices from NA can
be treated and when all the degrees in NA become equal to ∆, then also the degrees in NB equal
∆, and we have a ∆–regular bipartite graph G′ with subgraph G.

6.3 Stable matchings

Definition 6.1 (Stable matching). A stable matching in a graph G is a matching M such that for every
edge uv ∈ E(G)\M either

1. u has a neighbor u′ such that uu′ ∈M and u prefers u′ to v, or

2. v has a neighbor v′ such that vv′ ∈M and v prefers v′ to u.

Theorem 6.7 (Stable marriage theorem). For any bipartite graph and any preference list of the vertices
there exists a stable matching in G.

Proof. Consider a graph G with partite classes A and B and with preference lists on its vertices. Each
phase of the algorithm consists of two steps:

1. Every unmatched vertex a ∈ A marks the edge connecting it to its neighbour with the highest
preference.

2. If there are more than one marked edges in the case of some b ∈ B the most preferred by b is kept,
the others are unmarked.

When the algorithm terminates, we have some edges marked. Let M be the set of these edges. It is clear
that M is a matching, we prove that this is stable. We have two cases for an edge aibj /∈M :

• If aibj was not marked in any phases and the algorithm terminated, then ai is paired with a vertex
bk which has a higher preference than bj .

• If aibj was marked in some phase but then was rejected by bj , then bj has a more preferred pair
and again aibj is not a blocking edge.

Therefore, the algorithm produces a stable matching for every bipartite graph.
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Combinatorial Methods 7 THE MAX–CUT PROBLEM

7 The Max–Cut problem

Definition 7.1 (Cut). Let G = (V,E) be a graph and X ∪ Y = V a partition of its vertex set into two
classes. The cut generated by (X,Y ) is the set F ⊆ E of edges which have one end in X and the other
end in Y .

The number of edges in the cut (X,Y ) is denoted by

e(X,Y ) = |F |.

The maximum cut is denoted by

mc(G) = max
(X,Y ) is a cut of G

e(X,Y ).

Proposition 7.1. For any graph G

mc(G) = |E| ⇔ G is bipartite.

Theorem 7.1. For every graph G

mc(G) ≥ |E|
2
.

Proof 1: Local optimum. Consider an arbitrary vertex position V = X ∪ Y . If a vertex x ∈ X has more
neighbours in X than in Y ,

X := X\{x}, Y := Y ∪ {x}.

Similar steps can be performed for y ∈ Y .
If e(X,Y ) cannot be further increased, then every vertex has at least half of its edges in the cut.

Proof 2: Finding a solution online. Consider tan arbitrary order of vertices v1, v2, . . . , vn. For every ver-
tex vi we make a decision, according to the subgraph induced by {v1, . . . , vi}. Initially X = Y = ∅.

For i ∈ {1, 2, . . . , n} if vi has at least as many neighbors in Y as in X, then X := X ∪{vi}. Otherwise
Y := Y ∪ {vi}.

Let d−j denote the number of neighbors vi of vj where i < j. When we decided the partition of vj ,

the size of the cut has increased by at least
d−j
2 edges.

mc(G) ≥ e(X,Y ) ≥
n∑

j=2

d−j
2
/

1

2
·

n∑
j=1

d−j =
|E|
2
.
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8 Locally restricted colorings

8.1 Precoloring extension problem

We have a graph G = (V,E), color bound k ∈ N, partial coloring ϕW : W → {1, 2, . . . , k} that is a proper
vertex coloring of the subgraph G[W ] induced by the precolored set W ⊂ V in G.

The question is that does G have a proper vertex coloring ϕ with at most k colors, which extends
ϕW ?

Special cases:

• If k < χ(G), then no.

• If W = ∅ or W induces a complete subgraph in G the answer is yes iff k ≥ χ(G).

• If G is a bipartite graph and

– k = 2: the answer can be determined efficiently,

– k ≥ 3: the answer is hard to decide.

• If G is a bipartite graph and k ∈ N the problem is equivalent to finding a maximal matching in G.
It can be done efficiently.

8.2 List coloring

Definition 8.1 (List coloring). Let G = (V,E) be a graph, and let L = {Lv | v ∈ V } be a collection
of sets which specify the colors allowed for every vertex v. A list coloring of G is a color assignment
ϕ : V →

⋃
v∈V Lv such that

• ϕ(v) ∈ Lv for all v ∈ V ;

• ϕ(u) 6= ϕ(v) whenever uv ∈ E.

If such a ϕ exists, we say that G is list colorable.

Definition 8.2 (k–assignment). A k–assignment on a graph G = (V,E) is a list assignment L =
{Lv | v ∈ V } in which |Lv| = k for all v ∈ V . The choice number of G is the smallest k such that G is
L–colorable for every k–assignment L. We denote the choice number of G by χl(G). We also say that G
is k–choosable if it is list colorable for every k–assigment.

Proposition 8.1. For every graph G

ω(G) ≤ χ(G) ≤ χl(G) ≤ col(G).

Proof. The proof is done with two steps:

1. χ(G) ≤ χl(G):
If χl(G) = k, then G is list colorable for any k–assignment, so for Lv = {1, 2, . . . , k} ∀v ∈ V (G) as
well, meaning χ(G) ≤ k = χl(G).

2. χl(G) ≤ col(G) = minvertex order maxi=1,...,n{d−(vi) + 1}:
consider a vertex order, where max{d−(vi + 1)} = col(G) to every vertex assign a list of length
L = col(G). This way G is L-colorable. If we color the vertices in increasing order of indices for
the vertex vi at most d−(vi) colors are forbidden. Since the list is bigger, we can choose a suitable
color for vi. This means that G is k–choosable, where k = col(G), and also χl(G) ≤ k:

χl(G) ≤ col(G).
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8.3 Kernels in directed graphs

Definition 8.3 (Kernel of a directed graph). Let D = (V,A) be a digraph with vertex set V and arc set
A. A kernel of G is a set ? ⊂ V satisfying the following two properties:

1. M is independent;

2. for every vertey u ∈ V \M there is a v ∈M such that uv ∈ A.

Not every directed graph has a kernel.

Theorem 8.1. Two statements:

1. If T is an oriented tree, then T has a kernel, its unique, and can be found by an efficient algorithm.

2. More generally, every bipartite graph has at least one kernel, and a kernel can be found efficiently.

Proof. The proofs in order:

1. T must have a vertex v for which the out degree is zero, otherwise it would have a cycle.

The general step of the construction(M = ∅ at the beginning): If v is a vertex with zero out–degrees,
put v into M and delete all vertices u for which uv ∈ A.

2. Let D be a bipartite directional graph V = A∪B. The weakly connected components (components
of the graph without considering orientation) can be considered separately.

Consider a weakly connected bipartite graph.

• If ∃v ∈ V with out degree zero, the general step can be performed.

• If no such vertices are found, then all vertices have out neighbours. Since D is bipartite, their
neighbours are in the other class, and the sets A and B are independent sets. Either A or B
can be chosen as kernel.

Using these steps we can efficiently determine a kernel in D.

Theorem 8.2. Let D = (V,A) be an orientation of the graph G = (V,E) where every induced subgraph
has a kernel. If L = {Lv | v ∈ V (G)} is a list assignment, where |Lv| > d+(v), ∀v ∈ V (G), where d(v)
denotes the out degree of a vertex, then G is L–colorable.

Proof. Select an arbitrary color c. Gc a subgraph of G, Dc ⊆ D, where v ∈ Gc iff c ∈ Lv.
By assumption Dc contains a kernel M :

• assign the color c to ∀v ∈M ;

• delete the color c from all the lists Lv if v ∈ Dc\M .

This does not guarantee monochromatic edges:

• M is independent,

• the color c is deleted from the list of all the uncolored vertices that had it.

In the remaining graph D′ = D\M |Lv| > d+(v) remains true:

• If v ∈ Gc\M , then |Lv| := |Lv| − 1, but d+(v) is decreased by at least 1.

• If v ∈ G\Gc, then Lv is unchanged, and d+(v) might decrease, or remains the same.

The list Lv will never become empty. The graph G can be colored from the list by repeating the step
above, while V (G) 6= ∅. If we can efficiently determine an orientation where every induced subgraph has
a kernel, the proof gives us an efficient methos to find a list–coloring.
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9 Edge decomposition of graphs

Definition 9.1 (Edge decomposition of a graph). An edge decomposition of a graph G is a partition of
its edge set into some subgraphs F1, F2, . . . , Fm where Fi = (Vi, Ei), Vi ⊆ V for all 1 ≤ i ≤ m, the sets
Ei are mutually disjoint and their union is E. In other words, each edge of G occurs in precisely one of
the subgraphs.

Theorem 9.1. The complete graph Kn (n ≥ 2) is decomposable into perfect matchings iff n is even.

Proof. Two steps:

1. A perfect matching is a set of vertex pairs. A graph with an odd number of vertices has no perfect
matching.

2. For K2k (k ≥ 2) arrange the vertices into a regular 2k − 1-gon v1, v2, . . . , v2k−1, and put the last
vertex in the center.

Consider the Mi matchings

Mi = {vi, v2k} ∪ {vi−jvi+j | 1 ≤ j ≤ k − 1}.

These matchings are pairwise disjoint the edges in Mi are viv2k and all the ones that are orthogonal
to it.

Mj can be obtained from Mi by a rotation of degree (i− j) · 360
2k−1

Theorem 9.2. The complete graph Kn on n ≥ 2 is decomposable into Hamiltonian paths iff n is even.

Proof. A Hamiltonian path on n vertices has n− 1 edges, and Kn has n(n−1)
2 edges. The decomposition

has to contain n
2 subgraphs, so n must be even.

The case of K2 is trivial. For Kn n ≥ 4 arrange the vertices in a 2k-gon. The 2k-gon has k long
diagonals. For every long diagonal we define a Hamiltonian path Pi which can be obtained by rotation
from each other.

It can be seen, that paths Pi are pairwise disjoint, and every edge is contained by exactly one of
them.

Theorem 9.3. The complete graph Kn (n ≥ 3) is decomposable into Hamiltonian cycles iff n is odd.

Proof. A cycle on n vertices has n edges and Kn has n(n−1)
2 edges. The decomposition consists of n−1

2
cycles, so n is odd.

Construction is similar to the case of Hamiltonian paths is n ≥ 5. Arrange the vertices into an
n− 1-gon and one vertex at the center.

If the central vertex is removed, we construct the Hamiltonian paths, and then add the central vertex
and connect both ends of the path to it.

Definition 9.2 (Edge decomposition into complete bipartite graphs). The edge decomposition of a graph
into complete bipartite graphs is an edge decomposition F1, F2, . . . , Fm, where for all 1 ≤ i ≤ m Fi ∈ F ,

F = {Ka,b | a ≥ 1, b ≥ 1}.

Theorem 9.4. If F1, F2, . . . ,Fm is a decomposition of Kn into complete bipartite graphs, then m ≥ n−1.

Proof. We represent the vertices as x1, . . . , xn ∈ R variables, and edge edge vivj as the product xixj .
H ⊆ Kn subgraph will be

s(H) =
∑

vivj∈E(H)

xixj .

If Fl(Al, Bl, El) a complete bipartite subraph, then

s(Fl) =
∑

vi∈Al,vj∈Bl

xixj =

( ∑
vi∈Al

xi

)
·

 ∑
vj∈Bl

xj

 .
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s(Kn) =
∑

1≤i≤j≤n

xixj =
1

2

( n∑
i=1

xi

)2

−

 n∑
j=1

x2j

 .
If F1, . . . , Fm is an edge decomposition of Kn, then

s(Kn) =

m∑
l=1

s(Fl),

since s(G) is the sum of edges in G.

1

2

( n∑
i=1

xi

)2

−

 n∑
j=1

x2j

 =

m∑
l=1

( ∑
vi∈Al

xi

)
·

 ∑
vj∈Bl

xj

 .

Consider the following system of m+ 1 homogenous linear equations over n variables:
x1 + · · ·+ xn = 0∑

vi∈A1
xi = 0

...∑
vi∈Am

xi = 0

If the real numbers x1, . . . , xn fulfill the linear equations, then the right side of the equations is zero, the
first termn on the left side is zero, so the equation holds.

Consequently the system of equations has one solution. We have seen, that if a system of linear
equations has exactly one soluton, then the number of equations is at leas as big as the number of
variables. In this case

m+ 1 ≥ n.

Theorem 9.5. If F1, F2, . . . , Fm is an F-decomposition of Kn where m ≥ 2, m ≥ n.

Proof. Assume by contradiction that m < n. Let Fj have a vertex set Vj and let us denote nj := |Vj | for
j = 1, 2, . . . ,m. Further, for vertex vi, let us denote by di the number of subgraphs Fj containing vi.

Claim: If vi 6= Vj , then di ≥ nj .

Proof. If vl ∈ Vj , then edge vivl is contained by exactly one subgraph Fkl
. For different vertices vl the

subgraphs Fkl
are different. If for two vertices vl1 and vl2 the edges vl1vi and vl2vi were covered by the

same Fkl
6= Fj , then the edge vl1vl2 was covered by both Fkl

and Fj .

The number of subgraphs containing vi ≥ |Vj |, meaning di ≥ nj . By indirect assumption n > m,
n · di > m · nj , whichimplies nm− ndi < nm−mnj , so

1

n(m− di)
>

1

m(n− nj)
=⇒

∑
i,j, vi /∈Vj

1

n(m− di)
>

∑
i,j, vi /∈Vj

1

m(n− nj)
.

The left side:
n∑

i=1

∑
vi /∈Vj

1

n(m− di)
=

n∑
i=1

(m− di)
1

n(m− di)
=

n∑
i=1

1

n
= 1.

The right side: ∑
i,j, vi /∈Vj

1

m(n− nj)
=

m∑
j=1

(n− nj)
1

m(n− nj)
=

m∑
j=1

1

m
= 1.

By using the computed values we get 1 > 1. The assumption n > m is false.

Proposition 9.1. If Kn is decomposed into copies of Kp, then

•
(
n
2

)
is a multiple of

(
p
2

)
,

• n− 1 is a multiple of p− 1.
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These conditions are called the integrality conditions.

Proof. Two steps:

1. The number of edges: e(Kn) =
(
n
2

)
= n(n−1)

2 , e(Kp) =
(
p
2

)
. Each edge is covered exactly once, with

copies of Kp implies that
(
n
2

)
is divisible by

(
p
2

)
.

2. The vertex degrees in Kn ∀i d(vi) = n − 1, and the vertex degrees in Kp ∀j d(vj) = p − 1. If a
vertex is covered by t copies of Kp it covers t(p−1) edges incident to vj and each of the n−1 edges
is covered exactly once, meaning that t(p− 1) = n− 1 implying that n− 1 is divisible by p− 1.

Theorem 9.6. For every p ≥ 3 there is a threshold value n0(p) so that for every n ≥ n0(p) Kn can be
decomposed into copies of Kp iff the integrality conditions are met.

Example 9.1 (Steiner Triple Systems). For p = 3, that is F = K3, decomposition into triangles, the
integrality conditions mean:

•
(
n
2

)
is divisible by 3,

• n− 1 is even.
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10 Finite projective planes

Definition 10.1 (Axioms of finite projective planes of order q). A pair (P,L) is a projective plane of
order q if L is a set system over P. They fulfill the following axioms:

1. Any two points are contained together in exactly one line.

2. Any two lines intersect in exactly one point.

3. There is a line with exactly q + 1 points.

4. There are four points, no three of which are on the same line.

Theorem 10.1. Every projective plane of order q has the following parameters.

1. The number of points is q2 + q + 1.

2. The number of lines is q2 + q + 1.

3. Every line has exactly q + 1 points.

4. Every point is incident with exactly q + 1 lines.

Proof. The proofs:

1. From the 3. axiom: ∃L0 ∈ L with exactly q + 1 points, p1, . . . , pq+1.

2. From the 4. axiom: ∃p /∈ L0.

3. From the 1. axiom the point pairs p and pi ∀i ∈ {1, 2, . . . , q + 1} determine lines.

4. From the 2. axiom: the lines are pairwise different. If the lines determined by the point pairs {p, pi}
and {p, pj} were the same line L1 ∈ L, then the intersection of the lines L0 and L1 was two points,
pi and pj . There cannot be any other lines passing through p, otherwise by the 2. axiom it would
also intersect the line L0. The intersection point would be different from p1, . . . pq+1.

5. ∀p /∈ L0 is incident to exactly q + 1 lines.

By switching the roles of point and line it can be proven similarly as before, that ∀L that is not
incident to the point p has exactly q + 1 points.

6. From the 4. axiom: There are 4 points in a general position. Any two different pairs determine
different lines.

p and p′ are both incident with q+1 lines. From the 1. axiom, there is exactly one line L′ containing
bot p and p′. Beside L′ there are 2q lines incident to p and p′, non of these lines are incident to
both.

By Statement 5 all these lines contain exactly q + 1 points. For every point p′′ there is such a line
among these that does not lie on the point p′′. By Statement 5, p′′ is incident to q+ 1 lines. Every
point is incident to exactly q + 1 lines, and by switching the roles, every line is incident to exactly
q + 1 points.

Each point pi ∈ L is incident to q lines beside L every line is among these for exactly one pi.

7. From Statement 6 the number of lines is

(q + 1)q + 1 = q2 + q + 1

.

8. Similarly every point p′′ is incident to q+ 1 lines, that contain all other points, and each line has q
points beside p′′ and the lines have no other common point than p′′.

The number of points is (q + 1)q + 1 = q2 + q + 1.

Proposition 10.1. There is a finite projective plane of order q iff q is a prime power
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Theorem 10.2. If a q is a prime power, then there exists a projective plane of order q.

Proof. Proved by construction: Galois field of order q, denoted by GF (q). This is a finite field with
underlying set {0, 1, 2, . . . , q − 1}.

The so called Galois plane is a plane built upon GF (q).

• Points: (a, b, c) ∼ (λa, λb, λc), ∀λ 6= 0

• Lines: [x, y, z] ∼ [λx, λy, λz], homogeneous coordinates.

There are q possible values in every coordinate, where (0, 0, 0) and [0, 0, 0] are the exception. This means
that there are q3 − 1 possible triplets.

Each triplet is represented q − 1 times, so the number of point, and the number of lines equals
q3−1
q−1 = q2 + q + 1.

The point (a, b, c) is incident to the line [x, y, z] iff ax+ by + cz = 0 iff λax+ λby + λcz = 0.
For a fixed (a, b, c) the equation ax + by + cz = 0 has q2 solutions (2 free variables with q possible

values), but [0, 0, 0] is among the solutions, so only q2 − 1 are valid. Each solution is contained q − 1

times because of homogeneous coordinates, meaning q2−1
q−1 = q+ 1 lines are incident to the point (a, b, c).

Every point is incident to q + 1 lines. Similarly every line has q + 1 points.
The line connecting two different points (a, b, c) and (a′, b′, c′) +λ(a, b, c) is the solution of the system

of linear equations: {
ax+ by + cz = 0

a′x+ b′y + c′z = 0

the number of solutions is q, but [0, 0, 0] is also a solution, giving us q − 1 valid solutions.
Every solution is considered q − 1 times because of the homogeneous coordinates, giving us exactly

one solution.
Any 2 different points are contained together by exactly 1 line, and similarly any 2 different lines have

exactly one common intersection point.
For axiom 4, it is enough to show 4 points in general position: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), these

are different and no 3 of them is on the same line.
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11 Extremal problems

The task is to find maximum or minimum value of a function over a given set.

11.1 Forbidden subgraphs

F is a fixed forbidden subgraph. ex(n, F ) is the max number of edges in a graph on n vertices that does
not contain the forbidden graph F as a subgraph.

Special cases:

• ex(n, F ) =
(
n
2

)
if n < |V (F )|.

• ex(n,K2) = 0.

• ex(n, P3) = lb
(
n
2

)
, where lb is the whole part.

Theorem 11.1. If a graph G contains no K3 as a subgraph, then

|E| ≤ lb
(
n2

4

)
,

and |E| = lb
(

n4

4

)
iff it is the complete bipartite graph Kub(n

2 ),lb(n
2 )

Theorem 11.2 (Turán). For n ≥ p the graph having the largest number of edges without containing Kp

as a subgraph is obtained by:

• Partition of vertices into p− 1 classes.

• Two vertices are connected iff they belong to different classes.

From this

ex(n,Kp) =

(
n

2

)
−

p−1∑
i=0

(
lb
(

n+i
p−1

)
2

)
.

Theorem 11.3. For all p ≥ 3, p ∈ N and n > p,

ex(n,Kp) ≤ n2

2
− (p− 1)

(
n

p−1

)2
2

.

Proof. Begin by

n2

2
− (p− 1)

(
n

p−1

)2
2

=
n2

2
− n2

2(p− 1)
=
n2(p− 2)

2(p− 1)
.

If a graph G does not contain Kp as a subgraph, then ω(G) ≤ p− 1 or α(G) ≤ p− 1.
For any graph G,

α(G) ≥
∑
v∈V

1

d(v) + 1
.

By the claim for G,

α(G) ≥
∑
v∈V

1

(n− 1− d(v)) + 1
=
∑
v∈V

1

n− d(v)
.

If the graph G does not contain Kp as a subgraph then

p− 1 ≥
∑
v∈V

1

n− d(v)
.

By the inequality for the convex function f(x) = 1
x ,∑n

i=1 f(xi)

n
≥ f

(∑n
i=1 xi
n

)
n ∈ N
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∑
v∈V

1
n−d(v)

n
≥ 1∑

v∈V (n−d(v))
n

=
n

n2 −
∑

v∈V d(v)
=

n

n2 − 2e
.

p− e ≥
∑
v∈V

1

n− d(v)
≥ n2

n2 − 2e
, n2 − 2e > 0∀G.

(p− 1)(n2 − 2e) ≥ n2

(p− 1)n2 − (p− 1)2e ≥ n2

(p− 2)n2 ≥ (p− 1)2e

(p− 2)n2

2(p− 1)
≥ e.

This is an upper bound for the number of edges graphs that do not contain Kp as a subgraph.

To prove the claim, that for any graph G the independence number

α(G) ≥
∑
v∈V

1

d(v) + 1
= s(G)

Proof 1: Greedy selection of vertices. At the beginning S = ∅. In each step select a vertex v of G with
minimal degree:

• S := S ∪ {v},

• G := G\{v ∪N(v)}.

At the end S is an independent vertex set.

α(G) ≥ 1 + α(G\{v ∪N(v)}) ≥ 1 + s(G\{v ∪N(v)}) ≥ s(G)

Proof 2: Greedy deletion of vertices. While G has edges, delete a vertex v with maximal degree. s(G) is
decreased by 1

d(v)+1 and increased by

∑
vi∈N(v)

(
1

d(vi)
− 1

d(vi) + 1

)
=

∑
vi∈N(v)

1

d(vi)(d(vi) + 1)
≥

∑
v∈N(v)

1

d(v)(d(v) + 1)
= d(v)

1

d(v)(d(v) + 1)
=

1

d(v) + 1
.

The value of s during the algorithm does not decrease. s(G − v) ≥ s(G). At the end we get a set S
with no edges, an independent vertex set for which the inequality also holds

s(S) ≥ s(G), s(S) =
∑
v∈S

1

d(v) + 1
= |S|.

By definition α(G) ≥ |S| and we have seen that s(S) ≥ s(G), which implies

α(G) ≥ s(G).

11.2 Routings

In this part we assume that G is a connected graph.

Definition 11.1 (Routing). A routing R in a graph G is a collection of n(n−1) paths. For each ordered
pair (vi, vj), vi, vj ∈ V (G) there is a path Pij starting at vi and ending at vj.

Definition 11.2 (Load of a vertex). In a routing R of the graph G the load of the vertex vi ∈ V is the
number of pahts Pjk containing vi as an interior point. Notation: ξR(vi).

Definition 11.3 (Forwarding index). The forwarding index ξ(G) of a graph G is

ξ(G) = min
R

max
1≤i≤n

ξR(vi).
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Theorem 11.4. For any connected graph G with n vertices and m edges

ξ(G) ≥ 2

n

∑
1≤i≤j≤n

(d(vi, vj)− 1) ≥ n− 1− 2m

n
,

where d is the distance of vertices vi, vj.

Proof. Let R be any routing. Any path connecting the vertices vi and vj has at least d(vi, vj)−1 interior
vertices.

Every pair vi, vj of vertices is connected by two paths Pij and Pji adding 2 to the load at least
d(vi, vj)− 1 vertices:

n∑
k=1

ξR(vk) ≥ 2
∑

1≤i≤j≤n

(d(vi, vj)− 1) ≥ 2

[(
n

2

)
−m

]
= n(n− 1)− 2m

for all routings.

ξ(G) = min
R

max
1≤i≤n

ξR(vi) = max1≤i≤nξR0
(vi) ≥

1

n

n∑
i=1

ξR0
(vi) ≤

1

n
·2·

n∑
i=1

(d(vi, vj)−1) ≥ 1

n
(n(n−1)−2m).

Theorem 11.5. For infinitely many values of n there are graphs on n vertices, where

∆(G) <
√
n+

1

2
, ξ(G) < n.

Proof. We apply a similar method as the construction of Galois planes. Let q be a prime power, n =
q2 + q + 1.

• vertices: (a, b, c) 6= (0, 0, 0) homogeneous coordinates.

• adjacent vertices: (a, b, c) and (a′, b′, c′) where aa′ + bb′ + cc′ = 0.

Claim 1: Every vertex of the so generated graph G has degree q or q + 1.
The equation ax+ by + cz = 0 has q0, but (0, 0, 0) is one of them, so q2 − 1 valid solutions, so every

point is repserented q − 1 times: q2−1
q−1 = q + 1 different.

If all of them are different from (a, b, c), then it has degree q + 1.
If one of them is (a, b, c) it has degree q.
Claim 2: The so called generated graph G has diameter 2. For any two vertices there is a path of

length at most 2 connecting them.
Consider the points (a, b, c) and (a′, b′, c′) and the points with the same coordinates in the Galois

plane PG(2, q). By the axiom 1 there exists a line [x, y, z] in PG(2, q) that is incident to both of the
points.

• The vertex (x, y, z) is adjacent to both vertices in the graph.

• Through (x, y, z) there is a path of length 2 connecting the two vertices, so their distance is at most
2.

Let us denote the vertices of G by v1, v2, . . . , vn.

• If vivj ∈ E let this edge be the paths Pij and Pji as well.

• If vivj /∈ E by Claim 2 there exists a vk common neighbor of vi and vj . Set Pij = vivkvj and
Pji = vjvkvi.

The paths in the first case do not load any vertices. The paths in the second vertex load the vertex
vk by 2. The loading of a vertex vk is at most 2

(
d(vk)

2

)
≤ (q + 1)q.

ξ(G) = min max ξR(vk) ≤ (q + 1)q = q2 + q = n− 1 =⇒ ξ(G) < n.
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By Claim 1 ∆(G) ≤ q + 1

q + 1 =

(
q +

1

2

)
+

1

2
=

√(
q +

1

2

)2

+
1

2
=

√
q2 + q +

1

4
+

1

2
<
√
q2 + q + 2 +

1

2
=
√
n+

1

2

∆(G) <
√
n+

1

2
.

11.3 The Turán problem for 4–cycles

Proposition 11.1. The graph G constructed in the proof of the previous Theorem is C4–free.

Proof. In the proof of Claim 2 we have seen that if vi ∈ V and vi ∼ (a, b, c) and vj ∈ V and vj ∼ (a′, b′, c′),
there exists a vk ∈ V , vk ∼ (x, y, z) neighbour of both vi and vj .

vk can be imagined as a line [x, y, z] in PG(2, q) containing the points (a, b, c) and (a′, b′, c′). By axiom
1 there is exactly one such line, so there is exactly one common neighbor.

If G would have C4 as a subgraph, there would be at leas 2 common neighbours.

Corollary 11.1. If q is a prime power and n = q2+q+1, then ex(n,C4) ≥ |E(G)| if G is the constructed
graph.

Proof. By Claim 1 ∀v ∈ V d(v) ≥ q, so |E(G)| ≥ nq
2 , and n = q2 + q+ 1 < (q+ 1)2, so

√
n− 1 < q. From

this
n(
√
n− 1)

2
< |E(G)| ≤ ex(n,C4).
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