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1 Describe the discrete memoryless source model (sam-

pling, quantization, optimal Lloyd Max quantiza-

tion)

The discrete memoryless source model can be seen as the result of digitization of a contin-

uous analog signal. This digitization process involves three steps: sampling, quantization

and coding.

Figure 1: Discrete memoryless source model

Sampling

Definition. Let x(t) be a continuous analog signal. The sampled signal is defined as:

xk = x(t0 + k · T ), where T is the sampling time and t0 is the start time of the process.

Definition. The sampling is called lossless, if the original signal x(t) can be fully recon-

structed from the sampled xk signal.

Definition. The bandwidth of a signal x(t) is B, if the signal can be obtained from it’s

Fourier-transform as: x(t) =
∫ B
−BX(f) · ej2πftdf .

Theorem. The sampling of a band-limitid x(t) signal with bandwidth B is lossless, iff

2B ≤ 1
T

.

Proof. Let x(t) be a continuos analog signal, with bandwidth B. This means:

x(t) =

∫ B

−B
X(f)ej2πftdf

and

X(f) = 0∀f /∈ [−B,B]
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Hı́radástechnika szigorlat

The spectrum of the sampled signal can be written as:

Xm(f) =
+∞∑

k=−∞

X(f +
k

T
)

In order to losslessly reconstruct the original signal from the sampled one, we need X(f) =

Xm(f).

This means 1
T
≥ 2B.

Note. Reconstruction of the signal happens by applying a lowpass filter to a series of

Dirac-delta pulses:

x(t) =
+∞∑

k=−∞

xk · h(t− kT ), where h(t) =
sin(2πBt)

2πBt
.

Quantization

Definition. The quantization of a sampled signal xk is the process of mapping the con-

tinuous domain of the signal values to a discrete set of predefined quantization levels.

Definition. The quality of the quantization can be measured by its signal-to-noise ration,

defined as: SQNR =
Psignal

Pnoise
, where P is the power of the signal and the noise respectively.

In the following paragraphs we assume quantization happens between signal levels [−C,C]

with a number of N quantization levels noted by L={l1, l2, ..., lN} and intervals ∆ =

{∆1,∆2, ...,∆N}. Endpoints of the intervals are noted by {x0, x1, . . . , xN}.

Equidistant quantization

Definition. The quantization is called equidistant, iff ∆ = xk+1 − xk = 2C
N
∀k = 1...N .

Theorem. The SQNR of the equidistant quantization: SQNR = 3
2
22n

Note. This is only true in case of completely kivezérelt signal with uniform probability

distribution.

Proof. We note the quantization error: ε = x− x̂ ∈ [−∆
2
, ∆

2
].

Pnoise = E(ε2) =

∫ ∆
2

−∆
2

x2 · P (x)dx =
∆2

12

SQNR =
Psignal
Pnoise

=
C2/2

∆2/12
=

3

2
N2
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Logarithmic quantization

In practical applications the signal’s distribution is neither uniform, nor known. Loga-

rithmic quantization ensures a suboptimal SQNR independent of the signal’s properties.

Definition. The quantization is logarithmic, if quantization levels and intervals are dis-

torted by the logarithmic function.

Theorem. The SQNR of the logarithmic quantization is:

SQNR = K ·
∫ C
−C x

2p(x)dx∫ C
−C

1
l′2(x)

p(x)dx

Proof.
d

dx
l(x) ≈ ∆y

∆x
⇒ ∆x =

∆y

l′(x)
=

2C

N · l′(x)

Pnoise =
∑
∆i

E(ε|x ∈ ∆i) · P (x ∈ ∆i) =
1

12

∑
∆i

∆2
i p(x) = K ·

∫ C

−C

1

l′2(x)
p(x)dx

Optimal Lloyd-Max quantization

In this case, we try to find the optimal quantization levels, using an adaptive approach.

Definition. The optimal quantization levels are defined as: lopt : maxSQNR. These

levels are those minimizing the following criteria: F (∆, L) =
n∑
i=1

∫
∆i

(x− li)2p(x)dx.

The algorithm is iteratieve with the following two steps:

1. Calculate new intervals: ∆l,opt = {x : (x− ql)2 < (x− qi)2}.

2. Calculate new quantization levels: ql,opt = E(x|x ∈ ∆l).

The algorithm can stick in local minimums, so it is not guaranteed that it converges to

the optimal solution.
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2 Derive the Nyquist criterion for ISI free communi-

cation over band limited channels

Theorem. The Nquist criterion states, that there is no intersymbol interference (ISI)

over a band-limited chanel if and only if:

1

T

+∞∑
k=−∞

H(f − k

T
) = 1,

where H(f) is the frequency response function of the channel.

Proof. Let the impulse response function of the channel be h(t).

This means, the recieved symbol yl for a transmission of the xk signal can be written as:

yl = hk ∗ xk = xl · h0 +
∑
k 6=l

xk · hl−k︸ ︷︷ ︸
ISI

The time-domain condition for ISI-free communication:

hk =

{
1 if k = 0

0 if k 6= 0

In order to transform the condition to the frequency domain, let’s see it first in continuos

time:

h(t) ·
∑
k

δ(t− kT ) = δ(t)

Now, Fourier-transforming both sides gives the Nquist criterion:

H(f) ∗ 1

T

∑
k

δ(f − k

T
) = 1⇔ 1

T

∑
k

H(f − k

T
) = 1
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3 Describe the memoryless channel model (AWGN

channel and BSC), derive the bit error probability

as a function of the signal-to-noise ratio.

Channel model

Rajz!!

Definition. A channel is called memoryless, if the symbol received depends only on the

symbol being transmitted in the very same time.

P (vk = yi|ck = xi, ck−1 = xi−1, ...) = P (vk = yi|ck = xi)

BSC

Definition. A binary simmetric channel is a communication channel model, in which

binary data is being transmitted, and probability of a bit being received incorrectly is

independent of the bit itself.

Definition. These channels can be described by their bit error probability, defined as:

Pb = P (v = 1|c = 0) = P (v = 0|c = 1).

AWGN

Definition. An Additive White Gaussian Noise channel is a communication model, in

which the received signal is modeled as the sum of a random variable with normal distri-

bution and the transmitted symbol. The channel can be described by the σ2 deviance of

the distribuiton.

Definition. The signal-to-noise ratio of the AWGN channel: SNR[dB] = 10 · log
(
Psignal

σ2

)
.

Theorem. The bit error probability of a BSC can be calculated as a function of the SNR

as follows:

Pb = Φ

−0.5 ·

√
10

1
10
SNR[dB]

Psignal


Proof. Let’s assume we have a treshhold 0.5 for the symbols (which means a received

value below 0.5 is rounded to 0, a value above is rounded to 1).

This means:

P (v = 0|c = 1) = P (e < −0.5) = Φ

(
−0.5

σ

)
and

P (v = 1|c = 0) = P (e > 0.5) = 1− Φ

(
0.5

σ

)
= Φ

(
−0.5

σ

)
.
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Pb = P (c = 0) · P (v = 1|c = 0) + P (c = 1) · P (v = 0|c = 1) = Φ

(
−0.5

σ

)
.

Now, we can express the deviance from the SNR:

SNR[dB] = 10 · log

(
Psignal
σ2

)
⇒ σ =

√
Psignal

10
1
10
SNR[dB]

By substitution we arrive to the desired expression.
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4 Define and describe the properties of entropy, joint

entropy, conditional entropy and mutual informa-

tion

Definition. Information of a symbol is defined as: I(x) = ld
1

p(x)

Definition. The entropy of a source is the average information of the symbols emitted:

H(X) = E(I(x)) =
∑
x∈X

p(x) · I(x) =
∑
x∈X

p(x) ld
1

p(x)

Theorem. For any source: 0 ≤ H(X) ≤ ldN

Proof. Insert proof here

Definition. Joint entropy of two sources: H(X, Y ) =
∑
x

∑
y

p(x, y) ld
1

p(x, y)

Definition. Conditional entropy of two sources: H(X|Y ) =
∑
x

∑
y

p(x, y) ld
1

p(x|y)

Theorem. The joint entropy: H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y )

Proof. The proof of the first part, based on: p(x, y) = p(x) · p(y|x)

H(X, Y ) =
∑
x

∑
y

p(x, y) ld
1

p(x, y)
=
∑
x

∑
y

p(x, y)

(
ld

1

p(x)
+ ld

1

p(y|x)

)
=
∑
x

∑
y

p(x, y) ld
1

p(x)
+
∑
x

∑
y

p(x, y) ld
1

p(y|x)

=
∑
x

p(x) ld
1

p(x)
+
∑
x

∑
y

p(x, y) ld
1

p(y|x)
= H(X) + H(Y |X)

Second part can be proven using: p(x, y) = p(y) · p(x|y)

Note. For independent sources, this means: H(X, Y ) = H(X) + H(Y )

Definition. The Kullback-Leibler distance of two probability distributions:

D(p(x)||q(x)) =
∑
x

p(x) ld
p(x)

q(x)

Definition. Mutual information of two sources: I(X, Y ) = D(p(x, y)||p(x)· (y))

Theorem. The mutual information: I(X, Y ) = H(X)− H(X|Y ) = H(Y )− H(Y |X)
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Proof. Proof of the first part.

I(X, Y ) =
∑
x

∑
y

p(x, y) ld
p(x, y)

p(x)p(y)
=
∑
x

∑
y

p(x, y) ld
p(x|y)p(y)

p(x)p(y)

=
∑
x

p(x) ld
1

p(x)
−
∑
x

∑
y

p(x, y) ld
1

p(x|y)

Second part can be proven using p(x, y) = p(x) · p(y|x)

Note. Theorems can be easily memorized based on Figure 2

Figure 2: Entropy, conditional entropy and mutual information
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5 Define the typical set of an IT source (AEP) and

derive its properties.

Definition. Asymptotic equipartition property (AEP): lim
n→∞

1

n
ld p(x1, ..., xn) = −H(X)

Definition. The typical set belonging to the AEP IT source X is defined as:

A = {x = (x1, x2, ..., xn) | 2−nH(X)−ε ≤ p(x) ≤ 2−nH(X)+ε}

Theorem. Probability of a random vector belonging to the set: (1− ε) ≤ P (x ∈ A) ≤ 1

Proof. Stochastic convergence of the AEP definition implies:

P (|H(x)− 1

n
ld

1

p(x1, ..., xn)
| < ε) > 1− ε

Theorem. The size of the typical set: (1− ε) · 2nH(X)−ε ≤ |A| ≤ 2nH(X)+ε

Proof. Proof of the left side:

|A| · 2−nH(X)+ε ≥
∑
x∈A

p(x) ≥ (1− ε)⇒ (1− ε) · 2nH(X)−ε ≤ |A|

Proof of the right side:

|A| · 2−nH(X)−ε ≤
∑
x∈A

p(x) ≤
∑
x

p(x) = 1⇒ |A| ≤ 2nH(X)+ε

Theorem. The probability density function defined above the typical set is approixi-

mately uniform.
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6 Define the properties of uniquely decodable codes.

Definition. A code is unequely decodable if it’s prefix free, meaning that ∀i 6= j : ci ⊀ cj

Definition. The average code length of a prefix-free code: L =
∑
x

p(x) · l(x)

Theorem. (Kraft inequality) For any prefix-free code:
∑
x

2−l(x) ≤ 1

Proof. Let the codeword lengths be L = (l1 ≤ l2 ≤ ... ≤ lN). We construct a prefix-

free code step-by-step, choosing the codeword for each symbol. At step k there exist 2lk

possible codewords. To avoid one of the previously chosen codewords to be prefix of this

one,
k−1∑
i=1

2lk−li codewords are forbidden.

To be able to construct the code, we must have a codeword to choose at each step, which

means:
k−1∑
i=1

2lk−li + 1 ≤ 2lk ⇔
k∑
i=1

2lk−li ≤ 2lk ⇔
k∑
i=1

2−li ≤ 1

Note. This is a special case of the Kraft-McMillian inequality, which states the following:

Given a list of positive integers (n1, n2, ..., nr) there exists a uniquely decodable code with

these codeword lengths, if and only if:

r∑
i=1

s−ni ≤ 1

where s is the alphabet size (2 for binary codes).

12
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7 Discuss the source coding theorem

Theorem. Source coding theorem: H(X) ≤ L =
∑
x

p(x) · l(x)

Proof. Let q(x) =
2−l(x)∑
y 2−l(y)

an artificial probability distribution. As
∑
x

q(x) = 1, this is

a distribution indeed.

The Kullback-Leibler distance of the distributions:

D(p(x)||q(x)) =
∑
x

p(x) ld
p(x)

∑
y 2−l(y)

2−l(x)
≤∗
∑
x

p(x) ld
p(x) · 1
2−l(x)

=

=
∑
x

p(x){ld p(x)− ld 2−l(x)} = −
∑
x

p(x)
1

ld p(x)
+
∑
x

p(x)l(x) =

= −H(x) + L

Now, 0 ≤ D(p(x)||q(x))⇒ 0 ≤ −H(x) + L⇒ H(x) ≤ L.

*using the Kraft inequality for uniquely decodable codes (page 12).
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8 Describe the Shannon-Fano, Huffman, and arith-

metic coding and discuss their performance

Shanon-Fano code

Definition. Code length of an SF code: l(x) =

⌈
ld

1

p(x)

⌉
Theorem. Bounds for the code lenght: H(X) ≤ LSF ≤ H(X) + 1

Shanon-Fano block code

Definition. Symbols of source Y are defined as a vector of K consecutive symbols of

source X: y = (x1, x2, ..., xK). As X is memoryless source, x1, ..., xK are independent

variables, meaning that p(y) =
∏K

i=1 p(xi)

Theorem. Bounds for the SF block code length: H(X) ≤ LNEWSF (X) ≤ H(X) +
1

K

Proof.

K · H(X) = H(Y ) ≤ LBLOCKSF (Y ) ≤ H(Y ) + 1 = K · H(X) + 1

H(X) =
1

K
H(Y ) ≤ LNEWSF (X) ≤ 1

K
H(Y ) +

1

K
= H(X) +

1

K

Note. By using block codes, SF is asymptotically optimal.

Note. Limits of block coding: LUT complexity becomes O(NK)

Huffmann code

The technique works by creating a binary tree of nodes. A node can be either a leaf node

or an internal node. Initially, all nodes are leaf nodes, which contain the symbol itself,

the weight (frequency of appearance) of the symbol. Internal nodes contain a weight,

and the links to two child nodes. The process begins with the leaf nodes containing the

probabilities of the symbol they represent. Then, the process takes the two nodes with

smallest probability, and creates a new internal node having these two nodes as children.

The weight of the new node is set to the sum of the weight of the children. We then apply

the process again, on the new internal node and on the remaining nodes (i.e., we exclude

the two leaf nodes), we repeat this process until only one node remains, which is the root

of the Huffman tree.

Theorem. Huffman codes are asymptotically optimal.

Note. Construction of a Huffmann code has O(N2) complexity.
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Comparison between codes

H(X) ≤ LH ≤ LSF

Arithmetic coding ???
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9 Describe the LZ based compression algorithms

LZ77 and LZ78 are the two lossless data compression algorithms, which does not require

the knowledge of the IT source’s probability distribution. Both of them are dictionary-

based coders, with slightly different implementation. The LZ78 constructs an explicit

dictionary for the whole data, LZ77 operates with local dictionaries obtained by the usage

of a sliding window. The compression methods are equivalent if the entire data is to be

compressed and decomressed at a time. Both algorithms are asymptotically optimal.

16
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10 Define the channel capacity and elaborate on its

calculation for symmetric channels

Definition. Channel capacity (denoted by C) is the tight upper bound on the rate at

which information can be reliably transmitted over a communications channel.

Theorem. Channel coding theorem: C = max
p(x)

I(x, y) = max
p(x)
{H(Y )− H(Y |X)}

Proof. See detailed description in section 11 (page 18).

Capacity of symmetric channels

Definition. The transition matrix of a channel: P : pij = P (Y = yj|X = xi).

Note. This means the sum of elements in a column is always 1.

Note. The probability of a received symbol: P (Y = yj) =
N∑
i=1

Pij · P (X = xi)

Note. Transition matrix of BSC: P =

(
1− Pb Pb
Pb 1− Pb

)
Definition. A channel is symmetric, if columns of P are permutations of each other.

Definition. Conditional entropy of the symmetric channel: H(r) =
N∑
i=1

Pij ld
1

Pij

Note. As columns are permutations of each other, this is independent of j.

Theorem. Capacity of symmetric channel: C = ldN − H(r)

Proof. We simply substitute ld(N) and H(r) into H(Y ) and H(Y |X) respectively.

Capacity of BSC - naive approach

Definition. Entropy of the error source: H(Pb) = Pb · ld
1

Pb
+ (1− Pb) · ld

1

1− Pb
In this approach, we make the assumption, that the error vector e generated by the

channel is known at transmitter side. In order to ensure reliable transmission, this error

data is also sent over the channel, compressed as good as possible. Moreover, error data

corrupting this additional transmission is also compressed and sent (recursively).

This means, in order to transmit k bits of useful information, we need:

n = k + k · H(Pb) + k · H(Pb) H(Pb) + ... = k ·
∞∑
i=0

Hi(Pb) = k · 1

1− H(Pb)

Rearranging the equation gives maximum channel capacity:
k

n
≤ 1−H(Pb).

17



Hı́radástechnika szigorlat

11 Describe the channel coding theorem

Theorem. Channel coding theorem: C = max
p(x)

I(x, y)

Proof. We have already discussed in section 5 (page 11), that an AEP IT source emits

typical sequences ”almost all time”. Thus, we give a proof for typical sets only.

Given symbols with length k at the transmitter side, we have 2k symbols.

At the receiver side, each symbol detected falls into a typical set belonging to it, having

a size of 2nH(Y |X).

Now, as seen in figure 3, the size of all typical sequences must be greater or equal than

the sum of these tipical sets belonging to the symbols.

This means, 2k · 2nH(Y |X) ≤ 2nH(Y ).

By rearranging the equation:
k

n
≤ max

p(x)
H(Y )− H(Y |X) = max

p(x)
I(x, y).

Figure 3: Channel coding theorem: size of typical sets

18
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12 Define and explain the relationship between the

following properties and parameters of error cor-

recting codes: minimum code distance; code-length

and message-length versus performance (Single-

ton and Hamming bounds); general algorithmic

complexity of coding with tables

Code parameters

Definition. Minimum code distance: dmin : min
c 6=c’

d(c, c′)

Definition. Number of errors a code can detect: l = dmin − 1

Definition. Number of errors a code can correct: t =

⌊
dmin − 1

2

⌋
Theorem. Singleton bound (for linear codes): dmin ≤ n− k + 1

Proof. Let C be a set of binary codewords with minimum distance d. If we delete the first

d−1 bits of every codeword in C, they should remain different. As the number of distinct

codewords with length n− (d− 1) is 2n−d+1, the number of elements in C should be less

then this. Rearranging the inequality: |C| ≤ 2n−d+1 ⇔ 2k ≤ 2n−d+1 ⇔ d ≤ n− k+ 1.

Definition. Maximum distance separable (MDS) code: dmin = n− k + 1

Theorem. Hamming bound:
t∑
i=0

(
n

i

)
≤ 2n−k

19
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Figure 4: Graphical representation of Hamming bound

Proof. See figure 4.

Note. Codes which attain to the Hamming-bound are called perfect codes.

General coding scheme

Figure 5: General coding scheme with lookup tables

Complexity of lookup tables and search operation: 3 · O(2k)

Complexity of optimal code construction (offline): O
((

2n

2k

)(
2k

2

))

20



Hı́radástechnika szigorlat

13 Introduce the concept of linear block coding and

explain the meaning of systematic codes; gener-

ator matrix, parity check matrix and their rela-

tionship; algorithmic complexity of coding with

tables

Definition. For a linear C(n, k) code the generator space is defined as:

G = {g(1), g(2), ..., g(k)}, dim
(
g(i)
)

= n.

Definition. The codewords are the linear combination of the elements of G: C = Lc{G}

Definition. The encoding operation: c =
k∑
i=1

ui · g(i).

Theorem. In case of linear codes, dmin = min
c6=0

w(c)

Proof. As codewords form a vector space, the difference between any pair of codewords

is a codeword itself.

Definition. A code is called systematic, if codewords can be written as the message itself

and some complementary bits:

c = (u1, u2, ..., uk, p1, p2, ..., pn−k).

Figure 6: Linear binary coding scheme

Definition. The generator matrix of a linear binary code:

Gk×n =


g(1)

g(2)

. . .

g(k)


Note. The generator matrix of a systematic code:

Gk×n =
[
Ik×k|Bk×(n−k)

]
21
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Definition. The parity check matrix of the linear binary code is defined as:

H(n−k)×n : H · cT = 0 ∀c ∈ C

Theorem. The connection between the two matrices: H ·GT = 0

Proof.

H · cT = H · (u ·G)T = H ·GT · u = 0 ∀u⇒H ·GT = 0.

Theorem. The parity check matrix of systematic codes:

H =
[
A(n−k)×k|I(n−k)×(n−k)

]
, where A = BT

Proof.

H ·GT = A · I + I ·BT = A+BT = 0⇒ A = −BT = BT .

Theorem. The key equation: H · vT = H · eT = sT .

Proof.

H · vT = H · (c+ e)T = H · cT +H · eT = H · eT = sT .

Definition. The error group belonging to a syndrome vector s:

Es = {e : H · eT = sT}

Note. An error group has 2k elements.

Definition. The error group leader: es = min
e∈Es

w(e) −→ this is uploaded to LUT

Algorithmic complexity of detection (offline): O(2n−k).

Algorithmic complexity of encoding and decoding (online): O(n · k).

Algorithmic complexity of the whole scheme: 1 LUT (detection) + 2 matrix-vector mul-

tiplication + truncation.
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14 Give the construction of binary Hamming codes

(define the corresponding matrices and the error

correcting capability).

Hamming codes are linear codes with error correction capability t = 1 (see linear codes

in section 13, page 21).

Detection: in case of a single error, the syndrom vector has a total mach with one of the

column vectors in H .

Definition. The parity check matrix of a Hamming-code:

H = [a(1), a(2), ..., a(k)|I(n−k)×(n−k)], where a(i) 6= 0 and a(i) 6= a(j) ∀i 6= j.

Theorem. Hamming codes are perfect, as
t∑
i=0

(
n

i

)
= n+ 1 = 2n−k.

Proof. There exist 2n−k− 1 syndrome vectors indicating an error. Each single error to be

corrected matches with one of the n columns of H .

Example: for the code C(3,1), 3 ≤ dmin ≤ n− k + 1 = 3⇒ this is an MDS code.

Theorem. The bit error probability of a channel encoded with a Hamming-code:

Correct block probability: (1− P ′b)k = n · Pb · (1− Pb)n−1 + (1− Pb)n

Based on this: P ′b = Ψ(Pb, n, k) ≤ 10−γ QoS requirement can be fulfilled.

Multiple error correction

Theorem. If a Hamming-code can correct every t error, A must have at least 2t inde-

pendent column vectors.

Detection rule for t = 2: the syndrome vector matches with one of the columns (single

error) or with one of the two-element-sums of the column vectors. This is highly inefficient

to check.
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15 Describe the Reed-Solomon codes (generator ma-

trix, parity check matrix, performance)

Mathematical background: Galois fields

Definition. Let q be a prime number. The finite field or Galois field over q:

GF (q) = {0, 1, 2, ..., q − 1}

Operations (+, ·) are defined using modulo q arithmetic.

Definition. The order of an element:

ord(α) = min
1≤k
{αk = 1}

Theorem. ∀α ∈ GF (q)\{0} : αq−1 = 1.

Definition. α ∈ GF (q) is a primitive element if α, α2, ..., αq−1 expand the field.

Equivalent definition: α is a primitive element, if ord(α) = q − 1.

Theorem. Every Galois field has at least one primitive element.

Definition. A polynom over GF(q):

a(x) = a0 + a1 · x+ a2 · x2 + · · ·+ an · xn

This polynom can also be represented as a vector:

a(x)↔ a = (a0, a1, . . . , an).

Reed-Solomon codes

The Reed-Solomon codes are defined over GF (q), where q is prime, n = q − 1.

As discussed above: u = (u0, u1, . . . , uk−1)→ u(x) = u0 + u1 · x+ · · ·+ uk−1 · xk−1.

Encoding operation: ci = u(αi).

Definition. Generator matrix of Reed-Solomon code:

Gk×n =


1 1 ... 1

α1 α2 ... αn
α2

1 α2
2 ... α2

n

. . . . . . . . . . . .

αk−1
1 αk−1

2 ... αk−1
n

 =


1 1 ... 1

1 α ... αn−1

1 α2 ... α2(n−1)

. . . . . . . . . . . .

1 αk−1 ... α
(k−1)(n−1)
n


Let α be the primitive element of the field, and αi = αi

Parity check operation: c(αi) = 0 ∀i = 1, 2, ..., n− 1.
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Definition. The parity check matrix of the Reed-Solomon code:

H(n−k)×n =


1 α α2 ... α(n−1)

1 α2 α4 ... α2(n−1)

. . . . . . . . . . . . . . .

1 αn−k α2(n−k) ... α(n−1)(n−k)


Theorem. The Reed-Solomon codes are always MDS.

Proof. As deg(u(x)) = k − 1 ⇒ u(x) has maximum k − 1 roots. This means, that ∀c
codeword has maximum k − 1 nonzero components.

As Reed-Solomon codes are linear, dmin = min
c

w(c) ≥ n− (k − 1) = n− k + 1.

However, due to the singleton bound: dmin ≤ n− k + 1.

Consequently, dmin = n− k + 1, which meand this is MDS code indeed.

The only problem: complexity of the lookup table used: O(qn−k).
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16 Describe the steps of the Error Trapping Algo-

rithm for detection in case of cyclic codes

Polynom operations on shift registers

LFFSR: Linear feedforward shift register

This circuit implements multiplication of polynoms over GF (q).

vi =
n∑
j=0

aj · ui−j = (a ∗ u)i ⇒ v(x) = a(x) · u(x)

LFBSR: Linear feedback shift register

This circuit implements division without remainder of polynoms over GF (q)

vi = ui + (1− a0)vi −
n∑
j=1

aj · vi−j ⇒ ui = (a ∗ v)i ⇒ u(x) = a(x) · v(x)⇒ v(x) =
u(x)

a(x)

With another coefficients, the LFBSR implements division with remainder:

vi = ui + (1− an)vi −
n∑
j=1

an−jvi−j

v(x) = r(x), where u(x) = a(x) · q(x) + r(x), deg(r) < deg(q)

Cyclic codes

Definition. The cyclic shift operation of a vector:

Sc = S(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

Definition. The cyclic shift operation as polynom multiplication:

Sc→ Sc(x) = c′(x) = x · c(x) mod (xn − 1)→ c′

Theorem. If c ∈ C ⇒ c′ = Sc ∈ C. Moreover, ∃g(x) generator polynom, with these

properties:

1. deg(g(x)) = n− k

2. gn−k = 1

3. ∀c(x) = u(x) · g(x)

4. g(x) | (xn − 1)
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Proof. Let a(x) ∈ C be the minimum degree code polynom, deg(a(x)) = m.

Let g(x) = a−1
m a(x). It can be clearly seen, that gm = 1.

Now, we proove that g(x) is the generator polynom.

First, we proove that u(x)g(x) ∈ C∀u(x) with maximum degree n− 1−m:.

u(x)g(x) = u0g(x)+u1xg(x)+. . . un−1−mx
n−1−mg(x) = Lc{g(x), xg(x), . . . , xn−1−mg(x)} ∈ C

Then, we proove that all code polinoms are multiples of g(x). Assuming c(x) = g(x)q(x)+

r(x) ∈ C exists:

r(x) = c(x)− u(x)g(x) = Lc{c(x), g(x)} ∈ C

But deg(r(x)) < deg(g(x)), which leads to contradiction.

Finally, as message polynomials have a degree of k− 1, k− 1 = n− 1−m⇒ m = n− k.

The Error Trapping Algorithm

The ETA is a method for identifying cyclic code error polynomials without use of lookup

tables. However it does not provide an equivalent replacement: only error vectors with

generic error configuration (also called burst errors) can be detected this way.

The concept behind the algorithm is the following similarity:

v(x) = a(x)g(x) + r(x) (division with remainder on receiver side)

v(x) = u(x)g(x) + e(x) (directly from the definition)

The condition, which makes r(x) = e(x): deg(e(x)) < deg(g(x)) = n − k. This is a too

strict condition. However, if the error is burst error, so that the first and last error bit in

e(x) has a maximum distance of n− k, e(x) = xi0r(x), where i0 is the first error position.

To find this first error, we can use the key equation:

v(x) mod g(x) = e(x) mod g(x)

x−iv(x) = a(x)g(x) + r(x)

x−ie(x) = b(x)g(x) + r(x)

As b(x)g(x) is a codeword, it has a minimum weight of 2t+ 1.

As we correct up to t errors, weight of e(x) is maximum t.

From the above two statements, w(r(x)) ≥ t+ 1.

This means, x−i0e(x) = r(x) if and only if w(r(x))≤ t.
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Figure 7: Error trapping scheme
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17 Describe the cyclic RS codes (generator polynom,

parity check polynom, implementation)

Theorem. The Reed-Solomon codes are cyclic.

Definition. The generator polynom: g(x) =
n−k∏
i=1

(x− αi).

Definition. The parity check polynom: h(x) =
n∏

i=n−k+1

(x− αi).

Implementation in binary domain

Definition. A polynom over GF (q) is irreducible, if it cannot be written as a product of

two lower-degree polynoms.

Theorem. Let p(y) be an irreducible polynom with degree m in GF (p), p prime number.

Then, any element q of the field GF (pm) can be uniquely mapped to a polynom q(y) over

GF (p), with the following operation:

α, β ∈ GF (pm)←→ a(y), b(y) ∈ P(GF (p))

γ = α + β ←→ c(y) = a(y) + b(y) mod p(y)

γ = α · β ←→ c(y) = a(y) · b(y) mod p(y)

Theorem. In this field, the first-order polynom y is be a primitive element.

Definition. Standard form of a polynom in GF (pm):

α(x) = α0 + α1 · x+ · · ·+ αn · xn

α(x) = a0(y) + a1(y) · x+ · · ·+ an(y) · xn

α(x) = yi0 · x+ yi1 · x+ · · ·+ yin · xn

Construction of optimal binary Reed-Solomon codes: t→ (n, k); p = 2, q = 2m, n = 2m−1
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18 Describe the CDMA/FH system

The abbreviation CDMA stands for Code Division Multiple Access, and it is a channel

access solution used in almost all modern telecommunication systems. CDMA allows

multiple users to access the same channel simultaneously, without disturbing each others

transmissions.

The CDMA-FH (CDMA Frequency Hopping) works by transmitting radio signals by

rapidly switching a carrier among many frequency channels, using a pseudorandom se-

quence known to both transmitter and receiver. This approach ensures a spread spectrum,

much more resistant to deliberate jamming and disturbances like fading/multipath prop-

agation as well. The frequency hopping also provides enhanced privacy: without the

hopping scheme being known, the transmission can hardly be distinguished from random

noise.

The CDMA-FH system works by applying so called code tables to the message being

transmitted.

CDMA-FH encoding

Figure 8: CDMA-FH transmission using code tables
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Hı́radástechnika szigorlat

CDMA-FH decoding

Figure 9: CDMA-FH decoding

As seen in figure 9, parts of the message belonging to the coding table used by the first

user align into line, transmisson of the second user appears as noise, spread over the

whole spectrum. Detection happens based on majority decision. Even though parts of

the message overlap in timeslot 4, both users are able to decode their transmission. In

practice, tables with much more time and frequency slots are used.

The code tables used are binary superimposed codes, which means their bitwise OR result

must be different at a predescribed level. In a CDMA-FH system, M = O(N2) different

codes can be used.
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19 Describe the CDMA/DS system and the Walsh-

Hadamard codes

The abbreviation CDMA stands for Code Division Multiple Access, and it is a channel

access solution used in almost all modern telecommunication systems. CDMA allows

multiple users to access the same channel simultaneously, without disturbing each others

transmissions.

In the CDMA-DS (CDMA Direct sequence) system a method of achieving the spreading

of a given signal is provided by the modulation scheme.The message signal is used to

modulate a bit sequence called signature signal ; this pseudorandom code consists of radio

pulses much shorter in durationthan the original message signal. This modulation of

the message signal scrambles and spreads the pieces of data, and thereby resulting in a

bandwidth size much larger than the message signal. The duration of the radio pulses

are called chiptime. The smaller this duration, the larger the bandwidth of the resulting

signal.

Formal description of the system

Users of the system: i = 1, 2, ...,M .

Definition. The message symbol being sent by user i: yi ∈ {−1, 1}.

Definition. The codeword of user i: c(i) ∈ {−1, 1}N , where

N =
Tsample
Tchip

=
fchip
fsample

.

Note. Typical values for N are 1000 in (low-speed) vioce transmissions, and as low as

3-5 in high speed data applications.

Definition. The signature signal belonging to the codeword is defined as a square signal:

si(t) = c
(i)
k for t ∈ [(k − 1)Tchip, kTchip].

Definition. The received or multiplexed (MUX) signal for a transmitted symbol is:

x(t) =
M∑
j=1

yj · sj(t) + ν(t)

In a more complex model, taking in consideration attenuation and delay:

x(t) =
M∑
j=1

yj · (αj · sj(t− τj)) + ν(t)

Using an even more more complex model (each channel having its own impulse response

function gj(t)):

x(t) =
M∑
j=1

yj · (sj(t) ∗ gj(t)) + ν(t)
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Below, for the sake of simplicity, we use the first model.

At the receiver side, the signals are distinguished based on their correlation to the respec-

tive signature signals. To ensure unique detection, correlation of signature signals must

be examined.

Definition. The correlation matrix of the codewords:

R : Rij =
1

Ts

∫ Ts

0

si(t) · sj(t)dt =
1

N
c(i)T · c(j)

Note. The main diagonal of the matrix: Rii = 1
N

∑N
j=1(c

(i)
j )2 = 1.

Definition. The correlation vector of the random noise:

ν : νj =
1

Ts

∫ Ts

0

ν(t) · sj(t)dt

.

Using the above definitions, the received symbol can be written as:

xi =
1

Ts

∫ Ts

0

si(t)x(t)dt = yi +
M∑

j=1,j 6=i

yj ·
1

Ts

∫ Ts

0

si(t)sj(t)dt+

∫ Ts

0

ν(t) · sj(t)dt =

= yi +
M∑

j=1,j 6=i

Rij · yj︸ ︷︷ ︸
MUI

+νi,where MUI stand for MultiUser Interference.

Written in vector-matrix form: x = Ry + ν.

Walsh-Hadamard codes

Walsh-Hadamard method allows construction of M = 2k size ortogonal codes.

Initialization: C(0) = 1. Iterative step: C(k + 1) =

[
C(k) C(k)

C(k) −C(k)

]
Walsh-Hadamard codes are orthogonal, which means Rij = 0 ∀i 6= j.

For this reason, there is no multiuser interference, and xi = yi + νi

Definition. The deviation matrix of the noise can be written as: K : Kij = E(νiνj)

Recognition of the symbol happens using the concept of maximum likelyhood:

ŷ(i) : max
y∈{−1,1}

p(y|x) = max
p(x|y)p(y)

p(x)

As p(x) and p(y) are constant, this depends only on p(x|y).

p(x|y) =
1√

(2π)Ndet(K)
· e−

1
2

(x−Ry)T ·K−1(x−Ry)
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To maximize the expression above, the following problem should be solved:

ŷ(i) : min
y
yTRy − xTy

Complexity of solution (mathematically): O(2M).

Complexity using approximation (Hopfield net): O(M2).

State transition rule of the Hopfield net:

yl(k + 1) = −sgn

{∑
j

Rljyj(k)− xl + βl

}
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20 Describe the CDMA/DS system with random codes

Formal description

Formal description of CDMA/DS systems is in section 19 on page 32.

Random codes

Using CDMA/DS with Walsh-Hadamard orthogonal codes minimizes the multiuser inter-

ference, but has a major drawback: number of users is limited by N =
fchip
fsample

≈ 3− 5 in

high-speed data transmissions.

To overcome this constraint, randomly generated, quasi orthogonal codes can be used.

These codes are generated using an RNG following Bernoulli distribution, which means

P (c
(i)
k = 1) = P (c

(i)
k = 0) = 0.5. This approach does not eliminate multiuser interference

(MUI), so this will negatively affect bit error probability.

Pb = P (ŷl 6= yl) =
1

2
P (ŷl = 1|yl = −1) +

1

2
P (ŷl = −1|yl = 1) =

=
1

2
P

(
sgn

{
−1 +

∑
j 6=l

Rljyj + νl

}
= 1

)
+

1

2
P

(
sgn

{
+1 +

∑
j 6=l

Rljyj + νl

}
= −1

)
=

=
1

2

∑
z∈{−1,1}M−1

1

2M−1

[
P

(
sgn

{
−1 +

∑
j 6=l

Rljzj + νl

}
> 0

)
+ P (... < 0)

]
=

=
1

2M

∑
z∈{−1,1}M−1

[
P (νl > 1−

∑
Rljzj) + P (νl < 1−

∑
Rljzj)

]
=

=
1

2M

∑
z∈{−1,1}M−1

[
Φ

(
−1−

∑
Rljzj√

N0

)
+ Φ

(
−1 +

∑
Rljzj√

N0

)]
=

= Ψ(R) = Ψ

(
1

N
CTC

)
.

To construct an optimal code, this Ψ(R) expression should be minimised.

Offline complexity (mathematically): O(2M−1).

Approximation using Monte-Carlo simulation can produce better results.
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21 Describe the OTP method for cryptography

In cryptography, the one-time pad (OTP) is an encryption technique that cannot be

cracked, but requires the use of a one-time pre-shared key the same size as, or longer

than, the message being sent. In this technique, a plaintext is paired with a random secret

key (also referred to as a one-time pad). Then, each bit or character of the plaintext is

encrypted by combining it with the corresponding bit or character from the pad using

modular addition. If the key is truly random, and is never reused in whole or in part, then

the resulting ciphertext will be impossible to decrypt or break. Digital versions of one-

time pad ciphers are used by nations for virtually all top secret diplomatic and military

communication, but the problems of secure key distribution have made them impractical

for less critical applications.

Figure 10: One-time-pad as binary simmetric channel

As seen in the figure, for an eavesdropper without access to the one-time-pad, this type

of encryption can be seen as a binary simmetric channel with a bit error probability equal

to the probability of a bit being 1 in the key. If the key is truly random, P (ki = 0) =

P (ki = 1) = 0.5.

Now, it can be easily concluded, that for a bit error probability Pb = 0.5, the conditional

entropy of the channel is equal to H(Pb) = Pb · ld 1
Pb

+ (1 − Pb) · ld 1
1−Pb

= 1, resulting

in C = 0 channel capacity. In another words, the mutual informaiton of the transmitted

and the eavasedropped symbols is I(X, Y ) = 0.

In conclusion, if the key is never reused, the OTP is impossible to be broken.
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22 Describe the RSA algorithm

The RSA is one of the first public-key cryptography algorithms, widely used for secure

data transmission and digital signitures.

Mathematical background

Theorem (Euclidean division algorithm). Given b, p ∈ N∗, b > p, there exists q, r ∈
N, r < p such that b = p · q + r.

Theorem (Fermat’s little theorem). If p, c ∈ N, p is prime, and p - c, then cp−1 ≡
1 (mod p)

Proof. First, we consider c, 2c, ..., (p− 1)c mod p.

Assuming 0 < i, j ≤ p− 1 exist, such that ic = jc, leads to (i− j)c ≡ 0 (mod p) ⇒ p | c
contradiction. Thus, these numbers are pairwise different.

Now, if they are different, these numbers are in fact 1, 2, 3, ..., (p − 1) in different order.

Consequently,
c · 2c · ... · (p− 1)c = 1 · 2 · ... · (p− 1) (mod p)

cp−1 · (p− 1)! = (p− 1)! (mod p)

cp−1 = 1 (mod p)

Theorem (Extended Fermat theorem). If p1, p2, c ∈ N, p1, p2 is prime, and p1 - c, p2 -
c, then c(p1−1)(p2−1) ≡ 1 (mod p1 · p2)

Proof. Using Fermat’s little theorem twice:

(cp2−1)
p1−1 ≡ 1 (mod p1)

(cp1−1)
p2−1 ≡ 1 (mod p2)

}
⇒ c(p1−1)(p2−1) ≡ 1 (mod p1 · p2)

Definition. For n =
N∏
i=1

pi, where pi prime, the Euler operator is defined as: Φ(n) =

N∏
i=1

(pi − 1)

The RSA algorithm

Key generation

1. First, we pick two large, random prime numbers: p1, p2.

2. We calculate m = p1 · p2 and Φ(m) = (p1 − 1)(p2 − 1).
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Hı́radástechnika szigorlat

3. We choose 0 < e ≤ Φ(m), so that g.c.d.(e,m) = 1.

4. We calculate d = e−1 mod Φ(m).

Now, the public key is kp = (e,m), the private or secret key is ks = (d, p1, p2).

Encryption and decryption

Encryption: the cyphertext c = xe mod m.

Decryption: the plaintext x = cd mod m.

Proof.

cd = (xe)d = xed = xqΦ(m)+1 = x · x(p1−1)(p2−1) = x (mod p1 · p2)
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