Nemlineáris Dinamikai Modellek a Biológiában

Kidolgozott vizsgajegyzet

Erdélyi Áron 2020.06.02.

Tartalomjegyzék

1.	Egy	r-faj mátrix-modellek	5
	1.1.	Fibonacci	5
	1.2.	Leslie mátrix, korfa, utódok átlagos száma, az $R \ge 1 \Leftrightarrow r \ge 1$ tulajdonság	5
		1.2.1. Korosztályos lineáris modell egy populáció időbeli mértékére	5
	1.0	1.2.2. Atmenetgráf	6
	1.3.	Bolyongási játékpélda valóságos egerekkel	6
	1.4.	Pozitív mátrixok Perron-Frobenius tulajdonságai	6
2.	Az	$u_t = u_{xx}$ diffúziós egyenlet és általánosításai	7
	2.1.	Fizikai modell és mögöttes matematika: az egyenlet levezetése mikroszkopikus (Brown- mozgás, bolyongás 1D-ben, skálázás) illetve makroszkopikus (hővezetés, hőenergia-mérleg adatt témégeben différié envezmérleg adatt témégeben) megfentelések szertesérével	7
		2 1 1 Mikrofizikai levezetés: Brown-mozgás szerinti interpretációban	7
		2.1.1. Miktolizikai levezetés: Hővezetés interpretációban	7
	22	Diffúzió-advekció-reakció egyenletek kemotaxis-diffúzió egyenletrendszer	8
	$\frac{2.2}{2.3}$	Kezdeti- és peremfeltételek	8
	2.0.	2.3.1. Dirichlet peremérték feltétel	8
		2.3.2. Neumann peremérték feltétel	8
	2.4.	Kapcsolat Gauss-görbék egy családjával	9
	2.5.	Maximum-elv	9
	2.6.	Korrekt kitűzöttség és numerikus megfontolások	9
૧	Ans	alitikus módszerek közönséges differenciálogyenletek vizsgálatára	10
J .	3.1	Linearizálás és lokális fázisportré egyensúlyi helyzetek körül	10
	0.1.	3.1.1 Linearizálás egyensúlvi helyzetek körül	10
		3.1.2 Lokális fázisportré egyensúlyi helyzetek körül	11
	32	Elemi következtetések a vektormező valamint Liapunov függyénvek alapján	11
	3.3.	A fázisportré változása a paraméterek változásának tükrében: jellegzetes $\mu \leq 0$ bifurkációs	
		$(\dot{x} = \mu - x^2, \dot{y} = -y$ nyereg-csomó), $(\dot{r} = \mu r - r^3, \dot{\phi} = -1$ Hopf) ábrák	12
	3.4.	Stabilitás és vonzás, egyensúlyi helyzeté és periodikus pályáé	13
		3.4.1. Egyensúlyi helyzet	13
		3.4.2. Periodikus pálya	13
	3.5.	Numerikus megfontolások	13
	3.6.	A 2D eset specialitásai, omega-határhalmazok a síkon	13
	3.7.	Lotka és Volterra két-faj modelljei	14
4.	Pélo	dák hálózatokon értelmezett dinamikára	15
	4.1.	Az évenkénti adóbevallások $x_{i,t+1} = F(\overline{x}_{i,t})$ átlagolásos modellje, elégséges feltétel globá-	
	4.9	lisan aszimptotikusan stabil homogén fixpont létezésére, matematikai részletekkel	15
	4.2.	A veletien gratok Erdős-Kenyi, Strogatz-Watts, Darabasi-Arbert fele tipusai, nenany mon-	15
		4.2.1 Erdős Bónyi grófok	15
		4.2.1. Eruos-henyi gratok	16
		4.2.2. Bulgaiz-Watto grafok	16
	43	További modellek négyzetrácsokon is	16
	т.0.	4 3 1 Járványteriedés modellezése celluláris automatákkal	16
		4.3.2. Járványterjedés modellezése véletlen gráfokkal	17
5	۸da	att gén térbali tarjadésa	19
J.	5 1	Biológia és matematika együtt: a Fisher féle $u_i = u(1 - u) \pm u_i$ parciális egyenlet lovozotóso.	18
	5.2.	Utazó hullám mint speciális alakú megoldás differenciálegyenlete és annak az $U(-\infty) =$	10
		$1, U(\infty) = V(-\infty) = V(\infty) = 0$ peremértékekhez tartozó megoldásai	18
	5.3.	Az itt és most szükséges fázisportré analízis	19
	5.4.	A $c=2$ sebességhez tartozó utazó hullám	19
	5.5.	Utazó hullám az 1D diffúziós SI modellben	19

6.	A mintázatképződés Turing-féle modellje 6.1. A Turing által alkalmazott biológiai-kémiai heurisztika	20 20 20
7.	Idegi ingerületvezetés: Hodgkin-Huxley alapmodell	22
	7.1. Hodgkin és Huxley kísérletei a tintahal óriás idegrostjával	22
	7.2. Ionáramlás az idegrost sejthártyán át és ami hajtja	22
	7.3. Az ekvivalens áramköri modell és egyenletrendszer	22
	7.4. Ingerküszöb és regenerációs időküszöb	23
	7.5. Az akciós potenciál mint ingerületre adott válasz és a hozzátartozó "V", "Na-pumpa, K-	
	pumpa", "h, m, n" ábrák	24
	7.6. Utazó hullám az idegrostban és a teljes Hodgkin-Huxley egyenletrendszerben	24
8. Relaxációs oszcillációk és a Nagumo-Fitzhugh egyenletrendszer 8.1. Az ingerköszöb és az akciós potenciál mint valóságos viselkedés megjelenése az \dot{x}		25
	$x - \frac{x^3}{3} + I$), $\dot{y} = \frac{1}{c}(a - x - by)$, $(b < 1, c \gg 1)$ Nagumo-Fitzhugh egyenletrendszerben . 8.2. A periodikus pálya keletkezésének kétféle mechanizmusa, "kicsiben = lokálisan" és "nem-	25
	$lokálisan = nagyban" \dots \dots$	26
	8.3. Az itt és most szükséges fázisportré analízis	27

Előszó

A Tanár Úr szavaival élve: "A matematika egy nyelv, ami alapján a fizika, a kémia és a biológia íródott". És ezek egymásra épülnek. Mondhatni a kémia a fizikai törvények "nemlineáris kombinációja", és ebből a biológia pedig a kémiai összefüggések "nemlineáris kombinációja". Ahhoz hogy megértsük mi történik egy biológiai modellben, nem csak a biológiai szempontokat kell figyelembe venni, hanem a mögöttes matematikát is.

Ez a jegyzet tartalmazza a tárgyalt elméleti anyagot, viszont ennyi nem elég az anyag megértéséhez. A számítógép egy nagyon erős eszköz, ami hosszú "matematikai mondatokat és kérdéseket" képes értelmezni és válaszolni rá ugyanúgy, a matematika nyelvén. Ezért lényeges a gyakorlati anyag elsajátítása is, hogy megtanuljuk azokat a típikus eljárásokat, és megtapasztaljuk saját bőrünkön azokat a hibákat, amelyek numerikus algoritmusoknál előjöhetnek.

Sikeres felkészülést!

1. Egy-faj mátrix-modellek

Perron-Frobenius tétel: Legyen $\mathbf{A} \ge \mathbf{0}$ és $\exists k^*$, hogy $\mathbf{A}^{k^*} > \mathbf{0}$. Legyen tehát \mathbf{A} nemnegatív, primitív mátrix. Ekkor $|\lambda_n| \le |\lambda_{n-1}| \le \cdots \le |\lambda_2| < \lambda_1 = r$, azaz $\exists r > 0$ domináns sajátérték,

$$\mathbf{A}\mathbf{v} = r\mathbf{v}, \quad \mathbf{w}^T\mathbf{A} = r\mathbf{w}^T,$$

domináns sajátvektor jobbról $\mathbf{v} > \mathbf{0}$, balról $\mathbf{w}^T > \mathbf{0}^T$, a $\mathbf{w}^T \mathbf{v} = 1$ normálással, és végül a Perron-Frobenius mátrix hatványozás aszimptotikája

$$\frac{1}{r^k} \mathbf{A}^k \to \mathbf{v} \mathbf{w}^T, \quad k \to \infty.$$

1.1. Fibonacci

Az $f_0 = f_0 = 1$, $f_{n+1} = f_n + f_{n-1}$ (n = 1, 2, ...) másodrendű lineáris rekurziót felbontva az *n*-edik év ifjú és öreg nyúlpárjainak száma szerint két elsőrendű, egymáshoz csatolt $i_{n+1} = o_n$, $o_{n+1} = i_n + o_n$ lineáris rekurzióra, amelyek együtt mátrixos formában is felírhatók:

$$\begin{bmatrix} i_{n+1} \\ o_{n+1} \end{bmatrix} = \mathbf{F} \begin{bmatrix} i_n \\ o_n \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} i_0 \\ o_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} i_k \\ o_k \end{bmatrix} = \mathbf{F}^k \begin{bmatrix} i_0 \\ o_0 \end{bmatrix}, \quad k = 0, 1, 2, \dots$$

Tegyük fel, hogy a megoldás $\lambda^n {\bf v}$ alakú. Ekkor

$$\lambda^{n+1}\mathbf{v} = \mathbf{F}\lambda^n\mathbf{v} \Rightarrow \lambda\mathbf{v} = \mathbf{F}\mathbf{v}.$$

$$det(\mathbf{F} - \lambda \mathbf{I}) = det \begin{bmatrix} -\lambda & 1\\ 1 & 1-\lambda \end{bmatrix} \Rightarrow \lambda^2 - \lambda - 1 = 0 \Rightarrow \lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2},$$

ahol $r=\frac{1+\sqrt{5}}{2}=\lambda_1>\lambda_2$ a domináns sajátérték. Ebből tehát a teljes populációt a

$$f_k = i_k + o_k = \frac{1}{\sqrt{5}} (\lambda_1^{k+1} - \lambda_2^{k+1})$$

sorozat írja le.

1.2. Leslie mátrix, korfa, utódok átlagos száma, az $R \stackrel{\leq}{=} 1 \Leftrightarrow r \stackrel{\leq}{=} 1$ tulajdonság

Leslie mátrix $\mathbf{L} = \mathbf{L}_n = \mathbf{L}_4$ (ahol min $(k^*(n)) = n + 2$, speciálisan min $(k^* = 6)$).

$$\mathbf{L} = \begin{bmatrix} 0 & b_1 & b_2 & b_3 \\ s_1 & 0 & 0 & 0 \\ 0 & s_2 & 0 & 0 \\ 0 & 0 & s_3 & 0 \end{bmatrix}$$

ahol $b_k \geq 0$ az adott krosztályból születő ifjak rátája, és $s_k > 0$ az adott korosztály túlélési rátája.

$$\frac{1}{r^k} \begin{bmatrix} x_1^k \\ x_2^k \\ x_3^k \\ x_4^k \end{bmatrix} = \frac{1}{r^k} \mathbf{L}^k \mathbf{x}^0 \to (\mathbf{v} \mathbf{w}^T) \mathbf{x}^0 = (\mathbf{w}^T \mathbf{x}^0) \mathbf{v}, \quad k \to \infty.$$

1.2.1. Korosztályos lineáris modell egy populáció időbeli mértékére

Az \mathbf{L}^k mátrix mutatja, hogy a k-adik korosztályban milyen lesz a korbeli eloszlás. A karakterisztikus polinom $p_4(\lambda) = \lambda^4 - s_1 b_1 \lambda^2 - s_1 s_2 b_2 \lambda - s_1 s_2 s_3 b_3$. Definiáljuk az

$$R = s_1 b_1 + s_1 s_2 b_2 + s_1 s_2 s_3 b_3$$

egyedenkénti átlagos utódszám paramétert, amelynek összefüggése azrlegynagyobb sajátértékkel a következő:

$$\begin{split} R > 1 \Leftrightarrow r > 1 & \text{ hépesség robbanás,} \\ R = 1 \Leftrightarrow r = 1 & \text{ stabil népesség,} \\ R < 1 \Leftrightarrow r < 1 & \text{ csökkenő népesség.} \end{split}$$

Ezekkel az összefüggésekkel az időben minden ponton számolva a következő korfákat kapjuk:

1.2.2. Átmenetgráf

Legyen $\mathbf{A} = \{a_{i,j}\}_{i,j=1}^n$ továbbra is nemnegatív mátrix. Az általa meghatározott $\mathcal{G} = \mathcal{G}(\mathbf{A})$ átmenetgráf csúcsai és irányított élei:

$$V(\mathcal{G}) = \{1, 2, \dots, n\}, \quad (\{i\} \to \{j\}) \in E(\mathcal{G}) \Leftrightarrow a_{i,j} > 0.$$

Az index-csere értelmes volta az L_4 Leslie mátrix biológiai interpretációjából látszik:

Lemma. Legyen $\mathbf{A} = \{a_{i,j}\}_{i,j=1}^n$ 0-1 mátrix. Ekkor $\{\mathbf{A}^k\}_{j,k}$ a $\mathcal{G}(\mathbf{A})$ átmenetgráf *j*-edik csúcsából az *i*-edik csúcsába vezető *k* hosszúságú irányított utak száma.

Következmény. Általános $\mathbf{A} \ge \mathbf{0}$ esetén $\mathbf{A}^{k^*} > 0$ pontosan akkor teljesül, ha az átmenetgráf bármely csúcsából bármely csúcsába van k^* hosszúságú irányított út.

Világos, hogy ekkor az átmenetgráf mint irányított gráf erősen összefüggő. Mátrixokra átfogalmazva, primitív mátrix szükségképpen irreducibilis is.

1.3. Bolyongási játékpélda valóságos egerekkel

Jelölje $\xi_n = i$ azt az eseményt, hogy az egét az *n*-edik időpontban éppen az *i*-edik cellában van, ahol $n = 0, 1, 2, \ldots$ és i = 1, 2, 3. Így a **P** átmenetmátrix - melynek elemei a $p_{i,j} = P(\xi_{n+1} = j | \xi_n = i)$ valószínűségek:

$$\mathbf{P} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & 0 \end{bmatrix} \Rightarrow \pi_k^T = \pi_0^T \mathbf{P}^k \to \pi_0^T (\mathbf{v} \mathbf{w}^T) = \frac{1}{8} (2, 3, 3), \quad k \to \infty,$$

mert r = 1, $\mathbf{v} = col(1, 1, 1) \in \mathbb{R}^3$ és $\mathbf{w}^T = \frac{1}{8}(2, 3, 3)$ bármely π_0^T kezdeti eloszlásra.

1.4. Pozitív mátrixok Perron-Frobenius tulajdonságai

Legyen **A** egy primitív nem-negatív $n \times n$ alakú mátrix, melynek a spektrális sugara¹ r. Ebben az esetben a következő állítások igazak:

- 1. rpozitív valós szám, amely az
 ${\bf A}$ mátrix legnagyobb sajátértéke. Másnéve
nra Perron-Frobenius sajátérték.
- 2. A Perron-Frobenius sajátérték regyszerű.
- 3. Az A mátrixnak van egy r-hez tartozó v jobboldali sajátvektor, amelynek a komponensei mind pozitívak.
- 4. Hasolnóan A-nak van egy r-hez tartozó
w baloldali sajátvektora, amelynek komponensei szintén mind pozitívak.

¹Legnagyobb sajátértékének abszolút értéke

2. Az $u_t = u_{xx}$ diffúziós egyenlet és általánosításai

2.1. Fizikai modell és mögöttes matematika: az egyenlet levezetése mikroszkopikus (Brown-mozgás, bolyongás 1D-ben, skálázás) illetve makroszkopikus (hővezetés, hőenergia-mérleg adott térrészben - diffúzió, anyagmérleg adott térrészben) megfontolások segítségével

2.1.1. Mikrofizikai levezetés: Brown-mozgás szerinti interpretációban

Egyetlen pontszerű részecske bolyong a számegyenesen. Mozgásáról csak annyit tudunk, hogy adott helyzetből δt idő alatt $\frac{1}{2}$ valószínűséggel jobbra, $\frac{1}{2}$ valószínűséggel balra megy, éspedig δx távolságot.

Jelölje P(t, x) annak a valószínűségét, hogy a részecske a t időpillanatban a számegyenes x pontjától balra helyezkedik el. A t és a $t + \delta t$ időpillanat közötti lehetséges elmozdulásokat figyelembe véve, a $P(t+\delta t, x)$ valószínűséget kifejezzük a t időpillanathoz tartozó különböző valószínűségekkel. Az az állapot, hogy $t + \delta t$ időpillanatban a részecske az x ponttól balra helyezkedik el, kétféleképpen alakulhat ki: ha a t időpillanatban balra volt az $x - \delta x$ ponttól, vagy ha benne volt az $(x - \delta x, x + \delta x)$ intervallumban. Az előző esetben továbbra is balra marad az x ponttól, az utóbbi esetben pedig a jobbra, vagy balra lépések egyikével az x ponttól jobbra, másikával az x ponttól balra kerül. A valószínűséget figyelembe véve azt kapjuk, hogy a kétváltozós P függvény eleget tesz a

$$P(t+\delta t,x) = P(t,x-\delta x) + \frac{1}{2}(P(t,x+\delta x) - P(t,x-\delta x))$$

algebrai összefüggésnek. Ezután mindkét oldalból kivonjuk a P(t, x) valószínűséget, és osztunk δt , a jobb oldalon pedig bővítjük a $(\delta x)^2$ kifejezéssel. Így

$$\frac{P(t+\delta t,x)-P(t,x)}{\delta t} = \frac{1}{2} \frac{P(t,x-\delta x)-2P(t,x)+P(t,x+\delta x)}{(\delta x)^2} \frac{(\delta x)^2}{\delta t},$$

majd a $\frac{(\delta x)^2}{\delta t} = 1$ skálázással és a $\delta t, \delta x \to 0$ határátmenettel a remélt $P'_t(t, x) = P''_{xx}(t, x)$ parciális differenciálegyenlet adódik.

2.1.2. Makrofizikai levezetés: Hővezetés interpretációban

Jelölje u(t,x) az $x \in \Omega \subset \mathbb{R}^d$ (d = 1, 2, 3) pont hőmérsékletét a $t \ge 0$ időpontban. A másik alapvető fogalom a hőáramlás időtől és helytől is függő vektormezője, az $\mathbf{F}(t,x)$. A harmadik a belső hőforrások f(t,x) sűrűségfüggvénye. Egy $G \subset \Omega$ térrészen belüli

$$Q(t) = \int_G c\rho u(t,x) dx$$

hőenergia $\dot{Q}(t)$ megváltozása

$$\dot{Q}(t) = \int_{G} c\rho u_{t}'(t, x) dx = -\int_{\partial G} \mathbf{F}(\mathbf{t}, \mathbf{x}) d\mathbf{S} + \int_{G} f(t, x) dx,$$

ahol a bal oldalon ρ az anyagsűrűség és
cafajhő, a jobb oldal első tagja
aGperemén átáramló hő
energia, a második tag pedig a G-ben található hőforrások belső munkája. A divergenci
atétel² valamint a diffúzió
3 $\mathbf{F} = -k\nabla u$ törvényének segítségével

$$\int_{G} c\rho u_{t}'(t,x)dx = \int_{G} div(k\nabla u)dx + \int_{G} f(t,x)dx,$$

amiből a

$$c\rho u_t'(t,x)=div(k\nabla u)+f(t,x)$$

végeredmény már közvetlenül adódik. Amennyiben a k diffúziós együttható állandó, kihozható a divergencia operátora elé, és a végeregmény a $c\rho u'_t = k\Delta u + f(t,x)$ alakra egyszerűsödik. Ha nincsenek belső hőforrások, akkor az $a^2 = \frac{k}{c\rho} > 0$ jelöléssel az egyenlet az $u'_t = a^2\Delta u$ alakot ölti, amely egy előre megadott $\Omega \subset \mathbb{R}^d (d = 1, 2, 3)$ korlátos tartomány pontjaiban érvényes. Általában azt is feltesszük, hogy mind a c fajhő, mind a ρ anyagsűrűség, és ekkor velük együtt az a > 0 paraméter is térben-időben állandók.

 $[\]int_{G} div(\mathbf{v}) dx = \int_{\partial G} \mathbf{v} d\mathbf{S}$

³Fourier - hőtan, Fick - kémia, Ohm - elektromosság

2.2. Diffúzió-advekció-reakció egyenletek, kemotaxis-diffúzió egyenletrendszer

Az $u_t'=-\nabla {\bf F}+f$ egyenlet változatai alapvetően az
 ${\bf F}$ és fválasztásától valamint - rendszerek esetében - a csatolástól függenek:

- diffúzió: $\mathbf{F} = \mathbf{F}_{diff} = -k_1 \nabla u$
- advekció: $\mathbf{F} = \mathbf{F}_{adv} = k_2 u \mathbf{v}$, ahol **v** az áramló közeg ismert sebessége.
- advekció-diffúzió: $\mathbf{F} = \mathbf{F}_{adv-diff} = -k_1 \nabla u + k_2 u \mathbf{v}$
- reakció diffúzió: $u'_t = \alpha^2 \Delta u + f(u, v), v'_t = \beta^2 \Delta v + g(u, v)$, ahol $\dot{u} = f(u, v), \dot{v} = g(u, v)$ egy, az Ω tartomány minden pontjában azonos módon jelátszódó reakció egyenletrendszere.
- chemotaxis-diffúzió: $\mathbf{F} = \mathbf{F}_{chtaxis-diff} = -\ell u \nabla c \beta^2 \nabla u$, ahol a szaporodni képes baktérium (koncentrációja u) menekül egy külső kémiai folyamatban képződő méreg (koncentrációja c) elől. Így a csatolt rendszer $c'_t = \alpha^2 \Delta c + f(c), u'_t = \beta^2 \Delta u - \ell \cdot div(u \nabla c) + g(c, u).$

Mindezek a parciális differenciálegyenletek perem- és kezdeti feltételekkel együtt értendők.

Az első három példa mindegyike - már amennyiben az f forrástag sem függ az u ismeretlentől - az advekció-diffúzió egyenlettel bezárólag lineáris feladat. A k_1 diffúziós együttható a legegyszerűbb esetben valódi, az $x \in \mathbb{R}^d$ (d = 1, 2, 3) térváltozótol független állandó: a $div(k_1 \nabla u) = k_1 \Delta u$ azonosság ekkor érvényes.

2.3. Kezdeti- és peremfeltételek

2.3.1. Dirichlet peremérték feltétel

Ha a peremfeltétel meghatározza a peremek értékeit, akkor ez egy Dirichlet peremérték feltétel. Például, ha egy vasrúd egyik végét abszolút nulla fokon tartjuk, akkor a probléma értéke ismert lesz ebben a pontban a térben.

At $u'_t = \Delta u, u(t,0) = u(t,\pi) = 0, u(0,x) = g(x)$ homogén Dirichlet feladat megoldható Fourier-sor alakjában:

$$u(t,x) = \sum_{n=1}^{\infty} c_n e^{-n^2 t} \sin(nx), \quad c_n = \frac{2}{\pi} \int_0^{\pi} g(c) \sin(nx) dx, \quad n = 1, 2, \dots$$

Maga az egyenlet homogén lineáris, és a peremfeltétel is homogén. Így az $u(t, x)(t \ge 0, x \in [0, \pi])$ megoldás az $e^{-n^2 t} \sin(nx)$ alapmegoldások lineáris kombinációja. Az együtthatókat a t = 0 kezdeti állapotot leíró $g \in L_2[0, \pi]$ függvény Fourier sorfejtése szolgáltatja.

2.3.2. Neumann peremérték feltétel

Ha a peremfeltétel meghatározza a peremeken lévő deriváltak értékeit (például nem tudjuk hogy mekkora lesz egy adott pillanatban a peremen az érték, de a ki-be folyás mértékét tudjuk), akkor ez egy Neumann peremérték feltétel. Például, ha melegítjük egy vasrúd egyik végét, akkor az energia konstans ütemben fog hozzáadódni, de a pillanatnyi hőmérséklet nem lesz ismert.

A fenti megoldáshoz hasonlóképpen, az $u_t'=\Delta u, u_x'(t,0)=u_x'(t,\pi)=0, u(0,x)=g(x)$ homogén Neumann feladat megoldása

$$u(t,x) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n e^{-n^2 t} \cos(nx), \quad c_n = \frac{2}{\pi} \int_0^{\pi} g(x) \cos(nx) dx, \quad n = 0, 1, 2, \dots$$

Fontos megjegyezni hogy - még akkor is, ha a g függvény folytonos, sőt ha még a $g(0) = g(\pi) = 0$ kompatibilitási feltételek is teljesülnek - a megoldás "döccenve" indul: a t = 0 időpontban a Fouriersorok konvergenciája általában csak az $L_2[0,\pi]$ térben garantált. Szerencsére ha t > 0, akkor a sorösszeg végtelenszer deriválható a t és az x hibrid változókban. A $t \to \infty$ határátmenetben a homogén Dirichlet feladat megoldásának képlete egyenletes $u(t,x) \to 0$ kihűlést, a homogén Neumann feladat megoldásának képlete pedig az integrál-átlaghoz tartó $u(t,x) \to \frac{c_0}{2} = \frac{1}{\pi} \int_0^{\pi} g(x) dx$ teljes hőmérséklet-kiegyenlítődést mutat.

2.4. Kapcsolat Gauss-görbék egy családjával

Tétel. Tetszőleges $g:\mathbb{R}\to\mathbb{R}$ folytonos és korlátos függvény esetén

$$u(t,x) = \begin{cases} g(x) & t = 0\\ \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} g(\xi) e^{-\frac{(x-\xi)^2}{4t}} d\xi & t > 0 \end{cases}$$

egyetlen megoldása az $u'_t = u''_{xx}, (t, x) \in [0, \infty) \times \mathbb{R}$ egyenletnek, az u(0, x) = g(x) kezdeti feltétel mellett.

2.5. Maximum-elv

Hidegzugok, melegzugok, csakúgy mint a koncentráció összesűrűsödései vagy ritkulásai egydimenziós lineáris diffúzió révén nem jöhetnek létre. A maximum-elv alapvetően egyetlen valós függvényre teljesü, és már például a lineárisan csatolt $u'_t = \alpha^2 u''_{xx} + au + bv, v'_t = \beta^2 v''_{xx} + cu + dv$ egyenletrendszerre sem érvényes. Ökölszabályként annyit mondhatunk, hogy a diffúzió-egyenlet stabilizál és homogenizál, de a diffúzió-egyenletrendszer már nem rendelkezik ezekkel a tulajdonságokkal.

Legyen $\Omega \subset \mathbb{R}^2$ korlátos (nyílt) tartomány, és legyen T > 0 tetszőleges. Vezessük be az

$$\Omega_T = (0,T) \times \Omega, \quad \partial^* \Omega_T = (\{0\} \times \overline{\Omega}) \cup ((0,T] \times \partial \Omega)$$

jelöléseket. Ekkor

$$\max\{u(t,x)|(t,x)\in\overline{\Omega}_T\}=\max\{u(t,x)|(t,x)\in\partial^*\Omega_T\}.$$

Bizonyítás. A bizonyítást két lépésben tesszük meg.

1. Tegyük fel először, hogy $u'_t < \Delta u$. Az indirekt feltevés azt mondja, van olyan $(t^*, x^*) \in (0, T] \times \Omega$ pont, hogy

$$u(t^*, x^*) = \max\{u(t, x | (t, x) \in \overline{\Omega}_T)\} > \max\{u(t, x) | (t, x) \in \partial^* \Omega_T\}.$$

Ekkor $u'_{x_1}(t^*, x^*) = 0$ és $u''_{x_1x_1}(t^*, x^*) \le 0$ valamint $u'_{x_2}(t^*, x^*) = 0$ és $u''_{x_2x_2}(t^*, x^*) \le 0$. Így

$$u_t'(t^*,x^*) < \Delta u(t^*,x^*) \leq 0,$$

amiből $u(t^* - \delta, x^*) > u(t^*, x^*)$, ha $0 < \delta \ll 1$. Tehát olyan ponto(ka)t konstruálunk, a $(0, T] \times \Omega$ halmazban, ahol az u függvény értéke nagyobb a maximumnál, ami ellentmondás.

2. Most visszatérünk az eredeti u függvényhez. Az $\varepsilon > 0$ paraméter segítségével a $v_{\varepsilon}(t,x) = u(t,x) - \varepsilon t$ segédfüggvényeket. Mivel

$$(v_{\varepsilon})_t'(t,x) = u_t'(t,x) - \varepsilon = \Delta u(t,x) - \varepsilon < \Delta u(t,x) = \Delta v_{\varepsilon}(t,x),$$

a bizonyítás első része szerint

$$\max\{v_{\varepsilon}(t,x)|(t,x)\in\overline{\Omega}_T\}=\max\{v_{\varepsilon}(t,x)|(t,x)\in\partial^*\Omega_T\}$$

tetszőleges $\varepsilon>0$ esetén. A kívánt tulajdonság az $\varepsilon\to 0^+$ határátmenettel adódik.

A maximum-elvet a -u függvényre átfogalmazva a

$$\min\{u(t,x)|(t,x)\in\overline{\Omega}_T\}=\min\{u(t,x)|(t,x)\in\partial^*\Omega_T\}$$

minimum-elvet kapjuk. A maximum-elv és a minimum-elv együttes következménye az $u'_t = \Delta u + f(t,x), u(0,\cdot)|_{\Omega} = g, u|_{(0,\infty)\times\partial\Omega} = h$ kezdeti- és peremérték-feladat klasszikus megoldásának unicitása.

2.6. Korrekt kitűzöttség és numerikus megfontolások

A matematikai analízis egy feladata korrekt kitűzésű, ha igaz rá:

- egzisztencia,
- unicitás
- folytonos függés.

A folytonos függés a feladat összes paraméterére nézve áll fenn: a feladat megfogalmazásának kis hibáit a megoldás csak mérsékelten nagyítja fel. Ugyanezeket várjuk el egy numerikus eljárástól is.

3. Analitikus módszerek közönséges differenciálegyenletek vizsgálatára

3.1. Linearizálás és lokális fázisportré egyensúlyi helyzetek körül

3.1.1. Linearizálás egyensúlyi helyzetek körül

Az egyszerűség kedvéért tételezzük fel, hogy a kérdéses egyensúlyi helyzet, ami körül linearizálni szeretnénk, $x_0 = 0$ legyen. Legyen $f : \mathbb{R}^d \to \mathbb{R}^d C^1$ függvény. Így

$$f(x) = \mathbf{A}x + a(x), \quad \mathbf{A} = f'(0), \quad a(x) = f(x) - \mathbf{A}x.$$

Magától értetődik, hogy $a : \mathbb{R}^d \to \mathbb{R}^d$ is C^1 függvény, melyre a(0) = 0 és $a'(0) = f'(0) - \mathbf{A} = 0$. Itt a(0) = 0 természetesen \mathbb{R}^d beli vektor, a'(0) = 0 pedig egy $d \times d$ méretű, csupa nulla elemekből álló mátrix.

Tekintsük tehát az

$$(N) \quad \dot{x} = \mathbf{A}x + a(x)$$

nemlineáris egyenletet, és annak origó körüli linearizáltját, az

$$(L) \quad \dot{x} = \mathbf{A}x$$

lineáris egyenlet. A lineáris egyenletről lényegében mindent tudunk, ha sajátértékeit és sajátvektorait ismerjük. Tetszőleges $x(0) = x_0$ kezdeti feltételhez tartozó megoldása $x(0) = x_0(t) = e^{\mathbf{A}t}x_0$, sőt ezt a megoldást a $t \to e^{\mathbf{A}t}$ mátrix-függvénnyel együtt ki is tudjuk számolni. A nemlineáris egyenlet megoldásait nem lehet zárt alakban meghatározni. De nem is kell, hiszen azokat a lineáris egyenlet megoldásai kvalitatíve és kvantitatíve jól közelítik. Természetesen csak lokálisan, az origó egy kicsiny környezetében, és csak akkor, ha az **A** mátrix $\lambda_k = \lambda_k(\mathbf{A})$ sajátértékeire teljesül a

$$Re\lambda_k(\mathbf{A}) \neq 0, \quad k = 1, 2, \dots, d$$

feltétel. Ekkor a lokális fázisportrék is azonosnak tekinthetők, sőt ez az azonosítás a numerikus fázisportrékra is kiterjeszthető.

Definíció. Legyen (X, d) metrikus tér és legyen \mathbb{T} az $\mathbb{R}, \mathbb{R}^+, \mathbb{Z}, \mathbb{N}, h\mathbb{Z}, h\mathbb{N}$ halmazok bármelyike. A $\Phi : \mathbb{T} \times X \to X$ leképezés \mathbb{T} idejű dinamikus rendszer X-en, ha igazak rá az alábbi axiómák:

- 1. Φ folytonos,
- 2. $\Phi(0, x) = x, \forall x \in X,$
- 3. $\Phi(t, \Phi(s, x)) = \Phi(t + s, x), \forall t, s \in \mathbb{T}, \forall x \in X.$

A hatféle időválasztást párokba csoportosítva

- $\mathbb{T} = \mathbb{R}$ (illetve $\mathbb{T} = \mathbb{R}^+$) esetén Φ folytonos idejű (semi)dinamikus rendszer,
- $\mathbb{T} = \mathbb{Z}$ (illetve $\mathbb{T} = \mathbb{N}$) esetén Φ diszkrét idejű (semi)dinamikus rendszer,
- $\mathbb{T} = h\mathbb{Z}$ (illetve $\mathbb{T} = h\mathbb{N}$) esetén Φ h > 0 lépésközű (semi)dinamikus rendszer.

Definíció. Legyen $(X, ||\cdot||)$ Banach (azaz teljes normált) tér és legyen \mathbf{T} az $\mathbb{R}, \mathbb{R}^+, \mathbb{Z}, \mathbb{N}, h\mathbb{Z}, h\mathbb{N}$ halmazok bármelyike. A $\Phi : \mathbf{T} \times X \to X$ dinamikus rendszer lineáris, ha a felső axiómák mellett az is igaz rá, hogy

$$\forall \text{ rögzített } t \in \mathbb{T}, \quad \Phi(t, c_1 x_1 + c_2 x_2) = c_1 \Phi(t, x_1) + c_2 \Phi(t, x_2), \quad \forall c_1, c_2 \in \mathbb{R}, \forall x_1, x_2 \in X.$$

A nemlineáris $\mathbb{T} = \mathbf{R}, X = \mathbb{R}^d$ alappélda lineáris változata a $d \times d$ méretű, valós számokból felépített A mátrix által meghatározott $\dot{x} = \mathbf{A}x$ közönséges, autonóm lineáris dirrefenciálegyenlet

$$\Phi_L : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d, \quad (t, x) \to \Phi_L(t, x) = e^{\mathbf{A}t} x$$

alakú megoldó-operátora.

3.1.2. Lokális fázisportré egyensúlyi helyzetek körül

A fázisportré bármely pontjában ismerjük az ottani megoldásgörbe érintővektorát. A következő ábrán látjuk a Trace-Determinant diagramm különböző eseteit, a λ_1, λ_2 előjeleinek függvényében.

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad trace(\mathbf{A}) = a + d, \quad det(\mathbf{A} = ad - bc)$$

3.2. Elemi következtetések a vektormező valamint Ljapunov függvények alapján

A $V : \mathbb{R}^d \to \mathbb{R}$ függvény $x_0 \in \mathbb{R}^2$ ponton áthaladó szintfelülete az $\{x \in \mathbb{R}^d | V(x) = V(x_0)\}$ halmaz. Ha a V függvény C^1 és $V'(x_0) \neq 0$, akkor ez a szintfelület az x_0 pont egy kis környezetében ténylegesen is felület, amely normálvektora az x_0 -beli

$$\nabla V(x_0) = \left(\frac{\partial V}{\partial x_1}(x_0), \frac{\partial V}{\partial x_2}(x_0), \dots, \frac{\partial V}{\partial x_d}(x_0)\right)$$

gradiens-vektor, amelyet magával az $1 \times d$ méretű $V'(x_0)$ deriváltmátrix-szal azonosíthatunk.

Tekintsük most az $\dot{x} = f(x)$ autonóm differenciálegyenletet az x_0 pont egy kis környezetében. Minden további megfontolásunk központjában a

$$\langle \nabla V(x_0), f(x_0) \rangle$$

skalárszorzat előjele áll. Ha ez a skaláris szorzat pozitív, azaz a $\nabla V(x_0)$ és az $f(x_0)$ által közrezárt szög hegyesszög, akkor az $\dot{x} = f(x)$ egyenlet x_0 pontban átmenő trajektóriája az x_0 -hoz közeli szintfelületeket azok növekvő sorrendjében metszi, ha negatív, akkor a csökkenő sorrendben. Ez az egyszerű észrevétel nagyon fontos, ha azt egy szintfelület, vagyis inkább egy szintfelület-család összes pontjára egyszerre alkalmazzuk. A skaláris szorzat nem-nulla előjele azt a geometriai kényszert fejezi ki, hogy a trajektóriák vagy befelé haladjanak, vagy kifelé, az egyes szintfelületeket belülről kifelé metszve.

Definíció. Legyen $\mathcal{N} \in \mathbb{R}^d$ nyílt halmaz és tekintsük az

 $(E) \quad \dot{x} = f(x), \quad x \in \mathcal{N}$

autonóm differenciálegyenletet és a $V : \mathcal{N} \to \mathbb{R} \ C^1$ függvényt. A V függvény (E) egyenlet szerinti deriváltja az $x \in \mathcal{N}$ pontban:

$$\dot{V}_{(E)}(x) = \frac{d}{dt} V(\Phi(t,x))|_{t=0},$$

ahol $\Phi(t, x)$ az $\dot{x} = f(x)$ differenciálegyenlet lokális megoldó operátora az \mathcal{N} halmazon.

Az $\dot{x} = f(x)$ differenciálegyenlet megoldásai általában nem az egész számegyenesen vannak értelmezve, hanem csak addig, ameddig el nem érik az \mathcal{N} halmaz $\partial \mathcal{N}$ határát, tehát esetenként csak nagyon rövid időintervallumokon. Ezen időintervallumok mindegyike nyílt intervallum és a kezdeti $t_0 = 0$ időpillanatot tartalmazza. Tehát a t = 0 pontban vett idő szerinti parciális derivált minden gond nélkül értelmezett. Ráadásul $\dot{V}_{(E)}(x)$ kiszámítása az (E) egyenlet megoldása nélkül is lehetséges. Mindössze az összetett függvény deriválási szabályát kell alkalmazni a

$$\frac{d}{dt}V(\Phi(t,x)) = [V'(\Phi(t,x))]\left(\frac{d}{dt}\Phi(t,x)\right) = [V'(\Phi(t,x))]f(\Phi(t,x))$$

szereposztással. A t = 0 helyettesítéssel ebből

$$\dot{V}_{(E)}(x) = [V'(x)]f(x) \Rightarrow \dot{V}_{(E)}(x) = \langle \nabla V(x), f(x) \rangle$$

adódik.

A V függvény szigorú minimumhelyeinek környezetében a $\dot{V}_{(E)}(x) \leq 0$ és a $\dot{V}_{(E)}(x) < 0$ egyenlőtlenségek stabilitáshoz illetve aszimptotikus stabilitáshoz vezetnek.

Definíció. Az $\mathcal{N} \subset \mathbb{R}^d$ halmaz erős Ljapunov felület az $\dot{x} = f(x)$ autonóm differenciálegyenletre nézve, ha van olyan $V : \mathbb{R}^d \to \mathbb{R} \ C^1$ függvény és olyan $c \in \mathbb{R}$ állandó, hogy

$$\mathcal{N} \subset \{x \in \mathbb{R}^d | V(x) = c\}, \quad \langle \nabla V(x), f(x) \rangle < 0, \forall x \in N.$$

Az alternatív szóhasználat szerint a V erős Ljapunov függvény az $\mathcal{N} \subset \mathbb{R}^d$ halmazon, ha $\langle \nabla V(x), f(x) \rangle < 0, \forall x \in \mathcal{N}$ esetén.

3.3. A fázisportré változása a paraméterek változásának tükrében: jellegzetes $\mu \stackrel{\leq}{\equiv} 0$ bifurkációs ($\dot{x} = \mu - x^2, \dot{y} = -y$ nyereg-csomó), ($\dot{r} = \mu r - r^3, \dot{\phi} = -1$ Hopf) ábrák

Jóllehet a bifurkáció fogalmát nem-lokálisan, a fázisportré egy korlátos és nyílt H halmazán definiáltuk, a könnyen tetten érhető bifurkációban megjelenő új minőség lokális és leggyakrabban egyetlen egyensúlyi helyzet vagy egyetlen periodikus pálya stabilitási tulajdonságainak megváltozásával függ össze.

Nyereg-csomó bifurkációban $x_0 = \sqrt{-\mu}$ vonzó és az $x_0 = -\sqrt{-\mu}$ taszító egyensúlyi helyzetek után kitolják egymást. A nyereg-csomó elnevezést akkor érthetjük meg csak igazán, ha megrajzoljuk az

$$\begin{cases} \dot{x} = \mu - x^2 \\ \dot{y} = -y \end{cases}, \quad \begin{cases} \dot{r} = r(1-r) \\ \dot{\varphi} = \sin^2(\frac{\varphi}{2}) - \mu \end{cases}$$

differenciálegyenletek fázisportréit a $\mu < 0$, $\mu = 0$, $\mu > 0$ paraméterértékekre. A tényleges nyereg-csomó bifurkáció az y = 0 tengelyen, illetve az r = 1 körvonalon, mint egydimenziós invariánshalmazokon megy végbe.

A polárkoordinátás felírás $\dot{r} = \mu r - r^3$, $\dot{\varphi} = -1$ egyenletrendszeréből látszik, hogy a 4 × 2 előjelkombinációnak megfelelően 4 × 2 alapesettel van dolgunk, amelyek egymáshoz képest

- az idő aránya: $\frac{d}{dt}r = \mu r r^3$ és s = -t, $r(s) = \rho(t) \Rightarrow \frac{d}{ds}\rho = -\mu\rho + \rho^3$
- a paraméter előjele: $\dot{r} = \mu r r^3$ és $v = -\mu \Rightarrow \dot{r} = -vr r^3$
- a körbeforgás iránya: $\dot{\varphi} = -1$ és $\varphi = -\theta \Rightarrow \dot{\theta} = 1$

szempontjából különböznek. A kompakt $\dot{r} = \pm \mu r \pm r^3$, $\dot{\varphi} = \pm 1$ felírás mind a nyolc esetet tartalmazza. Amire ténylegesen figyelnünk kell, azok a konkrét történések: az egyensúlyi helyzet és a periodikus pálya "sorsa" abban a folyamatban, amikor a μ paraméter fokozatosan növekedve áthalad a kritikus $\mu = \mu_{crit} = 0$ értéken.

3.4. Stabilitás és vonzás, egyensúlyi helyzeté és periodikus pályáé

3.4.1. Egyensúlyi helyzet

Tétel.

1. Legyen az $x0 \in \mathbb{R}^d$ pont egyensúlyi helyzete az (E) egyenletnek, azaz legyen $f(x_0) = 0$. Legyen továbbá az $\mathcal{N} \subset \mathbb{R}^d$ halmaz az x_0 pont nyílt környezete, és legyen $V : \mathcal{N} \to \mathbb{R}$ olyan C^1 függvény, amelyre

$$V(x_0) < V(x), \forall x \in \mathcal{N} \setminus \{x_0\}, \quad \dot{V}_{(E)} \le 0 \forall x \in \mathcal{N}.$$

Ekkor az x_0 egyensúlyi helyzet lokálisan stabil.

2. Tegyük fel, hogy a felső feltétel helyett teljesül az alábbi tulajdonság

 $V(x_0) < V(x), \forall x \in \mathcal{N} \setminus \{x_0\}, \quad \dot{V}_{(E)} < 0 \forall x \in \mathcal{N} \setminus \{x_0\}.$

Ekkor az x_0 egyensúlyi helyzet lokálisan aszimptotikusan stabil.

Legyen továbbá $c > V(x_0)$ olyan állandó, amelyre

$$\mathcal{N}_{c,\leq} = \{ x \in \mathcal{N} | V(x) \le c \}$$

korlátos és mint \mathbb{R}^d részhalmaza, zárt. Ekkor az $\mathcal{N}_{c,\leq}$ halmaz része az x_0 egyensúlyi helyzet attraktivitási tartományának.

3.4.2. Periodikus pálya

Definíció. Egy $p \in M$ pontot periodikusnak nevezünk, ha van olyan k > 1, hogy $f^k(p) = p$ és p nem fixpont. A legkisebb ilyen k > 1 a p pont periódusa. A p pont pályája a $\{p, f(p), f^2(p), \ldots, f^{k-1}(p)\}$ ponthalmaz, ezt k-periodikus pályának nevezzük.

Vegyük észre, hogy $f^k(p) = p$ azt jelenti, hogy p fixpontja az f^k leképezésnek. Ezen észrevétel alapján definiáljuk a periodikus pálya stabilitását.

Definíció. A p pontból induló k-periodikus pálya (aszimptotikusan) stabilis, ha p (aszimptotikusan) stabilis fixpontja az f^k leképezésnek.

3.5. Numerikus megfontolások

3.6. A 2D eset specialitásai, omega-határhalmazok a síkon

Az $x \in X$ ponton átmenő trajektória a $\gamma(x) = \{\Phi(t, x) \in X | t \in \mathbb{T}\}$ halmaz. A $\gamma^+(x) = \{\Phi(t, x) \in X | t \in \mathbb{T} \ge 0\}$ halmaz a pozitív féltrajektória. Ha $\mathbb{T} = \mathbb{R}$, akkor $\gamma(x), \gamma^+(x)$ (és $\gamma^-(x)$) egyaránt az idővel paraméterezett görbék.

Az $x \in X$ pont omega-határhalmaza
a $\Phi: \mathbb{T} \times X \to X$ dinamikában az

 $\omega(x) = \{ y | \exists \{t\}_{n=0}^{\infty} \subset \mathbb{T} \text{ sorozat, hogy } t_n \to \infty, \text{ és } \Phi(t_n, x) \to y \}$

halmaz. (Megjegyzés. A $\gamma^-(x)$ féltrajektóriához az $\alpha(x)$ alfa-határhalmaz tartozik).

3.7. Lotka és Volterra két-faj modelljei

Két faj együttélésének versengő, szimbiotikus, avagy éppen ragadozó-zsákmány eseteinek szokásos

$$\begin{cases} \dot{x} = x(c_1 + a_1 x + b_1 y) \\ \dot{y} = y(c_2 + a_2 x + b_2 y) \end{cases}, \quad c_1, c_2, a_1, a_2, b_1, b_2 \in \mathbb{R}, \quad x, y \ge 0$$

kvadratikus differenciálegyenlet-modellje Lotka és Volterra nevéhez fűződik. Az esetszétválasztásokat a $c_1, c_2, a_1, a_2, b_1, b_2 \in \mathbb{R}$ paraméterek előjelei határozzák meg. A hat paraméter közül három (de nem bármelyik három) lineáris változó-helyettesítéssel ±1-re kiskálázható. A Kolmogrov féle általánosítás

$$\dot{x}_k = x_k f_x(x_1, x_2, \dots, x_d), \quad x_k \ge 0, \quad k = 1, 2, \dots, d$$

alakú. Itt $f_k : \mathbb{R}^d_+ \to \mathbb{R}, (k = 1, 2, ..., d)$ adott folytonosan differenciálható fügvények. A biológiailag releváns fázistér \mathbb{R}^2 illetve \mathbb{R}^d nemnegatív ortánsa. Magától értetődik, hogy az ortánsok végtelen távoli pontja egyetlen trajektóriát sem vonzhat: minden trajektóriának $t \to \infty$ mellett biológia okán egyenletesen korlátosnak kell maradnia. Ez azt is jelenti, hogy ökoszisztémákat kvadratikus Lotka-Volterra rendszerekkel csak az \mathbb{R}^d korlátos részhalmazain lehet modellezni.

4. Példák hálózatokon értelmezett dinamikára

4.1. Az évenkénti adóbevallások $x_{i,t+1} = F(\overline{x}_{i,t})$ átlagolásos modellje, elégséges feltétel globálisan aszimptotikusan stabil homogén fixpont létezésére, matematikai részletekkel

Adott egy irányítás nélküli \mathcal{G} gráf, amelyben sem hurokélek, sem többszörös élek, sem izolált csúcsok nincsenek. A \mathcal{G} gráf $V(\mathcal{G} = \{1, 2, \ldots, N\})$ csúcsai egy ország adófizetőit jelentik. Az *i*-edik csúcs fokszáma $d_i > 0$, az *i*-edik csúcsal szomszédos csúcsok halmaza \mathcal{N}_i ($i = 1, 2, \ldots, N$), amely tehát az *i*-edik adófizető ismerőseit jelenti. Ebben az országban egykulcsos adó van, és az adó befizetése évente egyszer, önkéntes adóbevallás alapján történik. A matematikai egyszerűség kedvéért tegyük fel, hogy minden adófizető éves jövedelme egyformán egységnyi. Jelölje $0 < \theta < 1$ az adókulcs mértékét. A *t*-edik évben ($t = 0, 1, \ldots$) az *i*-edik adófizető által bevallott jövedelem legyen $x_{i,t}$.

Az adófizetők azonban nem tisztelik a tövényt. Feltéve, de meg nem engedve a modell szerint nem vallják be teljes jövedelmüket: a feltételezés szerint mindenki úgy csal, a rákövetkező évben, hogy a saját ismerősei által bevallott jövedelmek átlagát veszi alapul és az $x_{i,t+1}$ értéket egy kétváltozós elégedettségi függvény feltételes maximumhelyeként számolja ki. Az elégedettségi függvény egyrészt a nála maradó $1-\theta_{x_{i,t+1}}$ összeg nagysága, másrészt a várható büntetéstől való félelem határozza meg: ez utóbbi egyenesen arányos mind az ismerősök által az előző évben bevallott $\overline{x}_{i,t}$ átlagos jövedelemmel, mind egy, az adott országra jellemző m > 0 moralitási tényezővel.

Elégedettségi függvény:

$$\mathcal{U}: [0,1] \times [0,1] \to [0,1], \quad \mathcal{U}(x,\overline{x}) = \ln(1-\theta x) + m\overline{x}(x-\ln(x)).$$

Az i-edik adófizető a (t + 1)-edik évben bevallott jövedelmét a most már egyedül logikus

$$\overline{x}_{i,t} = \frac{1}{d_i} \sum_{j \in \mathcal{N}_i} x_{j,t}, \qquad i = 1, 2, \dots, N, \quad t = 0, 1, 2, \dots$$

képlet és a szintén plauzibilis

$$x_{i,t+1} = F(\overline{x}), \quad F(\overline{x}) = \arg \max \mathcal{U}(\cdot, \overline{x})$$

formula szerint számolja ki. Bizonyítsuk, hogy a fenti formula jóldefiniált. Ehhez pedig a magától értetődő, $0 \le x_{i,0} \le 1$ (i = 1, 2, ..., N) feltétel és az $\mathcal{U}(\cdot, \overline{x})$ függvény konkavitása a [0, 1] intervallumon éppen elegendő.

A kapott diszkrét idejű dinamikus rendszer állapottere a $[0,1]^N$ egységkocka, a dinamikát definiáló leképezés pedig

$$\mathcal{F}: [0,1]^N \to [0,1]^N, \quad (\mathcal{F}(x))_i = F\Big(\frac{1}{d_i} \sum_{j \in \mathcal{N}_i} x_j\Big), \quad i = 1, 2, \dots, N.$$

A dinamika annyiban van csak a \mathcal{G} gráfon definiálva, hogy az *i* index a \mathcal{G} gráf *i*-edik csúcsára utal.

Az $m > \theta$ feltétel mellett implicit deriválásokkal könnyű igazolni, hogy az $F : [0, 1] \rightarrow [0, 1]$ függvény kielégíti az $F'(0) = \frac{m}{\theta} > 1, F' > 0, F'' < 0$ egyenlőtlenségeket. Mivel F(0) = 0, az F függvénynek egyetlen $x^* > 0$ fixpontja van a [0, 1] intervallum belsejében, és az is világos, hogy az $x^{\ell+1} = F(x^{\ell}), \ell = 0, 1, 2, \ldots$ iterációt bármely $0 \neq x^0 \in [0, 1]$ pontból indítva az $\ell \rightarrow \infty$ határátmenetben $x^{\ell} \rightarrow x^*$.

4.2. A véletlen gráfok Erdős-Rényi, Strogatz-Watts, Barabási-Albert féle típusai, néhány mondat a járványterjedésről

4.2.1. Erdős-Rényi gráfok

Adva van n csúcspont és egy 0 szám. Az <math>n csúcspont lehetséges $\binom{n}{2}$ él mindegyikét p valószínűséggel behúzzuk. Az így kapott $\mathcal{G}(n, p)$ gráf csúcsainak fokszámeloszlása a

$$P(\deg(v) = k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}, \quad k = 0, 1, \dots n-1$$

binomiális eloszlás, amely nagy n-re jól közelíthető a $\mathcal{N}(\mu, \sigma) = \mathcal{N}(np, \sqrt{np(1-p)})$ normális eloszlással. Az $np = \lambda > 0, n \to \infty$ határátmenetben a

$$P(\deg(v) = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Poisson eloszlás a határérték.

Az Erdős-Rényi gráfokra jellemzőek a határértékképzés kritikus konstansai. Ezek a kritikus konstansok a gráf bizonyos vagy-vagy tulajdonságaival függenek össze, amelyek az egyes esetekben aszimptotikusan egy valószínűséggel teljesülnek. Hogy csak a legyegszerűbb példákat vegyük,

$$\lim_{n \to \infty} \frac{np}{\ln(n)} < 1 \Rightarrow \mathcal{G}(n, p) \text{ nem összefüggő}$$
$$\lim_{n \to \infty} \frac{np}{\ln(n)} > 1 \Rightarrow \mathcal{G}(n, p) \text{ összefüggő}$$

és

$$\label{eq:stable} \begin{split} &\lim_{n\to\infty} np < 1 \Rightarrow \mathcal{G}(n,p) \text{ maximális komponensének nagyságrendje } const \cdot \ln(n) \\ &\lim_{n\to\infty} np > 1 \Rightarrow \mathcal{G}(n,p) \text{-ben pontosan egy óriás-komponens van, } const \cdot n \text{ nagyságrenddel.} \end{split}$$

4.2.2. Strogatz-Watts gráfok

A Watts-Strogatz konstrukció az n csúcsú d-reguláris körgráfból indul ki, amelynek $\frac{nd}{2}$ számú éle van. (Itt $2 \leq d < 2n$ szükségszerűen páros szám: a d-reguláris körgráfot a hagyományos körgráfból kiindulva úgy kaphatjuk meg, hogy minden egyes csúcsot a tőle jobbra és balra $\leq \frac{d}{2}$ hosszúságú úttal elérhető többi csúcsal is közvetlen éllel kötjük össze. A gyakorlatban szokásos paraméter-választás $1 \ll \ln(n) \ll d \ll 2n$.) Körbemenve a V_1, V_2, \ldots, V_n csúcsokon, a V_i csúcstól hátrafelé induló (V_j, V_i) élek mindegyikét $0 \leq \beta \leq 1$ valószínűséggel kicseréljük egy akkor-éppen-nem-élre, amelynek egyik végpontja a V_i csúcs marad (az akkor-éppen-nem-élek közül az egyenletes eloszlás szerint válogatva). Így az eredeti d-reguláris körgráf minden egyes élére pontosan egyszer kerül sor, és a konstrukció mindvégig kizátja a többszörös vagy hurokélek létrejöttét. A $\beta = 0$ esetben az eredeti d-reguláris körgráf változatlan marad, a $\beta = 1$ esetben pedig egy $\mathcal{G}(n, p)$ Erdős-Rényi gráfot kapunk, ahol

$$p = \frac{\frac{nd}{2}}{\binom{n}{2}}$$

A β interpolációs paraméter szokásos választása egyébként $0<\beta\ll 1$

4.2.3. Barabási-Albert gráfok

A Barabási-Albert konstrukció kiindulópontja bármely n_0 csúcspontú \mathcal{G}_{n_0} (szokás szerint összefüggő) gráf lehet, amelyhez lépésenként mindig egy új csúcspontot veszünk hozzá. Az új csúcspont és a már korábban meglévő csúcspontokat rendre $0 < m \le n_0$ számú éllel kötjük össze, a párhuzamos és a hurokéleket most is kizárva. Az új élek behúzása azonban nem egymástól független véletlenek szerint történik, hanem a preferenciákat, a régi csúcspontok tudatos súlyozását követi. Az $n_0 + i + 1$ -id (i = 0, 1, ...) új csúcspontnak a *j*-edik $(j = 2, ..., n_0 + i)$ csúcsponttal való összekötése annál valószínűbb, minél nagyobb a *j*-edik csúcspont aktuális fokszáma. A Barabási-Albert preferenciaszabály szerint

$$(n_0 + i + 1, j) \in E(\mathcal{G}_{n_0 + i + 1}) \sim \frac{\deg(j)}{\sum_{k=1}^{n_0 + 1} \deg(k)}.$$

Matematikailag bizonyított eredmény, hogy az $i\to\infty$ határátmenetben az egyre növekvő gráf aszimptotikus fokszámeloszlása a

$$P(\deg(v) = k) \approx \frac{const(m)}{k^3}, \quad k \gg n_0$$

4.3. További modellek, négyzetrácsokon is

4.3.1. Járványterjedés modellezése celluláris automatákkal

Az ágensek közti összeköttetések nem csak egy szabályos rácsot alkothatnak (a differenciálegyenletes megoldás arra hasonlít, mintha mindenki mindenkivel össze lenne kötve). Az ágensek mozoghatnak is: "folytonos" a tér, nincsenek egy rácshoz kötve. Köztük lévő távolságot vizsgáljuk és akik egy adott sugáron belül vannak az adott iterációban azok között lehet kölcsönhatás.

4.3.2. Járványterjedés modellezése véletlen gráfokkal

A járványterjedés is jól modellezhető véletlen gráfokon. A csúcsok a személyeket, az élek két személy kapcsolatát jelzik. A betegség az éleken terjed. A tényleges fertőzés ténye véletlen paraméterektől, gyógyulás az időtől is függ.

5. Adott gén térbeli terjedése

5.1. Biológia és matematika együtt: a Fisher féle $u_t = u(1-u) + u_{xx}$ parciális egyenlet levezetése

Felidézve Mendel eredményeit egyszerű táblázatos formában:

ahol az első táblázatban a génpárok kombinálódása, a másodikban a kombináció valószínűsége látható. A táblázat a második generációra vonatkozik és a híres $p = q = \frac{1}{2}$ esetben azt mutatja, hogy a domináns gén a genotípusban 1 : 1, a fenotípusban 3 : 1 arányban van jelen. Az általános esetben p, q > 0, p+q = 1.

Most azt vizsgáljuk meg, hogy mi történi, a távoli időben, ha generációról generációra az A gén relatív gyakorisága minden egyes gén-kombnációban p helyett (1 + s)p, mígy az a gén relatív gyakorisága ennek megfelelően 1 - (1 + s)p = q - sp. Azaz A gén kedvező, valamilyen evolúciós előnyt jelent.

Mendel táblázata szerint a p változása tehát az első és a nulladik generáció között

$$p_1 - p_0 = (1+s)^2 p^2 + 2(1+s)p(q-sp) - p = 2spq - s^2 p^2.$$

Figyelembe véve, hogy s^2 elhanyagolhatóan kicsi s-hez képest,
a $p_1-p_0=2spq,$ at-edikgenerációban pedig a

$$p_{t+1} - p_t = 2sp_t(1 - p_t), \quad t = 0, 1, 2, \dots$$

közelítést kapjuk. Ez egy rekurzív összefüggés, amelyet úgy is értelmezhetünk, mint a

$$\dot{p} = 2sp(1-p)$$

közönséges differenciálegyenletet h = 1 lépésközhöz tartó explicit Euler módszeres diszkretizációját. Az idő szerinti lineáris skálázhatóság miatt nem jelenti az általánosság megszorítását, ha az s értékét 0,5-nek vesszük. Az eddigi pontszerű modellt az egydimenziós x térváltozóta a

$$\dot{p} = p(1-p) + p_{xx}$$

diffúziós egyenletként terjeszthetjük ki, ahol a diffúziós együttharóra a D = 1 választás lehetséges. Ezt az egyenletet elsőként Fisher vezette le, akitől az utazó hullámok módszere is származik.

5.2. Utazó hullám mint speciális alakú megoldás differenciálegyenlete és annak az $U(-\infty) = 1, U(\infty) = V(-\infty) = V(\infty) = 0$ peremértékekhez tartozó megoldásai

Fisher ismerte fel a $p(t, x) = \varphi(x - ct)$ alakú megoldásainak fontosságát, és ő is vizsgálta meg őket elsőként. Itt c > 0 a hullámsebesség, amely a $\varphi : \mathbb{R} \to [0, 1]$ egyváltozós függvénnyel együtt ismeretlene a

$$-c\varphi' = \varphi(1-\varphi) + \varphi''$$

közönséges differenciálegyenletnek, ahol a vessző a z = x - ct új változó szerinti deriválást jelenti.

Térben és időben időjárási frontbetörés jellegű, hullám típusú megoldást kerestünk, a próbafüggvények módszerére emlékeztető ötlettel. A próbálkozás sikeres volta abban nyilvánul meg, hogy a feladat óriásit egyszerűsödött, parciális egyenletből közönségessé vált. De ami ennél is fontosabb, hogy a természet gyakran produkál utazó hullámokat, amelyek közül általában az erős stabilitási tulajdonságokkal rendelkezők valósulnak meg. A másodrendű egyenlethez speciális peremfeltételek tartoznak, amelyeket könnyebb a vele ekvivalens, két elsőrendű egyenletből álló

$$\varphi' = \psi, \quad \psi' = -\varphi(1-\varphi) - c\psi$$

síkbeli közönséges differenciálegyenlet-rendszerre megfogalmazni. A peremfeltételek a feladat biológiai és valószínűségszámítási interpretációjából adódóan az újonnan definiált z belső változóban a következők

$$\varphi(-\infty) = 1, \quad \varphi(\infty = 0), \quad \psi(-\infty) = 0, \quad \psi(\infty) = 0,$$

hiszen az egyenes minden pontjában az A gén valamikor nagyon régen egyáltalán nem volt jelen, viszont a távoli jövőben teljesen ki fogja szorítani az a gént.

5.3. Az itt és most szükséges fázisportré analízis

Nagyon röviden: a fázisportré lényege, hogy csak a $c \geq 2$ esetben stabil az utazó hullám.

5.4. A c = 2 sebességhez tartozó utazó hullám

Nagyon röviden: Ac=2hullámsebességhez tartozó utazó hullám a leg
stabilabb. A természetben is ez fordul elő.

5.5. Utazó hullám az 1D diffúziós SI modellben

A járvány 1D terjedését a fertőzhetők és a fertőzöttek egyenes menti diffúziójával, azaz az

$$\dot{S} = -\tau SI + S''_{xx}, \quad \dot{I} = \tau SI - I + I_{xx''}, \quad S, I \ge 0$$

alakú parabolikus parciális differenciálegyenlet-rendszerrel modellezzük. Mindkét diffúziós együtthatót 1-nek választjuk. Speciális megoldást, utazó hullámot keresünk az $S(t, x) = \varphi(x - ct)$, $I(t, x) = \eta(x - ct)$ alakban, ahol c > 0 a hullámsebesség, amely a φ és az η egyváltozós valós függvényekkel együtt ismeretlene a

$$-c\varphi' = -\tau\varphi\eta + \varphi'', \quad -c\eta' = \tau\varphi\eta - \eta + \eta''$$

közönséges differenciálegyenlet-rendszernek, ahol a vessző a z=x-ctúj változó szerinti deriválást jelenti. Áttérve a 4D

$$\varphi' = \psi \quad \eta' = \zeta$$
$$\psi' = \tau \varphi \eta - c \psi \quad \zeta' = \eta - \tau \varphi \eta - c \zeta$$

normálalakra, a peremfeltételek az újonnan definiált z belső (idő)változóban

$$\varphi(-\infty) = \varphi_0^-, \quad \varphi(\infty) = \varphi_0^+, \quad \psi(\pm \infty) = \eta(\pm \infty) = \zeta(\pm \infty) = 0,$$

hiszen az egyenes minden pontjában valamikor nagyon régen egyáltalán nem volt betegség, és a távoli jövőben szintén nem lesz. Az utazó hullámoknak tehát a 4D rendszerben olyan megoldás felel meg, amely két, egymástól és a c hullámsebességtől is függő egyensúlyi helyzet köt össze, a $P^- = P(\varphi_0^-)$ és a $P^+ = P(\varphi_0^+)$ pontokat. Az egyensúlyi helyzetek mindegyike $P(\varphi_0) = (\varphi_0, 0, 0, 0)^T$ alakú,

$$\mathbf{J}^{\varphi_0} = \begin{bmatrix} 0 & 1 & 0 & 0\\ \tau\eta & -c & \tau\varphi & 0\\ 0 & 0 & 0 & 1\\ -\tau\eta & 0 & 1 - \tau\varphi & -c \end{bmatrix} \Big|_{\varphi=\varphi_0,\eta=0} = \begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & -c & \tau\varphi_0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 - \tau\varphi_0 & -c \end{bmatrix}$$

Jacobi mátrix-szal, ahol $\varphi_0 \geq 0$ a paraméter. Így a sajátértékek

$$\lambda_1 = 0, \quad \lambda_2 = -c, \quad \lambda_{3,4} = \frac{-c \pm \sqrt{c^2 + 4 - 4\tau\varphi_0}}{2}.$$

Az első két sajátérték a **J** mátrix bal felső, a másik kettő a **J** mátrix bal alsó minormátrixához tartozik. Most a jobb alsó minormátrix stabilitásvizsgálata következik. Teljesen elemi módon - vagy a T-D diagramm révén a stabilitás kritikus eseteivel nem törődve azonnal látszik, hogy

$$\lambda_3 > 0 \Leftrightarrow D < 0 \Leftrightarrow \tau\varphi_0 < 1 \Leftrightarrow \varphi_0 < \varphi_* = \frac{1}{\tau},$$
$$Re(\lambda_{3,4}) < 0 \Leftrightarrow D > 0 \Leftrightarrow \tau\varphi_0 > 1 \Leftrightarrow \varphi_0 > \varphi_*.$$

Így a négydimenziós rendszer P^- egyensúlyi helyzete
a $\varphi_0^- < \varphi_*, P^+$ egyensúlyi helyzete pedig a $\varphi_0^+ > \varphi_*$ egyenlőt
lenségeknek tesz eleget.

A feladat biológiája szerint $\varphi \ge 0$ és $\eta \ge 0$. Ez utóbbi egyenlőtlenség kizárja azt, hogy a !D rendszer megoldásai a $(\varphi_0^+, 0, 0, 0)$ pont bármely kis környezetében - az η exponenciálisan lecsengő szinuszoid hullámzással - oda-vissza átspirálozzanak az $\eta = 0$ síkon. Márpedig ezt tennék, ha a $\lambda_{3,4}$ sajátértékek valódi komplex konjugált párt alkotnának. Ebből $D \le \frac{1}{4}T^2$ szerint a c hullámsebessége a $c \ge 2\sqrt{\tau\varphi_0^+ - 1}$ követelmény adódik.

6. A mintázatképződés Turing-féle modellje

6.1. A Turing által alkalmazott biológiai-kémiai heurisztika

Arra, hogy az inhomogenitás homogén lineáris rendszerekben is megjelenik, először Alan Turing adott egy egyébként teljesen spekulatív példát. A jelenséget először egy konkrét példa végeredményeként mutatjuk be, és csak azután ismertetjük a peremértékprobléma általános megoldásának levezetését.

A változók szétválasztása módszer vektoros alkalmazásával hosszadalmas, de mégsem nehéz számolása igazolja, hogy az

$$u'_x(t,0) = u'_x(t,\pi) = 0, \quad v'_x(t,0) = v'_x(t,\pi) = 0, \quad t > 0$$

Neumann féle homogén peremfeltétellel ellátott

$$u_t' = u_{xx}'' + 4u + 2v, \quad v_t' = 17v_{xx}'' - 26u - 8v, \quad t > 0, x \in [0, \pi]$$

parciális differenciálegyenlet-rendszer általános megoldása Fourier sorfejtéssel

$$\begin{bmatrix} u \\ v \end{bmatrix} = c_{1,1}e^t \cos(x) \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \text{exponenciálisan lecsengő tagok}, \quad c_{1,1} \in \mathbb{R}$$

alakú. A mintázat a $c_{1,1}e^t\cos(x)\begin{bmatrix}1\\-1\end{bmatrix}$ főtagban, azon belül is
a $\cos(x)\begin{bmatrix}1\\-1\end{bmatrix}$ részében. Leszámítva azokat a kezdeti feltételeket, amelyekr
e $c_{1,1}=0, u(t,x)$ és v(t,x)előjele elég nag
yt>0és minden, a $\frac{\pi}{2}$ ponthoz nem túl közel
i $x\in[0,\pi]$ esetén ellentétes egymással, de az, hogy
 uvagy velőjele a pozitív, egyedül azon múlik, hogy
 $x \gtrless \frac{\pi}{2}$.

A mintázat tehát az előjel, és ha $c_{1,1}\cos(x)$ $(c_{1,1} \neq 0)$ helyett $c_{1,17}\cos(17x)$ $(c_{1,17} \neq 0)$ állna, akkor a "sign pattern" mintázat sokkal gazdagabb, a zebra csíkozásához hasonló lenne.

Igazából Turingot az

$$u_t'=\alpha^2 u_{xx}''+f(u,v,\mu),\quad v_t'=\beta^2 v_{xx}''+g(u,v,\mu)$$

feladat érdekelte az (u_0, v_0, μ) egyensúlyi helyzet kis környezetében - ott, ahol az $\begin{bmatrix} f(u, v, \mu) \\ g(u, v, \mu) \end{bmatrix}$ csatolás

 $\begin{bmatrix} f(u, v, \mu) \\ g(u, v, \mu) \end{bmatrix} \approx \begin{bmatrix} a(\mu)u + b(\mu)v \\ c(\mu)u + d(\mu)v \end{bmatrix}$ linearizálása még jogosult, mert lokálisan nem változtatja meg a megoldások lényegi viselkedését. Itt $\mu \in \mathbb{R}$ bifurkációs paraméter, amely a μ_0 kritikus értéken balról jobbra áthaladva a felső peremérték-feladat (u_0, v_0, μ) egyensúlyi helyzetének stabilból instabillá válását idézi elő.

Mindez a kémia nyelvén is elmondható. Egydimenziós térváltozóval leginkább egy hosszú és vékony kémcsőben van dolgunk, amelyben a reakció és diffúzió zajlik egyszerre, a reakcióban két anyag vesz részt. A diffúzióhoz valamely oldat vagy gáz jelenléte szükséges. A reakció kémiai átalakulás, a fogyó és keletkező anyagok pedig diffúzióval terjednek. Ilyen folyamatokat a felső parciális differenciálegyenlet-rendszerekkel szokás modelleznix, ahol u és v az egyes anyagok koncentrációját jelölik, az $f(u, v, \mu)$ és a $g(u, v, \mu)$ úgynevezett reakció-tagok a kémiai kinetikából jönnek, $\mu \in \mathbb{R}$ pedig a bifurkációs paraméter. A térbeliséget nem figyelembevéve, a kémiai reakciót az $\dot{u} = f(q, v, \mu), \dot{v} = g(u, v, \mu)$ kétszer kettes⁴ közönséges differenciálegyenlet írja le. A folyamatok az $0 \le u \ll 1, 0 \le v \ll 1$ koncentráció-tartományban zajlanak le. A $\mu \in \mathbb{R}$ paraméter egy enzim jelenlétét méri, szerepe a reakció szabályozása. A mintaképződés akkor indul be, ha a μ paraméter egy kritikus μ_0 értéket meghalad.

Turing - bár nem írt a konkrét (bio)kémiáról - méltán híressé vált matematikai dolgozatát azzal a megjegyzéssel zárja, hogy az általa leírt mintaképződés mechanizmusához hasonló differenciálódási és szabályozási folyamatok játszódnak le az egyedfejlődés során, az embrionális szakasz legelejétől kezdve.

6.2. A Turning féle parciális egyenletrendszer matematikai kezelése és az azt megalapozó Fourier módszer az $u_t = u_{xx}, u(0, x) = g(x), 0 \le x \le \pi$ kezdetiérték-probléma megoldására az $u_x(t, 0) = u_x(t, \pi) = 0, t \ge 0$ homogén Neumann peremfeltétel mellett

A fenti parciális differenciálegyenlet-rendszert mátrixos formába írva

$$\begin{bmatrix} u_t \\ v_t \end{bmatrix} = \mathbf{A} \begin{bmatrix} u \\ v \end{bmatrix} + \mathbf{D} \begin{bmatrix} u_{xx} \\ v_{xx} \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 4 & 2 \\ -26 & -8 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 17 \end{bmatrix}$$

 $^{^4\}mathrm{A}$ mátrixos formában a mátrixok kétszer kettesek

adódik. A szeparábilis parciális differenciálegyenlet megoldására alkalmazott szétválasztást használjuk, és a $\begin{bmatrix} u(t,x)\\v(t,x)\end{bmatrix} = T(t)X(x) \begin{bmatrix} c\\d\end{bmatrix}$ megoldásokat keressük.

Visszahelyettesítve az egyenletbe, majd a t > 0 és az $x \in [0, \pi]$ változókkal átosztással két külön oldalra gyűjtve

$$\frac{T'(t)}{T(t)} \begin{bmatrix} c \\ d \end{bmatrix} = \mathbf{A} \begin{bmatrix} c \\ d \end{bmatrix} + \frac{X''(x)}{X(x)} \mathbf{D} \begin{bmatrix} c \\ d \end{bmatrix},$$

következésképpen mind $\frac{T'(t)}{T(t)} = \sigma$, mind $\frac{X''(x)}{X(x)} = \lambda$ állandók. A Neumann féle homogén peremfeltételből $X'(0) = X'(\pi) = 0$. A λ sajátértékre és a hozzá tartozó $X = X_{\lambda}$ sajátfüggvényre tehát egy lineáris differenciálegyenlet érvényes, amelyhez a $X'(0) = X'(\pi) = 0$ homogén peremfeltételek tartoznak. Így

$$X''(x) - \lambda X(x) = 0, \quad X'(0) = X'(\pi) = 0,$$

ahol a $\lambda \in \mathbb{R}$ állandó és az $X : [0, \pi] \to \mathbb{R}$ függvény egyaránt ismeretlen. Az általános megoldás abban a speciális esetben tesz eleget a peremfeltételeknek, ha $\lambda = -k^2 \leq 0, k = 0, 1, 2, \dots$ és $c_2 = 0, c_1 \in \mathbb{R}$ pedig tetszőleges, szabad konstans⁵.

A λ meghatározása után most jön a σ meghatározása:

$$\frac{T'(t)}{T(t)} \begin{bmatrix} c \\ d \end{bmatrix} = \mathbf{A} \begin{bmatrix} c \\ d \end{bmatrix} - k^2 \mathbf{D} \begin{bmatrix} c \\ d \end{bmatrix} \Leftrightarrow (\mathbf{A} - k^2 \mathbf{D} - \sigma \mathbf{I}) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^2.$$

Ez is sajátérték-sajátvektor probléma, amely már nem a homogén Neumann peremfeltétellel ellátott $\Delta_N = \frac{\partial^2}{\partial x^2} \text{ differenciáloperátorra vonatkozik, hanem csak a } k = 0, 1, 2, \dots \text{ egészekkel sorszámozott kétszer kettes } \mathbf{A} - k^2 \mathbf{D} \text{ mátrixokra. A két sajátérték mostantól kezdve } \sigma = \sigma_{k,l}, l = 1, 2 \text{ jelöli, a hozzájuk tartozó}$ sajátvektorokat pedig a $\begin{bmatrix} c \\ d \end{bmatrix} = \mathbf{s}_{k,l}, l = 1, 2. \text{ A } \frac{T'(t)}{T(t)} = \sigma \text{ egyenletből tehát } T(t) = T_{k,l}(t) = e^{\sigma_{k,l}t}, l = 1, 2.$ Az eddigiek alapján az eredeti egyenletünk általános megoldását

$$\begin{bmatrix} u(t,x)\\v(t,x) \end{bmatrix} = \sum_{k=0}^{\infty} \sum_{l=1}^{2} c_{k,l} e^{\sigma_{k,l}t} \cos(kx) \mathbf{s}_{k,l}$$

alakban kereshetjük, az $\begin{bmatrix} u(0,x) \\ v(0,x) \end{bmatrix} = \begin{bmatrix} g(x) \\ h(x) \end{bmatrix}$ kezdeti feltételekhez tartozó megoldás pedig a mindkét koordinátában klasszikus, a $[0,\pi]$ intervallumon cosinusos Fourier sorfejtét kívánó

$$\begin{bmatrix} g(x) \\ h(x) \end{bmatrix} = \sum_{k=0}^{\infty} \sum_{l=1}^{2} c_{kl} \cos(kx) \mathbf{s}_{k,l}$$

képletből adódik. A $k \ge 2$ esetben érdemes a k-t meghagyni paraméternek:

$$\begin{bmatrix} 4-k^2 & 2\\ -26 & -8-17k^2 \end{bmatrix} \quad \Rightarrow \quad T = -4 - 18k^2 < 0, \quad D = 17k^4 - 76k^2 + 20 > 0, \quad k \ge 2,$$

sőt, $D < \frac{T^2}{4} \Leftrightarrow 17k^4 - 76k^2 + 20 < 81k^4 + 36k^2 + 4$ ha $k \ge 3$. A nyom-determináns diagrammból tanultak szerint a $k \ge 3$ esetben stabil fókusz, a k = 2 esetben stabil csomó az eredmény.

Ha a reakció-tag nemlineáris, akkor a diffúzió sokkal bonyolultabb mintázatokat is okozhat. Ez a helyzet például a $t > 0, 0 \le x \le 100$ tartományon értelmezett és ott homogé Neumann peremfeltétellel ellátott

$$u'_{t} = u'_{xx} + 0, 1 - u + u^{2}v, \quad v'_{t} = 40v''_{xx} + 0, 9 - u^{2}v$$

rendszer esetében egy "nemlineáris Turing", amit persze sokkal nehezebb vizsgálni.

A kezdeti $\begin{bmatrix} u(0,x) = g(x) \\ v(0,x) = h(x) \end{bmatrix}$ állapot az $\begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0,9 \end{bmatrix}$ egyensúlyi helyzet kicsiny perturbáltjának szokás választani. Utazó hullámra itt nem számíthatunk, hiszen ahhoz legalább két egyensúlyi helyzet kellene.

⁵Abban az esetben ha $\lambda > 0$, a peremfeltételekből adódóan a triviális megoldást kapjuk. $\lambda = 0$ esetben egy konstans megoldást kapunk, itt nem jön létre reakció, minden marad ugyanannyi

7. Idegi ingerületvezetés: Hodgkin-Huxley alapmodell

7.1. Hodgkin és Huxley kísérletei a tintahal óriás idegrostjával

Hodgkin és Huxley a tintahal 10cm hosszú 0,5mm vastag idegrostját vizsgátlák, amelyet henger alakú vékony membrán borít. A membrán belső olyalán $V = V_{membrane}(t,x)$ külső, "földelt" oldalán pegig V = 0 a membrán-feszültség. Az axon belsejében hosszirányú, $I_{axon}(tx)$ elektromos áram halad:

$$\frac{\partial V(t,x)}{\partial x} = -RI_{axon}(t,x)$$

differenciálegyenlet ír le. Erre az áramra transzverzálisan, a membránon át $I_{membrane}(t,x)$ elektromos áram folyik, amelyet a

$$I_{membrane}(t,x) = -\frac{\partial I_{axon}(t,x)}{\partial x}$$

képlet határoz meg.

Ezekből

$$\frac{\partial^2 V(t,x)}{\partial x^2} = -R \frac{\partial I_{axon}}{\partial x},$$
$$\frac{\partial^2 V(tx)}{\partial x^2} = I_{membrane} \cdot R.$$

7.2. Ionáramlás az idegrost sejthártyán át és ami hajtja

A membránon át az axon hossztengelyére merőleges ionáramlás van, amelyet a feszültség-különbség, valamint a membrán külső és belső oldalán lévő oldarok ion-koncentráció-különbsége tart fenn.

Ennek az ionáramlásnak van egy egyensúlyi állapota, amely leírható a Nernst-egyenlettel. Két ellentétes hajtóerő a koncentrációkülömbségből adódó diffúzió, azaz a nagyobb koncentráció felől a kisebb koncentráció felé van hajtóerő, valamint a feszültség külömbségből adódó elektromos erő, amely abban nyilvánul meg, hogy az ionok a töltéskülömbség megszűnésével megfelelő irányba fognak haladni; pozitív töltésű ion a negatív töltés felé, és a negatív töltésű ion pedig fordítva, a pozitívabb régiók felé halad.

A két folyamat egyensúlyt teremt (ami nem azt jelenti, hogy nincs ion mozgás, de a koncentráció és a töltés nagyjából állandó), amit a következő egyenlettel írhatunk le egy ionra:

$$-\alpha c' - \beta c \varphi' = 0 \Rightarrow \frac{c'}{c} = \frac{\beta}{\alpha} \varphi'.$$

Ha a fenti állapotot "integráljuk" a membránon akkor a következő összefüggést kapjuk:

$$\ln \frac{c_{out}}{c_{in}} = \frac{\beta}{\alpha} (\varphi_{out} - \varphi_{in}),$$

ami egy szép összefüggés a koncentráció-, és a potenciálkülöbség között. Azaz a belső, és külső koncentráció arányának függvényében megadható az egyensúlyi feszültség:

$$V_{\varepsilon} = -\frac{RT}{zF} \ln \frac{c_{in}}{c_{out}},$$

aholRaz általános gázállandó, Ta hőmérséklet, za vizsgált elem kémiai rendszáma ésFa Faraday-állandó.

7.3. Az ekvivalens áramköri modell és egyenletrendszer

Hodgkin és Huxley a Cl^- , Na^+ , K^+ ionokon kívül minden más iont elhanyagolhatónak találták, ezekről az ionokról pedig feltételezték, hogy ki-be vándorlásuk során a membrán különböző Cl, Na, K csatornáit használják.

A membránt helyettesítő áramköri modellt Hodgkin és Huxley négyes soros kapcsolásként határozták meg.

A soros kapcsolás második ágán a membrán mint kondenzátor C_M kapacitása ül. A membrán egy szigetelő közeg, aminek a két oldalán töltéskülönbség van. Ez a kapacitás definíciója.

A többi ágon pedig az egyes ionáramokra vonatkozó specifikus R_{Cl} , $R_{Na}^{nonlin} = R_{Na}(V)$, $R_{K}^{nonlin} = R_{K}(V)$ ellenállások. Utóbbiak reciprokai rendre g_{Cl} , g_{Na} , g_{K} vezetőképesség.

A háromfajta ion egyensúlyi potenciálja rendre $V_{Cl} = -68mV$, $V_{Na} = 56mV$, $V_K = -77mV$. Őket a soros kapcsolás megfelelő ion-ágán mint elemet veszünk figyelembe. Magától értetődik, hogy

$$V - V_{Cl} = R_{Cl}I_{Cl}, \quad \dot{V} = \frac{1}{C_M}I_{C_M}, \quad V - V_{Na} = R_{Na}I_{Na}, \quad V - V_k = R_kI_k,$$

azaz

$$I_{Cl} = g_{Cl}(V - V_{Cl}), \quad I_{C_M} = C_M \dot{V}, \quad I_{Na} = g_{Na}(V - V_{Na}), \quad I_K = g_K(V - V_K).$$

Az is világos, hogy $I_{stim} = I_{Cl} + I_{C_M} + I_{Na} + I_K$, ahol I_{stim} a membrán belső oldalára ható gerjesztő áramot jelöli ($I_{stim} = I_{membrane}$). Így a membránáramot pontszerűként, tehát I_{axon} nélkül felfogva a

$$C_M \dot{V} = -g_{Cl}(V - V_{Cl}) - g_{Na}(V - V_{Na}) - g_K(V - V_K) + I_{stim}$$

közönséges differenciálegyenletet kapjuk.

Hodkin és Huxley olyan közönséges differenciálegyenlet-rendszert írtak fel, amelyben a Na^+ és a K^+ ionáramlások általuk megismert friss axon-preparátumokon külön-külön mért adatai közvetlenül - elsődlegesen a

$$g_{Na}(V) = \overline{g_{Na}}m^3(V)h(V), \qquad g_K(V) = \overline{g_k}n^4(V)$$

formulákban szereplő m = m(V), h = h(V) és n = n(V) függvények (és $\overline{g_{Na}}, \overline{g_K}$ konstansok) megválasztása révén - megjelennek.

7.4. Ingerküszöb és regenerációs időküszöb

Az m, h, n kapuváltozók, pontosabban az m^3h és az n⁴ hatvány azt a valószínűséget szeretné modellezni, hogy a Na illetve a K kapuk mennyire vannak nyitva. A Na és K kapuk nyitottséga a rajtuk átáramlani tudó ionáramnak felel meg. A membrán nyugalmi potenciálja (a hártya belső oldalán) $V_{rest} = -71mV$, a külső oldalon úgymond földelve van.

Az akciós potenciál hirtelen felívelését a membrán belső oldalára ható feszültség-lökés indítja el. Ez a feszültség-lökés növeli a membrán aktuális potenciálját, ami nyitja a Na kapukat. Kívülről befelé Na^+ ionok indulnak be, amelyek az akciós potenciált tovább növelik mintegy 40mV értékig. Közben a Kkapuk nyílnak, és K^+ ionok áramlása indul el bentről kifelé. Ettől kezdve a K^+ ionok áramlása lesz a meghatározó, ami gyorsan csökkenti az akciós potenciál értékét és így mindkét kapu lassú záródásához vezet.

A lefelé tartó folyamat vége az akciós potenciál minimális, -80mV körüli értéke. Mindez nagyjából 5ms ideig tart. Ezután egy lényegesen lassabb, a nyugalmi potenciál $V_{rest} = -71mV$ értékét helyreéllító folyamat kezdődik, amely háromszor-négyszer annyi időt vesz igénybe.

Hodkin és Huxley a

$$\begin{cases} C_M \dot{V} = -\overline{g_{Cl}}(V - V_{Cl}) - \overline{g_{Na}} m^3 h(V - V_{Na}) - \overline{g_k} n^4 (V - V_K) + I_{stim} \\ \tau_m(V) \cdot \dot{m} = m_\infty(V) - m \\ \tau_h(V) \cdot \dot{h} = h_\infty(V) - h \\ \tau_n(V) \cdot \dot{n} = n_\infty(V) - n \end{cases}$$
(1)

differenciálegyenlet-rendszerhez jutottak, ahol az $m_{\infty}(V)$, $h_{\infty}(V)$, $n_{\infty}(V)$ konstansokat kimérték, a τ_m , τ_h , τ_n konkrét képletekkel adtak (a mérési eredményekből paraméter illesztéssel).

7.5. Az akciós potenciál mint ingerületre adott válasz és a hozzátartozó "V", "Na-pumpa, K-pumpa", "h, m, n" ábrák

7.6. Utazó hullám az idegrostban és a teljes Hodgkin-Huxley egyenlet
rendszerben $% \left({{{\rm{T}}_{{\rm{T}}}} \right)$

A (1) rendszer utolsó három egyenlete rögzített V esetén a Newton féle exponenciális csökkenés

$$\dot{u} = \frac{1}{\tau_u}(u_\infty - u) \quad \Leftrightarrow \quad u(t) = u_\infty + C \cdot e^{-\frac{1}{\tau_u}t}(u_\infty - u)$$

törvényének felel meg, amelyet azm,h,nkapuváltozók nyelvén jobban interpretálható

$$\dot{u} = \alpha_u(V) \cdot (1 - u) - \beta_u(V) \cdot u, \quad u = m, h, n$$

ekvivalens alakban is ki lehet fejezni.

A (1) rendszer első egyenlete és ${\cal I}_{stim}={\cal I}_{membrane}$ alapján a

$$C_M \frac{\partial V}{\partial t} = \frac{1}{R} \frac{\partial^2 V}{\partial x^2} - \overline{g_{Cl}}(V - V_{Cl}) - \overline{g_{Na}}m^3h(V - V_{Na}) - \overline{g_k}n^4(V - V_K)$$

parabolikus parciális differenciálegyenlerbe megy át, amelyhez a

$$\begin{cases} \dot{m} = \alpha_m(V) \cdot (1-m) - \beta_m(V) \cdot m\\ \dot{h} = \alpha_h(V) \cdot (1-h) - \beta_h(V) \cdot h\\ \dot{n} = \alpha_n(V) \cdot (1-n) - \beta_n(V) \cdot n \end{cases}$$

közönséges differenciálegyenletek társulnak. Utazó hullámhoz a

$$V(t,x) = \mathcal{V}(x-ct), \quad m(t,x) = \mathcal{M}(x-ct), \quad h(t,x) = \mathcal{H}(x-ct), \quad n(t,x) = \mathcal{N}(x-ct)$$

helyettesítések tartoznak.

8. Relaxációs oszcillációk és a Nagumo-Fitzhugh egyenletrendszer

8.1. Az ingerköszöb és az akciós potenciál mint valóságos viselkedés megjelenése az $\dot{x} = c(y+x-\frac{x^3}{3}+I), \quad \dot{y} = \frac{1}{c}(a-x-by), \quad (b < 1, c \gg 1)$ Nagumo-Fitzhugh egyenletrendszerben

A FitzHugh és Nagumo által egymástól függetlenül felírt egyszerűsített modell két egymáshoz csatolt közönséges differenciálegyenletből álló rendszer, amely szemléltetni és magyarázni képes a Hodgkin-Huxley modell tulajdonságai közül

- 1. az ingerküszöb létezését,
- 2. az akciós potenciál gyors, szinte robbanásszerű kialakulását, valamint
- 3. az idegrost regenerációjához szükséges relaxációs időszakasz relatív hosszúságát.

Legfontosabb előnye, hogy nagyobb méretű idegrendszeri hálózatok vizsgálatára is alkalmas. Térváltozó híján utazó hullám sem létezhet benne.

A FitzHugh-Nagumo egyenletrendszer J. Cronin változata:

$$\dot{x} = c(y + x - \frac{x^3}{3} + I), \quad \dot{y} = \frac{1}{c}(a - x - by),$$

ahol a, b, c > 0 és $I \in \mathbb{R}$ konstansok, amelyekre b < 1 és $c \gg 1$.

Az x változó a gyors változásokat írja le. A Hodgkin-Huxley alapmodelben a V és az m változóknak felel meg. Az y változó a lassú változásokat írja le. A Hodgkin-Huxley alapmodellben ez a függvény a h és az n változóknak felel meg.

Az idő lineáris átskálázása révén könnyen elérhetjük, hogy a rendszer két egyenletének jobb oldalán a formulakezdő $(c, \frac{1}{c})$ konstans-pár helyett a $(c^2, 1)$, illetve az $(0, \frac{1}{c^2})$ konstans-pár álljon:

$$\begin{cases} \dot{x} = c^2(y + x - \frac{x^3}{3} + I) \\ \dot{y} = a - x - by \end{cases} \quad \Leftrightarrow \quad \begin{cases} \dot{x} = c(y + x - \frac{x^3}{3} + I) \\ \dot{y} = \frac{1}{c}(a - x - by) \end{cases} \quad \Leftrightarrow \quad \begin{cases} \dot{x} = y + x - \frac{x^3}{3} + I \\ \dot{y} = \frac{1}{c^2}(a - x - by) \end{cases}$$

Mivel $c \gg 1$ miatt $0 < \varepsilon = \frac{1}{c^2} \ll 1$, a bal és a jobboldali egyenletrendszerek egyaránt arra utalnak, hogy x a gyors, y pedig a lassú változó. A bal oldali egyenletrendszer általános felírása

$$\begin{cases} \varepsilon \dot{v} = f(v, w) \\ \dot{w} = g(v, w) \end{cases}$$

az ún. szinguláris perturbált közönséges differenciálegyenletek normálalakja, a jobboldali egyenletrend-szeré pedig

$$\begin{cases} \dot{v} = f(v, w) \\ \dot{w} = \varepsilon g(v, w) \end{cases}$$

ami egy speciális alakú reguláris perturbáció.

Az $\varepsilon \to 0^+$ határátmenet az egyenletrendszert egy eddig általunk nem ismert ún. algebro-differenciálegyenlet feladattípusba viszi:

$$\begin{cases} 0 = f(v, w) \\ \dot{w} = g(v, w) \end{cases}$$

Világos, hogy a feladat megoldása komoly nehézségekbe ütközik. Hozzá képest a másik egyenletrendszer az $\varepsilon = 0$ határhelyzetbn roppant egyszerű, dimenzió-csökkentő

$$\begin{cases} \dot{v} = f(v, w) \\ \dot{w} = 0 \end{cases}$$

1

alakot ölti, melynek trajektóriái a vízszintes w=const.egyeneseken haladnak.

A nulla-izoklínák egyenlete

$$y = Q(x) = -x + \frac{1}{3}x^2 - I, \quad y = L(x) = -\frac{1}{3}x^2 - I$$

b

 $Q'(x) = -1 + x^2 \ge -1$ és $L'(x) = -\frac{1}{b} < -1$, tehát a paraméterek összes megengedett értékére az y = Q(x) harmadfokú parabolának lolális maximuma van az x = -1, lokális minimuma az x = 1 koordinátánál. A deriváltakra kapott egyenlőtlenségek geometriai következménye, hogy az y = L(x) egyenletű egyenes és az y = Q(x) harmadfokú parabola egyetlen pontban metszik egymást. Legyen ez a pont $P = (x_*, y_*)$, amely a rendszer egyensúlyi helyzete.

8.2. A periodikus pálya keletkezésének kétféle mechanizmusa, "kicsiben = lokálisan" és "nem-lokálisan = nagyban"

A következő lépés a $P = (x_*, y_*)$ pont körüli linearizálás és a periodikus pályák számbavétele. A P ponthoz tartozó Jacobi-mátrixot könnyű meghatározni, és a P pont (mint egyensúlyi helyzet) típusának meghatározása sem nehéz: a Trace-Determinant diagramm módszere kényelmesen és közvetlenül alkalmazható. Valóban

$$J(P) = \begin{bmatrix} c(1-x_*^2) & c\\ -\frac{1}{c} & -\frac{b}{c} \end{bmatrix} \Rightarrow \begin{cases} T = c(1-x_*^2) - \frac{b}{c} < 0 \Leftrightarrow x_*^2 > 1 - \frac{b}{c^2} \\ D = 1 - b(1-x_*^2) > 0 \end{cases}$$

A P egyensúlyi helyzet stabilitásvizsgálatában tehát öt esetet kell megkülönböztetni, attól függően, hogy a P vízszintes koordinátája hol helyezkedik el a $\kappa_{\pm} = \pm \sqrt{1 - \frac{b}{c^2}} \neq 0$ állandókhoz képest:

$x_* < \kappa$	a ${\cal P}$ attraktor (a pozitív időben aszimptotikusan stabil)
$x_* = \kappa$	a $P{\mbox{-n\'el}}$ Hopf bifurkációval egy aszimptotikusan stabil periodikus pálya születik
$x_* \in (\kappa, \kappa_+)$	a P repellor
$x_* = \kappa_+$	a $P\operatorname{-n\acute{e}l}$ Hopf bifurkációval egy aszimptotikusan stabil pe iodikus pálya hal meg
$x_* > \kappa_+$	a P attraktor

Mostantól kezdve tegyük fel, hogy az I, a, b paraméterek egy konkrét megválasztása révén a $P = (x_*, y_*)$ pontot úgy tudjuk rögzíteni, hogy $x_* \in (\kappa_-, \kappa_+)$ legyen, amikor is a P pont mintegy egy egyensúlyi helyzet repellor. A $c \gg 1$ paraméter ettől még változtatható marad és változtatni is fogjuk.

Ha egy trajektória kezdőpontját mindkét koordinátában viszonylag nagynak válaszjuk, akkor a trajektória az óramutató járásának megfelelő körben forogva, egy szűkülő spirálisra emlékeztető módon rátekeredik egy periodikus pályára, amely az $y = Q(x) = -x + \frac{1}{3}x^3 - I$ függvénygörbe lokális maximumés lokális minimumpontját egyaránt tartalmazza. Ha a c paramétert minden határon túl növeljük, akkor ez a $\{\Gamma_c\}_{c\gg 1}$ periodikus pályacsalád egy szokatlan Γ_{∞} alakzatra zsugorodik össze, amely négy részből áll:

- 1. az M^+ pont és az y=Q(x) függvénygörbe egy $J\neq M^+$ pontja közötti vízszintes szakasz
- 2. az y = Q(x) függvénygörbe J ponttól lefele induló ive, egészen az M^- pontig
- 3. az M^- pont és az y = Q(x) függvénygörbe egy $B \neq M^-$ pontja közötti vízszintes szakasz
- 4. az y = Q(x) függvénygörbe B pontból felfelé induló íve, egészen az M^+ pontig.

Az 1.) és a 3.) vízszintes szakaszok esetünkben az

$$\begin{cases} \dot{x} = y - Q(x) \gtrless 0\\ \dot{y} = 0 \end{cases}$$

differenciálegyenlet-rendszer jobbra, illetve bal
ra haladó trajektóriái, a2.)és a3.)görbeívek pedig esetünk
ben az

$$\begin{cases} 0 = y - Q(x) \\ \dot{y} = b(L(x) - y) \leq 0 \end{cases}$$

algebro-differenciálegyenlet-rendszer trajektóriái, amelyek az y = Q(x) függvénygörbe egy-egy darabján lefelé illetve felfelé haladnak.

Mivel a $c \to \infty$ határérték-képzést nem elég finoman vettük figyelembe, nem tudtuk megindokolni, hogy Γ_c periodikus megoldása az 1.) és a 3.) vízszintes szakaszokhoz közeli részeinek befutási ideje a 0-hoz tart, a 2.) és a 4.) görbeívekhez közeli részeinek befutási ideje pedig a ∞ -hez tart.

Minden elegendően nagy c paraméter esetén a Γ_c periodikus pálya aszimptotikusan stabil és az unicitás is teljesül rá a Γ_{∞} alakzat környezetében. A Γ_c periodikus pálya neve relaxációs oszcilláció.

8.3. Az itt és most szükséges fázisportré analízis

A fázisportré-analízis az I paraméter függvényében történik, amikor is a többi paramétert konstansnak választjuk. Az I növelése a P pontot jobbra tolja el a harmadfokú parabolán. Ezt a geometriailag nyilvánvaló eredményt analitikusan is könnyű levezetni: a

$$-x_*(I) + \frac{1}{3}x_*^3(I) - I = Q(x_*(I)) = y_*(I) = L(x_*(I)) = \frac{a - x_*(I)}{b}$$

egyenlet az I szerint deriválva

$$-x'_{*}(I) + x^{2}_{*}(I)x'_{*}(I) - 1 = \frac{-x'_{*}(I)}{b},$$

majd ebből

$$x'_{*}(I)(-1 + \frac{1}{b} + x^{2}_{*}(I)) = 1,$$

és így 0 < b < 1révén $x'_*(I) > 0$ adódik.

Vegyük észre, hogy a fenti levezetés a
z $x_{\ast}=x_{\ast}(I)$ implicit függvény létezését és egyértelműségét is igazolja.

A végtelen távoli pont taszító, amint azt a $V(x, y) = \frac{1}{2c}x^2 + \frac{c}{2}y^2$ Ljapunov függvény mutatja. Teljesül, hogy $V(x, y) = 0 \Leftrightarrow (x, y) = 0$ és hogy $V(x, y) > 0, (x, y) \neq 0$. Valóban a rendszer szerinti derivált

$$\frac{d}{dt}V(x(t),y(t))\big|_{t=0} = (x\dot{x}+y\dot{y})\big|_{t=0} = x(y+x-\frac{1}{3}x^3+I) + y(a-x-by) = x^2 - \frac{1}{3}x^4 + Ix + ay - by^2 < 0$$

egyenlőtlenséghez vezet, amely minden elég nagy x és y értékre teljesül, hiszen a domináns együtthatók előjele negatív.