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2 Regular Expressions, Text
Normalization, Edit Distance

User: I am unhappy.

ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY

User: I need some help, that much seems certain.

ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

User: Perhaps I could learn to get along with my mother.

ELIZA: TELL ME MORE ABOUT YOUR FAMILY

User: My mother takes care of me.

ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU

User: My father.

ELIZA: YOUR FATHER

User: You are like my father in some ways.
Weizenbaum (1966)

The dialogue above is from ELIZA, an early natural language processing systemELIZA

that could carry on a limited conversation with a user by imitating the responses of
a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple
program that uses pattern matching to recognize phrases like “I need X” and translate
them into suitable outputs like “What would it mean to you if you got X?”. This
simple technique succeeds in this domain because ELIZA doesn’t actually need to
know anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is
one of the few dialogue genres where listeners can act as if they know nothing of the
world. Eliza’s mimicry of human conversation was remarkably successful: many
people who interacted with ELIZA came to believe that it really understood them
and their problems, many continued to believe in ELIZA’s abilities even after the
program’s operation was explained to them (Weizenbaum, 1976), and even today
such chatbots are a fun diversion.chatbots

Of course modern conversational agents are much more than a diversion; they
can answer questions, book flights, or find restaurants, functions for which they rely
on a much more sophisticated understanding of the user’s intent, as we will see in
Chapter 26. Nonetheless, the simple pattern-based methods that powered ELIZA
and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular
expression. Regular expressions can be used to specify strings we might want to
extract from a document, from transforming “I need X” in Eliza above, to defining
strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in whichtext
normalization

regular expressions play an important part. Normalizing text means converting it
to a more convenient, standard form. For example, most of what we are going to
do with language relies on first separating out or tokenizing words from running
text, the task of tokenization. English words are often separated from each othertokenization

by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll
are sometimes treated as large words despite the fact that they contain spaces, while
sometimes we’ll need to separate I’m into the two words I and am. For processing
tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.
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Some languages, like Japanese, don’t have spaces between words, so word tokeniza-
tion becomes more difficult.

Another part of text normalization is lemmatization, the task of determininglemmatization

that two words have the same root, despite their surface differences. For example,
the words sang, sung, and sings are forms of the verb sing. The word sing is the
common lemma of these words, and a lemmatizer maps from all of these to sing.
Lemmatization is essential for processing morphologically complex languages like
Arabic. Stemming refers to a simpler version of lemmatization in which we mainlystemming

just strip suffixes from the end of the word. Text normalization also includes sen-
tence segmentation: breaking up a text into individual sentences, using cues likesentence

segmentation
periods or exclamation points.

Finally, we’ll need to compare words and other strings. We’ll introduce a metric
called edit distance that measures how similar two strings are based on the number
of edits (insertions, deletions, substitutions) it takes to change one string into the
other. Edit distance is an algorithm with applications throughout language process-
ing, from spelling correction to speech recognition to coreference resolution.

2.1 Regular Expressions

One of the unsung successes in standardization in computer science has been the
regular expression (RE), a language for specifying text search strings. This prac-regular

expression
tical language is used in every computer language, word processor, and text pro-
cessing tools like the Unix tools grep or Emacs. Formally, a regular expression is
an algebraic notation for characterizing a set of strings. They are particularly use-
ful for searching in texts, when we have a pattern to search for and a corpus ofcorpus

texts to search through. A regular expression search function will search through the
corpus, returning all texts that match the pattern. The corpus can be a single docu-
ment or a collection. For example, the Unix command-line tool grep takes a regular
expression and returns every line of the input document that matches the expression.

A search can be designed to return every match on a line, if there are more than
one, or just the first match. In the following examples we generally underline the
exact part of the pattern that matches the regular expression and show only the first
match. We’ll show regular expressions delimited by slashes but note that slashes are
not part of the regular expressions.

Regular expressions come in many variants. We’ll be describing extended regu-
lar expressions; different regular expression parsers may only recognize subsets of
these, or treat some expressions slightly differently. Using an online regular expres-
sion tester is a handy way to test out your expressions and explore these variations.

2.1.1 Basic Regular Expression Patterns
The simplest kind of regular expression is a sequence of simple characters. To search
for woodchuck, we type /woodchuck/. The expression /Buttercup/ matches any
string containing the substring Buttercup; grepwith that expression would return the
line I’m called little Buttercup. The search string can consist of a single character
(like /!/) or a sequence of characters (like /urgl/).

Regular expressions are case sensitive; lower case /s/ is distinct from upper
case /S/ (/s/ matches a lower case s but not an upper case S). This means that
the pattern /woodchucks/ will not match the string Woodchucks. We can solve this
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RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s”
/!/ “You’ve left the burglar behind again!” said Nori

Figure 2.1 Some simple regex searches.

problem with the use of the square braces [ and ]. The string of characters inside the
braces specifies a disjunction of characters to match. For example, Fig. 2.2 shows
that the pattern /[wW]/ matches patterns containing either w or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.2 The use of the brackets [] to specify a disjunction of characters.

The regular expression /[1234567890]/ specified any single digit. While such
classes of characters as digits or letters are important building blocks in expressions,
they can get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In cases where there is a well-defined sequence asso-
ciated with a set of characters, the brackets can be used with the dash (-) to specify
any one character in a range. The pattern /[2-5]/ specifies any one of the charac-range

ters 2, 3, 4, or 5. The pattern /[b-g]/ specifies one of the characters b, c, d, e, f, or
g. Some other examples are shown in Fig. 2.3.

RE Match Example Patterns Matched
/[A-Z]/ an upper case letter “we should call it ‘Drenched Blossoms’ ”
/[a-z]/ a lower case letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.3 The use of the brackets [] plus the dash - to specify a range.

The square braces can also be used to specify what a single character cannot be,
by use of the caret ˆ. If the caret ˆ is the first symbol after the open square brace [,
the resulting pattern is negated. For example, the pattern /[ˆa]/ matches any single
character (including special characters) except a. This is only true when the caret
is the first symbol after the open square brace. If it occurs anywhere else, it usually
stands for a caret; Fig. 2.4 shows some examples.

RE Match (single characters) Example Patterns Matched
/[ˆA-Z]/ not an upper case letter “Oyfn pripetchik”
/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
/[ˆ.]/ not a period “our resident Djinn”
/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”
/aˆb/ the pattern ‘aˆb’ “look up aˆ b now”

Figure 2.4 The caret ˆ for negation or just to mean ˆ. See below re: the backslash for escaping the period.

How can we talk about optional elements, like an optional s in woodchuck and
woodchucks? We can’t use the square brackets, because while they allow us to say
“s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark
/?/, which means “the preceding character or nothing”, as shown in Fig. 2.5.
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RE Match Example Patterns Matched
/woodchucks?/ woodchuck or woodchucks “woodchuck”
/colou?r/ color or colour “color”

Figure 2.5 The question mark ? marks optionality of the previous expression.

We can think of the question mark as meaning “zero or one instances of the
previous character”. That is, it’s a way of specifying how many of something that
we want, something that is very important in regular expressions. For example,
consider the language of certain sheep, which consists of strings that look like the
following:

baa!
baaa!
baaaa!
baaaaa!
. . .

This language consists of strings with a b, followed by at least two a’s, followed
by an exclamation point. The set of operators that allows us to say things like “some
number of as” are based on the asterisk or *, commonly called the Kleene * (gen-Kleene *

erally pronounced “cleany star”). The Kleene star means “zero or more occurrences
of the immediately previous character or regular expression”. So /a*/ means “any
string of zero or more as”. This will match a or aaaaaa, but it will also match Off
Minor since the string Off Minor has zero a’s. So the regular expression for matching
one or more a is /aa*/, meaning one a followed by zero or more as. More complex
patterns can also be repeated. So /[ab]*/ means “zero or more a’s or b’s” (not
“zero or more right square braces”). This will match strings like aaaa or ababab or
bbbb.

For specifying multiple digits (useful for finding prices) we can extend /[0-9]/,
the regular expression for a single digit. An integer (a string of digits) is thus
/[0-9][0-9]*/. (Why isn’t it just /[0-9]*/?)

Sometimes it’s annoying to have to write the regular expression for digits twice,
so there is a shorter way to specify “at least one” of some character. This is the
Kleene +, which means “one or more occurrences of the immediately precedingKleene +

character or regular expression”. Thus, the expression /[0-9]+/ is the normal way
to specify “a sequence of digits”. There are thus two ways to specify the sheep
language: /baaa*!/ or /baa+!/.

One very important special character is the period (/./), a wildcard expression
that matches any single character (except a carriage return), as shown in Fig. 2.6.

RE Match Example Matches
/beg.n/ any character between beg and n begin, beg’n, begun

Figure 2.6 The use of the period . to specify any character.

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example, suppose we want to find any line in which a particular
word, for example, aardvark, appears twice. We can specify this with the regular
expression /aardvark.*aardvark/.

Anchors are special characters that anchor regular expressions to particular placesAnchors

in a string. The most common anchors are the caret ˆ and the dollar sign $. The caret
ˆ matches the start of a line. The pattern /ˆThe/ matches the word The only at the
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start of a line. Thus, the caret ˆ has three uses: to match the start of a line, to in-
dicate a negation inside of square brackets, and just to mean a caret. (What are the
contexts that allow grep or Python to know which function a given caret is supposed
to have?) The dollar sign $ matches the end of a line. So the pattern  $ is a useful
pattern for matching a space at the end of a line, and /ˆThe dog\.$/ matches a
line that contains only the phrase The dog. (We have to use the backslash here since
we want the . to mean “period” and not the wildcard.)

There are also two other anchors: \b matches a word boundary, and \B matches
a non-boundary. Thus, /\bthe\b/ matches the word the but not the word other.
More technically, a “word” for the purposes of a regular expression is defined as any
sequence of digits, underscores, or letters; this is based on the definition of “words”
in programming languages. For example, /\b99\b/ will match the string 99 in
There are 99 bottles of beer on the wall (because 99 follows a space) but not 99 in
There are 299 bottles of beer on the wall (since 99 follows a number). But it will
match 99 in $99 (since 99 follows a dollar sign ($), which is not a digit, underscore,
or letter).

2.1.2 Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we are particularly interested
in cats and dogs. In such a case, we might want to search for either the string cat or
the string dog. Since we can’t use the square brackets to search for “cat or dog” (why
can’t we say /[catdog]/?), we need a new operator, the disjunction operator, alsodisjunction

called the pipe symbol |. The pattern /cat|dog/ matches either the string cat or
the string dog.

Sometimes we need to use this disjunction operator in the midst of a larger se-
quence. For example, suppose I want to search for information about pet fish for
my cousin David. How can I specify both guppy and guppies? We cannot simply
say /guppy|ies/, because that would match only the strings guppy and ies. This
is because sequences like guppy take precedence over the disjunction operator |.Precedence

To make the disjunction operator apply only to a specific pattern, we need to use the
parenthesis operators ( and ). Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring operators like the pipe | and the
Kleene*. So the pattern /gupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixes y and ies.

The parenthesis operator ( is also useful when we are using counters like the
Kleene*. Unlike the | operator, the Kleene* operator applies by default only to
a single character, not to a whole sequence. Suppose we want to match repeated
instances of a string. Perhaps we have a line that has column labels of the form
Column 1 Column 2 Column 3. The expression /Column [0-9]+ */ will not
match any number of columns; instead, it will match a single column followed by
any number of spaces! The star here applies only to the space  that precedes it,
not to the whole sequence. With the parentheses, we could write the expression
/(Column [0-9]+ *)*/ to match the word Column, followed by a number and
optional spaces, the whole pattern repeated zero or more times.

This idea that one operator may take precedence over another, requiring us to
sometimes use parentheses to specify what we mean, is formalized by the operator
precedence hierarchy for regular expressions. The following table gives the orderoperator

precedence
of RE operator precedence, from highest precedence to lowest precedence.
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Parenthesis ()

Counters * + ? {}

Sequences and anchors the ˆmy end$

Disjunction |

Thus, because counters have a higher precedence than sequences,
/the*/ matches theeeee but not thethe. Because sequences have a higher prece-
dence than disjunction, /the|any/ matches the or any but not thany or theny.

Patterns can be ambiguous in another way. Consider the expression /[a-z]*/

when matching against the text once upon a time. Since /[a-z]*/ matches zero or
more letters, this expression could match nothing, or just the first letter o, on, onc,
or once. In these cases regular expressions always match the largest string they can;
we say that patterns are greedy, expanding to cover as much of a string as they can.greedy

There are, however, ways to enforce non-greedy matching, using another mean-non-greedy

ing of the ? qualifier. The operator *? is a Kleene star that matches as little text as*?

possible. The operator +? is a Kleene plus that matches as little text as possible.+?

2.1.3 A Simple Example
Suppose we wanted to write a RE to find cases of the English article the. A simple
(but incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence and
hence is capitalized (i.e., The). This might lead us to the following pattern:

/[tT]he/

But we will still incorrectly return texts with the embedded in other words (e.g.,
other or theology). So we need to specify that we want instances with a word bound-
ary on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/. We might want this since
/\b/ won’t treat underscores and numbers as word boundaries; but we might want
to find the in some context where it might also have underlines or numbers nearby
(the or the25). We need to specify that we want instances in which there are no
alphabetic letters on either side of the the:

/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

But there is still one more problem with this pattern: it won’t find the word the
when it begins a line. This is because the regular expression [ˆa-zA-Z], which
we used to avoid embedded instances of the, implies that there must be some single
(although non-alphabetic) character before the the. We can avoid this by specify-
ing that before the the we require either the beginning-of-line or a non-alphabetic
character, and the same at the end of the line:

/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched like other or there, and false nega-false positives

tives, strings that we incorrectly missed, like The. Addressing these two kinds offalse negatives
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errors comes up again and again in implementing speech and language processing
systems. Reducing the overall error rate for an application thus involves two antag-
onistic efforts:

• Increasing precision (minimizing false positives)
• Increasing recall (minimizing false negatives)

2.1.4 A More Complex Example
Let’s try out a more significant example of the power of REs. Suppose we want to
build an application to help a user buy a computer on the Web. The user might want
“any machine with at least 6 GHz and 500 GB of disk space for less than $1000”.
To do this kind of retrieval, we first need to be able to look for expressions like 6
GHz or 500 GB or Mac or $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expres-
sion for a dollar sign followed by a string of digits:

/$[0-9]+/

Note that the $ character has a different function here than the end-of-line function
we discussed earlier. Most regular expression parsers are smart enough to realize
that $ here doesn’t mean end-of-line. (As a thought experiment, think about how
regex parsers might figure out the function of $ from the context.)

Now we just need to deal with fractions of dollars. We’ll add a decimal point
and two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows $199.99 but not $199. We need to make the cents
optional and to make sure we’re at a word boundary:

/(ˆ|\W)$[0-9]+(\.[0-9][0-9])?\b/

One last catch! This pattern allows prices like $199999.99 which would be far
too expensive! We need to limit the dollar

/(ˆ|\W)$[0-9]{0,3}(\.[0-9][0-9])?\b/

How about disk space? We’ll need to allow for optional fractions again (5.5 GB);
note the use of ? for making the final s optional, and the of / */ to mean “zero or
more spaces” since there might always be extra spaces lying around:

/\b[0-9]+(\.[0-9]+)? *(GB|[Gg]igabytes?)\b/

Modifying this regular expression so that it only matches more than 500 GB is
left as an exercise for the reader.

2.1.5 More Operators
Figure 2.7 shows some aliases for common ranges, which can be used mainly to
save typing. Besides the Kleene * and Kleene + we can also use explicit numbers as
counters, by enclosing them in curly brackets. The regular expression /{3}/ means
“exactly 3 occurrences of the previous character or expression”. So /a\.{24}z/

will match a followed by 24 dots followed by z (but not a followed by 23 or 25 dots
followed by a z).
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RE Expansion Match First Matches
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9_] any alphanumeric/underscore Daiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [ \r\t\n\f] whitespace (space, tab)
\S [ˆ\s] Non-whitespace in Concord

Figure 2.7 Aliases for common sets of characters.

A range of numbers can also be specified. So /{n,m}/ specifies from n to m
occurrences of the previous char or expression, and /{n,}/ means at least n occur-
rences of the previous expression. REs for counting are summarized in Fig. 2.8.

RE Match
* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at least n occurrences of the previous char or expression
{,m} up to m occurrences of the previous char or expression

Figure 2.8 Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the
backslash (\) (see Fig. 2.9). The most common of these are the newline characterNewline

\n and the tab character \t. To refer to characters that are special themselves (like
., *, [, and \), precede them with a backslash, (i.e., /\./, /\*/, /\[/, and /\\/).

RE Match First Patterns Matched
\* an asterisk “*” “K*A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab

Figure 2.9 Some characters that need to be backslashed.

2.1.6 Substitution, Capture Groups, and ELIZA
An important use of regular expressions is in substitutions. For example, the substi-substitution

tution operator s/regexp1/pattern/ used in Python and in Unix commands like
vim or sed allows a string characterized by a regular expression to be replaced by
another string:

s/colour/color/

It is often useful to be able to refer to a particular subpart of the string matching
the first pattern. For example, suppose we wanted to put angle brackets around all
integers in a text, for example, changing the 35 boxes to the <35> boxes. We’d
like a way to refer to the integer we’ve found so that we can easily add the brackets.
To do this, we put parentheses ( and ) around the first pattern and use the number
operator \1 in the second pattern to refer back. Here’s how it looks:
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s/([0-9]+)/<\1>/

The parenthesis and number operators can also specify that a certain string or
expression must occur twice in the text. For example, suppose we are looking for
the pattern “the Xer they were, the Xer they will be”, where we want to constrain
the two X’s to be the same string. We do this by surrounding the first X with the
parenthesis operator, and replacing the second X with the number operator \1, as
follows:

/the (.*)er they were, the \1er they will be/

Here the \1 will be replaced by whatever string matched the first item in paren-
theses. So this will match the bigger they were, the bigger they will be but not the
bigger they were, the faster they will be.

This use of parentheses to store a pattern in memory is called a capture group.capture group

Every time a capture group is used (i.e., parentheses surround a pattern), the re-
sulting match is stored in a numbered register. If you match two different sets ofregister

parentheses, \2 means whatever matched the second capture group. Thus

/the (.*)er they (.*), the \1er we \2/

will match the faster they ran, the faster we ran but not the faster they ran, the faster
we ate. Similarly, the third capture group is stored in \3, the fourth is \4, and so on.

Parentheses thus have a double function in regular expressions; they are used to
group terms for specifying the order in which operators should apply, and they are
used to capture something in a register. Occasionally we might want to use parenthe-
ses for grouping, but don’t want to capture the resulting pattern in a register. In that
case we use a non-capturing group, which is specified by putting the commandsnon-capturing

group
?: after the open paren, in the form (?: pattern ).

/(?:some|a few) (people|cats) like some \1/

will match some cats like some cats but not some cats like some a few.
Substitutions and capture groups are very useful in implementing simple chat-

bots like ELIZA (Weizenbaum, 1966). Recall that ELIZA simulates a Rogerian
psychologist by carrying on conversations like the following:

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED

ELIZA works by having a series or cascade of regular expression substitutions
each of which matches and changes some part of the input lines. Input lines are
first uppercased. The first substitutions then change all instances of MY to YOUR,
and I’M to YOU ARE, and so on. The next set of substitutions matches and replaces
other patterns in the input. Here are some examples:

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/
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Since multiple substitutions can apply to a given input, substitutions are assigned
a rank and applied in order. Creating patterns is the topic of Exercise 2.3, and we
return to the details of the ELIZA architecture in Chapter 26.

2.1.7 Lookahead Assertions
Finally, there will be times when we need to predict the future: look ahead in the
text to see if some pattern matches, but not advance the match cursor, so that we can
then deal with the pattern if it occurs.

These lookahead assertions make use of the (? syntax that we saw in the previ-lookahead

ous section for non-capture groups. The operator (?= pattern) is true if pattern
occurs, but is zero-width, i.e. the match pointer doesn’t advance. The operatorzero-width

(?! pattern) only returns true if a pattern does not match, but again is zero-width
and doesn’t advance the cursor. Negative lookahead is commonly used when we
are parsing some complex pattern but want to rule out a special case. For example
suppose we want to match, at the beginning of a line, any single word that doesn’t
start with “Volcano”. We can use negative lookahead to do this:

/ˆ(?!Volcano)[A-Za-z]+/

2.2 Words

Before we talk about processing words, we need to decide what counts as a word.
Let’s start by looking at one particular corpus (plural corpora), a computer-readablecorpus

corpora collection of text or speech. For example the Brown corpus is a million-word col-
lection of samples from 500 written English texts from different genres (newspa-
per, fiction, non-fiction, academic, etc.), assembled at Brown University in 1963–64
(Kučera and Francis, 1967). How many words are in the following Brown sentence?

He stepped out into the hall, was delighted to encounter a water brother.

This sentence has 13 words if we don’t count punctuation marks as words, 15
if we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as
words depends on the task. Punctuation is critical for finding boundaries of things
(commas, periods, colons) and for identifying some aspects of meaning (question
marks, exclamation marks, quotation marks). For some tasks, like part-of-speech
tagging or parsing or speech synthesis, we sometimes treat punctuation marks as if
they were separate words.

The Switchboard corpus of American English telephone conversations between
strangers was collected in the early 1990s; it contains 2430 conversations averaging
6 minutes each, totaling 240 hours of speech and about 3 million words (Godfrey
et al., 1992). Such corpora of spoken language don’t have punctuation but do intro-
duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment

filled pause we consider these to be words? Again, it depends on the application. If we are
building a speech transcription system, we might want to eventually strip out the
disfluencies.
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But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma

the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform

languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token

punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.10 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.10 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and β are positive constants, and 0< β < 1.

|V | = kNβ (2.1)

The value of β depends on the corpus size and the genre, but at least for the
large corpora in Fig. 2.10, β ranges from .67 to .75. Roughly then we can say that
the vocabulary size for a text goes up significantly faster than the square root of its
length in words.

Another measure of the number of words in the language is the number of lem-
mas instead of wordform types. Dictionaries can help in giving lemma counts; dic-
tionary entries or boldface forms are a very rough upper bound on the number of
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lemmas (since some lemmas have multiple boldface forms). The 1989 edition of the
Oxford English Dictionary had 615,000 entries.

2.3 Corpora

Words don’t appear out of nowhere. Any particular piece of text that we study
is produced by one or more specific speakers or writers, in a specific dialect of a
specific language, at a specific time, in a specific place, for a specific function.

Perhaps the most important dimension of variation is the language. NLP algo-
rithms are most useful when they apply across many languages. The world has 7097
languages at the time of this writing, according to the online Ethnologue catalog
(Simons and Fennig, 2018). Most NLP tools tend to be developed for the official
languages of large industrialized nations (Chinese, English, Spanish, Arabic, etc.),
but we don’t want to limit tools to just these few languages. Furthermore, most lan-
guages also have multiple varieties, such as dialects spoken in different regions or
by different social groups. Thus, for example, if we’re processing text in African
American Vernacular English (AAVE), a dialect spoken by millions of people in theAAVE

United States, it’s important to make use of NLP tools that function with that dialect.
Twitter posts written in AAVE make use of constructions like iont (I don’t in Stan-
dard American English (SAE)), or talmbout corresponding to SAE talking about,SAE

both examples that influence word segmentation (Blodgett et al. 2016, Jones 2015).
It’s also quite common for speakers or writers to use multiple languages in a

single communicative act, a phenomenon called code switching. Code switch-code switching

ing is enormously common across the world; here are examples showing Spanish
and (transliterated) Hindi code switching with English (Solorio et al. 2014, Jurgens
et al. 2017):

(2.2) Por primera vez veo a @username actually being hateful! it was beautiful:)
[For the first time I get to see @username actually being hateful! it was
beautiful:) ]

(2.3) dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”]

Another dimension of variation is the genre. The text that our algorithms must
process might come from newswire, fiction or non-fiction books, scientific articles,
Wikipedia, or religious texts. It might come from spoken genres like telephone
conversations, business meetings, police body-worn cameras, medical interviews,
or transcripts of television shows or movies. It might come from work situations
like doctors’ notes, legal text, or parliamentary or congressional proceedings.

Text also reflects the demographic characteristics of the writer (or speaker): their
age, gender, race, socioeconomic class can all influence the linguistic properties of
the text we are processing.

And finally, time matters too. Language changes over time, and for some lan-
guages we have good corpora of texts from different historical periods.

Because language is so situated, when developing computational models for lan-
guage processing, it’s important to consider who produced the language, in what
context, for what purpose, and make sure that the models are fit to the data.
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2.4 Text Normalization

Before almost any natural language processing of a text, the text has to be normal-
ized. At least three tasks are commonly applied as part of any normalization process:

1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

In the next sections we walk through each of these tasks.

2.4.1 Unix Tools for Crude Tokenization and Normalization
Let’s begin with an easy, if somewhat naive version of word tokenization and nor-
malization (and frequency computation) that can be accomplished for English solely
in a single UNIX command-line, inspired by Church (1994). We’ll make use of some
Unix commands: tr, used to systematically change particular characters in the in-
put; sort, which sorts input lines in alphabetical order; and uniq, which collapses
and counts adjacent identical lines.

For example let’s begin with the ‘complete words’ of Shakespeare in one textfile,
sh.txt. We can use tr to tokenize the words by changing every sequence of non-
alphabetic characters to a newline (’A-Za-z’ means alphabetic, the -c option com-
plements to non-alphabet, and the -s option squeezes all sequences into a single
character):

tr -sc ’A-Za-z’ ’\n’ < sh.txt

The output of this command will be:

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

Now that there is one word per line, we can sort the lines, and pass them to uniq

-c which will collapse and count them:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | sort | uniq -c

with the following output:

1945 A

72 AARON

19 ABBESS

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey
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3 Abbot

...

Alternatively, we can collapse all the upper case to lower case:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c

whose output is

14725 a

97 aaron

1 abaissiez

10 abandon

2 abandoned

2 abase

1 abash

14 abate

3 abated

3 abatement

...

Now we can sort again to find the frequent words. The -n option to sort means
to sort numerically rather than alphabetically, and the -r option means to sort in
reverse order (highest-to-lowest):

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c | sort -n -r

The results show that the most frequent words in Shakespeare, as in any other
corpus, are the short function words like articles, pronouns, prepositions:

27378 the

26084 and

22538 i

19771 to

17481 of

14725 a

13826 you

12489 my

11318 that

11112 in

...

Unix tools of this sort can be very handy in building quick word count statistics
for any corpus.

2.4.2 Word Tokenization
The simple UNIX tools above were fine for getting rough word statistics but more
sophisticated algorithms are generally necessary for tokenization, the task of seg-tokenization

menting running text into words.
While the Unix command sequence just removed all the numbers and punctu-

ation, for most NLP applications we’ll need to keep these in our tokenization. We
often want to break off punctuation as a separate token; commas are a useful piece of
information for parsers, periods help indicate sentence boundaries. But we’ll often
want to keep the punctuation that occurs word internally, in examples like m.p.h,,
Ph.D., AT&T, cap’n. Special characters and numbers will need to be kept in prices
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($45.55) and dates (01/02/06); we don’t want to segment that price into separate to-
kens of “45” and “55”. And there are URLs (http://www.stanford.edu), Twitter
hashtags (#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce other complications as well; while commas nor-
mally appear at word boundaries, commas are used inside numbers in English, every
three digits: 555,500.50. Languages, and hence tokenization requirements, differ
on this; many continental European languages like Spanish, French, and German, by
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500,50.

A tokenizer can also be used to expand clitic contractions that are marked byclitic

apostrophes, for example, converting what’re to the two tokens what are, and
we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only
occur when it is attached to another word. Some such contractions occur in other
alphabetic languages, including articles and pronouns in French (j’ai, l’homme).

Depending on the application, tokenization algorithms may also tokenize mul-
tiword expressions like New York or rock ’n’ roll as a single token, which re-
quires a multiword expression dictionary of some sort. Tokenization is thus inti-
mately tied up with named entity detection, the task of detecting names, dates, and
organizations (Chapter 18).

One commonly used tokenization standard is known as the Penn Treebank to-
kenization standard, used for the parsed corpora (treebanks) released by the Lin-Penn Treebank

tokenization
guistic Data Consortium (LDC), the source of many useful datasets. This standard
separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to-
gether, and separates out all punctuation (to save space we’re showing visible spaces
‘ ’ between tokens, although newlines is a more common output):

Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,

" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.11 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize

function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries.

In Chinese, for example, words are composed of characters (called hanzi inhanzi

Chinese). Each character generally represents a single unit of meaning (called a
morpheme) and is pronounceable as a single syllable. Words are about 2.4 charac-
ters long on average. But deciding what counts as a word in Chinese is complex.
For example, consider the following sentence:

(2.4) 姚明进入总决赛
“Yao Ming reaches the finals”

http://www.nltk.org
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>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes ], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.11 A python trace of regular expression tokenization in the NLTK (Bird et al.,
2009) Python-based natural language processing toolkit, commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):

(2.5) 姚明
YaoMing

进入
reaches

总决赛
finals

or as 5 words (‘Peking University’ segmentation):

(2.6) 姚
Yao
明
Ming

进入
reaches

总
overall

决赛
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

(2.7) 姚
Yao
明
Ming

进
enter

入
enter

总
overall

决
decision

赛
game

In fact, for most Chinese NLP tasks it turns out to work better to take characters
rather than words as input, since characters are at a reasonable semantic level for
most applications, and since most word standards result in a huge vocabulary with
large numbers of very rare words (Li et al., 2019).

However, for Japanese and Thai the character is too small a unit, and so algo-
rithms for word segmentation are required. These can also be useful for Chineseword

segmentation
in the rare situations where word rather than character boundaries are required. The
standard segmentation algorithms for these languages use neural sequence mod-
els trained via supervised machine learning on hand-segmented training sets; we’ll
introduce sequence models in Chapter 8.

2.4.3 Byte-Pair Encoding for Tokenization
There is a third option to tokenizing text input. Instead of defining tokens as words
(defined by spaces in orthographies that have spaces, or more complex algorithms),
or as characters (as in Chinese), we can use our data to automatically tell us what size
tokens should be. Perhaps sometimes we might want tokens that are space-delimited
words (like spinach) other times it’s useful to have tokens that are larger than words
(like New York Times), and sometimes smaller than words (like the morphemes -est
or -er. A morpheme is the smallest meaning-bearing unit of a language; for example
the word unlikeliest has the morphemes un-, likely, and -est; we’ll return to this on
page 21.

One reason it’s helpful to have subword tokens is to deal with unknown words.subword
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Unknown words are particularly relevant for machine learning systems. As we will
see in the next chapter, machine learning systems often learn some facts about words
in one corpus (a training corpus) and then use these facts to make decisions about
a separate test corpus and its words. Thus if our training corpus contains, say the
words low, and lowest, but not lower, but then the word lower appears in our test
corpus, our system will not know what to do with it.

A solution to this problem is to use a kind of tokenization in which most tokens
are words, but some tokens are frequent morphemes or other subwords like -er, so
that an unseen word can be represented by combining the parts.

The simplest such algorithm is byte-pair encoding, or BPE (Sennrich et al.,BPE

2016). Byte-pair encoding is based on a method for text compression (Gage, 1994),
but here we use it for tokenization instead. The intuition of the algorithm is to
iteratively merge frequent pairs of characters,

The algorithm begins with the set of symbols equal to the set of characters. Each
word is represented as a sequence of characters plus a special end-of-word symbol

. At each step of the algorithm, we count the number of symbol pairs, find the
most frequent pair (‘A’, ‘B’), and replace it with the new merged symbol (‘AB’). We
continue to count and merge, creating new longer and longer character strings, until
we’ve done k merges; k is a parameter of the algorithm. The resulting symbol set
will consist of the original set of characters plus k new symbols.

The algorithm is run inside words (we don’t merge across word boundaries).
For this reason, the algorithm can take as input a dictionary of words together with
counts. Consider the following tiny input dictionary with counts for each word,
which would have the starting vocabulary of 11 letters:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w

2 l o w e s t

6 n e w e r

3 w i d e r

2 n e w

We first count all pairs of symbols: the most frequent is the pair r because
it occurs in newer (frequency of 6) and wider (frequency of 3) for a total of 9 oc-
currences. We then merge these symbols, treating r as one symbol, and count
again:

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r

2 l o w e s t

6 n e w e r

3 w i d e r

2 n e w

Now the most frequent pair is e r , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er
2 l o w e s t

6 n e w er

3 w i d er

2 n e w

Next e w (total count of 8) get merged to ew:
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dictionary vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, r , er , ew
2 l o w e s t

6 n ew er

3 w i d er

2 n ew

If we continue, the next merges are:

Merge Current Vocabulary
(n, ew) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new
(l, o’ , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, r , er , ew, new, lo, low, newer , low

When we need to tokenize a test sentence, we just run the merges we have
learned, greedily, in the order we learned them, on the test data. (Thus the fre-
quencies in the test data don’t play a role, just the frequencies in the training data).
So first we segment each test sentence word into characters. Then we apply the first
rule: replace every instance of r in the test corpus with r , and then the second
rule: replace every instance of e r in the test corpus with er , and so on. By the
end, if the test corpus contained the word n e w e r , it would be tokenized as a
full word. But a new (unknown) word like l o w e r would be merged into the
two tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a
very large input dictionary. The result is that most words will be represented as
full symbols, and only the very rare words (and unknown words) will have to be
represented by their parts. The full BPE learning algorithm is given in Fig. 2.12.

Wordpiece and Greedy Tokenization

There are some alternatives to byte pair encoding for inducing tokens. Like the BPE
algorithm, the wordpiece algorithm starts with some simple tokenization (such aswordpiece

by whitespace) into rough words, and then breaks those rough word tokens into
subword tokens. The wordpiece model differs from BPE only in that the specialwordpiece

word-boundary token appears at the beginning of words rather than at the end,
and in the way it merges pairs. Rather than merging the pairs that are most frequent,
wordpiece instead merges the pairs that minimizes the language model likelihood of
the training data. We’ll introduce these concepts in the next chapter, but to simplify,
the wordpiece model chooses the two tokens to combine that would give the training
corpus the highest probability (Wu et al., 2016).

In the wordpiece segmenter used in BERT (Devlin et al., 2019), like other word-
piece variants, an input sentence or string is first split by some simple basic tokenizer
(like whitespace) into a series of rough word tokens. But then instead of using a
word boundary token, word-initial subwords are distinguished from those that do
not start words by marking internal subwords with special symbols ##, so that we
might split unaffable into ["un", "\#\#aff", "\#\#able"]. Then each word
token string is tokenized using a greedy longest-match-first algorithm. This is dif-
ferent than the decoding algorithm we introduced for BPE, which runs the merges
on the test sentence in the same order they were learned from the training set.

Greedy longest-match-first decoding is sometimes called maximum matchingmaximum
matching

or MaxMatch. The maximum matching algorithm (Fig. 2.13) is given a vocabu-
lary (a learned list of wordpiece tokens) and a string and starts by pointing at the
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i m p o r t re , c o l l e c t i o n s

d e f g e t s t a t s ( vocab ) :
p a i r s = c o l l e c t i o n s . d e f a u l t d i c t ( i n t )
f o r word , f r e q i n vocab . i t e m s ( ) :

symbols = word . s p l i t ( )
f o r i i n r a n g e ( l e n ( symbols )−1) :

p a i r s [ symbols [ i ] , symbols [ i + 1 ] ] += f r e q
r e t u r n p a i r s

d e f merge vocab ( p a i r , v i n ) :
v o u t = {}
bigram = r e . e s c a p e ( ’ ’ . j o i n ( p a i r ) )
p = r e . compi l e ( r ’ (?<!\S ) ’ + bigram + r ’ ( ? !\ S ) ’ )
f o r word i n v i n :

w out = p . sub ( ’ ’ . j o i n ( p a i r ) , word )
v o u t [ w out ] = v i n [ word ]

r e t u r n v o u t

vocab = { ’ l o w </w>’ : 5 , ’ l o w e s t </w>’ : 2 ,
’ n e w e r </w>’ : 6 , ’w i d e r </w>’ : 3 , ’ n e w </w>’ : 2}

num merges = 8

f o r i i n r a n g e ( num merges ) :
p a i r s = g e t s t a t s ( vocab )
b e s t = max ( p a i r s , key= p a i r s . g e t )
vocab = merge vocab ( b e s t , vocab )
p r i n t ( b e s t )

Figure 2.12 Python code for BPE learning algorithm from Sennrich et al. (2016).

beginning of a string. It chooses the longest token in the wordpiece vocabulary that
matches the input at the current position, and moves the pointer past that word in the
string. The algorithm is then applied again starting from the new pointer position.

function MAXMATCH(string, dictionary) returns list of tokens T

if string is empty
return empty list

for i← length(sentence) downto 1
firstword = first i chars of sentence
remainder = rest of sentence
if InDictionary(firstword, dictionary)

return list(firstword, MaxMatch(remainder,dictionary) )

Figure 2.13 The MaxMatch (or ‘greedy longest-first’) algorithm for word tokenization us-
ing wordpiece or other vocabularies. Assumes that all strings can be successfully tokenized
with the given dictionary.

Thus given the token intention and the dictionary:

["in", "tent","intent","##tent", "##tention", "##tion", "#ion"]

the BERT tokenizer would choose intent (because it is longer than in, and then
##ion to complete the string, resulting in the tokenization ["intent" "##ion"].
The BERT tokenizer applied to the string unwanted running will produce:

(2.8) ["un", "##want", "##ed", "runn", "##ing"]

Another tokenization algorithm is called SentencePiece (Kudo and Richardson,SentencePiece
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2018). BPE and wordpiece both assume that we already have some initial tokeniza-
tion of words (such as by spaces, or from some initial dictionary) and so we never
tried to induce word parts across spaces. By contrast, the SentencePiece model
works from raw text; even whitespace is handled as a normal symbol. Thus it doesn’t
need an initial tokenization or word-list, and can be used in languages like Chinese
or Japanese that don’t have spaces.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization

ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma
be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem

pheme of the word, supplying the main meaning— and affixes—adding “additional”affix

meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or a Spanish word like amaren (‘if in the future they
would love’) into the morphemes amar ‘to love’, 3PL, and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer
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applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but

an accurate copy, complete in all things-names and heights

and soundings-with the single exception of the red crosses

and the written notes.

produces the following stemmed output:

Thi wa not the map we found in Billi Bone s chest but an

accur copi complet in all thing name and height and sound

with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade

which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL → ATE (e.g., relational→ relate)
ING → ε if stem contains vowel (e.g., motoring→ motor)

SSES → SS (e.g., grasses→ grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

2.4.5 Sentence Segmentation
Sentence segmentation is another important step in text processing. The most use-Sentence

segmentation
ful cues for segmenting a text into sentences are punctuation, like periods, question
marks, and exclamation points. Question marks and exclamation points are rela-
tively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous. The period character “.” is ambiguous between a sentence bound-
ary marker and a marker of abbreviations like Mr. or Inc. The previous sentence that
you just read showed an even more complex case of this ambiguity, in which the final
period of Inc. marked both an abbreviation and the sentence boundary marker. For
this reason, sentence tokenization and word tokenization may be addressed jointly.

In general, sentence tokenization methods work by first deciding (based on rules
or machine learning) whether a period is part of the word or is a sentence-boundary
marker. An abbreviation dictionary can help determine whether the period is part
of a commonly used abbreviation; the dictionaries can be hand-built or machine-
learned (Kiss and Strunk, 2006), as can the final sentence splitter. In the Stan-
ford CoreNLP toolkit (Manning et al., 2014), for example sentence splitting is
rule-based, a deterministic consequence of tokenization; a sentence ends when a
sentence-ending punctuation (., !, or ?) is not already grouped with other charac-
ters into a token (such as for an abbreviation or number), optionally followed by
additional final quotes or brackets.
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2.5 Minimum Edit Distance

Much of natural language processing is concerned with measuring how similar two
strings are. For example in spelling correction, the user typed some erroneous
string—let’s say graffe–and we want to know what the user meant. The user prob-
ably intended a word that is similar to graffe. Among candidate similar words,
the word giraffe, which differs by only one letter from graffe, seems intuitively
to be more similar than, say grail or graf, which differ in more letters. Another
example comes from coreference, the task of deciding whether two strings such as
the following refer to the same entity:

Stanford President John Hennessy

Stanford University President John Hennessy

Again, the fact that these two strings are very similar (differing by only one word)
seems like useful evidence for deciding that they might be coreferent.

Edit distance gives us a way to quantify both of these intuitions about string sim-
ilarity. More formally, the minimum edit distance between two strings is definedminimum edit

distance
as the minimum number of editing operations (operations like insertion, deletion,
substitution) needed to transform one string into another.

The gap between intention and execution, for example, is 5 (delete an i, substi-
tute e for n, substitute x for t, insert c, substitute u for n). It’s much easier to see
this by looking at the most important visualization for string distances, an alignmentalignment

between the two strings, shown in Fig. 2.14. Given two sequences, an alignment is
a correspondence between substrings of the two sequences. Thus, we say I aligns
with the empty string, N with E, and so on. Beneath the aligned strings is another
representation; a series of symbols expressing an operation list for converting the
top string into the bottom string: d for deletion, s for substitution, i for insertion.

I N T E * N T I O N

| | | | | | | | | |
* E X E C U T I O N

d s s i s

Figure 2.14 Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshtein distance between two sequences is the simplest weighting factor in
which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume
that the substitution of a letter for itself, for example, t for t, has zero cost. The Lev-
enshtein distance between intention and execution is 5. Levenshtein also proposed
an alternative version of his metric in which each insertion or deletion has a cost of
1 and substitutions are not allowed. (This is equivalent to allowing substitution, but
giving each substitution a cost of 2 since any substitution can be represented by one
insertion and one deletion). Using this version, the Levenshtein distance between
intention and execution is 8.
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2.5.1 The Minimum Edit Distance Algorithm
How do we find the minimum edit distance? We can think of this as a search task, in
which we are searching for the shortest path—a sequence of edits—from one string
to another.

n t e n t i o n i n t e c n t i o n i n x e n t i o n

del ins subst

i n t e n t i o n

Figure 2.15 Finding the edit distance viewed as a search problem

The space of all possible edits is enormous, so we can’t search naively. However,
lots of distinct edit paths will end up in the same state (string), so rather than recom-
puting all those paths, we could just remember the shortest path to a state each time
we saw it. We can do this by using dynamic programming. Dynamic programmingdynamic

programming
is the name for a class of algorithms, first introduced by Bellman (1957), that apply
a table-driven method to solve problems by combining solutions to sub-problems.
Some of the most commonly used algorithms in natural language processing make
use of dynamic programming, such as the Viterbi algorithm (Chapter 8) and the
CKY algorithm for parsing (Chapter 13).

The intuition of a dynamic programming problem is that a large problem can
be solved by properly combining the solutions to various sub-problems. Consider
the shortest path of transformed words that represents the minimum edit distance
between the strings intention and execution shown in Fig. 2.16.

n t e n t i o n

i n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

e x e c u t i o n

delete i

substitute n by e

substitute t by x

insert u

substitute n by c

Figure 2.16 Path from intention to execution.

Imagine some string (perhaps it is exention) that is in this optimal path (whatever
it is). The intuition of dynamic programming is that if exention is in the optimal
operation list, then the optimal sequence must also include the optimal path from
intention to exention. Why? If there were a shorter path from intention to exention,
then we could use it instead, resulting in a shorter overall path, and the optimal
sequence wouldn’t be optimal, thus leading to a contradiction.

The minimum edit distance algorithm was named by Wagner and Fischer (1974)minimum edit
distance

but independently discovered by many people (see the Historical Notes section of
Chapter 8).

Let’s first define the minimum edit distance between two strings. Given two
strings, the source string X of length n, and target string Y of length m, we’ll define
D[i, j] as the edit distance between X [1..i] and Y [1.. j], i.e., the first i characters of X
and the first j characters of Y . The edit distance between X and Y is thus D[n,m].
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We’ll use dynamic programming to compute D[n,m] bottom up, combining so-
lutions to subproblems. In the base case, with a source substring of length i but an
empty target string, going from i characters to 0 requires i deletes. With a target
substring of length j but an empty source going from 0 characters to j characters
requires j inserts. Having computed D[i, j] for small i, j we then compute larger
D[i, j] based on previously computed smaller values. The value of D[i, j] is com-
puted by taking the minimum of the three possible paths through the matrix which
arrive there:

D[i, j] = min





D[i−1, j]+del-cost(source[i])
D[i, j−1]+ ins-cost(target[ j])
D[i−1, j−1]+ sub-cost(source[i], target[ j])

If we assume the version of Levenshtein distance in which the insertions and dele-
tions each have a cost of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have a
cost of 2 (except substitution of identical letters have zero cost), the computation for
D[i, j] becomes:

D[i, j] = min





D[i−1, j]+1
D[i, j−1]+1

D[i−1, j−1]+
{

2; if source[i] 6= target[ j]
0; if source[i] = target[ j]

(2.9)

The algorithm is summarized in Fig. 2.17; Fig. 2.18 shows the results of applying
the algorithm to the distance between intention and execution with the version of
Levenshtein in Eq. 2.9.

Knowing the minimum edit distance is useful for algorithms like finding poten-
tial spelling error corrections. But the edit distance algorithm is important in another
way; with a small change, it can also provide the minimum cost alignment between
two strings. Aligning two strings is useful throughout speech and language process-
ing. In speech recognition, minimum edit distance alignment is used to compute
the word error rate (Chapter 28). Alignment plays a role in machine translation, in
which sentences in a parallel corpus (a corpus with a text in two languages) need to
be matched to each other.

To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 2.19
shows this path with the boldfaced cell. Each boldfaced cell represents an alignment
of a pair of letters in the two strings. If two boldfaced cells occur in the same row,
there will be an insertion in going from the source to the target; two boldfaced cells
in the same column indicate a deletion.

Figure 2.19 also shows the intuition of how to compute this alignment path. The
computation proceeds in two steps. In the first step, we augment the minimum edit
distance algorithm to store backpointers in each cell. The backpointer from a cell
points to the previous cell (or cells) that we came from in entering the current cell.
We’ve shown a schematic of these backpointers in Fig. 2.19. Some cells have mul-
tiple backpointers because the minimum extension could have come from multiple
previous cells. In the second step, we perform a backtrace. In a backtrace, we startbacktrace

from the last cell (at the final row and column), and follow the pointers back through
the dynamic programming matrix. Each complete path between the final cell and the
initial cell is a minimum distance alignment. Exercise 2.7 asks you to modify the
minimum edit distance algorithm to store the pointers and compute the backtrace to
output an alignment.
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function MIN-EDIT-DISTANCE(source, target) returns min-distance

n←LENGTH(source)
m←LENGTH(target)
Create a distance matrix distance[n+1,m+1]

# Initialization: the zeroth row and column is the distance from the empty string
D[0,0] = 0
for each row i from 1 to n do

D[i,0]←D[i-1,0] + del-cost(source[i])
for each column j from 1 to m do

D[0,j]←D[0, j-1] + ins-cost(target[j])

# Recurrence relation:
for each row i from 1 to n do

for each column j from 1 to m do
D[i, j]←MIN( D[i−1, j] + del-cost(source[i]),

D[i−1, j−1] + sub-cost(source[i], target[j]),
D[i, j−1] + ins-cost(target[j]))

# Termination
return D[n,m]

Figure 2.17 The minimum edit distance algorithm, an example of the class of dynamic
programming algorithms. The various costs can either be fixed (e.g., ∀x, ins-cost(x) = 1)
or can be specific to the letter (to model the fact that some letters are more likely to be in-
serted than others). We assume that there is no cost for substituting a letter for itself (i.e.,
sub-cost(x,x) = 0).

Src\Tar # e x e c u t i o n
# 0 1 2 3 4 5 6 7 8 9
i 1 2 3 4 5 6 7 6 7 8

n 2 3 4 5 6 7 8 7 8 7
t 3 4 5 6 7 8 7 8 9 8
e 4 3 4 5 6 7 8 9 10 9
n 5 4 5 6 7 8 9 10 11 10
t 6 5 6 7 8 9 8 9 10 11
i 7 6 7 8 9 10 9 8 9 10
o 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8

Figure 2.18 Computation of minimum edit distance between intention and execution with
the algorithm of Fig. 2.17, using Levenshtein distance with cost of 1 for insertions or dele-
tions, 2 for substitutions.

While we worked our example with simple Levenshtein distance, the algorithm
in Fig. 2.17 allows arbitrary weights on the operations. For spelling correction, for
example, substitutions are more likely to happen between letters that are next to
each other on the keyboard. The Viterbi algorithm is a probabilistic extension of
minimum edit distance. Instead of computing the “minimum edit distance” between
two strings, Viterbi computes the “maximum probability alignment” of one string
with another. We’ll discuss this more in Chapter 8.
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# e x e c u t i o n
# 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8 ← 9
i ↑ 1 ↖←↑ 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖ 6 ← 7 ← 8
n ↑ 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↑ 7 ↖←↑ 8 ↖ 7
t ↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖ 7 ←↑ 8 ↖←↑ 9 ↑ 8
e ↑ 4 ↖ 3 ← 4 ↖← 5 ← 6 ← 7 ←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9
n ↑ 5 ↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖↑ 10
t ↑ 6 ↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖ 8 ← 9 ← 10 ←↑ 11
i ↑ 7 ↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9 ↖ 8 ← 9 ← 10
o ↑ 8 ↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↑ 10 ↑ 9 ↖ 8 ← 9
n ↑ 9 ↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖←↑ 12 ↑ 11 ↑ 10 ↑ 9 ↖ 8

Figure 2.19 When entering a value in each cell, we mark which of the three neighboring
cells we came from with up to three arrows. After the table is full we compute an alignment
(minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and
following the arrows back. The sequence of bold cells represents one possible minimum cost
alignment between the two strings. Diagram design after Gusfield (1997).

2.6 Summary

This chapter introduced a fundamental tool in language processing, the regular ex-
pression, and showed how to perform basic text normalization tasks including
word segmentation and normalization, sentence segmentation, and stemming.
We also introduce the important minimum edit distance algorithm for comparing
strings. Here’s a summary of the main points we covered about these ideas:

• The regular expression language is a powerful tool for pattern-matching.
• Basic operations in regular expressions include concatenation of symbols,

disjunction of symbols ([], |, and .), counters (*, +, and {n,m}), anchors
(ˆ, $) and precedence operators ((,)).

• Word tokenization and normalization are generally done by cascades of
simple regular expressions substitutions or finite automata.

• The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It does not have high accuracy but may be useful for some tasks.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of
the two strings.

Bibliographical and Historical Notes
Kleene (1951) and (1956) first defined regular expressions and the finite automaton,
based on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build
regular expressions compilers into editors for text searching (Thompson, 1968). His
editor ed included a command “g/regular expression/p”, or Global Regular Expres-
sion Print, which later became the Unix grep utility.

Text normalization algorithms have been applied since the beginning of the
field. One of the earliest widely-used stemmers was Lovins (1968). Stemming
was also applied early to the digital humanities, by Packard (1973), who built an
affix-stripping morphological parser for Ancient Greek. Currently a wide vari-
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ety of code for tokenization and normalization is available, such as the Stanford
Tokenizer (http://nlp.stanford.edu/software/tokenizer.shtml) or spe-
cialized tokenizers for Twitter (O’Connor et al., 2010), or for sentiment (http:
//sentiment.christopherpotts.net/tokenizing.html). See Palmer (2012)
for a survey of text preprocessing. NLTK is an essential tool that offers both useful
Python libraries (http://www.nltk.org) and textbook descriptions (Bird et al.,
2009) of many algorithms including text normalization and corpus interfaces.

For more on Herdan’s law and Heaps’ Law, see Herdan (1960, p. 28), Heaps
(1978), Egghe (2007) and Baayen (2001); Yasseri et al. (2012) discuss the relation-
ship with other measures of linguistic complexity. For more on edit distance, see the
excellent Gusfield (1997). Our example measuring the edit distance from ‘intention’
to ‘execution’ was adapted from Kruskal (1983). There are various publicly avail-
able packages to compute edit distance, including Unix diff and the NIST sclite

program (NIST, 2005).
In his autobiography Bellman (1984) explains how he originally came up with

the term dynamic programming:

“...The 1950s were not good years for mathematical research. [the]
Secretary of Defense ...had a pathological fear and hatred of the word,
research... I decided therefore to use the word, “programming”. I
wanted to get across the idea that this was dynamic, this was multi-
stage... I thought, let’s ... take a word that has an absolutely precise
meaning, namely dynamic... it’s impossible to use the word, dynamic,
in a pejorative sense. Try thinking of some combination that will pos-
sibly give it a pejorative meaning. It’s impossible. Thus, I thought
dynamic programming was a good name. It was something not even a
Congressman could object to.”

Exercises
2.1 Write regular expressions for the following languages.

1. the set of all alphabetic strings;
2. the set of all lower case alphabetic strings ending in a b;
3. the set of all strings from the alphabet a,b such that each a is immedi-

ately preceded by and immediately followed by a b;

2.2 Write regular expressions for the following languages. By “word”, we mean
an alphabetic string separated from other words by whitespace, any relevant
punctuation, line breaks, and so forth.

1. the set of all strings with two consecutive repeated words (e.g., “Hum-
bert Humbert” and “the the” but not “the bug” or “the big bug”);

2. all strings that start at the beginning of the line with an integer and that
end at the end of the line with a word;

3. all strings that have both the word grotto and the word raven in them
(but not, e.g., words like grottos that merely contain the word grotto);

4. write a pattern that places the first word of an English sentence in a
register. Deal with punctuation.

http://nlp.stanford.edu/software/tokenizer.shtml
http://sentiment.christopherpotts.net/tokenizing.html
http://sentiment.christopherpotts.net/tokenizing.html
http://www.nltk.org


EXERCISES 29

2.3 Implement an ELIZA-like program, using substitutions such as those described
on page 10. You might want to choose a different domain than a Rogerian psy-
chologist, although keep in mind that you would need a domain in which your
program can legitimately engage in a lot of simple repetition.

2.4 Compute the edit distance (using insertion cost 1, deletion cost 1, substitution
cost 1) of “leda” to “deal”. Show your work (using the edit distance grid).

2.5 Figure out whether drive is closer to brief or to divers and what the edit dis-
tance is to each. You may use any version of distance that you like.

2.6 Now implement a minimum edit distance algorithm and use your hand-computed
results to check your code.

2.7 Augment the minimum edit distance algorithm to output an alignment; you
will need to store pointers and add a stage to compute the backtrace.
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CHAPTER

3 N-gram Language Models

“You are uniformly charming!” cried he, with a smile of associating and now
and then I bowed and they perceived a chaise and four to wish for.

Random sentence generated from a Jane Austen trigram model

Predicting is difficult—especially about the future, as the old quip goes. But how
about predicting something that seems much easier, like the next few words someone
is going to say? What word, for example, is likely to follow

Please turn your homework ...

Hopefully, most of you concluded that a very likely word is in, or possibly over,
but probably not refrigerator or the. In the following sections we will formalize
this intuition by introducing models that assign a probability to each possible next
word. The same models will also serve to assign a probability to an entire sentence.
Such a model, for example, could predict that the following sequence has a much
higher probability of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Why would you want to predict upcoming words, or assign probabilities to sen-
tences? Probabilities are essential in any task in which we have to identify words in
noisy, ambiguous input, like speech recognition. For a speech recognizer to realize
that you said I will be back soonish and not I will be bassoon dish, it helps to know
that back soonish is a much more probable sequence than bassoon dish. For writing
tools like spelling correction or grammatical error correction, we need to find and
correct errors in writing like Their are two midterms, in which There was mistyped
as Their, or Everything has improve, in which improve should have been improved.
The phrase There are will be much more probable than Their are, and has improved
than has improve, allowing us to help users by detecting and correcting these errors.

Assigning probabilities to sequences of words is also essential in machine trans-
lation. Suppose we are translating a Chinese source sentence:

他 向 记者 介绍了 主要 内容
He to reporters introduced main content

As part of the process we might have built the following set of potential rough
English translations:

he introduced reporters to the main contents of the statement
he briefed to reporters the main contents of the statement
he briefed reporters on the main contents of the statement
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A probabilistic model of word sequences could suggest that briefed reporters on
is a more probable English phrase than briefed to reporters (which has an awkward
to after briefed) or introduced reporters to (which uses a verb that is less fluent
English in this context), allowing us to correctly select the boldfaced sentence above.

Probabilities are also important for augmentative and alternative communi-
cation systems (Trnka et al. 2007, Kane et al. 2017). People often use such AACAAC

devices if they are physically unable or sign but can instead using eye gaze or other
specific movements to select words from a menu to be spoken by the system. Word
prediction can be used to suggest likely words for the menu.

Models that assign probabilities to sequences of words are called language mod-
els or LMs. In this chapter we introduce the simplest model that assigns probabilitieslanguage model

LM to sentences and sequences of words, the n-gram. An n-gram is a sequence of N
n-gram words: a 2-gram (or bigram) is a two-word sequence of words like “please turn”,

“turn your”, or ”your homework”, and a 3-gram (or trigram) is a three-word se-
quence of words like “please turn your”, or “turn your homework”. We’ll see how
to use n-gram models to estimate the probability of the last word of an n-gram given
the previous words, and also to assign probabilities to entire sequences. In a bit of
terminological ambiguity, we usually drop the word “model”, and thus the term n-
gram is used to mean either the word sequence itself or the predictive model that
assigns it a probability. In later chapters we’ll introduce more sophisticated language
models like the RNN LMs of Chapter 9.

3.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “its water is so transparent that” and we
want to know the probability that the next word is the:

P(the|its water is so transparent that). (3.1)

One way to estimate this probability is from relative frequency counts: take a
very large corpus, count the number of times we see its water is so transparent that,
and count the number of times this is followed by the. This would be answering the
question “Out of the times we saw the history h, how many times was it followed by
the word w”, as follows:

P(the|its water is so transparent that) =
C(its water is so transparent that the)

C(its water is so transparent that)
(3.2)

With a large enough corpus, such as the web, we can compute these counts and
estimate the probability from Eq. 3.2. You should pause now, go to the web, and
compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “Walden
Pond’s water is so transparent that the”; well, used to have counts of zero).
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Similarly, if we wanted to know the joint probability of an entire sequence of
words like its water is so transparent, we could do it by asking “out of all possible
sequences of five words, how many of them are its water is so transparent?” We
would have to get the count of its water is so transparent and divide by the sum of
the counts of all possible five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the proba-
bility of a word w given a history h, or the probability of an entire word sequence W .
Let’s start with a little formalizing of notation. To represent the probability of a par-
ticular random variable Xi taking on the value “the”, or P(Xi = “the”), we will use
the simplification P(the). We’ll represent a sequence of N words either as w1 . . .wn
or wn

1 (so the expression wn−1
1 means the string w1,w2, ...,wn−1). For the joint prob-

ability of each word in a sequence having a particular value P(X = w1,Y = w2,Z =
w3, ...,W = wn) we’ll use P(w1,w2, ...,wn).

Now how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-
bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X2
1 ) . . .P(Xn|Xn−1

1 )

=

n∏

k=1

P(Xk|Xk−1
1 ) (3.3)

Applying the chain rule to words, we get

P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1) . . .P(wn|wn−1
1 )

=

n∏

k=1

P(wk|wk−1
1 ) (3.4)

The chain rule shows the link between computing the joint probability of a se-
quence and computing the conditional probability of a word given previous words.
Equation 3.4 suggests that we could estimate the joint probability of an entire se-
quence of words by multiplying together a number of conditional probabilities. But
using the chain rule doesn’t really seem to help us! We don’t know any way to
compute the exact probability of a word given a long sequence of preceding words,
P(wn|wn−1

1 ). As we said above, we can’t just estimate by counting the number of
times every word occurs following every long string, because language is creative
and any particular context might have never occurred before!

The intuition of the n-gram model is that instead of computing the probability of
a word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|wn−1
1 ) by using only the conditional probability of the

preceding word P(wn|wn−1). In other words, instead of computing the probability

P(the|Walden Pond’s water is so transparent that) (3.5)

we approximate it with the probability

P(the|that) (3.6)
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When we use a bigram model to predict the conditional probability of the next
word, we are thus making the following approximation:

P(wn|wn−1
1 )≈ P(wn|wn−1) (3.7)

The assumption that the probability of a word depends only on the previous word
is called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n−1 words into the past).
Thus, the general equation for this n-gram approximation to the conditional

probability of the next word in a sequence is

P(wn|wn−1
1 )≈ P(wn|wn−1

n−N+1) (3.8)

Given the bigram assumption for the probability of an individual word, we can
compute the probability of a complete word sequence by substituting Eq. 3.7 into
Eq. 3.4:

P(wn
1)≈

n∏

k=1

P(wk|wk−1) (3.9)

How do we estimate these bigram or n-gram probabilities? An intuitive way to
estimate probabilities is called maximum likelihood estimation or MLE. We get

maximum
likelihood
estimation

the MLE estimate for the parameters of an n-gram model by getting counts from a
corpus, and normalizing the counts so that they lie between 0 and 1.1normalize

For example, to compute a particular bigram probability of a word y given a
previous word x, we’ll compute the count of the bigram C(xy) and normalize by the
sum of all the bigrams that share the same first word x:

P(wn|wn−1) =
C(wn−1wn)∑

w C(wn−1w)
(3.10)

We can simplify this equation, since the sum of all bigram counts that start with
a given word wn−1 must be equal to the unigram count for that word wn−1 (the reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol <s> at the beginning
of the sentence, to give us the bigram context of the first word. We’ll also need a
special end-symbol. </s>2

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

1 For probabilistic models, normalizing means dividing by some total count so that the resulting prob-
abilities fall legally between 0 and 1.
2 We need the end-symbol to make the bigram grammar a true probability distribution. Without an
end-symbol, the sentence probabilities for all sentences of a given length would sum to one. This model
would define an infinite set of probability distributions, with one distribution per sentence length. See
Exercise 3.5.
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Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

For the general case of MLE n-gram parameter estimation:

P(wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(3.12)

Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the
observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called a relative frequency. We said above that this use of relativerelative

frequency
frequencies as a way to estimate probabilities is an example of maximum likelihood
estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood
of the training set T given the model M (i.e., P(T |M)). For example, suppose the
word Chinese occurs 400 times in a corpus of a million words like the Brown corpus.
What is the probability that a random word selected from some other text of, say,
a million words will be the word Chinese? The MLE of its probability is 400

1000000
or .0004. Now .0004 is not the best possible estimate of the probability of Chinese
occurring in all situations; it might turn out that in some other corpus or context
Chinese is a very unlikely word. But it is the probability that makes it most likely
that Chinese will occur 400 times in a million-word corpus. We present ways to
modify the MLE estimates slightly to get better probability estimates in Section 3.4.

Let’s move on to some examples from a slightly larger corpus than our 14-word
example above. We’ll use data from the now-defunct Berkeley Restaurant Project,
a dialogue system from the last century that answered questions about a database
of restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some text-
normalized sample user queries (a sample of 9332 sentences is on the website):

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Figure 3.1 shows the bigram counts from a piece of a bigram grammar from the
Berkeley Restaurant Project. Note that the majority of the values are zero. In fact,
we have chosen the sample words to cohere with each other; a matrix selected from
a random set of seven words would be even more sparse.

Figure 3.2 shows the bigram probabilities after normalization (dividing each cell
in Fig. 3.1 by the appropriate unigram for its row, taken from the following set of
unigram probabilities):

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:
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i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

= .25× .33× .0011×0.5×0.68
= .000031

We leave it as Exercise 3.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger n-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning of
the sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format
as log probabilities. Since probabilities are (by definition) less than or equal tolog

probabilities
1, the more probabilities we multiply together, the smaller the product becomes.
Multiplying enough n-grams together would result in numerical underflow. By using
log probabilities instead of raw probabilities, we get numbers that are not as small.
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Adding in log space is equivalent to multiplying in linear space, so we combine log
probabilities by adding them. The result of doing all computation and storage in log
space is that we only need to convert back into probabilities if we need to report
them at the end; then we can just take the exp of the logprob:

p1× p2× p3× p4 = exp(log p1 + log p2 + log p3 + log p4) (3.13)

3.2 Evaluating Language Models

The best way to evaluate the performance of a language model is to embed it in
an application and measure how much the application improves. Such end-to-end
evaluation is called extrinsic evaluation. Extrinsic evaluation is the only way toextrinsic

evaluation
know if a particular improvement in a component is really going to help the task
at hand. Thus, for speech recognition, we can compare the performance of two
language models by running the speech recognizer twice, once with each language
model, and seeing which gives the more accurate transcription.

Unfortunately, running big NLP systems end-to-end is often very expensive. In-
stead, it would be nice to have a metric that can be used to quickly evaluate potential
improvements in a language model. An intrinsic evaluation metric is one that mea-intrinsic

evaluation
sures the quality of a model independent of any application.

For an intrinsic evaluation of a language model we need a test set. As with many
of the statistical models in our field, the probabilities of an n-gram model come from
the corpus it is trained on, the training set or training corpus. We can then measuretraining set

the quality of an n-gram model by its performance on some unseen data called the
test set or test corpus. We will also sometimes call test sets and other datasets thattest set

are not in our training sets held out corpora because we hold them out from theheld out

training data.
So if we are given a corpus of text and want to compare two different n-gram

models, we divide the data into training and test sets, train the parameters of both
models on the training set, and then compare how well the two trained models fit the
test set.

But what does it mean to “fit the test set”? The answer is simple: whichever
model assigns a higher probability to the test set—meaning it more accurately
predicts the test set—is a better model. Given two probabilistic models, the better
model is the one that has a tighter fit to the test data or that better predicts the details
of the test data, and hence will assign a higher probability to the test data.

Since our evaluation metric is based on test set probability, it’s important not to
let the test sentences into the training set. Suppose we are trying to compute the
probability of a particular “test” sentence. If our test sentence is part of the training
corpus, we will mistakenly assign it an artificially high probability when it occurs
in the test set. We call this situation training on the test set. Training on the test
set introduces a bias that makes the probabilities all look too high, and causes huge
inaccuracies in perplexity, the probability-based metric we introduce below.

Sometimes we use a particular test set so often that we implicitly tune to its
characteristics. We then need a fresh test set that is truly unseen. In such cases, we
call the initial test set the development test set or, devset. How do we divide ourdevelopment

test
data into training, development, and test sets? We want our test set to be as large
as possible, since a small test set may be accidentally unrepresentative, but we also
want as much training data as possible. At the minimum, we would want to pick



3.2 • EVALUATING LANGUAGE MODELS 37

the smallest test set that gives us enough statistical power to measure a statistically
significant difference between two potential models. In practice, we often just divide
our data into 80% training, 10% development, and 10% test. Given a large corpus
that we want to divide into training and test, test data can either be taken from some
continuous sequence of text inside the corpus, or we can remove smaller “stripes”
of text from randomly selected parts of our corpus and combine them into a test set.

3.2.1 Perplexity
In practice we don’t use raw probability as our metric for evaluating language mod-
els, but a variant called perplexity. The perplexity (sometimes called PP for short)perplexity

of a language model on a test set is the inverse probability of the test set, normalized
by the number of words. For a test set W = w1w2 . . .wN ,:

PP(W ) = P(w1w2 . . .wN)
− 1

N (3.14)

= N

√
1

P(w1w2 . . .wN)

We can use the chain rule to expand the probability of W :

PP(W ) = N

√√√√
N∏

i=1

1
P(wi|w1 . . .wi−1)

(3.15)

Thus, if we are computing the perplexity of W with a bigram language model,
we get:

PP(W ) = N

√√√√
N∏

i=1

1
P(wi|wi−1)

(3.16)

Note that because of the inverse in Eq. 3.15, the higher the conditional probabil-
ity of the word sequence, the lower the perplexity. Thus, minimizing perplexity is
equivalent to maximizing the test set probability according to the language model.
What we generally use for word sequence in Eq. 3.15 or Eq. 3.16 is the entire se-
quence of words in some test set. Since this sequence will cross many sentence
boundaries, we need to include the begin- and end-sentence markers <s> and </s>

in the probability computation. We also need to include the end-of-sentence marker
</s> (but not the beginning-of-sentence marker <s>) in the total count of word to-
kens N.

There is another way to think about perplexity: as the weighted average branch-
ing factor of a language. The branching factor of a language is the number of possi-
ble next words that can follow any word. Consider the task of recognizing the digits
in English (zero, one, two,..., nine), given that (both in some training set and in some
test set) each of the 10 digits occurs with equal probability P = 1

10 . The perplexity of
this mini-language is in fact 10. To see that, imagine a test string of digits of length
N, and assume that in the training set all the digits occurred with equal probability.
By Eq. 3.15, the perplexity will be
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PP(W ) = P(w1w2 . . .wN)
− 1

N

= (
1
10

N
)−

1
N

=
1

10

−1

= 10 (3.17)

But suppose that the number zero is really frequent and occurs far more often
than other numbers. Let’s say that 0 occur 91 times in the training set, and each
of the other digits occurred 1 time each. Now we see the following test set: 0 0
0 0 0 3 0 0 0 0. We should expect the perplexity of this test set to be lower since
most of the time the next number will be zero, which is very predictable, i.e. has
a high probability. Thus, although the branching factor is still 10, the perplexity or
weighted branching factor is smaller. We leave this exact calculation as exercise 12.

We see in Section 3.7 that perplexity is also closely related to the information-
theoretic notion of entropy.

Finally, let’s look at an example of how perplexity can be used to compare dif-
ferent n-gram models. We trained unigram, bigram, and trigram grammars on 38
million words (including start-of-sentence tokens) from the Wall Street Journal, us-
ing a 19,979 word vocabulary. We then computed the perplexity of each of these
models on a test set of 1.5 million words with Eq. 3.16. The table below shows the
perplexity of a 1.5 million word WSJ test set according to each of these grammars.

Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information the n-gram gives us about the word
sequence, the lower the perplexity (since as Eq. 3.15 showed, perplexity is related
inversely to the likelihood of the test sequence according to the model).

Note that in computing perplexities, the n-gram model P must be constructed
without any knowledge of the test set or any prior knowledge of the vocabulary of
the test set. Any kind of knowledge of the test set can cause the perplexity to be
artificially low. The perplexity of two language models is only comparable if they
use identical vocabularies.

An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) im-
provement in the performance of a language processing task like speech recognition
or machine translation. Nonetheless, because perplexity often correlates with such
improvements, it is commonly used as a quick check on an algorithm. But a model’s
improvement in perplexity should always be confirmed by an end-to-end evaluation
of a real task before concluding the evaluation of the model.

3.3 Generalization and Zeros

The n-gram model, like many statistical models, is dependent on the training corpus.
One implication of this is that the probabilities often encode specific facts about a
given training corpus. Another implication is that n-grams do a better and better job
of modeling the training corpus as we increase the value of N.
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We can visualize both of these facts by borrowing the technique of Shannon
(1951) and Miller and Selfridge (1950) of generating random sentences from dif-
ferent n-gram models. It’s simplest to visualize how this works for the unigram
case. Imagine all the words of the English language covering the probability space
between 0 and 1, each word covering an interval proportional to its frequency. We
choose a random value between 0 and 1 and print the word whose interval includes
this chosen value. We continue choosing random numbers and generating words
until we randomly generate the sentence-final token </s>. We can use the same
technique to generate bigrams by first generating a random bigram that starts with
<s> (according to its bigram probability). Let’s say the second word of that bigram
is w. We next chose a random bigram starting with w (again, drawn according to its
bigram probability), and so on.

To give an intuition for the increasing power of higher-order n-grams, Fig. 3.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 3.3 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously
sparse. There are V 2 = 844,000,000 possible bigrams alone, and the number of pos-
sible 4-grams is V 4 = 7×1017. Thus, once the generator has chosen the first 4-gram
(It cannot be but), there are only five possible continuations (that, I, he, thou, and
so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
n-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our n-grams for the two genres. Fig. 3.4
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shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 3.4 Three sentences randomly generated from three n-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 3.3. While they both
model “English-like sentences”, there is clearly no overlap in generated sentences,
and little overlap even in small phrases. Statistical models are likely to be pretty use-
less as predictors if the training sets and the test sets are as different as Shakespeare
and WSJ.

How should we deal with this problem when we build n-gram models? One step
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

It is equally important to get training data in the appropriate dialect, especially
when processing social media posts or spoken transcripts. Thus tweets in AAVE
(African American Vernacular English) often use words like finna—an auxiliary
verb that marks immediate future tense —that don’t occur in other dialects, or
spellings like den for then, in tweets like this one (Blodgett and O’Connor, 2017):

(3.18) Bored af den my phone finna die!!!

while tweets from varieties like Nigerian English have markedly different vocabu-
lary and n-gram patterns from American English (Jurgens et al., 2017):

(3.19) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u
tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter

Matching genres and dialects is still not sufficient. Our models may still be
subject to the problem of sparsity. For any n-gram that occurred a sufficient number
of times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequences are bound to be missing
from it. That is, we’ll have many cases of putative “zero probability n-grams” that
should really have some non-zero probability. Consider the words that follow the
bigram denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:



3.3 • GENERALIZATION AND ZEROS 41

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things that don’t ever occur in the training set but do occur inzeros

the test set—are a problem for two reasons. First, their presence means we are
underestimating the probability of all sorts of words that might occur, which will
hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability
of the test set is 0. By definition, perplexity is based on the inverse probability of the
test set. Thus if some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

3.3.1 Unknown Words
The previous section discussed the problem of words whose bigram probability is
zero. But what about words we simply have never seen before?

Sometimes we have a language task in which this can’t happen because we know
all the words that can occur. In such a closed vocabulary system the test set canclosed

vocabulary
only contain words from this lexicon, and there will be no unknown words. This is
a reasonable assumption in some domains, such as speech recognition or machine
translation, where we have a pronunciation dictionary or a phrase table that are fixed
in advance, and so the language model can only use the words in that dictionary or
phrase table.

In other cases we have to deal with words we haven’t seen before, which we’ll
call unknown words, or out of vocabulary (OOV) words. The percentage of OOVOOV

words that appear in the test set is called the OOV rate. An open vocabulary systemopen
vocabulary

is one in which we model these potential unknown words in the test set by adding a
pseudo-word called <UNK>.

There are two common ways to train the probabilities of the unknown word
model <UNK>. The first one is to turn the problem back into a closed vocabulary one
by choosing a fixed vocabulary in advance:

1. Choose a vocabulary (word list) that is fixed in advance.
2. Convert in the training set any word that is not in this set (any OOV word) to

the unknown word token <UNK> in a text normalization step.
3. Estimate the probabilities for <UNK> from its counts just like any other regular

word in the training set.

The second alternative, in situations where we don’t have a prior vocabulary in ad-
vance, is to create such a vocabulary implicitly, replacing words in the training data
by <UNK> based on their frequency. For example we can replace by <UNK> all words
that occur fewer than n times in the training set, where n is some small number, or
equivalently select a vocabulary size V in advance (say 50,000) and choose the top
V words by frequency and replace the rest by UNK. In either case we then proceed
to train the language model as before, treating <UNK> like a regular word.

The exact choice of <UNK> model does have an effect on metrics like perplexity.
A language model can achieve low perplexity by choosing a small vocabulary and
assigning the unknown word a high probability. For this reason, perplexities should
only be compared across language models with the same vocabularies (Buck et al.,
2014).



42 CHAPTER 3 • N-GRAM LANGUAGE MODELS

3.4 Smoothing

What do we do with words that are in our vocabulary (they are not unknown words)
but appear in a test set in an unseen context (for example they appear after a word
they never appeared after in training)? To keep a language model from assigning
zero probability to these unseen events, we’ll have to shave off a bit of probability
mass from some more frequent events and give it to the events we’ve never seen.
This modification is called smoothing or discounting. In this section and the fol-smoothing

discounting lowing ones we’ll introduce a variety of ways to do smoothing: add-1 smoothing,
add-k smoothing, stupid backoff, and Kneser-Ney smoothing.

3.4.1 Laplace Smoothing
The simplest way to do smoothing is to add one to all the bigram counts, before
we normalize them into probabilities. All the counts that used to be zero will now
have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called
Laplace smoothing. Laplace smoothing does not perform well enough to be usedLaplace

smoothing
in modern n-gram models, but it usefully introduces many of the concepts that we
see in other smoothing algorithms, gives a useful baseline, and is also a practical
smoothing algorithm for other tasks like text classification (Chapter 4).

Let’s start with the application of Laplace smoothing to unigram probabilities.
Recall that the unsmoothed maximum likelihood estimate of the unigram probability
of the word wi is its count ci normalized by the total number of word tokens N:

P(wi) =
ci

N

Laplace smoothing merely adds one to each count (hence its alternate name add-
one smoothing). Since there are V words in the vocabulary and each one was incre-add-one

mented, we also need to adjust the denominator to take into account the extra V
observations. (What happens to our P values if we don’t increase the denominator?)

PLaplace(wi) =
ci +1
N +V

(3.20)

Instead of changing both the numerator and denominator, it is convenient to
describe how a smoothing algorithm affects the numerator, by defining an adjusted
count c∗. This adjusted count is easier to compare directly with the MLE counts and
can be turned into a probability like an MLE count by normalizing by N. To define
this count, since we are only changing the numerator in addition to adding 1 we’ll
also need to multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N +V
(3.21)

We can now turn c∗i into a probability P∗i by normalizing by N.
A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c∗, we might describe a smooth-
ing algorithm in terms of a relative discount dc, the ratio of the discounted counts todiscount

the original counts:
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dc =
c∗

c
Now that we have the intuition for the unigram case, let’s smooth our Berkeley

Restaurant Project bigrams. Figure 3.5 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.6 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.22)

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P∗Laplace(wn|wn−1) =
C(wn−1wn)+1∑
w (C(wn−1w)+1)

=
C(wn−1wn)+1
C(wn−1)+V

(3.23)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.6.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 3.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 3.24. Figure 3.7 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(3.24)
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i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 3.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

Note that add-one smoothing has made a very big change to the counts. C(want to)
changed from 609 to 238! We can see this in probability space as well: P(to|want)
decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at
the discount d (the ratio between new and old counts) shows us how strikingly the
counts for each prefix word have been reduced; the discount for the bigram want to
is .39, while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

3.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P∗Add-k(wn|wn−1) =
C(wn−1wn)+ k
C(wn−1)+ kV

(3.25)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

3.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency n-grams. But there is an additional source of knowledge we can draw on.
If we are trying to compute P(wn|wn−2wn−1) but we have no examples of a particular
trigram wn−2wn−1wn, we can instead estimate its probability by using the bigram
probability P(wn|wn−1). Similarly, if we don’t have counts to compute P(wn|wn−1),
we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this n-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order n-gram if we have zero evidence for a higher-order
n-gram. By contrast, in interpolation, we always mix the probability estimates frominterpolation

all the n-gram estimators, weighing and combining the trigram, bigram, and unigram
counts.



3.4 • SMOOTHING 45

In simple linear interpolation, we combine different order n-grams by linearly in-
terpolating all the models. Thus, we estimate the trigram probability P(wn|wn−2wn−1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a λ :

P̂(wn|wn−2wn−1) = λ1P(wn|wn−2wn−1)

+λ2P(wn|wn−1)

+λ3P(wn) (3.26)

such that the λ s sum to 1: ∑

i

λi = 1 (3.27)

In a slightly more sophisticated version of linear interpolation, each λ weight is
computed by conditioning on the context. This way, if we have particularly accurate
counts for a particular bigram, we assume that the counts of the trigrams based on
this bigram will be more trustworthy, so we can make the λ s for those trigrams
higher and thus give that trigram more weight in the interpolation. Equation 3.28
shows the equation for interpolation with context-conditioned weights:

P̂(wn|wn−2wn−1) = λ1(wn−1
n−2)P(wn|wn−2wn−1)

+λ2(wn−1
n−2)P(wn|wn−1)

+λ3(wn−1
n−2)P(wn) (3.28)

How are these λ values set? Both the simple interpolation and conditional inter-
polation λ s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus that we use to set hyperparameters like these λ values, by choosing
the λ values that maximize the likelihood of the held-out corpus. That is, we fix
the n-gram probabilities and then search for the λ values that—when plugged into
Eq. 3.26—give us the highest probability of the held-out set. There are various ways
to find this optimal set of λ s. One way is to use the EM algorithm, an iterative
learning algorithm that converges on locally optimal λ s (Jelinek and Mercer, 1980).

In a backoff n-gram model, if the n-gram we need has zero counts, we approxi-
mate it by backing off to the (N-1)-gram. We continue backing off until we reach a
history that has some counts.

In order for a backoff model to give a correct probability distribution, we have
to discount the higher-order n-grams to save some probability mass for the lowerdiscount

order n-grams. Just as with add-one smoothing, if the higher-order n-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as we
replaced an n-gram which has zero probability with a lower-order n-gram, we would
be adding probability mass, and the total probability assigned to all possible strings
by the language model would be greater than 1! In addition to this explicit discount
factor, we’ll need a function α to distribute this probability mass to the lower order
n-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P∗ if we’ve seen this n-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (N-1)-gram. The probability for a backoff n-gram PBO is
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thus computed as follows:

PBO(wn|wn−1
n−N+1) =





P∗(wn|wn−1
n−N+1), if C(wn

n−N+1)> 0

α(wn−1
n−N+1)PBO(wn|wn−1

n−N+2), otherwise.

(3.29)
Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P∗ and α values.

3.5 Kneser-Ney Smoothing

One of the most commonly used and best performing n-gram smoothing methods
is the interpolated Kneser-Ney algorithm (Kneser and Ney 1995, Chen and Good-Kneser-Ney

man 1998).
Kneser-Ney has its roots in a method called absolute discounting. Recall that

discounting of the counts for frequent n-grams is necessary to save some probability
mass for the smoothing algorithm to distribute to the unseen n-grams.

To see this, we can use a clever idea from Church and Gale (1991). Consider
an n-gram that has count 4. We need to discount this count by some amount. But
how much should we discount it? Church and Gale’s clever idea was to look at a
held-out corpus and just see what the count is for all those bigrams that had count
4 in the training set. They computed a bigram grammar from 22 million words of
AP newswire and then checked the counts of each of these bigrams in another 22
million words. On average, a bigram that occurred 4 times in the first 22 million
words occurred 3.23 times in the next 22 million words. The following table from
Church and Gale (1991) shows these counts for bigrams with c from 0 to 9:

Bigram count in Bigram count in
training set heldout set

0 0.0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Figure 3.8 For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

The astute reader may have noticed that except for the held-out counts for 0
and 1, all the other bigram counts in the held-out set could be estimated pretty well
by just subtracting 0.75 from the count in the training set! Absolute discountingAbsolute

discounting
formalizes this intuition by subtracting a fixed (absolute) discount d from each count.
The intuition is that since we have good estimates already for the very high counts, a
small discount d won’t affect them much. It will mainly modify the smaller counts,
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for which we don’t necessarily trust the estimate anyway, and Fig. 3.8 suggests that
in practice this discount is actually a good one for bigrams with counts 2 through 9.
The equation for interpolated absolute discounting applied to bigrams:

PAbsoluteDiscounting(wi|wi−1) =
C(wi−1wi)−d∑

v C(wi−1 v)
+λ (wi−1)P(wi) (3.30)

The first term is the discounted bigram, and the second term is the unigram with
an interpolation weight λ . We could just set all the d values to .75, or we could keep
a separate discount value of 0.5 for the bigrams with counts of 1.

Kneser-Ney discounting (Kneser and Ney, 1995) augments absolute discount-
ing with a more sophisticated way to handle the lower-order unigram distribution.
Consider the job of predicting the next word in this sentence, assuming we are inter-
polating a bigram and a unigram model.

I can’t see without my reading .

The word glasses seems much more likely to follow here than, say, the word
Kong, so we’d like our unigram model to prefer glasses. But in fact it’s Kong that is
more common, since Hong Kong is a very frequent word. A standard unigram model
will assign Kong a higher probability than glasses. We would like to capture the
intuition that although Kong is frequent, it is mainly only frequent in the phrase Hong
Kong, that is, after the word Hong. The word glasses has a much wider distribution.

In other words, instead of P(w), which answers the question “How likely is
w?”, we’d like to create a unigram model that we might call PCONTINUATION, which
answers the question “How likely is w to appear as a novel continuation?”. How can
we estimate this probability of seeing the word w as a novel continuation, in a new
unseen context? The Kneser-Ney intuition is to base our estimate of PCONTINUATION
on the number of different contexts word w has appeared in, that is, the number of
bigram types it completes. Every bigram type was a novel continuation the first time
it was seen. We hypothesize that words that have appeared in more contexts in the
past are more likely to appear in some new context as well. The number of times a
word w appears as a novel continuation can be expressed as:

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (3.31)

To turn this count into a probability, we normalize by the total number of word
bigram types. In summary:

PCONTINUATION(w) =
|{v : C(vw)> 0}|

|{(u′,w′) : C(u′w′)> 0}| (3.32)

An equivalent formulation based on a different metaphor is to use the number of
word types seen to precede w (Eq. 3.31 repeated):

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (3.33)

normalized by the number of words preceding all words, as follows:

PCONTINUATION(w) =
|{v : C(vw)> 0}|∑
w′ |{v : C(vw′)> 0}| (3.34)

A frequent word (Kong) occurring in only one context (Hong) will have a low
continuation probability.
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The final equation for Interpolated Kneser-Ney smoothing for bigrams is then:Interpolated
Kneser-Ney

PKN(wi|wi−1) =
max(C(wi−1wi)−d,0)

C(wi−1)
+λ (wi−1)PCONTINUATION(wi) (3.35)

The λ is a normalizing constant that is used to distribute the probability mass
we’ve discounted.:

λ (wi−1) =
d∑

v C(wi−1v)
|{w : C(wi−1w)> 0}| (3.36)

The first term,
d∑

v C(wi−1v)
, is the normalized discount. The second term,

|{w : C(wi−1w)> 0}|, is the number of word types that can follow wi−1 or, equiva-
lently, the number of word types that we discounted; in other words, the number of
times we applied the normalized discount.

The general recursive formulation is as follows:

PKN(wi|wi−1
i−n+1) =

max(cKN(w i
i−n+1)−d,0)

∑
v cKN(w i−1

i−n+1v)
+λ (wi−1

i−n+1)PKN(wi|wi−1
i−n+2) (3.37)

where the definition of the count cKN depends on whether we are counting the
highest-order n-gram being interpolated (for example trigram if we are interpolating
trigram, bigram, and unigram) or one of the lower-order n-grams (bigram or unigram
if we are interpolating trigram, bigram, and unigram):

cKN(·) =
{

count(·) for the highest order
continuationcount(·) for lower orders (3.38)

The continuation count is the number of unique single word contexts for ·.
At the termination of the recursion, unigrams are interpolated with the uniform

distribution, where the parameter ε is the empty string:

PKN(w) =
max(cKN(w)−d,0)∑

w′ cKN(w′)
+λ (ε)

1
V

(3.39)

If we want to include an unknown word <UNK>, it’s just included as a regular vo-
cabulary entry with count zero, and hence its probability will be a lambda-weighted
uniform distribution λ (ε)

V .
The best-performing version of Kneser-Ney smoothing is called modified Kneser-

Ney smoothing, and is due to Chen and Goodman (1998). Rather than use a singlemodified
Kneser-Ney

fixed discount d, modified Kneser-Ney uses three different discounts d1, d2, and
d3+ for n-grams with counts of 1, 2 and three or more, respectively. See Chen and
Goodman (1998, p. 19) or Heafield et al. (2013) for the details.

3.6 The Web and Stupid Backoff

By using text from the web, it is possible to build extremely large language mod-
els. In 2006 Google released a very large set of n-gram counts, including n-grams
(1-grams through 5-grams) from all the five-word sequences that appear at least
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40 times from 1,024,908,267,229 words of running text on the web; this includes
1,176,470,663 five-word sequences using over 13 million unique words types (Franz
and Brants, 2006). Some examples:

4-gram Count
serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

Efficiency considerations are important when building language models that use
such large sets of n-grams. Rather than store each word as a string, it is generally
represented in memory as a 64-bit hash number, with the words themselves stored
on disk. Probabilities are generally quantized using only 4-8 bits (instead of 8-byte
floats), and n-grams are stored in reverse tries.

N-grams can also be shrunk by pruning, for example only storing n-grams with
counts greater than some threshold (such as the count threshold of 40 used for the
Google n-gram release) or using entropy to prune less-important n-grams (Stolcke,
1998). Another option is to build approximate language models using techniques
like Bloom filters (Talbot and Osborne 2007, Church et al. 2007). Finally, effi-Bloom filters

cient language model toolkits like KenLM (Heafield 2011, Heafield et al. 2013) use
sorted arrays, efficiently combine probabilities and backoffs in a single value, and
use merge sorts to efficiently build the probability tables in a minimal number of
passes through a large corpus.

Although with these toolkits it is possible to build web-scale language models
using full Kneser-Ney smoothing, Brants et al. (2007) show that with very large lan-
guage models a much simpler algorithm may be sufficient. The algorithm is called
stupid backoff. Stupid backoff gives up the idea of trying to make the languagestupid backoff

model a true probability distribution. There is no discounting of the higher-order
probabilities. If a higher-order n-gram has a zero count, we simply backoff to a
lower order n-gram, weighed by a fixed (context-independent) weight. This algo-
rithm does not produce a probability distribution, so we’ll follow Brants et al. (2007)
in referring to it as S:

S(wi|wi−1
i−k+1) =





count(wi
i−k+1)

count(wi−1
i−k+1)

if count(wi
i−k+1)> 0

λS(wi|wi−1
i−k+2) otherwise

(3.40)

The backoff terminates in the unigram, which has probability S(w)= count(w)
N . Brants

et al. (2007) find that a value of 0.4 worked well for λ .

3.7 Advanced: Perplexity’s Relation to Entropy

We introduced perplexity in Section 3.2.1 as a way to evaluate n-gram models on
a test set. A better n-gram model is one that assigns a higher probability to the
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test data, and perplexity is a normalized version of the probability of the test set.
The perplexity measure actually arises from the information-theoretic concept of
cross-entropy, which explains otherwise mysterious properties of perplexity (why
the inverse probability, for example?) and its relationship to entropy. Entropy is aEntropy

measure of information. Given a random variable X ranging over whatever we are
predicting (words, letters, parts of speech, the set of which we’ll call χ) and with a
particular probability function, call it p(x), the entropy of the random variable X is:

H(X) =−
∑

x∈χ

p(x) log2 p(x) (3.41)

The log can, in principle, be computed in any base. If we use log base 2, the
resulting value of entropy will be measured in bits.

One intuitive way to think about entropy is as a lower bound on the number of
bits it would take to encode a certain decision or piece of information in the optimal
coding scheme.

Consider an example from the standard information theory textbook Cover and
Thomas (1991). Imagine that we want to place a bet on a horse race but it is too
far to go all the way to Yonkers Racetrack, so we’d like to send a short message to
the bookie to tell him which of the eight horses to bet on. One way to encode this
message is just to use the binary representation of the horse’s number as the code;
thus, horse 1 would be 001, horse 2 010, horse 3 011, and so on, with horse 8 coded
as 000. If we spend the whole day betting and each horse is coded with 3 bits, on
average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed and that we represent it as the prior probability of each horse as follows:

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variable X that ranges over horses gives us a lower
bound on the number of bits and is

H(X) = −
i=8∑

i=1

p(i) log p(i)

= − 1
2 log 1

2− 1
4 log 1

4− 1
8 log 1

8− 1
16 log 1

16−4( 1
64 log 1

64 )

= 2 bits (3.42)

A code that averages 2 bits per race can be built with short encodings for more
probable horses, and longer encodings for less probable horses. For example, we
could encode the most likely horse with the code 0, and the remaining horses as 10,
then 110, 1110, 111100, 111101, 111110, and 111111.

What if the horses are equally likely? We saw above that if we used an equal-
length binary code for the horse numbers, each horse took 3 bits to code, so the
average was 3. Is the entropy the same? In this case each horse would have a
probability of 1

8 . The entropy of the choice of horses is then

H(X) =−
i=8∑

i=1

1
8

log
1
8
=− log

1
8
= 3 bits (3.43)
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Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involves sequences. For a grammar, for example, we
will be computing the entropy of some sequence of words W = {w0,w1,w2, . . . ,wn}.
One way to do this is to have a variable that ranges over sequences of words. For
example we can compute the entropy of a random variable that ranges over all finite
sequences of words of length n in some language L as follows:

H(w1,w2, . . . ,wn) =−
∑

W n
1 ∈L

p(W n
1 ) log p(W n

1 ) (3.44)

We could define the entropy rate (we could also think of this as the per-wordentropy rate

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(W n
1 ) =−

1
n

∑

W n
1 ∈L

p(W n
1 ) log p(W n

1 ) (3.45)

But to measure the true entropy of a language, we need to consider sequences of
infinite length. If we think of a language as a stochastic process L that produces a
sequence of words, and allow W to represent the sequence of words w1, . . . ,wn, then
L’s entropy rate H(L) is defined as

H(L) = lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n

∑

W∈L

p(w1, . . . ,wn) log p(w1, . . . ,wn) (3.46)

The Shannon-McMillan-Breiman theorem (Algoet and Cover 1988, Cover and
Thomas 1991) states that if the language is regular in certain ways (to be exact, if it
is both stationary and ergodic),

H(L) = lim
n→∞
−1

n
log p(w1w2 . . .wn) (3.47)

That is, we can take a single sequence that is long enough instead of summing
over all possible sequences. The intuition of the Shannon-McMillan-Breiman the-
orem is that a long-enough sequence of words will contain in it many other shorter
sequences and that each of these shorter sequences will reoccur in the longer se-
quence according to their probabilities.

A stochastic process is said to be stationary if the probabilities it assigns to aStationary

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at time t is the same as the probability distribution
at time t + 1. Markov models, and hence n-grams, are stationary. For example, in
a bigram, Pi is dependent only on Pi−1. So if we shift our time index by x, Pi+x is
still dependent on Pi+x−1. But natural language is not stationary, since as we show
in Chapter 12, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus, our statistical models only give
an approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assump-
tions, we can compute the entropy of some stochastic process by taking a very long
sample of the output and computing its average log probability.

Now we are ready to introduce cross-entropy. The cross-entropy is useful whencross-entropy

we don’t know the actual probability distribution p that generated some data. It
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allows us to use some m, which is a model of p (i.e., an approximation to p). The
cross-entropy of m on p is defined by

H(p,m) = lim
n→∞
−1

n

∑

W∈L

p(w1, . . . ,wn) logm(w1, . . . ,wn) (3.48)

That is, we draw sequences according to the probability distribution p, but sum
the log of their probabilities according to m.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary er-
godic process:

H(p,m) = lim
n→∞
−1

n
logm(w1w2 . . .wn) (3.49)

This means that, as for entropy, we can estimate the cross-entropy of a model
m on some distribution p by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross-entropy useful is that the cross-entropy H(p,m) is an up-
per bound on the entropy H(p). For any model m:

H(p)≤ H(p,m) (3.50)

This means that we can use some simplified model m to help estimate the true en-
tropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross-entropy H(p,m) will be to the true entropy H(p). Thus,
the difference between H(p,m) and H(p) is a measure of how accurate a model is.
Between two models m1 and m2, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be lower than the true entropy, so
a model cannot err by underestimating the true entropy.)

We are finally ready to see the relation between perplexity and cross-entropy as
we saw it in Eq. 3.49. Cross-entropy is defined in the limit, as the length of the
observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approxima-
tion to the cross-entropy of a model M = P(wi|wi−N+1...wi−1) on a sequence of
words W is

H(W ) =− 1
N

logP(w1w2 . . .wN) (3.51)

The perplexity of a model P on a sequence of words W is now formally defined asperplexity

the exp of this cross-entropy:

Perplexity(W ) = 2H(W )

= P(w1w2 . . .wN)
− 1

N

= N

√
1

P(w1w2 . . .wN)

= N

√√√√
N∏

i=1

1
P(wi|w1 . . .wi−1)

(3.52)
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3.8 Summary

This chapter introduced language modeling and the n-gram, one of the most widely
used tools in language processing.

• Language models offer a way to assign a probability to a sentence or other
sequence of words, and to predict a word from preceding words.

• n-grams are Markov models that estimate words from a fixed window of pre-
vious words. n-gram probabilities can be estimated by counting in a corpus
and normalizing (the maximum likelihood estimate).

• n-gram language models are evaluated extrinsically in some task, or intrinsi-
cally using perplexity.

• The perplexity of a test set according to a language model is the geometric
mean of the inverse test set probability computed by the model.

• Smoothing algorithms provide a more sophisticated way to estimate the prob-
ability of n-grams. Commonly used smoothing algorithms for n-grams rely on
lower-order n-gram counts through backoff or interpolation.

• Both backoff and interpolation require discounting to create a probability dis-
tribution.

• Kneser-Ney smoothing makes use of the probability of a word being a novel
continuation. The interpolated Kneser-Ney smoothing algorithm mixes a
discounted probability with a lower-order continuation probability.

Bibliographical and Historical Notes
The underlying mathematics of the n-gram was first proposed by Markov (1913),
who used what are now called Markov chains (bigrams and trigrams) to predict
whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a con-
sonant. Markov classified 20,000 letters as V or C and computed the bigram and
trigram probability that a given letter would be a vowel given the previous one or
two letters. Shannon (1948) applied n-grams to compute approximations to English
word sequences. Based on Shannon’s work, Markov models were commonly used in
engineering, linguistic, and psychological work on modeling word sequences by the
1950s. In a series of extremely influential papers starting with Chomsky (1956) and
including Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued
that “finite-state Markov processes”, while a possibly useful engineering heuristic,
were incapable of being a complete cognitive model of human grammatical knowl-
edge. These arguments led many linguists and computational linguists to ignore
work in statistical modeling for decades.

The resurgence of n-gram models came from Jelinek and colleagues at the IBM
Thomas J. Watson Research Center, who were influenced by Shannon, and Baker
at CMU, who was influenced by the work of Baum and colleagues. Independently
these two labs successfully used n-grams in their speech recognition systems (Baker 1975b,
Jelinek 1976, Baker 1975a, Bahl et al. 1983, Jelinek 1990). A trigram model was
used in the IBM TANGORA speech recognition system in the 1970s, but the idea
was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of succession and was first
applied as an engineering solution to the zero-frequency problem by Jeffreys (1948)
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based on an earlier Add-K suggestion by Johnson (1932). Problems with the add-
one algorithm are summarized in Gale and Church (1994).

A wide variety of different language modeling and smoothing techniques were
proposed in the 80s and 90s, including Good-Turing discounting—first applied to
the n-gram smoothing at IBM by Katz (Nádas 1984, Church and Gale 1991)—
Witten-Bell discounting (Witten and Bell, 1991), and varieties of class-based n-
gram models that used information about word classes.class-based

n-gram
Starting in the late 1990s, Chen and Goodman produced a highly influential

series of papers with a comparison of different language models (Chen and Good-
man 1996, Chen and Goodman 1998, Chen and Goodman 1999, Goodman 2006).
They performed a number of carefully controlled experiments comparing differ-
ent discounting algorithms, cache models, class-based models, and other language
model parameters. They showed the advantages of Modified Interpolated Kneser-
Ney, which has since become the standard baseline for language modeling, espe-
cially because they showed that caches and class-based models provided only minor
additional improvement. These papers are recommended for any reader with further
interest in language modeling.

Two commonly used toolkits for building language models are SRILM (Stolcke,
2002) and KenLM (Heafield 2011, Heafield et al. 2013). Both are publicly available.
SRILM offers a wider range of options and types of discounting, while KenLM is
optimized for speed and memory size, making it possible to build web-scale lan-
guage models.

The highest accuracy language models are neural network language models.
These solve a major problem with n-gram language models: the number of parame-
ters increases exponentially as the n-gram order increases, and n-grams have no way
to generalize from training to test set. Neural language models instead project words
into a continuous space in which words with similar contexts have similar represen-
tations. We’ll introduce both feedforward language models (Bengio et al. 2006,
Schwenk 2007) in Chapter 7, and recurrent language models (Mikolov, 2012) in
Chapter 9.

Exercises
3.1 Write out the equation for trigram probability estimation (modifying Eq. 3.11).

Now write out all the non-zero trigram probabilities for the I am Sam corpus
on page 33.

3.2 Calculate the probability of the sentence i want chinese food. Give two
probabilities, one using Fig. 3.2 and the ‘useful probabilities’ just below it on
page 35, and another using the add-1 smoothed table in Fig. 3.6. Assume the
additional add-1 smoothed probabilities P(i|<s>)= 0.19 and P(</s>|food)=
0.40.

3.3 Which of the two probabilities you computed in the previous exercise is higher,
unsmoothed or smoothed? Explain why.

3.4 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>
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Using a bigram language model with add-one smoothing, what is P(Sam |
am)? Include <s> and </s> in your counts just like any other token.

3.5 Suppose we didn’t use the end-symbol </s>. Train an unsmoothed bigram
grammar on the following training corpus without using the end-symbol </s>:

<s> a b

<s> b b

<s> b a

<s> a a

Demonstrate that your bigram model does not assign a single probability dis-
tribution across all sentence lengths by showing that the sum of the probability
of the four possible 2 word sentences over the alphabet {a,b} is 1.0, and the
sum of the probability of all possible 3 word sentences over the alphabet {a,b}
is also 1.0.

3.6 Suppose we train a trigram language model with add-one smoothing on a
given corpus. The corpus contains V word types. Express a formula for esti-
mating P(w3|w1,w2), where w3 is a word which follows the bigram (w1,w2),
in terms of various N-gram counts and V. Use the notation c(w1,w2,w3) to
denote the number of times that trigram (w1,w2,w3) occurs in the corpus, and
so on for bigrams and unigrams.

3.7 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

If we use linear interpolation smoothing between a maximum-likelihood bi-
gram model and a maximum-likelihood unigram model with λ1 =

1
2 and λ2 =

1
2 , what is P(Sam|am)? Include <s> and </s> in your counts just like any
other token.

3.8 Write a program to compute unsmoothed unigrams and bigrams.

3.9 Run your n-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two
corpora. What are the differences in the most common unigrams between the
two? How about interesting differences in bigrams?

3.10 Add an option to your program to generate random sentences.

3.11 Add an option to your program to compute the perplexity of a test set.

3.12 Given a training set of 100 numbers consists of 91 zeros and 1 each of the
other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0 0 0. What
is the unigram perplexity?
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CHAPTER

4 Naive Bayes and Sentiment
Classification

Classification lies at the heart of both human and machine intelligence. Deciding
what letter, word, or image has been presented to our senses, recognizing faces
or voices, sorting mail, assigning grades to homeworks; these are all examples of
assigning a category to an input. The potential challenges of this task are highlighted
by the fabulist Jorge Luis Borges (1964), who imagined classifying animals into:

(a) those that belong to the Emperor, (b) embalmed ones, (c) those that
are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray
dogs, (h) those that are included in this classification, (i) those that
tremble as if they were mad, (j) innumerable ones, (k) those drawn with
a very fine camel’s hair brush, (l) others, (m) those that have just broken
a flower vase, (n) those that resemble flies from a distance.

Many language processing tasks involve classification, although luckily our classes
are much easier to define than those of Borges. In this chapter we introduce the naive
Bayes algorithm and apply it to text categorization, the task of assigning a label ortext

categorization
category to an entire text or document.

We focus on one common text categorization task, sentiment analysis, the ex-sentiment
analysis

traction of sentiment, the positive or negative orientation that a writer expresses
toward some object. A review of a movie, book, or product on the web expresses the
author’s sentiment toward the product, while an editorial or political text expresses
sentiment toward a candidate or political action. Extracting consumer or public sen-
timent is thus relevant for fields from marketing to politics.

The simplest version of sentiment analysis is a binary classification task, and
the words of the review provide excellent cues. Consider, for example, the follow-
ing phrases extracted from positive and negative reviews of movies and restaurants.
Words like great, richly, awesome, and pathetic, and awful and ridiculously are very
informative cues:

+ ...zany characters and richly applied satire, and some great plot twists
− It was pathetic. The worst part about it was the boxing scenes...
+ ...awesome caramel sauce and sweet toasty almonds. I love this place!
− ...awful pizza and ridiculously overpriced...

Spam detection is another important commercial application, the binary clas-spam detection

sification task of assigning an email to one of the two classes spam or not-spam.
Many lexical and other features can be used to perform this classification. For ex-
ample you might quite reasonably be suspicious of an email containing phrases like
“online pharmaceutical” or “WITHOUT ANY COST” or “Dear Winner”.

Another thing we might want to know about a text is the language it’s written
in. Texts on social media, for example, can be in any number of languages and we’ll
need to apply different processing. The task of language id is thus the first steplanguage id

in most language processing pipelines. Related tasks like determining a text’s au-
thor, (authorship attribution), or author characteristics like gender, age, and nativeauthorship

attribution
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language are text classification tasks that are also relevant to the digital humanities,
social sciences, and forensic linguistics.

Finally, one of the oldest tasks in text classification is assigning a library sub-
ject category or topic label to a text. Deciding whether a research paper concerns
epidemiology or instead, perhaps, embryology, is an important component of infor-
mation retrieval. Various sets of subject categories exist, such as the MeSH (Medical
Subject Headings) thesaurus. In fact, as we will see, subject category classification
is the task for which the naive Bayes algorithm was invented in 1961.

Classification is essential for tasks below the level of the document as well.
We’ve already seen period disambiguation (deciding if a period is the end of a sen-
tence or part of a word), and word tokenization (deciding if a character should be
a word boundary). Even language modeling can be viewed as classification: each
word can be thought of as a class, and so predicting the next word is classifying the
context-so-far into a class for each next word. A part-of-speech tagger (Chapter 8)
classifies each occurrence of a word in a sentence as, e.g., a noun or a verb.

The goal of classification is to take a single observation, extract some useful
features, and thereby classify the observation into one of a set of discrete classes.
One method for classifying text is to use handwritten rules. There are many areas of
language processing where handwritten rule-based classifiers constitute a state-of-
the-art system, or at least part of it.

Rules can be fragile, however, as situations or data change over time, and for
some tasks humans aren’t necessarily good at coming up with the rules. Most cases
of classification in language processing are instead done via supervised machine
learning, and this will be the subject of the remainder of this chapter. In supervised

supervised
machine
learning

learning, we have a data set of input observations, each associated with some correct
output (a ‘supervision signal’). The goal of the algorithm is to learn how to map
from a new observation to a correct output.

Formally, the task of supervised classification is to take an input x and a fixed
set of output classes Y = y1,y2, ...,yM and return a predicted class y ∈ Y . For text
classification, we’ll sometimes talk about c (for “class”) instead of y as our output
variable, and d (for “document”) instead of x as our input variable. In the supervised
situation we have a training set of N documents that have each been hand-labeled
with a class: (d1,c1), ....,(dN ,cN). Our goal is to learn a classifier that is capable of
mapping from a new document d to its correct class c∈C. A probabilistic classifier
additionally will tell us the probability of the observation being in the class. This
full distribution over the classes can be useful information for downstream decisions;
avoiding making discrete decisions early on can be useful when combining systems.

Many kinds of machine learning algorithms are used to build classifiers. This
chapter introduces naive Bayes; the following one introduces logistic regression.
These exemplify two ways of doing classification. Generative classifiers like naive
Bayes build a model of how a class could generate some input data. Given an ob-
servation, they return the class most likely to have generated the observation. Dis-
criminative classifiers like logistic regression instead learn what features from the
input are most useful to discriminate between the different possible classes. While
discriminative systems are often more accurate and hence more commonly used,
generative classifiers still have a role.
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4.1 Naive Bayes Classifiers

In this section we introduce the multinomial naive Bayes classifier, so called be-naive Bayes
classifier

cause it is a Bayesian classifier that makes a simplifying (naive) assumption about
how the features interact.

The intuition of the classifier is shown in Fig. 4.1. We represent a text document
as if it were a bag-of-words, that is, an unordered set of words with their positionbag-of-words

ignored, keeping only their frequency in the document. In the example in the figure,
instead of representing the word order in all the phrases like “I love this movie” and
“I would recommend it”, we simply note that the word I occurred 5 times in the
entire excerpt, the word it 6 times, the words love, recommend, and movie once, and
so on.

it

it
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it
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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!
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Figure 4.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the
words is ignored (the bag of words assumption) and we make use of the frequency of each word.

Naive Bayes is a probabilistic classifier, meaning that for a document d, out of
all classes c ∈C the classifier returns the class ĉ which has the maximum posterior
probability given the document. In Eq. 4.1 we use the hat notation ˆ to mean “ourˆ

estimate of the correct class”.

ĉ = argmax
c∈C

P(c|d) (4.1)

This idea of Bayesian inference has been known since the work of Bayes (1763),Bayesian
inference

and was first applied to text classification by Mosteller and Wallace (1964). The
intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 4.1 into
other probabilities that have some useful properties. Bayes’ rule is presented in
Eq. 4.2; it gives us a way to break down any conditional probability P(x|y) into
three other probabilities:

P(x|y) = P(y|x)P(x)
P(y)

(4.2)
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We can then substitute Eq. 4.2 into Eq. 4.1 to get Eq. 4.3:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c)
P(d)

(4.3)

We can conveniently simplify Eq. 4.3 by dropping the denominator P(d). This
is possible because we will be computing P(d|c)P(c)

P(d) for each possible class. But P(d)
doesn’t change for each class; we are always asking about the most likely class for
the same document d, which must have the same probability P(d). Thus, we can
choose the class that maximizes this simpler formula:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c) (4.4)

We thus compute the most probable class ĉ given some document d by choosing
the class which has the highest product of two probabilities: the prior probabilityprior

probability
of the class P(c) and the likelihood of the document P(d|c):likelihood

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P(d|c)

prior︷︸︸︷
P(c) (4.5)

Without loss of generalization, we can represent a document d as a set of features
f1, f2, ..., fn:

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P( f1, f2, ...., fn|c)

prior︷︸︸︷
P(c) (4.6)

Unfortunately, Eq. 4.6 is still too hard to compute directly: without some sim-
plifying assumptions, estimating the probability of every possible combination of
features (for example, every possible set of words and positions) would require huge
numbers of parameters and impossibly large training sets. Naive Bayes classifiers
therefore make two simplifying assumptions.

The first is the bag of words assumption discussed intuitively above: we assume
position doesn’t matter, and that the word “love” has the same effect on classification
whether it occurs as the 1st, 20th, or last word in the document. Thus we assume
that the features f1, f2, ..., fn only encode word identity and not position.

The second is commonly called the naive Bayes assumption: this is the condi-naive Bayes
assumption

tional independence assumption that the probabilities P( fi|c) are independent given
the class c and hence can be ‘naively’ multiplied as follows:

P( f1, f2, ...., fn|c) = P( f1|c) ·P( f2|c) · ... ·P( fn|c) (4.7)

The final equation for the class chosen by a naive Bayes classifier is thus:

cNB = argmax
c∈C

P(c)
∏

f∈F

P( f |c) (4.8)

To apply the naive Bayes classifier to text, we need to consider word positions, by
simply walking an index through every word position in the document:

positions ← all word positions in test document

cNB = argmax
c∈C

P(c)
∏

i∈positions

P(wi|c) (4.9)
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Naive Bayes calculations, like calculations for language modeling, are done in log
space, to avoid underflow and increase speed. Thus Eq. 4.9 is generally instead
expressed as

cNB = argmax
c∈C

logP(c)+
∑

i∈positions

logP(wi|c) (4.10)

By considering features in log space, Eq. 4.10 computes the predicted class as a lin-
ear function of input features. Classifiers that use a linear combination of the inputs
to make a classification decision —like naive Bayes and also logistic regression—
are called linear classifiers.linear

classifiers

4.2 Training the Naive Bayes Classifier

How can we learn the probabilities P(c) and P( fi|c)? Let’s first consider the max-
imum likelihood estimate. We’ll simply use the frequencies in the data. For the
document prior P(c) we ask what percentage of the documents in our training set
are in each class c. Let Nc be the number of documents in our training data with
class c and Ndoc be the total number of documents. Then:

P̂(c) =
Nc

Ndoc
(4.11)

To learn the probability P( fi|c), we’ll assume a feature is just the existence of a word
in the document’s bag of words, and so we’ll want P(wi|c), which we compute as
the fraction of times the word wi appears among all words in all documents of topic
c. We first concatenate all documents with category c into one big “category c” text.
Then we use the frequency of wi in this concatenated document to give a maximum
likelihood estimate of the probability:

P̂(wi|c) =
count(wi,c)∑
w∈V count(w,c)

(4.12)

Here the vocabulary V consists of the union of all the word types in all classes, not
just the words in one class c.

There is a problem, however, with maximum likelihood training. Imagine we
are trying to estimate the likelihood of the word “fantastic” given class positive, but
suppose there are no training documents that both contain the word “fantastic” and
are classified as positive. Perhaps the word “fantastic” happens to occur (sarcasti-
cally?) in the class negative. In such a case the probability for this feature will be
zero:

P̂(“fantastic”|positive) =
count(“fantastic”,positive)∑

w∈V count(w,positive)
= 0 (4.13)

But since naive Bayes naively multiplies all the feature likelihoods together, zero
probabilities in the likelihood term for any class will cause the probability of the
class to be zero, no matter the other evidence!

The simplest solution is the add-one (Laplace) smoothing introduced in Chap-
ter 3. While Laplace smoothing is usually replaced by more sophisticated smoothing
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algorithms in language modeling, it is commonly used in naive Bayes text catego-
rization:

P̂(wi|c) =
count(wi,c)+1∑

w∈V (count(w,c)+1)
=

count(wi,c)+1(∑
w∈V count(w,c)

)
+ |V | (4.14)

Note once again that it is crucial that the vocabulary V consists of the union of all the
word types in all classes, not just the words in one class c (try to convince yourself
why this must be true; see the exercise at the end of the chapter).

What do we do about words that occur in our test data but are not in our vocab-
ulary at all because they did not occur in any training document in any class? The
solution for such unknown words is to ignore them—remove them from the testunknown word

document and not include any probability for them at all.
Finally, some systems choose to completely ignore another class of words: stop

words, very frequent words like the and a. This can be done by sorting the vocabu-stop words

lary by frequency in the training set, and defining the top 10–100 vocabulary entries
as stop words, or alternatively by using one of the many pre-defined stop word list
available online. Then every instance of these stop words are simply removed from
both training and test documents as if they had never occurred. In most text classi-
fication applications, however, using a stop word list doesn’t improve performance,
and so it is more common to make use of the entire vocabulary and not use a stop
word list.

Fig. 4.2 shows the final algorithm.

function TRAIN NAIVE BAYES(D, C) returns log P(c) and log P(w|c)

for each class c ∈ C # Calculate P(c) terms
Ndoc = number of documents in D
Nc = number of documents from D in class c

logprior[c]← log
Nc

Ndoc
V←vocabulary of D
bigdoc[c]←append(d) for d ∈ D with class c
for each word w in V # Calculate P(w|c) terms

count(w,c)←# of occurrences of w in bigdoc[c]

loglikelihood[w,c]← log
count(w,c) + 1∑

w′ in V (count (w′,c) + 1)
return logprior, loglikelihood, V

function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best c

for each class c ∈ C
sum[c]← logprior[c]
for each position i in testdoc

word← testdoc[i]
if word ∈ V

sum[c]←sum[c]+ loglikelihood[word,c]
return argmaxc sum[c]

Figure 4.2 The naive Bayes algorithm, using add-1 smoothing. To use add-α smoothing
instead, change the +1 to +α for loglikelihood counts in training.
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4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(−) = 3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|−) = 1+1
14+20

P(“predictable”|+) =
0+1

9+20

P(“no”|−) = 1+1
14+20

P(“no”|+) =
0+1

9+20

P(“fun”|−) = 0+1
14+20

P(“fun”|+) =
1+1

9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(−)P(S|−) =
3
5
× 2×2×1

343 = 6.1×10−5

P(+)P(S|+) =
2
5
× 1×1×2

293 = 3.2×10−5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary
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multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 exceptbinary NB

that for each document we remove all duplicate words before concatenating them
into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:

− it was pathetic the worst part was the
boxing scenes

− no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:

− it was pathetic the worst part boxing
scenes

− no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ − + −

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 17 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive
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and negative word features from sentiment lexicons, lists of words that are pre-sentiment
lexicons

annotated with positive or negative sentiment. Four popular lexicons are the General
Inquirer (Stone et al., 1966), LIWC (Pennebaker et al., 2007), the opinion lexiconGeneral

Inquirer
LIWC of Hu and Liu (2004a) and the MPQA Subjectivity Lexicon (Wilson et al., 2005).

For example the MPQA subjectivity lexicon has 6885 words, 2718 positive and
4912 negative, each marked for whether it is strongly or weakly biased. (Chapter 21
will discuss how these lexicons can be learned automatically.) Some samples of
positive and negative words from the MPQA lexicon include:

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

A common way to use lexicons in a naive Bayes classifier is to add a feature
that is counted whenever a word from that lexicon occurs. Thus we might add a
feature called ‘this word occurs in the positive lexicon’, and treat all instances of
words in the lexicon as counts for that one feature, instead of counting each word
separately. Similarly, we might add as a second feature ‘this word occurs in the
negative lexicon’ of words in the negative lexicon. If we have lots of training data,
and if the test data matches the training data, using just two features won’t work as
well as using all the words. But when training data is sparse or not representative of
the test set, using dense lexicon features instead of sparse individual-word features
may generalize better.

4.5 Naive Bayes for other text classification tasks

In the previous section we pointed out that naive Bayes doesn’t require that our
classifier use all the words in the training data as features. In fact features in naive
Bayes can express any property of the input text we want.

Consider the task of spam detection, deciding if a particular piece of email isspam detection

an example of spam (unsolicited bulk email) — and one of the first applications of
naive Bayes to text classification (Sahami et al., 1998).

A common solution here, rather than using all the words as individual features, is
to predefine likely sets of words or phrases as features, combined these with features
that are not purely linguistic. For example the open-source SpamAssassin tool1

predefines features like the phrase “one hundred percent guaranteed”, or the feature
mentions millions of dollars, which is a regular expression that matches suspiciously
large sums of money. But it also includes features like HTML has a low ratio of
text to image area, that isn’t purely linguistic and might require some sophisticated
computation, or totally non-linguistic features about, say, the path that the email
took to arrive. More sample SpamAssassin features:
• Email subject line is all capital letters
• Contains phrases of urgency like “urgent reply”
• Email subject line contains “online pharmaceutical”
• HTML has unbalanced ”head” tags
• Claims you can be removed from the list
For other tasks, like language ID—determining what language a given piece oflanguage ID

text is written in—the most effective naive Bayes features are not words at all, but
byte n-grams, 2-grams (‘zw’) 3-grams (‘nya’, ‘ Vo’), or 4-grams (‘ie z’, ‘thei’).

1 https://spamassassin.apache.org

https://spamassassin.apache.org
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Because spaces count as a byte, byte n-grams can model statistics about the begin-
ning or ending of words. 2 A widely used naive Bayes system, langid.py (Lui
and Baldwin, 2012) begins with all possible n-grams of lengths 1-4, using feature
selection to winnow down to the most informative 7000 final features.

Language ID systems are trained on multilingual text, such as Wikipedia (Wikipedia
text in 68 different languages were used in (Lui and Baldwin, 2011)), or newswire.
To make sure that this multilingual text correctly reflects different regions, dialects,
and socioeconomic classes, systems also add Twitter text in many languages geo-
tagged to many regions (important for getting world English dialects from countries
with large Anglophone populations like Nigeria or India), Bible and Quran transla-
tions, slang websites like Urban Dictionary, corpora of African American Vernacular
English (Blodgett et al., 2016), and so on (Jurgens et al., 2017).

4.6 Naive Bayes as a Language Model

As we saw in the previous section, naive Bayes classifiers can use any sort of fea-
ture: dictionaries, URLs, email addresses, network features, phrases, and so on. But
if, as in the previous section, we use only individual word features, and we use all
of the words in the text (not a subset), then naive Bayes has an important similar-
ity to language modeling. Specifically, a naive Bayes model can be viewed as a
set of class-specific unigram language models, in which the model for each class
instantiates a unigram language model.

Since the likelihood features from the naive Bayes model assign a probability to
each word P(word|c), the model also assigns a probability to each sentence:

P(s|c) =
∏

i∈positions

P(wi|c) (4.15)

Thus consider a naive Bayes model with the classes positive (+) and negative (-)
and the following model parameters:

w P(w|+) P(w|-)
I 0.1 0.2
love 0.1 0.001
this 0.01 0.01
fun 0.05 0.005
film 0.1 0.1
... ... ...

Each of the two columns above instantiates a language model that can assign a
probability to the sentence “I love this fun film”:

P(”I love this fun film”|+) = 0.1×0.1×0.01×0.05×0.1 = 0.0000005
P(”I love this fun film”|−) = 0.2×0.001×0.01×0.005×0.1 = .0000000010

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes

2 It’s also possible to use codepoints, which are multi-byte Unicode representations of characters in
character sets, but simply using bytes seems to work better.
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model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a contingency table like the one shown in Fig. 4.4. Each cell labels acontingency

table
set of possible outcomes. In the spam detection case, for example, true positives are
documents that are indeed spam (indicated by human-created gold labels) and our
system said they were spam. False negatives are documents that are indeed spam
but our system labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it. That’s because accuracy doesn’t work well when
the classes are unbalanced (as indeed they are with spam, which is a large majority
of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn

Figure 4.4 Contingency table

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,
while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
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be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics: precision
and recall. Precision measures the percentage of the items that the system detectedprecision

(i.e., the system labeled as positive) that are in fact positive (i.e., are positive accord-
ing to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall

correctly identified by the system. Recall is defined as

Recall =
true positives

true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure

Rijsbergen, 1975) , defined as:

Fβ =
(β 2 +1)PR

β 2P+R

The β parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall, while
values of β < 1 favor precision. When β = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fβ=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

α
1
P +(1−α) 1

R

or
(

with β
2 =

1−α

α

)
F =

(β 2 +1)PR
β 2P+R

(4.18)

Harmonic mean is used because it is a conservative metric; the harmonic mean of
two values is closer to the minimum of the two values than the arithmetic mean is.
Thus it weighs the lower of the two numbers more heavily.
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4.7.1 More than two classes

Up to now we have been assuming text classification tasks with only two classes.
But lots of classification tasks in language processing have more than two classes.
For sentiment analysis we generally have 3 classes (positive, negative, neutral) and
even more classes are common for tasks like part-of-speech tagging, word sense
disambiguation, semantic role labeling, emotion detection, and so on.

There are two kinds of multi-class classification tasks. In any-of or multi-labelany-of

classification, each document or item can be assigned more than one label. We can
solve any-of classification by building separate binary classifiers for each class c,
trained on positive examples labeled c and negative examples not labeled c. Given
a test document or item d, then each classifier makes their decision independently,
and we may assign multiple labels to d.

More common in language processing is one-of or multinomial classification,one-of
multinomial
classification in which the classes are mutually exclusive and each document or item appears in

exactly one class. Here we again build a separate binary classifier trained on positive
examples from c and negative examples from all other classes. Now given a test
document or item d, we run all the classifiers and choose the label from the classifier
with the highest score. Consider the sample confusion matrix for a hypothetical 3-
way one-of email categorization decision (urgent, normal, spam) shown in Fig. 4.5.

8
5

10
60

urgent normal
gold labels

system
output

recallu = 
8

8+5+3

precisionu= 
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls = 

precisionn= 
60

5+60+50

precisions= 
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

The matrix shows, for example, that the system mistakenly labeled 1 spam doc-
ument as urgent, and we have shown how to compute a distinct precision and recall
value for each class. In order to derive a single metric that tells us how well the
system is doing, we can combine these values in two ways. In macroaveraging, wemacroaveraging

compute the performance for each class, and then average over classes. In microav-
eraging, we collect the decisions for all classes into a single contingency table, andmicroaveraging

then compute precision and recall from that table. Fig. 4.6 shows the contingency
table for each class separately, and shows the computation of microaveraged and
macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in
this case spam), since the counts are pooled. The macroaverage better reflects the
statistics of the smaller classes, and so is more appropriate when performance on all
the classes is equally important.
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8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section 3.2): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation

our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common
to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 4.7.

4.9 Statistical Significance Testing

In building systems we are constantly comparing the performance of systems. Often
we have added some new bells and whistles to our algorithm and want to compare
the new version of the system to the unaugmented version. Or we want to compare
our algorithm to a previously published one to know which is better.

We might imagine that to compare the performance of two classifiers A and B
all we have to do is look at A and B’s score on the same test set—for example we
might choose to compare macro-averaged F1— and see whether it’s A or B that has
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Figure 4.7 10-fold cross-validation

the higher score. But just looking at this one difference isn’t good enough, because
A might have a better performance than B on a particular test set just by chance.

Let’s say we have a test set x of n observations x = x1,x2, ..,xn on which A’s
performance is better than B by δ (x). How can we know if A is really better than B?
To do so we’d need to reject the null hypothesis that A isn’t really better than B andnull hypothesis

this difference δ (x) occurred purely by chance. If the null hypothesis was correct,
we would expect that if we had many test sets of size n and we measured A and B’s
performance on all of them, that on average A might accidentally still be better than
B by this amount δ (x) just by chance.

More formally, if we had a random variable X ranging over test sets, the null
hypothesis H0 expects P(δ (X) > δ (x)|H0), the probability that we’ll see similarly
big differences just by chance, to be high.

If we had all these test sets we could just measure all the δ (x′) for all the x′. If we
found that those deltas didn’t seem to be bigger than δ (x), that is, that p-value(x) was
sufficiently small, less than the standard thresholds of 0.05 or 0.01, then we might
reject the null hypothesis and agree that δ (x) was a sufficiently surprising difference
and A is really a better algorithm than B. Following Berg-Kirkpatrick et al. (2012)
we’ll refer to P(δ (X)> δ (x)|H0) as p-value(x).

In language processing we don’t generally use traditional statistical approaches
like paired t-tests to compare system outputs because most metrics are not normally
distributed, violating the assumptions of the tests. The standard approach to comput-
ing p-value(x) in natural language processing is to use non-parametric tests like the
bootstrap test (Efron and Tibshirani, 1993)— which we will describe below—or abootstrap test

similar test, approximate randomization (Noreen, 1989). The advantage of theseapproximate
randomization

tests is that they can apply to any metric; from precision, recall, or F1 to the BLEU
metric used in machine translation.

The word bootstrapping refers to repeatedly drawing large numbers of smallerbootstrapping

samples with replacement (called bootstrap samples) from an original larger sam-
ple. The intuition of the bootstrap test is that we can create many virtual test sets
from an observed test set by repeatedly sampling from it. The method only makes
the assumption that the sample is representative of the population.

Consider a tiny text classification example with a test set x of 10 documents. The
first row of Fig. 4.8 shows the results of two classifiers (A and B) on this test set,
with each document labeled by one of the four possibilities: (A and B both right,
both wrong, A right and B wrong, A wrong and B right); a slash through a letter
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(�B) means that that classifier got the answer wrong. On the first document both A
and B get the correct class (AB), while on the second document A got it right but B
got it wrong (A�B). If we assume for simplicity that our metric is accuracy, A has an
accuracy of .70 and B of .50, so δ (x) is .20. To create each virtual test set of size
N = 10, we repeatedly (10 times) select a cell from row x with replacement. Fig. 4.8
shows a few examples.

1 2 3 4 5 6 7 8 9 10 A% B% δ ()
x AB A��B AB ��AB A��B ��AB A��B AB ��A��B A��B .70 .50 .20
x∗(1) A��B AB A��B ��AB ��AB A��B ��AB AB ��A��B AB .60 .60 .00
x∗(2) A��B AB ��A��B ��AB ��AB AB ��AB A��B AB AB .60 .70 -.10
...
x∗(b)
Figure 4.8 The bootstrap: Examples of b pseudo test sets being created from an initial true
test set x. Each pseudo test set is created by sampling n = 10 times with replacement; thus an
individual sample is a single cell, a document with its gold label and the correct or incorrect
performance of classifiers A and B.

Now that we have a sampling distribution, we can do statistics on how often A
has an accidental advantage. There are various ways to compute this advantage; here
we follow the version laid out in Berg-Kirkpatrick et al. (2012). We might think that
we should just ask, for each bootstrap sample x∗(i), whether A beats B by more than
δ (x). But there’s a problem: we didn’t draw these samples from a distribution with
0 mean. The x∗(i) were sampled from x, and so the expected value of δ (x∗(i)) lies
very close to δ (x). That is, about half the time A will be better than B, so we expect
A to beat B by δ (x). Instead, we want to know how often A beats these expectations
by more than δ (x). To correct for the expected success, we need to zero-center,
subtracting δ (x) from each pseudo test set. Thus we’ll be comparing for each x∗(i)

whether δ (x∗(i))> 2δ (x). The full algorithm for the bootstrap is shown in Fig. 4.9.
It is given a test set x, a number of samples b, and counts the percentage of the b
bootstrap test sets in which δ (x∗(i)) > 2δ (x). This percentage then acts as a one-
sided empirical p-value (more sophisticated ways to get p-values from confidence
intervals also exist).

function BOOTSTRAP(test set x, num of samples b) returns p-value(x)

Calculate δ (x) # how much better does algorithm A do than B on x
for i = 1 to b do

for j = 1 to n do # Draw a bootstrap sample x∗(i) of size n
Select a member of x at random and add it to x∗(i)

Calculate δ (x∗(i)) # how much better does algorithm A do than B on x∗(i)

for each x∗(i)

s←s + 1 if δ (x∗(i)) > 2δ (x)
p-value(x) ≈ s

b # on what % of the b samples did algorithm A beat expectations?
return p-value(x)

Figure 4.9 A version of the bootstrap algorithm after Berg-Kirkpatrick et al. (2012).
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4.10 Summary

This chapter introduced the naive Bayes model for classification and applied it to
the text categorization task of sentiment analysis.

• Many language processing tasks can be viewed as tasks of classification.
• Text categorization, in which an entire text is assigned a class from a finite set,

includes such tasks as sentiment analysis, spam detection, language identi-
fication, and authorship attribution.

• Sentiment analysis classifies a text as reflecting the positive or negative orien-
tation (sentiment) that a writer expresses toward some object.

• Naive Bayes is a generative model that makes the bag of words assumption
(position doesn’t matter) and the conditional independence assumption (words
are conditionally independent of each other given the class)

• Naive Bayes with binarized features seems to work better for many text clas-
sification tasks.

• Classifiers are evaluated based on precision and recall.
• Classifiers are trained using distinct training, dev, and test sets, including the

use of cross-validation in the training set.

Bibliographical and Historical Notes
Multinomial naive Bayes text classification was proposed by Maron (1961) at the
RAND Corporation for the task of assigning subject categories to journal abstracts.
His model introduced most of the features of the modern form presented here, ap-
proximating the classification task with one-of categorization, and implementing
add-δ smoothing and information-based feature selection.

The conditional independence assumptions of naive Bayes and the idea of Bayes-
ian analysis of text seems to have arisen multiple times. The same year as Maron’s
paper, Minsky (1961) proposed a naive Bayes classifier for vision and other arti-
ficial intelligence problems, and Bayesian techniques were also applied to the text
classification task of authorship attribution by Mosteller and Wallace (1963). It had
long been known that Alexander Hamilton, John Jay, and James Madison wrote
the anonymously-published Federalist papers in 1787–1788 to persuade New York
to ratify the United States Constitution. Yet although some of the 85 essays were
clearly attributable to one author or another, the authorship of 12 were in dispute
between Hamilton and Madison. Mosteller and Wallace (1963) trained a Bayesian
probabilistic model of the writing of Hamilton and another model on the writings
of Madison, then computed the maximum-likelihood author for each of the disputed
essays. Naive Bayes was first applied to spam detection in Heckerman et al. (1998).

Metsis et al. (2006), Pang et al. (2002), and Wang and Manning (2012) show
that using boolean attributes with multinomial naive Bayes works better than full
counts. Binary multinomial naive Bayes is sometimes confused with another variant
of naive Bayes that also use a binary representation of whether a term occurs in
a document: Multivariate Bernoulli naive Bayes. The Bernoulli variant instead
estimates P(w|c) as the fraction of documents that contain a term, and includes a
probability for whether a term is not in a document. McCallum and Nigam (1998)
and Wang and Manning (2012) show that the multivariate Bernoulli variant of naive
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Bayes doesn’t work as well as the multinomial algorithm for sentiment or other text
tasks.

There are a variety of sources covering the many kinds of text classification
tasks. For sentiment analysis see Pang and Lee (2008), and Liu and Zhang (2012).
Stamatatos (2009) surveys authorship attribute algorithms. On language identifica-
tion see Jauhiainen et al. (2018); Jaech et al. (2016) is an important early neural
system. The task of newswire indexing was often used as a test case for text classi-
fication algorithms, based on the Reuters-21578 collection of newswire articles.

See Manning et al. (2008) and Aggarwal and Zhai (2012) on text classification;
classification in general is covered in machine learning textbooks (Hastie et al. 2001,
Witten and Frank 2005, Bishop 2006, Murphy 2012).

Non-parametric methods for computing statistical significance were used first in
NLP in the MUC competition (Chinchor et al., 1993), and even earlier in speech
recognition (Gillick and Cox 1989, Bisani and Ney 2004). Our description of the
bootstrap draws on the description in Berg-Kirkpatrick et al. (2012). Recent work
has focused on issues including multiple test sets and multiple metrics (Søgaard
et al. 2014, Dror et al. 2017).

Feature selection is a method of removing features that are unlikely to generalize
well. Features are generally ranked by how informative they are about the classifica-
tion decision. A very common metric, information gain, tells us how many bits ofinformation

gain
information the presence of the word gives us for guessing the class. Other feature
selection metrics include χ2, pointwise mutual information, and GINI index; see
Yang and Pedersen (1997) for a comparison and Guyon and Elisseeff (2003) for an
introduction to feature selection.

Exercises
4.1 Assume the following likelihoods for each word being part of a positive or

negative movie review, and equal prior probabilities for each class.

pos neg
I 0.09 0.16
always 0.07 0.06
like 0.29 0.06
foreign 0.04 0.15
films 0.08 0.11

What class will Naive bayes assign to the sentence “I always like foreign
films.”?

4.2 Given the following short movie reviews, each labeled with a genre, either
comedy or action:

1. fun, couple, love, love comedy
2. fast, furious, shoot action
3. couple, fly, fast, fun, fun comedy
4. furious, shoot, shoot, fun action
5. fly, fast, shoot, love action

and a new document D:
fast, couple, shoot, fly

compute the most likely class for D. Assume a naive Bayes classifier and use
add-1 smoothing for the likelihoods.
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4.3 Train two models, multinomial naive Bayes and binarized naive Bayes, both
with add-1 smoothing, on the following document counts for key sentiment
words, with positive or negative class assigned as noted.

doc “good” “poor” “great” (class)
d1. 3 0 3 pos
d2. 0 1 2 pos
d3. 1 3 0 neg
d4. 1 5 2 neg
d5. 0 2 0 neg

Use both naive Bayes models to assign a class (pos or neg) to this sentence:

A good, good plot and great characters, but poor acting.

Do the two models agree or disagree?



CHAPTER

5 Logistic Regression

”And how do you know that these fine begonias are not of equal importance?”
Hercule Poirot, in Agatha Christie’s The Mysterious Affair at Styles

Detective stories are as littered with clues as texts are with words. Yet for the
poor reader it can be challenging to know how to weigh the author’s clues in order
to make the crucial classification task: deciding whodunnit.

In this chapter we introduce an algorithm that is admirably suited for discovering
the link between features or cues and some particular outcome: logistic regression.logistic

regression
Indeed, logistic regression is one of the most important analytic tools in the social
and natural sciences. In natural language processing, logistic regression is the base-
line supervised machine learning algorithm for classification, and also has a very
close relationship with neural networks. As we will see in Chapter 7, a neural net-
work can be viewed as a series of logistic regression classifiers stacked on top of
each other. Thus the classification and machine learning techniques introduced here
will play an important role throughout the book.

Logistic regression can be used to classify an observation into one of two classes
(like ‘positive sentiment’ and ‘negative sentiment’), or into one of many classes.
Because the mathematics for the two-class case is simpler, we’ll describe this special
case of logistic regression first in the next few sections, and then briefly summarize
the use of multinomial logistic regression for more than two classes in Section 5.6.

We’ll introduce the mathematics of logistic regression in the next few sections.
But let’s begin with some high-level issues.

Generative and Discriminative Classifiers: The most important difference be-
tween naive Bayes and logistic regression is that logistic regression is a discrimina-
tive classifier while naive Bayes is a generative classifier.

These are two very different frameworks for how
to build a machine learning model. Consider a visual
metaphor: imagine we’re trying to distinguish dog
images from cat images. A generative model would
have the goal of understanding what dogs look like
and what cats look like. You might literally ask such
a model to ‘generate’, i.e. draw, a dog. Given a test
image, the system then asks whether it’s the cat model or the dog model that better
fits (is less surprised by) the image, and chooses that as its label.

A discriminative model, by contrast, is only try-
ing to learn to distinguish the classes (perhaps with-
out learning much about them). So maybe all the
dogs in the training data are wearing collars and the
cats aren’t. If that one feature neatly separates the
classes, the model is satisfied. If you ask such a
model what it knows about cats all it can say is that
they don’t wear collars.
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More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P(d|c)

prior︷︸︸︷
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign a high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M input/output
pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to individual instances
in the training set—for sentiment classification each instance might be an individual
document to be classified). A machine learning system for classification then has
four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x( j) as x( j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision
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is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term

intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

(
n∑

i=1

wixi

)
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from −∞ to ∞.

Figure 5.1 The sigmoid function y= 1
1+e−z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, σ(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = σ(z) =
1

1+ e−z (5.4)

The sigmoid has a number of advantages; it takes a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
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nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = σ(w · x+b)

=
1

1+ e−(w·x+b)

P(y = 0) = 1−σ(w · x+b)

= 1− 1
1+ e−(w·x+b)

=
e−(w·x+b)

1+ e−(w·x+b)
(5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

{
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or − to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) ∈ doc) 3
x2 count(negative lexicon) ∈ doc) 2

x3

{
1 if “no” ∈ doc
0 otherwise 1

x4 count(1st and 2nd pronouns ∈ doc) 3

x5

{
1 if “!” ∈ doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,−5.0,−1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =−5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.
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 It's hokey . There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable  ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing .  It sucked me in , and it'll do the same to you  .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(−|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = σ(w · x+b)

= σ([2.5,−5.0,−1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= σ(.833)
= 0.70 (5.6)

p(−|x) = P(Y = 0|x) = 1−σ(w · x+b)

= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

{
1 if “Case(wi) = Lower”
0 otherwise

x2 =

{
1 if “wi ∈ AcronymDict”
0 otherwise

x3 =

{
1 if “wi = St. & Case(wi−1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions
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For many tasks (especially when feature values can reference specific words)
we’ll need large numbers of features. Often these are created automatically via fea-
ture templates, abstract specifications of features. For example a bigram templatefeature

templates
for period disambiguation might create a feature for every pair of words that occurs
before a period in the training set. Thus the feature space is sparse, since we only
have to create a feature if that n-gram exists in that position in the training set. The
feature is generally created as a hash from the string descriptions. A user description
of a feature as, “bigram(American breakfast)” is hashed into a unique integer i that
becomes the feature number fi.

In order to avoid the extensive human effort of feature design, recent research in
NLP has focused on representation learning: ways to learn features automatically
in an unsupervised way from the input. We’ll introduce methods for representation
learning in Chapter 6 and Chapter 7.

Choosing a classifier Logistic regression has a number of advantages over naive
Bayes. Naive Bayes has overly strong conditional independence assumptions. Con-
sider two features which are strongly correlated; in fact, imagine that we just add the
same feature f1 twice. Naive Bayes will treat both copies of f1 as if they were sep-
arate, multiplying them both in, overestimating the evidence. By contrast, logistic
regression is much more robust to correlated features; if two features f1 and f2 are
perfectly correlated, regression will simply assign part of the weight to w1 and part
to w2. Thus when there are many correlated features, logistic regression will assign
a more accurate probability than naive Bayes. So logistic regression generally works
better on larger documents or datasets and is a common default.

Despite the less accurate probabilities, naive Bayes still often makes the correct
classification decision. Furthermore, naive Bayes can work extremely well (some-
times even better than logistic regression) on very small datasets (Ng and Jordan,
2002) or short documents (Wang and Manning, 2012). Furthermore, naive Bayes is
easy to implement and very fast to train (there’s no optimization step). So it’s still a
reasonable approach to use in some situations.

5.2 Learning in Logistic Regression

How are the parameters of the model, the weights w and bias b, learned? Logistic
regression is an instance of supervised classification in which we know the correct
label y (either 0 or 1) for each observation x. What the system produces via Eq. 5.5
is ŷ, the system’s estimate of the true y. We want to learn parameters (meaning w
and b) that make ŷ for each training observation as close as possible to the true y .

This requires 2 components that we foreshadowed in the introduction to the
chapter. The first is a metric for how close the current label (ŷ) is to the true gold
label y. Rather than measure similarity, we usually talk about the opposite of this:
the distance between the system output and the gold output, and we call this distance
the loss function or the cost function. In the next section we’ll introduce the lossloss

function that is commonly used for logistic regression and also for neural networks,
the cross-entropy loss.

The second thing we need is an optimization algorithm for iteratively updating
the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.
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5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = σ(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.7)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.8 simplifies to ŷ; if y=0, Eq. 5.8
simplifies to 1− ŷ):

p(y|x) = ŷ y (1− ŷ)1−y (5.8)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
[
ŷ y (1− ŷ)1−y]

= y log ŷ+(1− y) log(1− ŷ) (5.9)

Eq. 5.9 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.9. The result is the cross-entropy loss LCE :

LCE(ŷ,y) =− log p(y|x) = − [y log ŷ+(1− y) log(1− ŷ)] (5.10)

Finally, we can plug in the definition of ŷ = σ(w · x+b):

LCE(w,b) = − [y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))] (5.11)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.6 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug σ(w · x+b) = .69 and y = 1 into Eq. 5.11, the right
side of the equation drops out, leading to the following loss:

LCE(w,b) = −[y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))]

= − [logσ(w · x+b)]

= − log(.69)
= .37
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By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e. y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1−σ(w · x+b) = .31 from Eq. 5.6
into Eq. 5.11, the left side of the equation drops out:

LCE(w,b) = −[y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))]

= − [log(1−σ(w · x+b))]

= − log(.31)
= 1.17

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is to
1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the clas-
sifier. The negative log of this probability is a convenient loss metric since it goes
from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss). This
loss function also ensures that as the probability of the correct answer is maximized,
the probability of the incorrect answer is minimized; since the two sum to one, any
increase in the probability of the correct answer is coming at the expense of the in-
correct answer. It’s called the cross-entropy loss, because Eq. 5.9 is also the formula
for the cross-entropy between the true probability distribution y and our estimated
distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.12 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer to
in machine learning in general as θ (in the case of logistic regression θ = w,b):

θ̂ = argmin
θ

1
m

m∑

i=1

LCE(y(i),x(i);θ) (5.12)

How shall we find the minimum of this (or any) loss function? Gradient descent
is a method that finds a minimum of a function by figuring out in which direction
(in the space of the parameters θ ) the function’s slope is rising the most steeply,
and moving in the opposite direction. The intuition is that if you are hiking in a
canyon and trying to descend most quickly down to the river at the bottom, you might
look around yourself 360 degrees, find the direction where the ground is sloping the
steepest, and walk downhill in that direction.

For logistic regression, this loss function is conveniently convex. A convex func-convex

tion has just one minimum; there are no local minima to get stuck in, so gradient
descent starting from any point is guaranteed to find the minimum. (By contrast,
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the loss for multi-layer neural networks is non-convex, and gradient descent may
get stuck in local minima for neural network training and never find the global opti-
mum.)

Although the algorithm (and the concept of gradient) are designed for direction
vectors, let’s first consider a visualization of the case where the parameter of our
system is just a single scalar w, shown in Fig. 5.3.

Given a random initialization of w at some value w1, and assuming the loss
function L happened to have the shape in Fig. 5.3, we need the algorithm to tell us
whether at the next iteration we should move left (making w2 smaller than w1) or
right (making w2 bigger than w1) to reach the minimum.

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

Figure 5.3 The first step in iteratively finding the minimum of this loss function, by moving
w in the reverse direction from the slope of the function. Since the slope is negative, we need
to move w in a positive direction, to the right. Here superscripts are used for learning steps,
so w1 means the initial value of w (which is 0), w2 at the second step, and so on.

The gradient descent algorithm answers this question by finding the gradientgradient

of the loss function at the current point and moving in the opposite direction. The
gradient of a function of many variables is a vector pointing in the direction of the
greatest increase in a function. The gradient is a multi-variable generalization of the
slope, so for a function of one variable like the one in Fig. 5.3, we can informally
think of the gradient as the slope. The dotted line in Fig. 5.3 shows the slope of this
hypothetical loss function at point w = w1. You can see that the slope of this dotted
line is negative. Thus to find the minimum, gradient descent tells us to go in the
opposite direction: moving w in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the slope
d

dw f (x;w) weighted by a learning rate η . A higher (faster) learning rate means thatlearning rate

we should move w more on each step. The change we make in our parameter is the
learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt −η
d

dw
f (x;w) (5.13)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up θ ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization:
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Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector in two dimensions w and b.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂

∂wi
of the loss

function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;θ) to make the dependence on θ more obvious:

∇θ L( f (x;θ),y)) =




∂

∂w1
L( f (x;θ),y)

∂

∂w2
L( f (x;θ),y)

...
∂

∂wn
L( f (x;θ),y)




(5.14)

The final equation for updating θ based on the gradient is thus

θt+1 = θt −η∇L( f (x;θ),y) (5.15)

5.4.1 The Gradient for Logistic Regression
In order to update θ , we need a definition for the gradient ∇L( f (x;θ),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(w,b) = − [y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))] (5.16)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.17 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(w,b)
∂w j

= [σ(w · x+b)− y]x j (5.17)

Note in Eq. 5.17 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = σ(w ·
x+b) for that observation, multiplied by the corresponding input value x j.
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5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging θ in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns θ

# where: L is the loss function
# f is a function parameterized by θ

# x is the set of training inputs x(1), x(2), ..., x(n)

# y is the set of training outputs (labels) y(1), y(2), ..., y(n)

θ←0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);θ) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g←∇θ L( f (x(i);θ),y(i)) # How should we move θ to maximize loss?
3. θ←θ − η g # Go the other way instead

return θ

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient< ε), or when progress halts (for example when the loss starts
going up on a held-out set).

The learning rate η is a parameter that must be adjusted. If it’s too high, the
learner will take steps that are too large, overshooting the minimum of the loss func-
tion. If it’s too low, the learner will take steps that are too small, and take too long to
get to the minimum. It is common to begin the learning rate at a higher value, and
then slowly decrease it, so that it is a function of the iteration k of training; you will
sometimes see the notation ηk to mean the value of the learning rate at iteration k.

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in θ 0 are all set to 0, and the initial learning
rate η is 0.1:

w1 = w2 = b = 0
η = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

θ
t+1 = θ

t −η∇θ L( f (x(i);θ),y(i))
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In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

∇w,b =




∂LCE (w,b)
∂w1

∂LCE (w,b)
∂w2

∂LCE (w,b)
∂b


=



(σ(w · x+b)− y)x1
(σ(w · x+b)− y)x2
σ(w · x+b)− y


=



(σ(0)−1)x1
(σ(0)−1)x2
σ(0)−1


=



−0.5x1
−0.5x2
−0.5


=



−1.5
−1.0
−0.5




Now that we have a gradient, we compute the new parameter vector θ 1 by moving
θ 0 in the opposite direction from the gradient:

θ
2 =




w1
w2
b


−η



−1.5
−1.0
−0.5


=



.15
.1
.05




So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch

haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,
then we are doing batch gradient descent; if m = 1, we are back to doing stochas-
tic gradient descent). Mini-batch training also has the advantage of computational
efficiency. The mini-batches can easily be vectorized, choosing the size of the mini-
batch based on the computational resources. This allows us to process all the exam-
ples in one mini-batch in parallel and then accumulate the loss, something that’s not
possible with individual or batch training.

We just need to define mini-batch versions of the cross-entropy loss function
we defined in Section 5.3 and the gradient in Section 5.4.1. Let’s extend the cross-
entropy loss for one example from Eq. 5.10 to mini-batches of size m. We’ll continue
to use the notation that x(i) and y(i) mean the ith training features and training label,
respectively. We make the assumption that the training examples are independent:

log p(training labels) = log
m∏

i=1

p(y(i)|x(i)) (5.18)

=

m∑

i=1

log p(y(i)|x(i)) (5.19)

= −
m∑

i=1

LCE(ŷ(i),y(i)) (5.20)
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Now the cost function for the mini-batch of m examples is the average loss for each
example:

Cost(w,b) =
1
m

m∑

i=1

LCE(ŷ(i),y(i))

= − 1
m

m∑

i=1

y(i) logσ(w · x(i)+b)+(1− y(i)) log
(

1−σ(w · x(i)+b)
)

(5.21)

The mini-batch gradient is the average of the individual gradients from Eq. 5.17:

∂Cost(w,b)
∂w j

=
1
m

m∑

i=1

[
σ(w · x(i)+b)− y(i)

]
x(i)j (5.22)

5.5 Regularization

Numquam ponenda est pluralitas sine necessitate
‘Plurality should never be proposed unless needed’

William of Occam

There is a problem with learning weights that make the model perfectly match the
training data. If a feature is perfectly predictive of the outcome because it happens
to only occur in one class, it will be assigned a very high weight. The weights for
features will attempt to perfectly fit details of the training set, in fact too perfectly,
modeling noisy factors that just accidentally correlate with the class. This problem is
called overfitting. A good model should be able to generalize well from the trainingoverfitting

generalize data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(θ) is added to the objectiveregularization

function in Eq. 5.12, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.12 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

θ̂ = argmax
θ

m∑

i=1

logP(y(i)|x(i))−αR(θ) (5.23)

The new regularization term R(θ) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(θ). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||θ ||2, is the same as the Euclidean distance of the vector θ

from the origin. If θ consists of n weights, then:

R(θ) = ||θ ||22 =
n∑

j=1

θ
2
j (5.24)
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The L2 regularized objective function becomes:

θ̂ = argmax
θ

[
m∑

1=i

logP(y(i)|x(i))
]
−α

n∑

j=1

θ
2
j (5.25)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(θ) = ||θ ||1 =
n∑

i=1

|θi| (5.26)

The L1 regularized objective function becomes:

θ̂ = argmax
θ

[
m∑

1=i

logP(y(i)|x(i))
]
−α

n∑

j=1

|θ j| (5.27)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of θ 2 is just 2θ ), while
L1 regularization is more complex (the derivative of |θ | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are
distributed according to a gaussian distribution with mean µ = 0. In a gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance σ ). By using a gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A gaussian for a weight θ j is

1√
2πσ2

j

exp

(
− (θ j−µ j)

2

2σ2
j

)
(5.28)

If we multiply each weight by a gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

θ̂ = argmax
θ

M∏

i=1

P(y(i)|x(i))×
n∏

j=1

1√
2πσ2

j

exp

(
− (θ j−µ j)

2

2σ2
j

)
(5.29)

which in log space, with µ = 0, and assuming 2σ2 = 1, corresponds to

θ̂ = argmax
θ

m∑

i=1

logP(y(i)|x(i))−α

n∑

j=1

θ
2
j (5.30)

which is in the same form as Eq. 5.25.
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5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be classifying
the part of speech of a word (choosing from 10, 30, or even 50 different parts of
speech), or assigning semantic labels like the named entities or semantic relations
we will introduce in Chapter 18.

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c ∈C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax

takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
ezi

∑k
j=1 ez j

1≤ i≤ k (5.31)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

[
ez1

∑k
i=1 ezi

,
ez2

∑k
i=1 ezi

, ...,
ezk

∑k
i=1 ezi

]
(5.32)

The denominator
∑k

i=1 ezi is used to normalize all the values into probabilities.
Thus for example given a vector:

z = [0.6,1.1,−1.5,1.2,3.2,−1.1]

the result softmax(z) is

[0.055,0.090,0.0067,0.10,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
ewc · x+bc

k∑

j=1

ew j · x+b j

(5.33)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.
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5.6.1 Features in Multinomial Logistic Regression
For multiclass classification the input features need to be a function of both the
observation x and the candidate output class c. Thus instead of the notation xi, fi
or fi(x), when we’re discussing features we will use the notation fi(c,x), meaning
feature i for a particular class c for a given observation x.

In binary classification, a positive weight on a feature pointed toward y=1 and
a negative weight toward y=0, but in multiclass classification a feature could be
evidence for or against an individual class.

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c.

Suppose we are doing text classification, and instead of binary classification our
task is to assign one of the 3 classes +, −, or 0 (neutral) to a document. Now a
feature related to exclamation marks might have a negative weight for 0 documents,
and a positive weight for + or − documents:

Var Definition Wt

f1(0,x)
{

1 if “!” ∈ doc
0 otherwise −4.5

f1(+,x)
{

1 if “!” ∈ doc
0 otherwise 2.6

f1(−,x)
{

1 if “!” ∈ doc
0 otherwise 1.3

5.6.2 Learning in Multinomial Logistic Regression
Multinomial logistic regression has a slightly different loss function than binary lo-
gistic regression because it uses the softmax rather than the sigmoid classifier. The
loss function for a single example x is the sum of the logs of the K output classes:

LCE(ŷ,y) = −
K∑

k=1

1{y = k} log p(y = k|x)

= −
K∑

k=1

1{y = k} log
ewk·x+bk

∑K
j=1 ew j ·x+b j

(5.34)

This makes use of the function 1{} which evaluates to 1 if the condition in the
brackets is true and to 0 otherwise.

The gradient for a single example turns out to be very similar to the gradient for
logistic regression, although we don’t show the derivation here. It is the difference
between the value for the true class k (which is 1) and the probability the classifier
outputs for class k, weighted by the value of the input xk:

∂LCE

∂wk
= −(1{y = k}− p(y = k|x))xk

= −
(

1{y = k}− ewk·x+bk

∑K
j=1 ew j ·x+b j

)
xk (5.35)
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5.7 Interpreting models

Often we want to know more than just the correct classification of an observation.
We want to know why the classifier made the decision it did. That is, we want our
decision to be interpretable. Interpretability can be hard to define strictly, but theinterpretable

core idea is that as humans we should know why our algorithms reach the conclu-
sions they do. Because the features to logistic regression are often human-designed,
one way to understand a classifier’s decision is to understand the role each feature
plays in the decision. Logistic regression can be combined with statistical tests (the
likelihood ratio test, or the Wald test); investigating whether a particular feature is
significant by one of these tests, or inspecting its magnitude (how large is the weight
w associated with the feature?) can help us interpret why the classifier made the
decision it makes. This is enormously important for building transparent models.

Furthermore, in addition to its use as a classifier, logistic regression in NLP and
many other fields is widely used as an analytic tool for testing hypotheses about the
effect of various explanatory variables (features). In text classification, perhaps we
want to know if logically negative words (no, not, never) are more likely to be asso-
ciated with negative sentiment, or if negative reviews of movies are more likely to
discuss the cinematography. However, in doing so it’s necessary to control for po-
tential confounds: other factors that might influence sentiment (the movie genre, the
year it was made, perhaps the length of the review in words). Or we might be study-
ing the relationship between NLP-extracted linguistic features and non-linguistic
outcomes (hospital readmissions, political outcomes, or product sales), but need to
control for confounds (the age of the patient, the county of voting, the brand of the
product). In such cases, logistic regression allows us to test whether some feature is
associated with some outcome above and beyond the effect of other features.

5.8 Advanced: Deriving the Gradient Equation

In this section we give the derivation of the gradient of the cross-entropy loss func-
tion LCE for logistic regression. Let’s start with some quick calculus refreshers.
First, the derivative of ln(x):

d
dx

ln(x) =
1
x

(5.36)

Second, the (very elegant) derivative of the sigmoid:

dσ(z)
dz

= σ(z)(1−σ(z)) (5.37)

Finally, the chain rule of derivatives. Suppose we are computing the derivativechain rule

of a composite function f (x) = u(v(x)). The derivative of f (x) is the derivative of
u(x) with respect to v(x) times the derivative of v(x) with respect to x:

d f
dx

=
du
dv
· dv

dx
(5.38)

First, we want to know the derivative of the loss function with respect to a single
weight w j (we’ll need to compute it for each weight, and for the bias):
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∂LL(w,b)
∂w j

=
∂

∂w j
− [y logσ(w · x+b)+(1− y) log(1−σ(w · x+b))]

= −
[

∂

∂w j
y logσ(w · x+b)+

∂

∂w j
(1− y) log [1−σ(w · x+b)]

]

(5.39)

Next, using the chain rule, and relying on the derivative of log:

∂LL(w,b)
∂w j

= − y
σ(w · x+b)

∂

∂w j
σ(w · x+b)− 1− y

1−σ(w · x+b)
∂

∂w j
1−σ(w · x+b)

(5.40)

Rearranging terms:

∂LL(w,b)
∂w j

= −
[

y
σ(w · x+b)

− 1− y
1−σ(w · x+b)

]
∂

∂w j
σ(w · x+b)

(5.41)

And now plugging in the derivative of the sigmoid, and using the chain rule one
more time, we end up with Eq. 5.42:

∂LL(w,b)
∂w j

= −
[

y−σ(w · x+b)
σ(w · x+b)[1−σ(w · x+b)]

]
σ(w · x+b)[1−σ(w · x+b)]

∂ (w · x+b)
∂w j

= −
[

y−σ(w · x+b)
σ(w · x+b)[1−σ(w · x+b)]

]
σ(w · x+b)[1−σ(w · x+b)]x j

= −[y−σ(w · x+b)]x j

= [σ(w · x+b)− y]x j (5.42)

5.9 Summary

This chapter introduced the logistic regression model of classification.

• Logistic regression is a supervised machine learning classifier that extracts
real-valued features from the input, multiplies each by a weight, sums them,
and passes the sum through a sigmoid function to generate a probability. A
threshold is used to make a decision.

• Logistic regression can be used with two classes (e.g., positive and negative
sentiment) or with multiple classes (multinomial logistic regression, for ex-
ample for n-ary text classification, part-of-speech labeling, etc.).

• Multinomial logistic regression uses the softmax function to compute proba-
bilities.

• The weights (vector w and bias b) are learned from a labeled training set via a
loss function, such as the cross-entropy loss, that must be minimized.

• Minimizing this loss function is a convex optimization problem, and iterative
algorithms like gradient descent are used to find the optimal weights.

• Regularization is used to avoid overfitting.
• Logistic regression is also one of the most useful analytic tools, because of its

ability to transparently study the importance of individual features.
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Bibliographical and Historical Notes
Logistic regression was developed in the field of statistics, where it was used for
the analysis of binary data by the 1960s, and was particularly common in medicine
(Cox, 1969). Starting in the late 1970s it became widely used in linguistics as one
of the formal foundations of the study of linguistic variation (Sankoff and Labov,
1979).

Nonetheless, logistic regression didn’t become common in natural language pro-
cessing until the 1990s, when it seems to have appeared simultaneously from two
directions. The first source was the neighboring fields of information retrieval and
speech processing, both of which had made use of regression, and both of which
lent many other statistical techniques to NLP. Indeed a very early use of logistic
regression for document routing was one of the first NLP applications to use (LSI)
embeddings as word representations (Schütze et al., 1995).

At the same time in the early 1990s logistic regression was developed and ap-
plied to NLP at IBM Research under the name maximum entropy modeling ormaximum

entropy
maxent (Berger et al., 1996), seemingly independent of the statistical literature. Un-
der that name it was applied to language modeling (Rosenfeld, 1996), part-of-speech
tagging (Ratnaparkhi, 1996), parsing (Ratnaparkhi, 1997), coreference resolution
(Kehler, 1997b), and text classification (Nigam et al., 1999).

More on classification can be found in machine learning textbooks (Hastie et al. 2001,
Witten and Frank 2005, Bishop 2006, Murphy 2012).

Exercises
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CHAPTER

6 Vector Semantics and Embed-
dings

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But in the
middle of the city is another patch of asphalt, the La Brea tar pits, and this asphalt
preserves millions of fossil bones from the last of the Ice Ages of the Pleistocene
Epoch. One of these fossils is the Smilodon, or sabre-toothed tiger, instantly rec-
ognizable by its long canines. Five million years ago or so, a completely different
sabre-tooth tiger called Thylacosmilus lived
in Argentina and other parts of South Amer-
ica. Thylacosmilus was a marsupial whereas
Smilodon was a placental mammal, but Thy-
lacosmilus had the same long upper canines
and, like Smilodon, had a protective bone
flange on the lower jaw. The similarity of
these two mammals is one of many examples
of parallel or convergent evolution, in which particular contexts or environments
lead to the evolution of very similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind
of organism: the word. Words that occur in similar contexts tend to have similar
meanings. This link between similarity in how words are distributed and similarity
in what they mean is called the distributional hypothesis. The hypothesis wasdistributional

hypothesis
first formulated in the 1950s by linguists like Joos (1950), Harris (1954), and Firth
(1957), who noticed that words which are synonyms (like oculist and eye-doctor)
tended to occur in the same environment (e.g., near words like eye or examined)
with the amount of meaning difference between two words “corresponding roughly
to the amount of difference in their environments” (Harris, 1954, 157).

In this chapter we introduce vector semantics, which instantiates this linguisticvector
semantics

hypothesis by learning representations of the meaning of words, called embeddings,embeddings

directly from their distributions in texts. These representations are used in every
natural language processing application that makes use of meaning, and underlie the
more powerful contextualized word representations like ELMo and BERT that
we will introduce in Chapter 10.

These word representations are also the first example in this book of repre-
sentation learning, automatically learning useful representations of the input text.representation

learning
Finding such self-supervised ways to learn representations of the input, instead of
creating representations by hand via feature engineering, is an important focus of
NLP research (Bengio et al., 2013).

We’ll begin, however, by introducing some basic principles of word meaning,
which will motivate the vector semantic models of this chapter as well as extensions
that we’ll return to in Chapter 19, Chapter 20, and Chapter 21.



6.1 • LEXICAL SEMANTICS 95

6.1 Lexical Semantics

How should we represent the meaning of a word? In the N-gram models we saw
in Chapter 3, and in many traditional NLP applications, our only representation of
a word is as a string of letters, or perhaps as an index in a vocabulary list. This
representation is not that different from a tradition in philosophy, perhaps you’ve
seen it in introductory logic classes, in which the meaning of words is represented
by just spelling the word with small capital letters; representing the meaning of
“dog” as DOG, and “cat” as CAT).

Representing the meaning of a word by capitalizing it is a pretty unsatisfactory
model. You might have seen the old philosophy joke:

Q: What’s the meaning of life?
A: LIFE

Surely we can do better than this! After all, we’ll want a model of word meaning
to do all sorts of things for us. It should tell us that some words have similar mean-
ings (cat is similar to dog), other words are antonyms (cold is the opposite of hot). It
should know that some words have positive connotations (happy) while others have
negative connotations (sad). It should represent the fact that the meanings of buy,
sell, and pay offer differing perspectives on the same underlying purchasing event
(If I buy something from you, you’ve probably sold it to me, and I likely paid you).

More generally, a model of word meaning should allow us to draw useful infer-
ences that will help us solve meaning-related tasks like question-answering, sum-
marization, detecting paraphrases or plagiarism, and dialogue.

In this section we summarize some of these desiderata, drawing on results in the
linguistic study of word meaning, which is called lexical semantics; we’ll return tolexical

semantics
and expand on this list in Chapter 19.

Lemmas and Senses Let’s start by looking at how one word (we’ll choose mouse)
might be defined in a dictionary: 1

mouse (N)

1. any of numerous small rodents...

2. a hand-operated device that controls a cursor...

Here the form mouse is the lemma, also called the citation form. The formlemma

citation form mouse would also be the lemma for the word mice; dictionaries don’t have separate
definitions for inflected forms like mice. Similarly sing is the lemma for sing, sang,
sung. In many languages the infinitive form is used as the lemma for the verb, so
Spanish dormir “to sleep” is the lemma for duermes “you sleep”. The specific forms
sung or carpets or sing or duermes are called wordforms.wordform

As the example above shows, each lemma can have multiple meanings; the
lemma mouse can refer to the rodent or the cursor control device. We call each
of these aspects of the meaning of mouse a word sense. The fact that lemmas can
be polysemous (have multiple senses) can make interpretation difficult (is someone
who types “mouse info” into a search engine looking for a pet or a tool?). Chapter 19
will discuss the problem of polysemy, and introduce word sense disambiguation,
the task of determining which sense of a word is being used in a particular context.

Synonymy One important component of word meaning is the relationship be-
tween word senses. For example when one word has a sense whose meaning is

1 This example shortened from the online dictionary WordNet, discussed in Chapter 19.
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identical to a sense of another word, or nearly identical, we say the two senses of
those two words are synonyms. Synonyms include such pairs assynonym

couch/sofa vomit/throw up filbert/hazelnut car/automobile

A more formal definition of synonymy (between words rather than senses) is that
two words are synonymous if they are substitutable one for the other in any sentence
without changing the truth conditions of the sentence, the situations in which the
sentence would be true. We often say in this case that the two words have the same
propositional meaning.propositional

meaning
While substitutions between some pairs of words like car / automobile or wa-

ter / H2O are truth preserving, the words are still not identical in meaning. Indeed,
probably no two words are absolutely identical in meaning. One of the fundamen-
tal tenets of semantics, called the principle of contrast (Girard 1718, Bréal 1897,principle of

contrast
Clark 1987), is the assumption that a difference in linguistic form is always associ-
ated with at least some difference in meaning. For example, the word H2O is used
in scientific contexts and would be inappropriate in a hiking guide—water would be
more appropriate— and this difference in genre is part of the meaning of the word.
In practice, the word synonym is therefore commonly used to describe a relationship
of approximate or rough synonymy.

Word Similarity While words don’t have many synonyms, most words do have
lots of similar words. Cat is not a synonym of dog, but cats and dogs are certainly
similar words. In moving from synonymy to similarity, it will be useful to shift from
talking about relations between word senses (like synonymy) to relations between
words (like similarity). Dealing with words avoids having to commit to a particular
representation of word senses, which will turn out to simplify our task.

The notion of word similarity is very useful in larger semantic tasks. Know-similarity

ing how similar two words are can help in computing how similar the meaning of
two phrases or sentences are, a very important component of natural language un-
derstanding tasks like question answering, paraphrasing, and summarization. One
way of getting values for word similarity is to ask humans to judge how similar one
word is to another. A number of datasets have resulted from such experiments. For
example the SimLex-999 dataset (Hill et al., 2015) gives values on a scale from 0 to
10, like the examples below, which range from near-synonyms (vanish, disappear)
to pairs that scarcely seem to have anything in common (hole, agreement):

vanish disappear 9.8
behave obey 7.3
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

Word Relatedness The meaning of two words can be related in ways other than
similarity. One such class of connections is called word relatedness (Budanitskyrelatedness

and Hirst, 2006), also traditionally called word association in psychology.association

Consider the meanings of the words coffee and cup. Coffee is not similar to cup;
they share practically no features (coffee is a plant or a beverage, while a cup is a
manufactured object with a particular shape).

But coffee and cup are clearly related; they are associated by co-participating in
an everyday event (the event of drinking coffee out of a cup). Similarly the nouns
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scalpel and surgeon are not similar but are related eventively (a surgeon tends to
make use of a scalpel).

One common kind of relatedness between words is if they belong to the same
semantic field. A semantic field is a set of words which cover a particular semanticsemantic field

domain and bear structured relations with each other.
For example, words might be related by being in the semantic field of hospitals

(surgeon, scalpel, nurse, anesthetic, hospital), restaurants (waiter, menu, plate, food,
chef), or houses (door, roof, kitchen, family, bed).

Semantic fields are also related to topic models, like Latent Dirichlet Alloca-topic models

tion, LDA, which apply unsupervised learning on large sets of texts to induce sets of
associated words from text. Semantic fields and topic models are very useful tools
for discovering topical structure in documents.

In Chapter 19 we’ll introduce even more relations between senses, including
hypernymy or IS-A, antonymy (opposite meaning) and meronymy) (part-whole
relations).

Semantic Frames and Roles Closely related to semantic fields is the idea of a
semantic frame. A semantic frame is a set of words that denote perspectives orsemantic frame

participants in a particular type of event. A commercial transaction, for example,
is a kind of event in which one entity trades money to another entity in return for
some good or service, after which the good changes hands or perhaps the service is
performed. This event can be encoded lexically by using verbs like buy (the event
from the perspective of the buyer), sell (from the perspective of the seller), pay
(focusing on the monetary aspect), or nouns like buyer. Frames have semantic roles
(like buyer, seller, goods, money), and words in a sentence can take on these roles.

Knowing that buy and sell have this relation makes it possible for a system to
know that a sentence like Sam bought the book from Ling could be paraphrased as
Ling sold the book to Sam, and that Sam has the role of the buyer in the frame and
Ling the seller. Being able to recognize such paraphrases is important for question
answering, and can help in shifting perspective for machine translation.

Connotation Finally, words have affective meanings or connotations. The wordconnotations

connotation has different meanings in different fields, but here we use it to mean
the aspects of a word’s meaning that are related to a writer or reader’s emotions,
sentiment, opinions, or evaluations. For example some words have positive conno-
tations (happy) while others have negative connotations (sad). Some words describe
positive evaluation (great, love) and others negative evaluation (terrible, hate). Pos-
itive or negative evaluation expressed through language is called sentiment, as wesentiment

saw in Chapter 4, and word sentiment plays a role in important tasks like sentiment
analysis, stance detection, and many applications of natural language processing to
the language of politics and consumer reviews.

Early work on affective meaning (Osgood et al., 1957) found that words varied
along three important dimensions of affective meaning. These are now generally
called valence, arousal, and dominance, defined as follows:

valence: the pleasantness of the stimulus
arousal: the intensity of emotion provoked by the stimulus
dominance: the degree of control exerted by the stimulus

Thus words like happy or satisfied are high on valence, while unhappy or an-
noyed are low on valence. Excited or frenzied are high on arousal, while relaxed
or calm are low on arousal. Important or controlling are high on dominance, while
awed or influenced are low on dominance. Each word is thus represented by three
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numbers, corresponding to its value on each of the three dimensions, like the exam-
ples below:

Valence Arousal Dominance
courageous 8.05 5.5 7.38
music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58
cub 6.71 3.95 4.24
life 6.68 5.59 5.89

Osgood et al. (1957) noticed that in using these 3 numbers to represent the
meaning of a word, the model was representing each word as a point in a three-
dimensional space, a vector whose three dimensions corresponded to the word’s
rating on the three scales. This revolutionary idea that word meaning word could
be represented as a point in space (e.g., that part of the meaning of heartbreak can
be represented as the point [2.45,5.65,3.58]) was the first expression of the vector
semantics models that we introduce next.

6.2 Vector Semantics

How can we build a computational model that successfully deals with the different
aspects of word meaning we saw in the previous section (word senses, word simi-
larity and relatedness, lexical fields and frames, connotation)?

A perfect model that completely deals with each of these aspects of word mean-
ing turns out to be elusive. But the current best model, called vector semantics,vector

semantics
draws its inspiration from linguistic and philosophical work of the 1950’s.

During that period, the philosopher Ludwig Wittgenstein, skeptical of the possi-
bility of building a completely formal theory of meaning definitions for each word,
suggested instead that “the meaning of a word is its use in the language” (Wittgen-
stein, 1953, PI 43). That is, instead of using some logical language to define each
word, we should define words by some representation of how the word was used by
actual people in speaking and understanding.

Linguists of the period like Joos (1950), Harris (1954), and Firth (1957) (the lin-
guistic distributionalists), came up with a specific idea for realizing Wittgenstein’s
intuition: define a word by its environment or distribution in language use. A word’s
distribution is the set of contexts in which it occurs, the neighboring words or gram-
matical environments. The idea is that two words that occur in very similar dis-
tributions (that occur together with very similar words) are likely to have the same
meaning.

Let’s see an example illustrating this distributionalist approach. Suppose you
didn’t know what the Cantonese word ongchoi meant, but you do see it in the fol-
lowing sentences or contexts:

(6.1) Ongchoi is delicious sauteed with garlic.
(6.2) Ongchoi is superb over rice.
(6.3) ...ongchoi leaves with salty sauces...

And furthermore let’s suppose that you had seen many of these context words
occurring in contexts like:

(6.4) ...spinach sauteed with garlic over rice...
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(6.5) ...chard stems and leaves are delicious...

(6.6) ...collard greens and other salty leafy greens

The fact that ongchoi occurs with words like rice and garlic and delicious and
salty, as do words like spinach, chard, and collard greens might suggest to the reader
that ongchoi is a leafy green similar to these other leafy greens.2

We can do the same thing computationally by just counting words in the context
of ongchoi; we’ll tend to see words like sauteed and eaten and garlic. The fact that
these words and other similar context words also occur around the word spinach or
collard greens can help us discover the similarity between these words and ongchoi.

Vector semantics thus combines two intuitions: the distributionalist intuition
(defining a word by counting what other words occur in its environment), and the
vector intuition of Osgood et al. (1957) we saw in the last section on connotation:
defining the meaning of a word w as a vector, a list of numbers, a point in N-
dimensional space. There are various versions of vector semantics, each defining
the numbers in the vector somewhat differently, but in each case the numbers are
based in some way on counts of neighboring words.

good

nice

bad
worst

not good

wonderful
amazing
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youi
that

with

byto
’s

are

is

a
than

Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015).

The idea of vector semantics is thus to represent a word as a point in some multi-
dimensional semantic space. Vectors for representing words are generally called
embeddings, because the word is embedded in a particular vector space. Fig. 6.1embeddings

displays a visualization of embeddings that were learned for a sentiment analysis
task, showing the location of some selected words projected down from the original
60-dimensional space into a two dimensional space.

Notice that positive and negative words seem to be located in distinct portions of
the space (and different also from the neutral function words). This suggests one of
the great advantages of vector semantics: it offers a fine-grained model of meaning
that lets us also implement word similarity (and phrase similarity). For example,
the sentiment analysis classifier we saw in Chapter 4 only works if enough of the
important sentimental words that appear in the test set also appeared in the training
set. But if words were represented as embeddings, we could assign sentiment as
long as words with similar meanings as the test set words occurred in the training

2 It’s in fact Ipomoea aquatica, a relative of morning glory sometimes called water spinach in English.
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set. Vector semantic models are also extremely practical because they can be learned
automatically from text without any complex labeling or supervision.

As a result of these advantages, vector models of meaning are now the standard
way to represent the meaning of words in NLP. In this chapter we’ll introduce the
two most commonly used models. First is the tf-idf model, often used as a baseline,
in which the meaning of a word is defined by a simple function of the counts of
nearby words. We will see that this method results in very long vectors that are
sparse, i.e. contain mostly zeros (since most words simply never occur in the context
of others).

Then we’ll introduce the word2vec model, one of a family of models that are
ways of constructing short, dense vectors that have useful semantic properties.

We’ll also introduce the cosine, the standard way to use embeddings (vectors)
to compute functions like semantic similarity, the similarity between two words,
two sentences, or two documents, an important tool in practical applications like
question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. This matrix can be con-
structed in various ways; let’s begin by looking at one such co-occurrence matrix, a
term-document matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 6.3.

To review some basic linear algebra, a vector is, at heart, just a list or arrayvector

of numbers. So As You Like It is represented as the list [1,114,36,20] and Julius
Caesar is represented as the list [7,62,1,2]. A vector space is a collection of vectors,vector space

characterized by their dimension. In the example in Fig. 6.3, the vectors are ofdimension

dimension 4, just so they fit on the page; in real term-document matrices, the vectors
representing each document would have dimensionality |V |, the vocabulary size.



6.3 • WORDS AND VECTORS 101

The ordering of the numbers in a vector space is not arbitrary; each position
indicates a meaningful dimension on which the documents can vary. Thus the first
dimension for both these vectors corresponds to the number of times the word battle
occurs, and we can compare each dimension, noting for example that the vectors for
As You Like It and Twelfth Night have similar values (1 and 0, respectively) for the
first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as identifying a point in |V |-dimensional
space; thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-
dimensional spaces are hard to draw in textbooks, Fig. 6.4 shows a visualization in
two dimensions; we’ve arbitrarily chosen the dimensions corresponding to the words
battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).
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Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hence therow vector

dimensions of the vector are different. The four dimensions of the vector for fool,
[36,58,1,4], correspond to the four Shakespeare plays. The same four dimensions
are used to form the vectors for the other 3 words: wit, [20,15,2,3]; battle, [1,0,7,13];
and good [114,80,62,89]. Each entry in the vector thus represents the counts of the
word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-word-word

matrix
context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |× |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word. For example here is one
example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the con-
text words around it, we get a word-word co-occurrence matrix. Fig. 6.5 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

Note in Fig. 6.5 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.6 shows a spatial visualization.
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aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25

strawberry 0 ... 0 0 1 60 19
digital 0 ... 1670 1683 85 5 4

information 0 ... 3325 3982 378 5 13
Figure 6.5 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =

N∑

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.
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This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v|=

√√√√
N∑

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosθ

a ·b
|a||b| = cosθ (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

N∑

i=1

viwi

√√√√
N∑

i=1

v2
i

√√√√
N∑

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442∗5+8∗3982+2∗3325√

4422 +82 +22
√

52 +39822 +33252
= .017

cos(digital, information) =
5∗5+1683∗3982+1670∗3325√

52 +16832 +16702
√

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.
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Figure 6.7 A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. Note that the angle between digital and information is
smaller than the angle between cherry and information. When two vectors are more similar,
the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the angle
between two vectors is smallest (0◦); the cosine of all other angles is less than 1.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by cherry and
strawberry but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word. We saw this also in Fig. 6.3 for
the Shakespeare corpus; the dimension for the word good is not very discrimina-
tive between plays; good is simply a frequent word and has roughly equivalent high
frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie nearby
cherry) are more important than words that only appear once or twice. Yet words
that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

Alternatively we can squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:3

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 10 times in a document would have a
tf=2, 100 times in a document tf=3, 1000 times tf=4, and so on.

3 Or we can use this alternative: tft,d =

{
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise
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The second factor is used to give a higher weight to words that occur only in a
few documents. Terms that are limited to a few documents are useful for discrimi-
nating those documents from the rest of the collection; terms that occur frequently
across the entire collection aren’t as helpful. The document frequency dft of adocument

frequency
term t is the number of documents it occurs in. Document frequency is not the
same as the collection frequency of a term, which is the total number of times the
word appears in the whole collection in any document. Consider in the collection of
Shakespeare’s 37 plays the two words Romeo and action. The words have identical
collection frequencies (they both occur 113 times in all the plays) but very different
document frequencies, since Romeo only occurs in a single play. If our goal is find
documents about the romantic tribulations of Romeo, the word Romeo should be
highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf

tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

(
N
dft

)
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.4

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

4 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf

frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d× idft (6.14)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored in any comparison of the plays.
Similarly, the word fool, which appears in 36 out of the 37 plays, has a much lower
weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.8 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.7.

6.6 Applications of the tf-idf vector model

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding to all the words in the vocabulary
(length |V |, with vocabularies of 20,000 to 50,000), which is also sparse (most values
are zero). The values in each dimension are the frequency with which the target
word co-occurs with each neighboring context word, weighted by tf-idf. The model
computes the similarity between two words x and y by taking the cosine of their
tf-idf vectors; high cosine, high similarity. This entire model is sometimes referred
to for short as the tf-idf model, after the weighting function.

One common use for a tf-idf model is to compute word similarity, a useful tool
for tasks like finding word paraphrases, tracking changes in word meaning, or au-
tomatically discovering meanings of words in different corpora. For example, we
can find the 10 most similar words to any target word w by computing the cosines
between w and each of the V −1 other words, sorting, and looking at the top 10.

The tf-idf vector model can also be used to decide if two documents are similar.
We represent a document by taking the vectors of all the words in the document, and
computing the centroid of all those vectors. The centroid is the multidimensionalcentroid

version of the mean; the centroid of a set of vectors is a single vector that has the
minimum sum of squared distances to each of the vectors in the set. Given k word
vectors w1,w2, ...,wk, the centroid document vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.15)
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Given two documents, we can then compute their document vectors d1 and d2,
and estimate the similarity between the two documents by cos(d1,d2).

Document similarity is also useful for all sorts of applications; information re-
trieval, plagiarism detection, news recommender systems, and even for digital hu-
manities tasks like comparing different versions of a text to see which are similar to
each other.

6.7 Optional: Pointwise Mutual Information (PMI)

An alternative weighting function to tf-idf is called PPMI (positive pointwise mutual
information). PPMI draws on the intuition that the best way to weigh the association
between two words is to ask how much more the two words co-occur in our corpus
than we would have a priori expected them to appear by chance.

Pointwise mutual information (Fano, 1961)5 is one of the most important con-
pointwise

mutual
information cepts in NLP. It is a measure of how often two events x and y occur, compared with

what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(6.17)

The pointwise mutual information between a target word w and a context word
c (Church and Hanks 1989, Church and Hanks 1990) is then defined as:

PMI(w,c) = log2
P(w,c)

P(w)P(c)
(6.18)

The numerator tells us how often we observed the two words together (assuming
we compute probability by using the MLE). The denominator tells us how often
we would expect the two words to co-occur assuming they each occurred indepen-
dently; recall that the probability of two independent events both occurring is just
the product of the probabilities of the two events. Thus, the ratio gives us an esti-
mate of how much more the two words co-occur than we expect by chance. PMI is
a useful tool whenever we need to find words that are strongly associated.

PMI values range from negative to positive infinity. But negative PMI values
(which imply things are co-occurring less often than we would expect by chance)
tend to be unreliable unless our corpora are enormous. To distinguish whether
two words whose individual probability is each 10−6 occur together less often than
chance, we would need to be certain that the probability of the two occurring to-
gether is significantly different than 10−12, and this kind of granularity would require
an enormous corpus. Furthermore it’s not clear whether it’s even possible to evalu-
ate such scores of ‘unrelatedness’ with human judgments. For this reason it is more
common to use Positive PMI (called PPMI) which replaces all negative PMI valuesPPMI

5 Pointwise mutual information is based on the mutual information between two random variables X
and Y , which is defined as:

I(X ,Y ) =
∑

x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)
(6.16)

In a confusion of terminology, Fano used the phrase mutual information to refer to what we now call
pointwise mutual information and the phrase expectation of the mutual information for what we now call
mutual information
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with zero (Church and Hanks 1989, Dagan et al. 1993, Niwa and Nitta 1994)6:

PPMI(w,c) = max(log2
P(w,c)

P(w)P(c)
,0) (6.19)

More formally, let’s assume we have a co-occurrence matrix F with W rows (words)
and C columns (contexts), where fi j gives the number of times word wi occurs in
context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi j∑W

i=1
∑C

j=1 fi j
pi∗ =

∑C
j=1 fi j∑W

i=1
∑C

j=1 fi j
p∗ j =

∑W
i=1 fi j∑W

i=1
∑C

j=1 fi j
(6.20)

PPMIi j = max(log2
pi j

pi∗p∗ j
,0) (6.21)

Let’s see some PPMI calculations. We’ll use Fig. 6.9, which repeats Fig. 6.5 plus all
the count marginals, and let’s pretend for ease of calculation that these are the only
words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.9 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other word-
s/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.5 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575∗ .4842)) = .0944

Fig. 6.10 shows the joint probabilities computed from the counts in Fig. 6.9, and
Fig. 6.11 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pα(c)
that raises the probability of the context word to the power of α:

PPMIα(w,c) = max(log2
P(w,c)

P(w)Pα(c)
,0) (6.22)

6 Positive PMI also cleanly solves the problem of what to do with zero counts, using 0 to replace the
−∞ from log(0).
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p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.10 Replacing the counts in Fig. 6.5 with joint probabilities, showing the marginals
around the outside.

computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.11 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.10. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

Pα(c) =
count(c)α

∑
c count(c)α

(6.23)

Levy et al. (2015) found that a setting of α = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to α =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pα(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.8 Word2vec

In the previous sections we saw how to represent a word as a sparse, long vector with
dimensions corresponding to the words in the vocabulary, and whose values were tf-
idf or PPMI functions of the count of the word co-occurring with each neighboring
word. In this section we turn to an alternative method for representing a word: the
use of vectors that are short (of length perhaps 50-1000) and dense (most values are
non-zero).

It turns out that dense vectors work better in every NLP task than sparse vec-
tors. While we don’t completely understand all the reasons for this, we have some
intuitions. First, dense vectors may be more successfully included as features in
machine learning systems; for example if we use 100-dimensional word embed-
dings as features, a classifier can just learn 100 weights to represent a function of
word meaning; if we instead put in a 50,000 dimensional vector, a classifier would
have to learn tens of thousands of weights for each of the sparse dimensions. Sec-
ond, because they contain fewer parameters than sparse vectors of explicit counts,
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dense vectors may generalize better and help avoid overfitting. Finally, dense vec-
tors may do a better job of capturing synonymy than sparse vectors. For example,
car and automobile are synonyms; but in a typical sparse vector representation, the
car dimension and the automobile dimension are distinct dimensions. Because the
relationship between these two dimensions is not modeled, sparse vectors may fail
to capture the similarity between a word with car as a neighbor and a word with
automobile as a neighbor.

In this section we introduce one method for very dense, short vectors, skip-
gram with negative sampling, sometimes called SGNS. The skip-gram algorithmskip-gram

SGNS is one of two algorithms in a software package called word2vec, and so sometimes
word2vec the algorithm is loosely referred to as word2vec (Mikolov et al. 2013, Mikolov

et al. 2013a). The word2vec methods are fast, efficient to train, and easily avail-
able online with code and pretrained embeddings. We point to other embedding
methods, like the equally popular GloVe (Pennington et al., 2014), at the end of the
chapter.

The intuition of word2vec is that instead of counting how often each word w oc-
curs near, say, apricot, we’ll instead train a classifier on a binary prediction task: “Is
word w likely to show up near apricot?” We don’t actually care about this prediction
task; instead we’ll take the learned classifier weights as the word embeddings.

The revolutionary intuition here is that we can just use running text as implicitly
supervised training data for such a classifier; a word s that occurs near the target
word apricot acts as gold ‘correct answer’ to the question “Is word w likely to show
up near apricot?” This avoids the need for any sort of hand-labeled supervision
signal. This idea was first proposed in the task of neural language modeling, when
Bengio et al. (2003) and Collobert et al. (2011) showed that a neural language model
(a neural network that learned to predict the next word from prior words) could just
use the next word in running text as its supervision signal, and could be used to learn
an embedding representation for each word as part of doing this prediction task.

We’ll see how to do neural networks in the next chapter, but word2vec is a
much simpler model than the neural network language model, in two ways. First,
word2vec simplifies the task (making it binary classification instead of word pre-
diction). Second, word2vec simplifies the architecture (training a logistic regression
classifier instead of a multi-layer neural network with hidden layers that demand
more sophisticated training algorithms). The intuition of skip-gram is:

1. Treat the target word and a neighboring context word as positive examples.

2. Randomly sample other words in the lexicon to get negative samples.

3. Use logistic regression to train a classifier to distinguish those two cases.

4. Use the regression weights as the embeddings.

6.8.1 The classifier

Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot, and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

Our goal is to train a classifier such that, given a tuple (t,c) of a target word
t paired with a candidate context word c (for example (apricot, jam), or perhaps
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(apricot, aardvark)) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|t,c) (6.24)

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.24:

P(−|t,c) = 1−P(+|t,c) (6.25)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)≈ t · c (6.26)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
−∞ to ∞. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function σ(x), the
fundamental core of logistic regression:

σ(x) =
1

1+ e−x (6.27)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e−t·c (6.28)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sums to 1.

The probability that word c is not a real context word for t is thus:

P(−|t,c) = 1−P(+|t,c)

=
e−t·c

1+ e−t·c (6.29)

Equation 6.28 gives us the probability for one word, but we need to take account
of the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =

k∏

i=1

1
1+ e−t·ci

(6.30)

logP(+|t,c1:k) =

k∑

i=1

log
1

1+ e−t·ci
(6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
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this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c

apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set − for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pα(w), where α is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set α = .75, i.e. use the
weighting p

3
4 (w):

Pα(w) =
count(w)α

∑
w′ count(w′)α

(6.32)

Setting α = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pα(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pα(a) =
.99.75

.99.75 + .01.75 = .97

Pα(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)
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Given the set of positive and negative training instances, and an initial set of em-
beddings, the goal of the learning algorithm is to adjust those embeddings such that
we

• Maximize the similarity of the target word, context word pairs (t,c) drawn
from the positive examples

• Minimize the similarity of the (t,c) pairs drawn from the negative examples.

We can express this formally over the whole training set as:

L(θ) =
∑

(t,c)∈+
logP(+|t,c)+

∑

(t,c)∈−
logP(−|t,c) (6.34)

If we look at one word/context pair (t,c) with its k noise words n1...nk, the learning
objective L is:

L(θ) = logP(+|t,c)+
k∑

i=1

logP(−|t,ni)

= logσ(c · t)+
k∑

i=1

logσ(−ni · t)

= log
1

1+ e−c·t +
k∑

i=1

log
1

1+ eni·t (6.35)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We can then use stochastic gradient descent to train to this objective, iteratively
modifying the parameters (the embeddings for each target word t and each context
word or noise word c in the vocabulary) to maximize the objective.

Note that the skip-gram model thus actually learns two separate embeddings
for each word w: the target embedding t and the context embedding c. Thesetarget

embedding
context

embedding embeddings are stored in two matrices, the target matrix T and the context matrix
C. So each row i of the target matrix T is the 1× d vector embedding ti for word
i in the vocabulary V , and each column j of the context matrix C is a d× 1 vector
embedding c j for word j in V . Fig. 6.12 shows an intuition of the learning task for
the embeddings encoded in these two matrices.

Just as in logistic regression, then, the learning algorithm starts with randomly
initialized W and C matrices, and then walks through the training corpus using gra-
dient descent to move W and C so as to maximize the objective in Eq. 6.35. Thus
the matrices W and C function as the parameters θ that logistic regression is tuning.

Once the embeddings are learned, we’ll have two embeddings for each word wi:
ti and ci. We can choose to throw away the C matrix and just keep W , in which case
each word i will be represented by the vector ti.

Alternatively we can add the two embeddings together, using the summed em-
bedding ti + ci as the new d-dimensional embedding, or we can concatenate them
into an embedding of dimensionality 2d.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset. One difference from the count-based methods is that for
skip-grams, the larger the window size the more computation the algorithm requires
for training (more neighboring words must be predicted).
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Figure 6.12 The skip-gram model tries to shift embeddings so the target embeddings (here
for apricot) are closer to (have a higher dot product with) context embeddings for nearby
words (here jam) and further from (have a lower dot product with) context embeddings for
words that don’t occur nearby (here aardvark).

6.9 Visualizing Embeddings

“I see well in many dimensions as long as the dimensions are around two.”
The late economist Martin Shubek

Visualizing embeddings is an important goal in helping understand, apply, and
improve these models of word meaning. But how can we visualize a (for example)
100-dimensional vector?

The simplest way to visualize the meaning of a word w embedded in a space is to
list the most similar words to w by sorting the vectors for all words in the vocabulary
by their cosine with the vector for w. For example the 7 closest words to frog using
the GloVe embeddings are: frogs, toad, litoria, leptodactylidae, rana, lizard, and
eleutherodactylus (Pennington et al., 2014)

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 8: Multidimensional scaling for three noun classes.
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Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.
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Yet another visualization method is to use a clus-
tering algorithm to show a hierarchical representa-
tion of which words are similar to others in the em-
bedding space. The uncaptioned example on the
right uses hierarchical clustering of some embedding
vectors for nouns as a visualization method (Rohde
et al., 2006).

Probably the most common visualization method,
however, is to project the 100 dimensions of a word
down into 2 dimensions. Fig. 6.1 showed one such
visualization, as does Fig. 6.13, using a projection
method called t-SNE (van der Maaten and Hinton, 2008).

6.10 Semantic properties of embeddings

Vector semantic models have a number of parameters. One parameter that is relevant
to both sparse tf-idf vectors and dense word2vec vectors is the size of the context
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window used to collect counts. This is generally between 1 and 10 words on each
side of the target word (for a total context of 3-20 words).

The choice depends on the goals of the representation. Shorter context windows
tend to lead to representations that are a bit more syntactic, since the information is
coming from immediately nearby words. When the vectors are computed from short
context windows, the most similar words to a target word w tend to be semantically
similar words with the same parts of speech. When vectors are computed from long
context windows, the highest cosine words to a target word w tend to be words that
are topically related but not similar.

For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy Another semantic property of embeddings is their ability to capture re-
lational meanings. Mikolov et al. (2013b) and Levy and Goldberg (2014b) show
that the offsets between vector embeddings can capture some analogical relations
between words. For example, the result of the expression vector(‘king’) - vec-
tor(‘man’) + vector(‘woman’) is a vector close to vector(‘queen’); the left panel
in Fig. 6.13 visualizes this, again projected down into 2 dimensions. Similarly, they
found that the expression vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) results
in a vector that is very close to vector(‘Rome’).

(a) (b)

Figure 6.13 Relational properties of the vector space, shown by projecting vectors onto two dimensions. (a)
’king’ - ’man’ + ’woman’ is close to ’queen’ (b) offsets seem to capture comparative and superlative morphology
(Pennington et al., 2014).

Embeddings and Historical Semantics: Embeddings can also be a useful tool
for studying how meaning changes over time, by computing multiple embedding
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spaces, each from texts written in a particular time period. For example Fig. 6.14
shows a visualization of changes in meaning in English words over the last two
centuries, computed by building separate embedding spaces for each decade from
historical corpora like Google N-grams (Lin et al., 2012) and the Corpus of Histori-
cal American English (Davies, 2012).
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Figure 5.1: Two-dimensional visualization of semantic change in English using SGNS
vectors (see Section 5.8 for the visualization algorithm). A, The word gay shifted
from meaning “cheerful” or “frolicsome” to referring to homosexuality. A, In the early
20th century broadcast referred to “casting out seeds”; with the rise of television and
radio its meaning shifted to “transmitting signals”. C, Awful underwent a process of
pejoration, as it shifted from meaning “full of awe” to meaning “terrible or appalling”
[212].

that adverbials (e.g., actually) have a general tendency to undergo subjectification

where they shift from objective statements about the world (e.g., “Sorry, the car is

actually broken”) to subjective statements (e.g., “I can’t believe he actually did that”,

indicating surprise/disbelief).

5.2.2 Computational linguistic studies

There are also a number of recent works analyzing semantic change using computational

methods. [200] use latent semantic analysis to analyze how word meanings broaden

and narrow over time. [113] use raw co-occurrence vectors to perform a number of

historical case-studies on semantic change, and [252] perform a similar set of small-

scale case-studies using temporal topic models. [87] construct point-wise mutual

information-based embeddings and found that semantic changes uncovered by their

method had reasonable agreement with human judgments. [129] and [119] use “neural”

word-embedding methods to detect linguistic change points. Finally, [257] analyze

historical co-occurrences to test whether synonyms tend to change in similar ways.

Figure 6.14 A t-SNE visualization of the semantic change of 3 words in English using
word2vec vectors. The modern sense of each word, and the grey context words, are com-
puted from the most recent (modern) time-point embedding space. Earlier points are com-
puted from earlier historical embedding spaces. The visualizations show the changes in the
word gay from meanings related to “cheerful” or “frolicsome” to referring to homosexuality,
the development of the modern “transmission” sense of broadcast from its original sense of
sowing seeds, and the pejoration of the word awful as it shifted from meaning “full of awe”
to meaning “terrible or appalling” (Hamilton et al., 2016b).

6.11 Bias and Embeddings

In addition to their ability to learn word meaning from text, embeddings, alas, also
reproduce the implicit biases and stereotypes that were latent in the text. Recall that
embeddings model analogical relations; ‘queen’ as the closest word to ‘king’ - ‘man’
+ ‘woman’ implies the analogy man:woman::king:queen. But embedding analogies
also exhibit gender stereotypes. For example Bolukbasi et al. (2016) find that the
closest occupation to ‘man’ - ‘computer programmer’ + ‘woman’ in word2vec em-
beddings trained on news text is ‘homemaker’, and that the embeddings similarly
suggest the analogy ‘father’ is to ‘doctor’ as ‘mother’ is to ‘nurse’. Algorithms that
use embeddings as part of a search for potential programmers or doctors might thus
incorrectly downweight documents with women’s names.

Embeddings also encode the implicit associations that are a property of human
reasoning. The Implicit Association Test (Greenwald et al., 1998) measures peo-
ple’s associations between concepts (like ‘flowers’ or ‘insects’) and attributes (like
‘pleasantness’ and ‘unpleasantness’) by measuring differences in the latency with
which they label words in the various categories.7 Using such methods, people
in the United States have been shown to associate African-American names with
unpleasant words (more than European-American names), male names more with

7 Roughly speaking, if humans associate ‘flowers’ with ‘pleasantness’ and ‘insects’ with ‘unpleasant-
ness’, when they are instructed to push a green button for ‘flowers’ (daisy, iris, lilac) and ‘pleasant words’
(love, laughter, pleasure) and a red button for ‘insects’ (flea, spider, mosquito) and ‘unpleasant words’
(abuse, hatred, ugly) they are faster than in an incongruous condition where they push a red button for
‘flowers’ and ‘unpleasant words’ and a green button for ‘insects’ and ‘pleasant words’.
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mathematics and female names with the arts, and old people’s names with unpleas-
ant words (Greenwald et al. 1998, Nosek et al. 2002a, Nosek et al. 2002b). Caliskan
et al. (2017) replicated all these findings of implicit associations using GloVe vectors
and cosine similarity instead of human latencies. For example African-American
names like ‘Leroy’ and ‘Shaniqua’ had a higher GloVe cosine with unpleasant words
while European-American names (‘Brad’, ‘Greg’, ‘Courtney’) had a higher cosine
with pleasant words. Any embedding-aware algorithm that made use of word senti-
ment could thus lead to bias against African Americans.

Recent research focuses on ways to try to remove these kinds of biases, for ex-
ample by developing a transformation of the embedding space that removes gender
stereotypes but preserves definitional gender (Bolukbasi et al. 2016, Zhao et al. 2017)
or changing the training procedure (Zhao et al., 2018b). However, although these
sorts of debiasing may reduce bias in embeddings, they do not eliminate it (Gonendebiasing

and Goldberg, 2019), and this remains an open problem.
Historical embeddings are also being used to measure biases in the past. Garg

et al. (2018) used embeddings from historical texts to measure the association be-
tween embeddings for occupations and embeddings for names of various ethnici-
ties or genders (for example the relative cosine similarity of women’s names versus
men’s to occupation words like ‘librarian’ or ‘carpenter’) across the 20th century.
They found that the cosines correlate with the empirical historical percentages of
women or ethnic groups in those occupations. Historical embeddings also repli-
cated old surveys of ethnic stereotypes; the tendency of experimental participants in
1933 to associate adjectives like ‘industrious’ or ‘superstitious’ with, e.g., Chinese
ethnicity, correlates with the cosine between Chinese last names and those adjectives
using embeddings trained on 1930s text. They also were able to document historical
gender biases, such as the fact that embeddings for adjectives related to competence
(‘smart’, ‘wise’, ‘thoughtful’, ‘resourceful’) had a higher cosine with male than fe-
male words, and showed that this bias has been slowly decreasing since 1960. We
return in later chapters to this question about the role of bias in natural language
processing.

6.12 Evaluating Vector Models

The most important evaluation metric for vector models is extrinsic evaluation on
tasks; adding them as features into any NLP task and seeing whether this improves
performance over some other model.

Nonetheless it is useful to have intrinsic evaluations. The most common metric
is to test their performance on similarity, computing the correlation between an
algorithm’s word similarity scores and word similarity ratings assigned by humans.
WordSim-353 (Finkelstein et al., 2002) is a commonly used set of ratings from 0
to 10 for 353 noun pairs; for example (plane, car) had an average score of 5.77.
SimLex-999 (Hill et al., 2015) is a more difficult dataset that quantifies similarity
(cup, mug) rather than relatedness (cup, coffee), and including both concrete and
abstract adjective, noun and verb pairs. The TOEFL dataset is a set of 80 questions,
each consisting of a target word with 4 additional word choices; the task is to choose
which is the correct synonym, as in the example: Levied is closest in meaning to:
imposed, believed, requested, correlated (Landauer and Dumais, 1997). All of these
datasets present words without context.

Slightly more realistic are intrinsic similarity tasks that include context. The
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Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) and the
Word-in-Context (WiC) dataset (Pilehvar and Camacho-Collados, 2019) offers richer
evaluation scenarios. SCWS gives human judgments on 2,003 pairs of words in their
sentential context, while WiC gives target words in two sentential contexts that are
either in the same or different senses; see Section 19.5.3. The semantic textual sim-
ilarity task (Agirre et al. 2012, Agirre et al. 2015) evaluates the performance of
sentence-level similarity algorithms, consisting of a set of pairs of sentences, each
pair with human-labeled similarity scores.

Another task used for evaluate is an analogy task, where the system has to solve
problems of the form a is to b as c is to d, given a, b, and c and having to find d.
Thus given Athens is to Greece as Oslo is to , the system must fill in the word
Norway. Or more syntactically-oriented examples: given mouse, mice, and dollar
the system must return dollars. Large sets of such tuples have been created (Mikolov
et al. 2013, Mikolov et al. 2013b).

6.13 Summary

• In vector semantics, a word is modeled as a vector—a point in high-dimensional
space, also called an embedding.

• Vector semantic models fall into two classes: sparse and dense.

• In sparse models like tf-idf each dimension corresponds to a word in the vo-
cabulary V ; cells in sparse models are functions of co-occurrence counts.
The term-document matrix has rows for each word (term) in the vocabulary
and a column for each document. The word-context matrix has a row for
each (target) word in the vocabulary and a column for each context term in
the vocabulary.

• The most widely used sparse weighting is tf-idf, which weights each cell by
its term frequency and inverse document frequency. PPMI (pointwise pos-
itive mutual information) is an alternative weighting scheme to tf-idf.

• Dense vector models have dimensionality 50–1000 and the dimensions are
harder to interpret. Word2vec algorithms like skip-gram are a popular and
efficient way to compute dense embeddings. Skip-gram trains a logistic re-
gression classifier to compute the probability that two words are ‘likely to
occur nearby in text’. This probability is computed from the dot product be-
tween the embeddings for the two words.

• Skip-gram uses stochastic gradient descent to train the classifier, by learning
embeddings that have a high dot product with embeddings of words that occur
nearby and a low dot product with noise words.

• Other important embedding algorithms include GloVe, a method based on ra-
tios of word co-occurrence probabilities, and fasttext, an open-source library
for computing word embeddings by summing embeddings of the bag of char-
acter n-grams that make up a word.

• Whether using sparse or dense vectors, word and document similarities are
computed by some function of the dot product between vectors. The cosine
of two vectors—a normalized dot product—is the most popular such metric.
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Bibliographical and Historical Notes
The idea of vector semantics arose out of research in the 1950s in three distinct
fields: linguistics, psychology, and computer science, each of which contributed a
fundamental aspect of the model.

The idea that meaning is related to the distribution of words in context was
widespread in linguistic theory of the 1950s, among distributionalists like Zellig
Harris, Martin Joos, and J. R. Firth, and semioticians like Thomas Sebeok. As Joos
(1950) put it,

the linguist’s “meaning” of a morpheme. . . is by definition the set of conditional
probabilities of its occurrence in context with all other morphemes.

The idea that the meaning of a word might be modeled as a point in a multi-
dimensional semantic space came from psychologists like Charles E. Osgood, who
had been studying how people responded to the meaning of words by assigning val-
ues along scales like happy/sad or hard/soft. Osgood et al. (1957) proposed that the
meaning of a word in general could be modeled as a point in a multidimensional
Euclidean space, and that the similarity of meaning between two words could be
modeled as the distance between these points in the space.

A final intellectual source in the 1950s and early 1960s was the field then called
mechanical indexing, now known as information retrieval. In what became knownmechanical

indexing
as the vector space model for information retrieval (Salton 1971, Sparck Jones 1986),
researchers demonstrated new ways to define the meaning of words in terms of vec-
tors (Switzer, 1965), and refined methods for word similarity based on measures
of statistical association between words like mutual information (Giuliano, 1965)
and idf (Sparck Jones, 1972), and showed that the meaning of documents could be
represented in the same vector spaces used for words.

More distantly related is the idea of defining words by a vector of discrete fea-
tures, which has a venerable history in our field, with roots at least as far back as
Descartes and Leibniz (Wierzbicka 1992, Wierzbicka 1996). By the middle of the
20th century, beginning with the work of Hjelmslev (Hjelmslev, 1969) and fleshed
out in early models of generative grammar (Katz and Fodor, 1963), the idea arose of
representing meaning with semantic features, symbols that represent some sort ofsemantic

feature
primitive meaning. For example words like hen, rooster, or chick, have something
in common (they all describe chickens) and something different (their age and sex),
representable as:

hen +female, +chicken, +adult

rooster -female, +chicken, +adult

chick +chicken, -adult

The dimensions used by vector models of meaning to define words, however, are
only abstractly related to this idea of a small fixed number of hand-built dimensions.
Nonetheless, there has been some attempt to show that certain dimensions of em-
bedding models do contribute some specific compositional aspect of meaning like
these early semantic features.

The first use of dense vectors to model word meaning was the latent seman-
tic indexing (LSI) model (Deerwester et al., 1988) recast as LSA (latent seman-
tic analysis) (Deerwester et al., 1990). In LSA singular value decomposition—
SVD— is applied to a term-document matrix (each cell weighted by log frequencySVD

and normalized by entropy), and then the first 300 dimensions are used as the LSA
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embedding. Singular Value Decomposition (SVD) is a method for finding the most
important dimensions of a data set, those dimensions along which the data varies
the most. LSA was then quickly widely applied: as a cognitive model Landauer
and Dumais (1997), and tasks like spell checking (Jones and Martin, 1997), lan-
guage modeling (Bellegarda 1997, Coccaro and Jurafsky 1998, Bellegarda 2000)
morphology induction (Schone and Jurafsky 2000, Schone and Jurafsky 2001), and
essay grading (Rehder et al., 1998). Related models were simultaneously developed
and applied to word sense disambiguation by Schütze (1992b). LSA also led to
the earliest use of embeddings to represent words in a probabilistic classifier, in the
logistic regression document router of Schütze et al. (1995). The idea of SVD on
the term-term matrix (rather than the term-document matrix) as a model of meaning
for NLP was proposed soon after LSA by Schütze (1992b). Schütze applied the
low-rank (97-dimensional) embeddings produced by SVD to the task of word sense
disambiguation, analyzed the resulting semantic space, and also suggested possible
techniques like dropping high-order dimensions. See Schütze (1997a).

A number of alternative matrix models followed on from the early SVD work,
including Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999), Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), and Non-negative Matrix Factoriza-
tion (NMF) (Lee and Seung, 1999).

By the next decade, Bengio et al. (2003) and Bengio et al. (2006) showed that
neural language models could also be used to develop embeddings as part of the task
of word prediction. Collobert and Weston (2007), Collobert and Weston (2008), and
Collobert et al. (2011) then demonstrated that embeddings could play a role for rep-
resenting word meanings for a number of NLP tasks. Turian et al. (2010) compared
the value of different kinds of embeddings for different NLP tasks. Mikolov et al.
(2011) showed that recurrent neural nets could be used as language models. The
idea of simplifying the hidden layer of these neural net language models to create
the skip-gram (and also CBOW) algorithms was proposed by Mikolov et al. (2013).
The negative sampling training algorithm was proposed in Mikolov et al. (2013a).

Studies of embeddings include results showing an elegant mathematical relation-
ship between sparse and dense embeddings (Levy and Goldberg, 2014c), as well
as numerous surveys of embeddings and their parameterizations. (Bullinaria and
Levy 2007, Bullinaria and Levy 2012, Lapesa and Evert 2014, Kiela and Clark 2014,
Levy et al. 2015).

The most widely-used embedding model besides word2vec is GloVe (Penning-
ton et al., 2014). The name stands for Global Vectors, because the model is based on
capturing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

An extension of word2vec, fasttext (Bojanowski et al., 2017), deals with un-fasttext

known words and sparsity in languages with rich morphology, by using subword
models. Each word in fasttext is represented as itself plus a bag of constituent n-
grams, with special boundary symbols < and > added to each word. For example,
with n = 3 the word where would be represented by the character n-grams:

<wh, whe, her, ere, re>

plus the sequence

<where>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
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A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

There are many other embedding algorithms, using methods like non-negative
matrix factorization (Fyshe et al., 2015), or by converting sparse PPMI embeddings
to dense vectors by using SVD (Levy and Goldberg, 2014c).

In Chapter 10 we introduce contextual embeddings like ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019) in which the representation for a word is
contextual, a function of the entire input sentence.

See Manning et al. (2008) for a deeper understanding of the role of vectors in in-
formation retrieval, including how to compare queries with documents, more details
on tf-idf, and issues of scaling to very large datasets.

Cruse (2004) is a useful introductory linguistic text on lexical semantics.

Exercises

https://fasttext.cc


CHAPTER

7 Neural Networks and Neural
Language Models

“[M]achines of this character can behave in a very complicated manner when
the number of units is large.”

Alan Turing (1948) “Intelligent Machines”, page 6

Neural networks are a fundamental computational tool for language process-
ing, and a very old one. They are called neural because their origins lie in the
McCulloch-Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the
human neuron as a kind of computing element that could be described in terms of
propositional logic. But the modern use in language processing no longer draws on
these early biological inspirations.

Instead, a modern neural network is a network of small computing units, each
of which takes a vector of input values and produces a single output value. In this
chapter we introduce the neural net applied to classification. The architecture we
introduce is called a feedforward network because the computation proceeds iter-feedforward

atively from one layer of units to the next. The use of modern neural nets is often
called deep learning, because modern networks are often deep (have many layers).deep learning

Neural networks share much of the same mathematics as logistic regression. But
neural networks are a more powerful classifier than logistic regression, and indeed a
minimal neural network (technically one with a single ‘hidden layer’) can be shown
to learn any function.

Neural net classifiers are different from logistic regression in another way. With
logistic regression, we applied the regression classifier to many different tasks by
developing many rich kinds of feature templates based on domain knowledge. When
working with neural networks, it is more common to avoid most uses of rich hand-
derived features, instead building neural networks that take raw words as inputs
and learn to induce features as part of the process of learning to classify. We saw
examples of this kind of representation learning for embeddings in Chapter 6. Nets
that are very deep are particularly good at representation learning. For that reason
deep neural nets are the right tool for large scale problems that offer sufficient data
to learn features automatically.

In this chapter we’ll introduce feedforward networks as classifiers, and also ap-
ply them to the simple task of language modeling: assigning probabilities to word
sequences and predicting upcoming words. In subsequent chapters we’ll introduce
many other aspects of neural models, such as recurrent neural networks (Chap-
ter 9), encoder-decoder models, attention and the Transformer (Chapter 10).
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7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
∑

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = σ(z) =
1

1+ e−z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section 5.8 will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.
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Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = σ(w · x+b) =
1

1+ exp(−(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = σ(w · x+b) =
1

1+ e−(w·x+b)
=

1
1+ e−(.5∗.2+.6∗.3+.1∗.9+.5)

= e−0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh

tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez− e−z

ez + e−z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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(a) (b)

Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example the rectifier func-
tion has nice properties that result from it being very close to linear. In the sigmoid
or tanh functions, very high values of z result in values of y that are saturated, i.e.,saturated

extremely close to 1, which causes problems for learning. Rectifiers don’t have this
problem, since the output of values close to 1 also approaches 1 in a nice gentle
linear way. By contrast, the tanh function has the nice properties of being smoothly
differentiable and mapping outlier values toward the mean.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The
output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
{

0, if w · x+b≤ 0
1, if w · x+b> 0 (7.7)
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It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.

x1

x2

+1
-1

1
1

x1

x2

+1
0

1
1

(a) (b)

Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = −1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 =−(w1/w2)x1−b.) This line acts as a decision
boundary in two-dimensional space in which the output 0 is assigned to all inputsdecision

boundary
lying on one side of the line, and the output 1 to all input points lying on the other
side of the line. If we had more than 2 inputs, the decision boundary becomes a
hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
vector [0 -1], and we then apply the rectified linear transformation to give the output
of the h layer as [0 0]. Now we once again multiply by the weights, sum, and add
the bias (0 in this case) resulting in the value 0. The reader should work through the
computation of the remaining 3 possible input pairs to see that the resulting y values
are 1 for the inputs [0 1] and [1 0] and 0 for [0 0] and [1 1].
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a)  x1 AND x2 b)  x1 OR x2 c)  x1 XOR x2

?

Figure 7.5 The functions AND, OR, and XOR, represented with input x1 on the x-axis and input x2 on the
y axis. Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no
way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig
(2002).

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

Figure 7.6 XOR solution after Goodfellow et al. (2016). There are three ReLU units, in
two layers; we’ve called them h1, h2 (h for “hidden layer”) and y1. As before, the numbers
on the arrows represent the weights w for each unit, and we represent the bias b as a weight
on a unit clamped to +1, with the bias weights/units in gray.

It’s also instructive to look at the intermediate results, the outputs of the two
hidden nodes h0 and h1. We showed in the previous paragraph that the h vector for
the inputs x = [0 0] was [0 0]. Fig. 7.7b shows the values of the h layer for all 4
inputs. Notice that hidden representations of the two input points x = [0 1] and x
= [1 0] (the two cases with XOR output = 1) are merged to the single point h = [1
0]. The merger makes it easy to linearly separate the positive and negative cases
of XOR. In other words, we can view the hidden layer of the network as forming a
representation for the input.

In this example we just stipulated the weights in Fig. 7.6. But for real examples
the weights for neural networks are learned automatically using the error backprop-
agation algorithm to be introduced in Section 7.4. That means the hidden layers will
learn to form useful representations. This intuition, that neural networks can auto-
matically learn useful representations of the input, is one of their key advantages,
and one that we will return to again and again in later chapters.

Note that the solution to the XOR problem requires a network of units with non-
linear activation functions. A network made up of simple linear (perceptron) units
cannot solve the XOR problem. This is because a network formed by many layers
of purely linear units can always be reduced (shown to be computationally identical
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Figure 7.7 The hidden layer forming a new representation of the input. Here is the rep-
resentation of the hidden layer, h, compared to the original input representation x. Notice
that the input point [0 1] has been collapsed with the input point [1 0], making it possible to
linearly separate the positive and negative cases of XOR. After Goodfellow et al. (2016).

to) a single layer of linear units with appropriate weights, and we’ve already shown
(visually, in Fig. 7.5) that a single unit cannot solve the XOR problem.

7.3 Feed-Forward Neural Networks

Let’s now walk through a slightly more formal presentation of the simplest kind of
neural network, the feedforward network. A feedforward network is a multilayerfeedforward

network
network in which the units are connected with no cycles; the outputs from units in
each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers. (In Chapter 9 we’ll introduce networks with cycles, called
recurrent neural networks.)

For historical reasons multilayer networks, especially feedforward networks, are
sometimes called multi-layer perceptrons (or MLPs); this is a technical misnomer,multi-layer

perceptrons
MLP since the units in modern multilayer networks aren’t perceptrons (perceptrons are

purely linear, but modern networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Simple feedforward networks have three kinds of nodes: input units, hidden
units, and output units. Fig. 7.8 shows a picture.

The input units are simply scalar values just as we saw in Fig. 7.2.
The core of the neural network is the hidden layer formed of hidden units,hidden layer

each of which is a neural unit as described in Section 7.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputsfully-connected

from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector wi and bias bi for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element Wi j of the
weight matrix W represents the weight of the connection from the ith input unit xi to
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Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

the jth hidden unit h j.
The advantage of using a single matrix W for the weights of the entire layer is

that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function σ :

h = σ(Wx+b) (7.8)

Notice that we’re applying the σ function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing σ(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x ∈ Rn0 . Let’s call the hidden layer layer 1 and the output layer
layer 2. The hidden layer has dimensionality n1, so h ∈ Rn1 and also b ∈ Rn1 (since
each hidden unit can take a different bias value). And the weight matrix W has
dimensionality W ∈ Rn1×n0 .

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as σ

(∑nx
i=1 wi jxi +b j

)
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.
If we are doing multinomial classification, such as assigning a part-of-speech tag, we
might have one output node for each potential part-of-speech, whose output value
is the probability of that part-of-speech, and the values of all the output nodes must
sum to one. The output layer thus gives a probability distribution across the output
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nodes.
Let’s see how this happens. Like the hidden layer, the output layer has a weight

matrix (let’s call it U), but some models don’t include a bias vector b in the output
layer, so we’ll simplify by eliminating the bias vector in this example. The weight
matrix is multiplied by its input vector (h) to produce the intermediate output z.

z =Uh

There are n2 output nodes, so z ∈ Rn2 , weight matrix U has dimensionality U ∈
Rn2×n1 , and element Ui j is the weight from unit j in the hidden layer to unit i in the
output layer.

However, z can’t be the output of the classifier, since it’s a vector of real-valued
numbers, while what we need for classification is a vector of probabilities. There is
a convenient function for normalizing a vector of real values, by which we meannormalizing

converting it to a vector that encodes a probability distribution (all the numbers lie
between 0 and 1 and sum to 1): the softmax function that we saw on page 89 ofsoftmax

Chapter 5. For a vector z of dimensionality d, the softmax is defined as:

softmax(zi) =
ezi

∑d
j=1 ez j

1≤ i≤ d (7.9)

Thus for example given a vector z=[0.6 1.1 -1.5 1.2 3.2 -1.1], softmax(z) is [0.055
0.090 0.0067 0.10 0.74 0.010].

You may recall that softmax was exactly what is used to create a probability
distribution from a vector of real-valued numbers (computed from summing weights
times features) in logistic regression in Chapter 5.

That means we can think of a neural network classifier with one hidden layer
as building a vector h which is a hidden layer representation of the input, and then
running standard logistic regression on the features that the network develops in h.
By contrast, in Chapter 5 the features were mainly designed by hand via feature
templates. So a neural network is like logistic regression, but (a) with many layers,
since a deep neural network is like layer after layer of logistic regression classifiers,
and (b) rather than forming the features by feature templates, the prior layers of the
network induce the feature representations themselves.

Here are the final equations for a feedforward network with a single hidden layer,
which takes an input vector x, outputs a probability distribution y, and is parameter-
ized by weight matrices W and U and a bias vector b:

h = σ(Wx+b)

z = Uh

y = softmax(z) (7.10)

We’ll call this network a 2-layer network (we traditionally don’t count the input
layer when numbering layers, but do count the output layer). So by this terminology
logistic regression is a 1-layer network.

Let’s now set up some notation to make it easier to talk about deeper networks
of depth more than 2. We’ll use superscripts in square brackets to mean layer num-
bers, starting at 0 for the input layer. So W [1] will mean the weight matrix for the
(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
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combination of weights and biases W [i]a[i−1]+b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0]+b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1]+b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i−1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]

might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

7.4 Training Neural Nets

A feedforward neural net is an instance of supervised machine learning in which we
know the correct output y for each observation x. What the system produces, via
Eq. 7.11, is ŷ, the system’s estimate of the true y. The goal of the training procedure
is to learn parameters W [i] and b[i] for each layer i that make ŷ for each training
observation as close as possible to the true y.

In general, we do all this by drawing on the methods we introduced in Chapter 5
for logistic regression, so the reader should be comfortable with that chapter before
proceeding.

First, we’ll need a loss function that models the distance between the system
output and the gold output, and it’s common to use the loss function used for logistic
regression, the cross-entropy loss.

Second, to find the parameters that minimize this loss function, we’ll use the
gradient descent optimization algorithm introduced in Chapter 5.

Third, gradient descent requires knowing the gradient of the loss function, the
vector that contains the partial derivative of the loss function with respect to each of
the parameters. Here is one part where learning for neural networks is more complex
than for logistic logistic regression. In logistic regression, for each observation we
could directly compute the derivative of the loss function with respect to an individ-
ual w or b. But for neural networks, with millions of parameters in many layers, it’s
much harder to see how to compute the partial derivative of some weight in layer 1
when the loss is attached to some much later layer. How do we partial out the loss
over all those intermediate layers?

The answer is the algorithm called error backpropagation or reverse differen-
tiation.
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7.4.1 Loss function
The cross-entropy loss that is used in neural networks is the same one we saw forcross-entropy

loss
logistic regression.

In fact, if the neural network is being used as a binary classifier, with the sig-
moid at the final layer, the loss function is exactly the same as we saw with logistic
regression in Eq. 5.10:

LCE(ŷ,y) =− log p(y|x) = − [y log ŷ+(1− y) log(1− ŷ)] (7.12)

What about if the neural network is being used as a multinomial classifier? Let y be
a vector over the C classes representing the true output probability distribution. The
cross-entropy loss here is

LCE(ŷ,y) =−
C∑

i=1

yi log ŷi (7.13)

We can simplify this equation further. Assume this is a hard classification task,
meaning that only one class is the correct one, and that there is one output unit in y
for each class. If the true class is i, then y is a vector where yi = 1 and y j = 0 ∀ j 6= i.
A vector like this, with one value=1 and the rest 0, is called a one-hot vector. Now
let ŷ be the vector output from the network. The sum in Eq. 7.13 will be 0 except
for the true class. Hence the cross-entropy loss is simply the log probability of the
correct class, and we therefore also call this the negative log likelihood loss:negative log

likelihood loss

LCE(ŷ,y) = − log ŷi (7.14)

Plugging in the softmax formula from Eq. 7.9, and with K the number of classes:

LCE(ŷ,y) = − log
ezi

∑K
j=1 ez j

(7.15)

7.4.2 Computing the Gradient
How do we compute the gradient of this loss function? Computing the gradient
requires the partial derivative of the loss function with respect to each parameter.
For a network with one weight layer and sigmoid output (which is what logistic
regression is), we could simply use the derivative of the loss that we used for logistic
regression in Eq. 7.16 (and derived in Section 5.8):

∂LCE(w,b)
∂w j

= (ŷ− y) x j

= (σ(w · x+b)− y) x j (7.16)

Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. 5.35:

∂LCE

∂wk
= (1{y = k}− p(y = k|x))xk

=

(
1{y = k}− ewk·x+bk

∑K
j=1 ew j ·x+b j

)
xk (7.17)
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But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

7.4.3 Computation Graphs
A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2∗b

e = a+d

L = c∗ e

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.9. The simplest use of computation graphs is to compute the value of the
function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = −2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,−2) = 10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.

e=d+a

d = 2b L=ce

3

1

-2

e=5

d=2 L=-10

forward pass

a

b

c

Figure 7.9 Computation graph for the function L(a,b,c) = c(a+2b), with values for input
nodes a = 3, b = 1, c =−2, showing the forward pass computation of L.

7.4.4 Backward differentiation on computation graphs
The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
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to each of the input variables, i.e., ∂L
∂a , ∂L

∂b , and ∂L
∂c . The derivative ∂L

∂a , tells us how
much a small change in a affects L.

Backwards differentiation makes use of the chain rule in calculus. Suppose wechain rule

are computing the derivative of a composite function f (x) = u(v(x)). The derivative
of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv
· dv

dx
(7.18)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv
· dv

dw
· dw

dx
(7.19)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.20)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.21)

Eq. 7.21 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
to compute these derivatives. Fig. 7.10 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.

Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.11 shows a sample computation graph for a 2-layer neural network with n0 =
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e=5
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Figure 7.10 Computation graph for the function L(a,b,c) = c(a+2b), showing the back-
ward pass computation of ∂L

∂a , ∂L
∂b , and ∂L

∂c .

2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1]+b[2]

a[2] = σ(z[2])

ŷ = a[2] (7.22)

z[2] = 
+ a[2] = σ

 

a[1] = 
ReLU

z[1] = 
+

b[1] *

*

*

*

x1

x2

a[1] = 
ReLU

z[1] = 
+

b[1]

*

*

w[2]
11

w[1]
11

w[1]
21

w[1]
12

w[1]
22 b[2]

w[2]
21

L (a[2],y)

Figure 7.11 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer)
with two input dimensions and 2 hidden dimensions.

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section 5.8 the derivative of the sigmoid σ :

dσ(z)
dz

= σ(z)(1−σ(z)) (7.23)
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We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1− tanh2(z) (7.24)

The derivative of the ReLU is

d ReLU(z)
dz

=

{
0 f or x< 0
1 f or x≥ 0 (7.25)

7.4.5 More details on learning

Optimization in neural networks is a non-convex optimization problem, more com-
plex than for logistic regression, and for that and other reasons there are many best
practices for successful learning.

For logistic regression we can initialize gradient descent with all the weights and
biases having the value 0. In neural networks, by contrast, we need to initialize the
weights with small random numbers. It’s also helpful to normalize the input values
to have 0 mean and unit variance.

Various forms of regularization are used to prevent overfitting. One of the most
important is dropout: randomly dropping some units and their connections fromdropout

the network during training (Hinton et al. 2012, Srivastava et al. 2014). Tuning
of hyperparameters is also important. The parameters of a neural network are thehyperparameter

weights W and biases b; those are learned by gradient descent. The hyperparameters
are things that are chosen by the algorithm designer; optimal values are tuned on a
devset rather than by gradient descent learning on the training set. Hyperparameters
include the learning rate η , the mini-batch size, the model architecture (the number
of layers, the number of hidden nodes per layer, the choice of activation functions),
how to regularize, and so on. Gradient descent itself also has many architectural
variants such as Adam (Kingma and Ba, 2015).

Finally, most modern neural networks are built using computation graph for-
malisms that make it easy and natural to do gradient computation and parallelization
onto vector-based GPUs (Graphic Processing Units). Pytorch (Paszke et al., 2017)
and TensorFlow (Abadi et al., 2015) are two of the most popular. The interested
reader should consult a neural network textbook for further details; some sugges-
tions are at the end of the chapter.

7.5 Neural Language Models

As our first application of neural networks, let’s consider language modeling: pre-
dicting upcoming words from prior word context.

Neural net-based language models turn out to have many advantages over the n-
gram language models of Chapter 3. Among these are that neural language models
don’t need smoothing, they can handle much longer histories, and they can general-
ize over contexts of similar words. For a training set of a given size, a neural lan-
guage model has much higher predictive accuracy than an n-gram language model.
Furthermore, neural language models underlie many of the models we’ll introduce
for tasks like machine translation, dialog, and language generation.
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On the other hand, there is a cost for this improved performance: neural net
language models are strikingly slower to train than traditional language models, and
so for many tasks an n-gram language model is still the right tool.

In this chapter we’ll describe simple feedforward neural language models, first
introduced by Bengio et al. (2003). Modern neural language models are generally
not feedforward but recurrent, using the technology that we will introduce in Chap-
ter 9.

A feedforward neural LM is a standard feedforward network that takes as input
at time t a representation of some number of previous words (wt−1,wt−2, etc.) and
outputs a probability distribution over possible next words. Thus—like the n-gram
LM—the feedforward neural LM approximates the probability of a word given the
entire prior context P(wt |wt−1

1 ) by approximating based on the N previous words:

P(wt |wt−1
1 )≈ P(wt |wt−1

t−N+1) (7.26)

In the following examples we’ll use a 4-gram example, so we’ll show a net to
estimate the probability P(wt = i|wt−1,wt−2,wt−3).

7.5.1 Embeddings
In neural language models, the prior context is represented by embeddings of the
previous words. Representing the prior context as embeddings, rather than by ex-
act words as used in n-gram language models, allows neural language models to
generalize to unseen data much better than n-gram language models. For example,
suppose we’ve seen this sentence in training:

I have to make sure when I get home to feed the cat.

but we’ve never seen the word “dog” after the words “feed the”. In our test set we
are trying to predict what comes after the prefix “I forgot when I got home to feed
the”.

An n-gram language model will predict “cat”, but not “dog”. But a neural LM,
which can make use of the fact that “cat” and “dog” have similar embeddings, will
be able to assign a reasonably high probability to “dog” as well as “cat”, merely
because they have similar vectors.

Let’s see how this works in practice. Let’s assume we have an embedding dic-
tionary E that gives us, for each word in our vocabulary V , the embedding for that
word, perhaps precomputed by an algorithm like word2vec from Chapter 6.

Fig. 7.12 shows a sketch of this simplified feedforward neural language model
with N=3; we have a moving window at time t with an embedding vector represent-
ing each of the 3 previous words (words wt−1, wt−2, and wt−3). These 3 vectors are
concatenated together to produce x, the input layer of a neural network whose output
is a softmax with a probability distribution over words. Thus y42, the value of output
node 42 is the probability of the next word wt being V42, the vocabulary word with
index 42.

The model shown in Fig. 7.12 is quite sufficient, assuming we learn the embed-
dings separately by a method like the word2vec methods of Chapter 6. The method
of using another algorithm to learn the embedding representations we use for input
words is called pretraining. If those pretrained embeddings are sufficient for yourpretraining

purposes, then this is all you need.
However, often we’d like to learn the embeddings simultaneously with training

the network. This is true when whatever task the network is designed for (sentiment
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Figure 7.12 A simplified view of a feedforward neural language model moving through a text. At each
timestep t the network takes the 3 context words, converts each to a d-dimensional embedding, and concatenates
the 3 embeddings together to get the 1×Nd unit input layer x for the network. These units are multiplied by
a weight matrix W and bias vector b and then an activation function to produce a hidden layer h, which is then
multiplied by another weight matrix U . (For graphic simplicity we don’t show b in this and future pictures.)
Finally, a softmax output layer predicts at each node i the probability that the next word wt will be vocabulary
word Vi. (This picture is simplified because it assumes we just look up in an embedding dictionary E the
d-dimensional embedding vector for each word, precomputed by an algorithm like word2vec.)

classification, or translation, or parsing) places strong constraints on what makes a
good representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pre-trained embeddings, we’re
going to represent each of the N previous words as a one-hot vector of length |V |, i.e.,
with one dimension for each word in the vocabulary. A one-hot vector is a vectorone-hot vector

that has one element equal to 1—in the dimension corresponding to that word’s
index in the vocabulary— while all the other elements are set to zero.

Thus in a one-hot representation for the word “toothpaste”, supposing it happens
to have index 5 in the vocabulary, x5 is one and and xi = 0 ∀i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]

1 2 3 4 5 6 7 ... ... |V|

Fig. 7.13 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the embedding matrix E.
Note that we don’t want to learn separate weight matrices for mapping each of the 3
previous words to the projection layer, we want one single embedding dictionary E
that’s shared among these three. That’s because over time, many different words will
appear as wt−2 or wt−1, and we’d like to just represent each word with one vector,
whichever context position it appears in. The embedding weight matrix E thus has
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Figure 7.13 Learning all the way back to embeddings. Notice that the embedding matrix E is shared among
the 3 context words.

a row for each word, each a vector of d dimensions, and hence has dimensionality
V ×d.

Let’s walk through the forward pass of Fig. 7.13.

1. Select three embeddings from E: Given the three previous words, we look
up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider wt−3. The one-hot vector for ‘the’ (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix E is justprojection layer

an embedding for a word, and the input is a one-hot column vector xi for word
Vi, the projection layer for input w will be Exi = ei, the embedding for word i.
We now concatenate the three embeddings for the context words.

2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer h.

3. Multiply by U: h is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates

the probability P(wt = i|wt−1,wt−2,wt−3)

In summary, if we use e to represent the projection layer, formed by concate-
nating the 3 embeddings for the three context vectors, the equations for a neural
language model become:

e = (Ex1,Ex2, ...,Ex) (7.27)

h = σ(We+b) (7.28)

z = Uh (7.29)

y = softmax(z) (7.30)
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7.5.2 Training the neural language model
To train the model, i.e. to set all the parameters θ = E,W,U,b, we do gradient
descent (Fig. 5.5), using error backpropagation on the computation graph to compute
the gradient. Training thus not only sets the weights W and U of the network, but
also as we’re predicting upcoming words, we’re learning the embeddings E for each
words that best predict upcoming words.

Generally training proceeds by taking as input a very long text, concatenating
all the sentences, starting with random weights, and then iteratively moving through
the text predicting each word wt . At each word wt , the cross-entropy (negative log
likelihood) loss is:

L =− log p(wt |wt−1, ...,wt−n+1) (7.31)

The gradient for this loss is then:

θt+1 = θt −η
∂ − log p(wt |wt−1, ...,wt−n+1)

∂θ
(7.32)

This gradient can be computed in any standard neural network framework which
will then backpropagate through U , W , b, E.

Training the parameters to minimize loss will result both in an algorithm for
language modeling (a word predictor) but also a new set of embeddings E that can
be used as word representations for other tasks.

7.6 Summary

• Neural networks are built out of neural units, originally inspired by human
neurons but now simply an abstract computational device.

• Each neural unit multiplies input values by a weight vector, adds a bias, and
then applies a non-linear activation function like sigmoid, tanh, or rectified
linear.

• In a fully-connected, feedforward network, each unit in layer i is connected
to each unit in layer i+1, and there are no cycles.

• The power of neural networks comes from the ability of early layers to learn
representations that can be utilized by later layers in the network.

• Neural networks are trained by optimization algorithms like gradient de-
scent.

• Error backpropagation, backward differentiation on a computation graph,
is used to compute the gradients of the loss function for a network.

• Neural language models use a neural network as a probabilistic classifier, to
compute the probability of the next word given the previous n words.

• Neural language models can use pretrained embeddings, or can learn embed-
dings from scratch in the process of language modeling.

Bibliographical and Historical Notes
The origins of neural networks lie in the 1940s McCulloch-Pitts neuron (McCul-
loch and Pitts, 1943), a simplified model of the human neuron as a kind of com-
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puting element that could be described in terms of propositional logic. By the late
1950s and early 1960s, a number of labs (including Frank Rosenblatt at Cornell and
Bernard Widrow at Stanford) developed research into neural networks; this phase
saw the development of the perceptron (Rosenblatt, 1958), and the transformation
of the threshold into a bias, a notation we still use (Widrow and Hoff, 1960).

The field of neural networks declined after it was shown that a single percep-
tron unit was unable to model functions as simple as XOR (Minsky and Papert,
1969). While some small amount of work continued during the next two decades,
a major revival for the field didn’t come until the 1980s, when practical tools for
building deeper networks like error backpropagation became widespread (Rumel-
hart et al., 1986). During the 1980s a wide variety of neural network and related
architectures were developed, particularly for applications in psychology and cog-
nitive science (Rumelhart and McClelland 1986b, McClelland and Elman 1986,
Rumelhart and McClelland 1986a, Elman 1990), for which the term connection-
ist or parallel distributed processing was often used (Feldman and Ballard 1982,connectionist

Smolensky 1988). Many of the principles and techniques developed in this period
are foundational to modern work, including the ideas of distributed representations
(Hinton, 1986), recurrent networks (Elman, 1990), and the use of tensors for com-
positionality (Smolensky, 1990).

By the 1990s larger neural networks began to be applied to many practical lan-
guage processing tasks as well, like handwriting recognition (LeCun et al. 1989,
LeCun et al. 1990) and speech recognition (Morgan and Bourlard 1989, Morgan
and Bourlard 1990). By the early 2000s, improvements in computer hardware and
advances in optimization and training techniques made it possible to train even larger
and deeper networks, leading to the modern term deep learning (Hinton et al. 2006,
Bengio et al. 2007). We cover more related history in Chapter 9.

There are a number of excellent books on the subject. Goldberg (2017) has a
superb and comprehensive coverage of neural networks for natural language pro-
cessing. For neural networks in general see Goodfellow et al. (2016) and Nielsen
(2015).



CHAPTER

8 Part-of-Speech Tagging

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (it was a long
time ago), wrote a grammatical sketch of Greek (a “technē”) that summarized the
linguistic knowledge of his day. This work is the source of an astonishing proportion
of modern linguistic vocabulary, including words like syntax, diphthong, clitic, and
analogy. Also included are a description of eight parts of speech: noun, verb,parts of speech

pronoun, preposition, adverb, conjunction, participle, and article. Although earlier
scholars (including Aristotle as well as the Stoics) had their own lists of parts of
speech, it was Thrax’s set of eight that became the basis for practically all subsequent
part-of-speech descriptions of most European languages for the next 2000 years.

Schoolhouse Rock was a series of popular animated educational television clips
from the 1970s. Its Grammar Rock sequence included songs about exactly 8 parts
of speech, including the late great Bob Dorough’s Conjunction Junction:

Conjunction Junction, what’s your function?
Hooking up words and phrases and clauses...

Although the list of 8 was slightly modified from Thrax’s original, the astonishing
durability of the parts of speech through two millennia is an indicator of both the
importance and the transparency of their role in human language.1

Parts of speech (also known as POS, word classes, or syntactic categories) arePOS

useful because they reveal a lot about a word and its neighbors. Knowing whether
a word is a noun or a verb tells us about likely neighboring words (nouns are pre-
ceded by determiners and adjectives, verbs by nouns) and syntactic structure (nouns
are generally part of noun phrases), making part-of-speech tagging a key aspect of
parsing (Chapter 13). Parts of speech are useful features for labeling named entities
like people or organizations in information extraction (Chapter 18), or for corefer-
ence resolution (Chapter 22). A word’s part of speech can even play a role in speech
recognition or synthesis, e.g., the word content is pronounced CONtent when it is a
noun and conTENT when it is an adjective.

This chapter introduces parts of speech, and then introduces two algorithms for
part-of-speech tagging, the task of assigning parts of speech to words. One is
generative— Hidden Markov Model (HMM)—and one is discriminative—the Max-
imum Entropy Markov Model (MEMM). Chapter 9 then introduces a third algorithm
based on the recurrent neural network (RNN). All three have roughly equal perfor-
mance but, as we’ll see, have different tradeoffs.

8.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give a more complete definition of these and other classes. While
word classes do have semantic tendencies—adjectives, for example, often describe

1 Nonetheless, eight isn’t very many and, as we’ll see, recent tagsets have more.
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properties and nouns people— parts of speech are traditionally defined instead based
on syntactic and morphological function, grouping words that have similar neighbor-
ing words (their distributional properties) or take similar affixes (their morpholog-
ical properties).

Parts of speech can be divided into two broad supercategories: closed class typesclosed class

and open class types. Closed classes are those with relatively fixed membership,open class

such as prepositions—new prepositions are rarely coined. By contrast, nouns and
verbs are open classes—new nouns and verbs like iPhone or to fax are continually
being created or borrowed. Any given speaker or corpus may have different open
class words, but all speakers of a language, and sufficiently large corpora, likely
share the set of closed class words. Closed class words are generally function wordsfunction word

like of, it, and, or you, which tend to be very short, occur frequently, and often have
structuring uses in grammar.

Four major open classes occur in the languages of the world: nouns, verbs,
adjectives, and adverbs. English has all four, although not every language does.
The syntactic class noun includes the words for most people, places, or things, butnoun

others as well. Nouns include concrete terms like ship and chair, abstractions like
bandwidth and relationship, and verb-like terms like pacing as in His pacing to and
fro became quite annoying. What defines a noun in English, then, are things like its
ability to occur with determiners (a goat, its bandwidth, Plato’s Republic), to take
possessives (IBM’s annual revenue), and for most but not all nouns to occur in the
plural form (goats, abaci).

Open class nouns fall into two classes. Proper nouns, like Regina, Colorado,proper noun

and IBM, are names of specific persons or entities. In English, they generally aren’t
preceded by articles (e.g., the book is upstairs, but Regina is upstairs). In written
English, proper nouns are usually capitalized. The other class, common nouns, arecommon noun

divided in many languages, including English, into count nouns and mass nouns.count noun
mass noun Count nouns allow grammatical enumeration, occurring in both the singular and plu-

ral (goat/goats, relationship/relationships) and they can be counted (one goat, two
goats). Mass nouns are used when something is conceptualized as a homogeneous
group. So words like snow, salt, and communism are not counted (i.e., *two snows
or *two communisms). Mass nouns can also appear without articles where singular
count nouns cannot (Snow is white but not *Goat is white).

Verbs refer to actions and processes, including main verbs like draw, provide,verb

and go. English verbs have inflections (non-third-person-sg (eat), third-person-sg
(eats), progressive (eating), past participle (eaten)). While many researchers believe
that all human languages have the categories of noun and verb, others have argued
that some languages, such as Riau Indonesian and Tongan, don’t even make this
distinction (Broschart 1997; Evans 2000; Gil 2000) .

The third open class English form is adjectives, a class that includes many termsadjective

for properties or qualities. Most languages have adjectives for the concepts of color
(white, black), age (old, young), and value (good, bad), but there are languages
without adjectives. In Korean, for example, the words corresponding to English
adjectives act as a subclass of verbs, so what is in English an adjective “beautiful”
acts in Korean like a verb meaning “to be beautiful”.

The final open class form, adverbs, is rather a hodge-podge in both form andadverb

meaning. In the following all the italicized words are adverbs:

Actually, I ran home extremely quickly yesterday

What coherence the class has semantically may be solely that each of these
words can be viewed as modifying something (often verbs, hence the name “ad-
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verb”, but also other adverbs and entire verb phrases). Directional adverbs or loca-
tive adverbs (home, here, downhill) specify the direction or location of some action;locative

degree adverbs (extremely, very, somewhat) specify the extent of some action, pro-degree

cess, or property; manner adverbs (slowly, slinkily, delicately) describe the mannermanner

of some action or process; and temporal adverbs describe the time that some ac-temporal

tion or event took place (yesterday, Monday). Because of the heterogeneous nature
of this class, some adverbs (e.g., temporal adverbs like Monday) are tagged in some
tagging schemes as nouns.

The closed classes differ more from language to language than do the open
classes. Some of the important closed classes in English include:

prepositions: on, under, over, near, by, at, from, to, with
particles: up, down, on, off, in, out, at, by
determiners: a, an, the
conjunctions: and, but, or, as, if, when
pronouns: she, who, I, others
auxiliary verbs: can, may, should, are
numerals: one, two, three, first, second, third

Prepositions occur before noun phrases. Semantically they often indicate spatialpreposition

or temporal relations, whether literal (on it, before then, by the house) or metaphor-
ical (on time, with gusto, beside herself), but often indicate other relations as well,
like marking the agent in Hamlet was written by Shakespeare. A particle resemblesparticle

a preposition or an adverb and is used in combination with a verb. Particles often
have extended meanings that aren’t quite the same as the prepositions they resemble,
as in the particle over in she turned the paper over.

A verb and a particle that act as a single syntactic and/or semantic unit are
called a phrasal verb. The meaning of phrasal verbs is often problematically non-phrasal verb

compositional—not predictable from the distinct meanings of the verb and the par-
ticle. Thus, turn down means something like ‘reject’, rule out ‘eliminate’, find out
‘discover’, and go on ‘continue’.

A closed class that occurs with nouns, often marking the beginning of a noun
phrase, is the determiner. One small subtype of determiners is the article: Englishdeterminer

article has three articles: a, an, and the. Other determiners include this and that (this chap-
ter, that page). A and an mark a noun phrase as indefinite, while the can mark it
as definite; definiteness is a discourse property (Chapter 23). Articles are quite fre-
quent in English; indeed, the is the most frequently occurring word in most corpora
of written English, and a and an are generally right behind.

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunc-conjunctions

tions like and, or, and but join two elements of equal status. Subordinating conjunc-
tions are used when one of the elements has some embedded status. For example,
that in “I thought that you might like some milk” is a subordinating conjunction
that links the main clause I thought with the subordinate clause you might like some
milk. This clause is called subordinate because this entire clause is the “content” of
the main verb thought. Subordinating conjunctions like that which link a verb to its
argument in this way are also called complementizers.complementizer

Pronouns are forms that often act as a kind of shorthand for referring to somepronoun

noun phrase or entity or event. Personal pronouns refer to persons or entities (you,personal

she, I, it, me, etc.). Possessive pronouns are forms of personal pronouns that in-possessive

dicate either actual possession or more often just an abstract relation between the
person and some object (my, your, his, her, its, one’s, our, their). Wh-pronounswh

(what, who, whom, whoever) are used in certain question forms, or may also act as
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complementizers (Frida, who married Diego. . . ).
A closed class subtype of English verbs are the auxiliary verbs. Cross-linguist-auxiliary

ically, auxiliaries mark semantic features of a main verb: whether an action takes
place in the present, past, or future (tense), whether it is completed (aspect), whether
it is negated (polarity), and whether an action is necessary, possible, suggested, or
desired (mood). English auxiliaries include the copula verb be, the two verbs do andcopula

have, along with their inflected forms, as well as a class of modal verbs. Be is calledmodal

a copula because it connects subjects with certain kinds of predicate nominals and
adjectives (He is a duck). The verb have can mark the perfect tenses (I have gone, I
had gone), and be is used as part of the passive (We were robbed) or progressive (We
are leaving) constructions. Modals are used to mark the mood associated with the
event depicted by the main verb: can indicates ability or possibility, may permission
or possibility, must necessity. There is also a modal use of have (e.g., I have to go).

English also has many words of more or less unique function, including inter-
jections (oh, hey, alas, uh, um), negatives (no, not), politeness markers (please,interjection

negative thank you), greetings (hello, goodbye), and the existential there (there are two on
the table) among others. These classes may be distinguished or lumped together as
interjections or adverbs depending on the purpose of the labeling.

8.2 The Penn Treebank Part-of-Speech Tagset

An important tagset for English is the 45-tag Penn Treebank tagset (Marcus et al.,
1993), shown in Fig. 8.1, which has been used to label many corpora. In such
labelings, parts of speech are generally represented by placing the tag after each
word, delimited by a slash:

Tag Description Example Tag Description Example Tag Description Example
CC coordinating

conjunction
and, but, or PDT predeterminer all, both VBP verb non-3sg

present
eat

CD cardinal number one, two POS possessive ending ’s VBZ verb 3sg pres eats
DT determiner a, the PRP personal pronoun I, you, he WDT wh-determ. which, that
EX existential ‘there’ there PRP$ possess. pronoun your, one’s WP wh-pronoun what, who
FW foreign word mea culpa RB adverb quickly WP$ wh-possess. whose
IN preposition/

subordin-conj
of, in, by RBR comparative

adverb
faster WRB wh-adverb how, where

JJ adjective yellow RBS superlatv. adverb fastest $ dollar sign $
JJR comparative adj bigger RP particle up, off # pound sign #
JJS superlative adj wildest SYM symbol +,%, & “ left quote ‘ or “
LS list item marker 1, 2, One TO “to” to ” right quote ’ or ”
MD modal can, should UH interjection ah, oops ( left paren [, (, {, <
NN sing or mass noun llama VB verb base form eat ) right paren ], ), }, >
NNS noun, plural llamas VBD verb past tense ate , comma ,
NNP proper noun, sing. IBM VBG verb gerund eating . sent-end punc . ! ?
NNPS proper noun, plu. Carolinas VBN verb past part. eaten : sent-mid punc : ; ... – -

Figure 8.1 Penn Treebank part-of-speech tags (including punctuation).

(8.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN
other/JJ topics/NNS ./.

(8.2) There/EX are/VBP 70/CD children/NNS there/RB
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(8.3) Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN
’s/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

Example (8.1) shows the determiners the and a, the adjectives grand and other,
the common nouns jury, number, and topics, and the past tense verb commented.
Example (8.2) shows the use of the EX tag to mark the existential there construction
in English, and, for comparison, another use of there which is tagged as an adverb
(RB). Example (8.3) shows the segmentation of the possessive morpheme ’s, and a
passive construction, ‘were reported’, in which reported is tagged as a past participle
(VBN). Note that since New England Journal of Medicine is a proper noun, the
Treebank tagging chooses to mark each noun in it separately as NNP, including
journal and medicine, which might otherwise be labeled as common nouns (NN).

Corpora labeled with parts of speech are crucial training (and testing) sets for
statistical tagging algorithms. Three main tagged corpora are consistently used for
training and testing part-of-speech taggers for English. The Brown corpus is a mil-Brown

lion words of samples from 500 written texts from different genres published in the
United States in 1961. The WSJ corpus contains a million words published in theWSJ

Wall Street Journal in 1989. The Switchboard corpus consists of 2 million wordsSwitchboard

of telephone conversations collected in 1990-1991. The corpora were created by
running an automatic part-of-speech tagger on the texts and then human annotators
hand-corrected each tag.

There are some minor differences in the tagsets used by the corpora. For example
in the WSJ and Brown corpora, the single Penn tag TO is used for both the infinitive
to (I like to race) and the preposition to (go to the store), while in Switchboard the
tag TO is reserved for the infinitive use of to and the preposition is tagged IN:

Well/UH ,/, I/PRP ,/, I/PRP want/VBP to/TO go/VB to/IN a/DT restauran-
t/NN

Finally, there are some idiosyncracies inherent in any tagset. For example, be-
cause the Penn 45 tags were collapsed from a larger 87-tag tagset, the original
Brown tagset, some potentially useful distinctions were lost. The Penn tagset was
designed for a treebank in which sentences were parsed, and so it leaves off syntactic
information recoverable from the parse tree. Thus for example the Penn tag IN is
used for both subordinating conjunctions like if, when, unless, after:

after/IN spending/VBG a/DT day/NN at/IN the/DT beach/NN

and prepositions like in, on, after:

after/IN sunrise/NN

Words are generally tokenized before tagging. The Penn Treebank and the
British National Corpus split contractions and the ’s-genitive from their stems:2

would/MD n’t/RB
children/NNS ’s/POS

The Treebank tagset assumes that tokenization of multipart words like New
York is done at whitespace, thus tagging. a New York City firm as a/DT New/NNP
York/NNP City/NNP firm/NN.

Another commonly used tagset, the Universal POS tag set of the Universal De-
pendencies project (Nivre et al., 2016a), is used when building systems that can tag
many languages. See Section 8.7.

2 Indeed, the Treebank tag POS is used only for ’s, which must be segmented in tokenization.



148 CHAPTER 8 • PART-OF-SPEECH TAGGING

8.3 Part-of-Speech Tagging

Part-of-speech tagging is the process of assigning a part-of-speech marker to eachpart-of-speech
tagging

word in an input text.3 The input to a tagging algorithm is a sequence of (tokenized)
words and a tagset, and the output is a sequence of tags, one per token.

Tagging is a disambiguation task; words are ambiguous —have more than oneambiguous

possible part-of-speech—and the goal is to find the correct tag for the situation.
For example, book can be a verb (book that flight) or a noun (hand me that book).
That can be a determiner (Does that flight serve dinner) or a complementizer (I
thought that your flight was earlier). The goal of POS-tagging is to resolve theseambiguity

resolution
ambiguities, choosing the proper tag for the context. How common is tag ambiguity?
Fig. 8.2 shows that most word types (85-86%) are unambiguous (Janet is always
NNP, funniest JJS, and hesitantly RB). But the ambiguous words, though accounting
for only 14-15% of the vocabulary, are very common words, and hence 55-67% of
word tokens in running text are ambiguous.4

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 8.2 Tag ambiguity for word types in Brown and WSJ, using Treebank-3 (45-tag)
tagging. Punctuation were treated as words, and words were kept in their original case.

Some of the most ambiguous frequent words are that, back, down, put and set;
here are some examples of the 6 different parts of speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP about debt
I was twenty-one back/RB then

Nonetheless, many words are easy to disambiguate, because their different tags
aren’t equally likely. For example, a can be a determiner or the letter a, but the
determiner sense is much more likely. This idea suggests a simplistic baseline algo-
rithm for part-of-speech tagging: given an ambiguous word, choose the tag which is
most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).

How good is this baseline? A standard way to measure the performance of part-
of-speech taggers is accuracy: the percentage of tags correctly labeled (matchingaccuracy

3 Tags are also applied to punctuation, so tagging assumes tokenizing of commas, quotation marks, etc.,
and disambiguating end-of-sentence periods from periods inside words (e.g., etc.).
4 Note the large differences across the two genres, especially in token frequency. Tags in the WSJ corpus
are less ambiguous; its focus on financial news leads to a more limited distribution of word usages than
the diverse genres of the Brown corpus.
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human labels on a test set). If we train on the WSJ training corpus and test on sec-
tions 22-24 of the same corpus the most-frequent-tag baseline achieves an accuracy
of 92.34%. By contrast, the state of the art in part-of-speech tagging on this dataset
is around 97% tag accuracy, a performance that is achievable by most algorithms
(HMMs, MEMMs, neural networks, rule-based algorithms). See Section 8.7 on
other languages and genres.

8.4 HMM Part-of-Speech Tagging

In this section we introduce the use of the Hidden Markov Model for part-of-speech
tagging. The HMM is a sequence model. A sequence model or sequence classi-sequence model

fier is a model whose job is to assign a label or class to each unit in a sequence,
thus mapping a sequence of observations to a sequence of labels. An HMM is a
probabilistic sequence model: given a sequence of units (words, letters, morphemes,
sentences, whatever), it computes a probability distribution over possible sequences
of labels and chooses the best label sequence.

8.4.1 Markov Chains
The HMM is based on augmenting the Markov chain. A Markov chain is a modelMarkov chain

that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, for example the weather. A Markov chain
makes a very strong assumption that if we want to predict the future in the sequence,
all that matters is the current state. All the states before the current state have no im-
pact on the future except via the current state. It’s as if to predict tomorrow’s weather
you could examine today’s weather but you weren’t allowed to look at yesterday’s
weather.

WARM3HOT1

COLD2

.8

.6

.1
.1
.3

.6

.1
.1

.3

charminguniformly

are

.1

.4 .5

.5
.5

.2

.6 .2

(a) (b)

Figure 8.3 A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution π is required; setting π = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables q1,q2, ...,qi. A Markov
model embodies the Markov assumption on the probabilities of this sequence: thatMarkov

assumption
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(qi = a|q1...qi−1) = P(qi = a|qi−1) (8.4)

Figure 8.3a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
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states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given
state must sum to 1. Figure 8.3b shows a Markov chain for assigning a probability to
a sequence of words w1...wn. This Markov chain should be familiar; in fact, it repre-
sents a bigram language model, with each edge expressing the probability p(wi|w j)!
Given the two models in Fig. 8.3, we can assign a probability to any sequence from
our vocabulary.

Formally, a Markov chain is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.∑n
j=1 ai j = 1 ∀i

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i.
Some states j may have π j = 0, meaning that they cannot
be initial states. Also,

∑n
i=1 πi = 1

Before you go on, use the sample probabilities in Fig. 8.3a (with π = [0.1,0.7,0.2])
to compute the probability of each of the following sequences:

(8.5) hot hot hot hot
(8.6) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 8.3a?

8.4.2 The Hidden Markov Model
A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden

part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventsHidden
Markov model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
∑N

j=1 ai j = 1 ∀i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation ot being generated
from a state qi

π = π1,π2, ...,πN an initial probability distribution over states. πi is the probability that
the Markov chain will start in state i. Some states j may have π j = 0,
meaning that they cannot be initial states. Also,

∑n
i=1 πi = 1
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A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1) (8.7)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (8.8)

8.4.3 The components of an HMM tagger
Let’s start by looking at the pieces of an HMM tagger, and then we’ll see how to use
it to tag. An HMM has two components, the A and B probabilities.

The A matrix contains the tag transition probabilities P(ti|ti−1) which represent
the probability of a tag occurring given the previous tag. For example, modal verbs
like will are very likely to be followed by a verb in the base form, a VB, like race, so
we expect this probability to be high. We compute the maximum likelihood estimate
of this transition probability by counting, out of the times we see the first tag in a
labeled corpus, how often the first tag is followed by the second:

P(ti|ti−1) =
C(ti−1, ti)
C(ti−1)

(8.9)

In the WSJ corpus, for example, MD occurs 13124 times of which it is followed
by VB 10471, for an MLE estimate of

P(V B|MD) =
C(MD,V B)

C(MD)
=

10471
13124

= .80 (8.10)

Let’s walk through an example, seeing how these probabilities are estimated and
used in a sample tagging task, before we return to the algorithm for decoding.

In HMM tagging, the probabilities are estimated by counting on a tagged training
corpus. For this example we’ll use the tagged WSJ corpus.

The B emission probabilities, P(wi|ti), represent the probability, given a tag (say
MD), that it will be associated with a given word (say will). The MLE of the emis-
sion probability is

P(wi|ti) =
C(ti,wi)

C(ti)
(8.11)

Of the 13124 occurrences of MD in the WSJ corpus, it is associated with will 4046
times:

P(will|MD) =
C(MD,will)

C(MD)
=

4046
13124

= .31 (8.12)

We saw this kind of Bayesian modeling in Chapter 4; recall that this likelihood
term is not asking “which is the most likely tag for the word will?” That would be
the posterior P(MD|will). Instead, P(will|MD) answers the slightly counterintuitive
question “If we were going to generate a MD, how likely is it that this modal would
be will?”

The A transition probabilities, and B observation likelihoods of the HMM are
illustrated in Fig. 8.4 for three states in an HMM part-of-speech tagger; the full
tagger would have one state for each tag.
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NN3VB1

MD2

a22

a11

a12

a21

a13

a33

a32

a23

a31

P("aardvark" | NN)
...
P(“will” | NN)
...
P("the" | NN)
...
P(“back” | NN)
...
P("zebra" | NN)

B3

P("aardvark" | VB)
...
P(“will” | VB)
...
P("the" | VB)
...
P(“back” | VB)
...
P("zebra" | VB)

B1

P("aardvark" | MD)
...
P(“will” | MD)
...
P("the" | MD)
...
P(“back” | MD)
...
P("zebra" | MD)

B2

Figure 8.4 An illustration of the two parts of an HMM representation: the A transition
probabilities used to compute the prior probability, and the B observation likelihoods that are
associated with each state, one likelihood for each possible observation word.

8.4.4 HMM tagging as decoding
For any model, such as an HMM, that contains hidden variables, the task of deter-
mining the hidden variables sequence corresponding to the sequence of observations
is called decoding. More formally,decoding

Decoding: Given as input an HMM λ = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

For part-of-speech tagging, the goal of HMM decoding is to choose the tag se-
quence tn

1 that is most probable given the observation sequence of n words wn
1:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1) (8.13)

The way we’ll do this in the HMM is to use Bayes’ rule to instead compute:

t̂n
1 = argmax

tn
1

P(wn
1|tn

1 )P(t
n
1 )

P(wn
1)

(8.14)

Furthermore, we simplify Eq. 8.14 by dropping the denominator P(wn
1):

t̂n
1 = argmax

tn
1

P(wn
1|tn

1 )P(t
n
1 ) (8.15)

HMM taggers make two further simplifying assumptions. The first is that the
probability of a word appearing depends only on its own tag and is independent of
neighboring words and tags:

P(wn
1|tn

1 ) ≈
n∏

i=1

P(wi|ti) (8.16)

The second assumption, the bigram assumption, is that the probability of a tag is
dependent only on the previous tag, rather than the entire tag sequence;

P(tn
1 ) ≈

n∏

i=1

P(ti|ti−1) (8.17)
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Plugging the simplifying assumptions from Eq. 8.16 and Eq. 8.17 into Eq. 8.15
results in the following equation for the most probable tag sequence from a bigram
tagger:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1)≈ argmax
tn
1

n∏

i=1

emission︷ ︸︸ ︷
P(wi|ti)

transition︷ ︸︸ ︷
P(ti|ti−1) (8.18)

The two parts of Eq. 8.18 correspond neatly to the B emission probability and A
transition probability that we just defined above!

8.4.5 The Viterbi Algorithm
The decoding algorithm for HMMs is the Viterbi algorithm shown in Fig. 8.5. AsViterbi

algorithm
an instance of dynamic programming, Viterbi resembles the dynamic program-
ming minimum edit distance algorithm of Chapter 2.

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←πs ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

bestpathprob← N
max

s=1
viterbi[s,T ] ; termination step

bestpathpointer← N
argmax

s=1
viterbi[s,T ] ; termination step

bestpath← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure 8.5 Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and an
HMM λ = (A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood to
the observation sequence.

The Viterbi algorithm first sets up a probability matrix or lattice, with one col-
umn for each observation ot and one row for each state in the state graph. Each col-
umn thus has a cell for each state qi in the single combined automaton. Figure 8.6
shows an intuition of this lattice for the sentence Janet will back the bill.

Each cell of the lattice, vt( j), represents the probability that the HMM is in state
j after seeing the first t observations and passing through the most probable state
sequence q1, ...,qt−1, given the HMM λ . The value of each cell vt( j) is computed
by recursively taking the most probable path that could lead us to this cell. Formally,
each cell expresses the probability

vt( j) = max
q1,...,qt−1

P(q1...qt−1,o1,o2 . . .ot ,qt = j|λ ) (8.19)

We represent the most probable path by taking the maximum over all possible
previous state sequences max

q1,...,qt−1
. Like other dynamic programming algorithms,



154 CHAPTER 8 • PART-OF-SPEECH TAGGING
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NNP

Janet will back the bill

NN

VB

MD

NN

VB

JJ

RB

NNP

DT

NN

VB

Figure 8.6 A sketch of the lattice for Janet will back the bill, showing the possible tags (qi)
for each word and highlighting the path corresponding to the correct tag sequence through the
hidden states. States (parts of speech) which have a zero probability of generating a particular
word according to the B matrix (such as the probability that a determiner DT will be realized
as Janet) are greyed out.

Viterbi fills each cell recursively. Given that we had already computed the probabil-
ity of being in every state at time t−1, we compute the Viterbi probability by taking
the most probable of the extensions of the paths that lead to the current cell. For a
given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot) (8.20)

The three factors that are multiplied in Eq. 8.20 for extending the previous paths to
compute the Viterbi probability at time t are

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

8.4.6 Working through an example
Let’s tag the sentence Janet will back the bill; the goal is the correct series of tags
(see also Fig. 8.6):

(8.21) Janet/NNP will/MD back/VB the/DT bill/NN

Let the HMM be defined by the two tables in Fig. 8.7 and Fig. 8.8. Figure 8.7
lists the ai j probabilities for transitioning between the hidden states (part-of-speech
tags). Figure 8.8 expresses the bi(ot) probabilities, the observation likelihoods of
words given tags. This table is (slightly simplified) from counts in the WSJ corpus.
So the word Janet only appears as an NNP, back has 4 possible parts of speech, and
the word the can appear as a determiner or as an NNP (in titles like “Somewhere
Over the Rainbow” all words are tagged as NNP).

Figure 8.9 shows a fleshed-out version of the sketch we saw in Fig. 8.6, the
Viterbi lattice for computing the best hidden state sequence for the observation se-
quence Janet will back the bill.
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NNP MD VB JJ NN RB DT
<s> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

Figure 8.7 The A transition probabilities P(ti|ti−1) computed from the WSJ corpus without
smoothing. Rows are labeled with the conditioning event; thus P(V B|MD) is 0.7968.

Janet will back the bill
NNP 0.000032 0 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 0 0
DT 0 0 0 0.506099 0

Figure 8.8 Observation likelihoods B computed from the WSJ corpus without smoothing,
simplified slightly.

There are N = 5 state columns. We begin in column 1 (for the word Janet) by
setting the Viterbi value in each cell to the product of the π transition probability
(the start probability for that state i, which we get from the <s> entry of Fig. 8.7),
and the observation likelihood of the word Janet given the tag for that cell. Most of
the cells in the column are zero since the word Janet cannot be any of those tags.
The reader should find this in Fig. 8.9.

Next, each cell in the will column gets updated. For each state, we compute the
value viterbi[s, t] by taking the maximum over the extensions of all the paths from
the previous column that lead to the current cell according to Eq. 8.20. We have
shown the values for the MD, VB, and NN cells. Each cell gets the max of the 7
values from the previous column, multiplied by the appropriate transition probabil-
ity; as it happens in this case, most of them are zero from the previous column. The
remaining value is multiplied by the relevant observation probability, and the (triv-
ial) max is taken. In this case the final value, 2.772e-8, comes from the NNP state at
the previous column. The reader should fill in the rest of the lattice in Fig. 8.9 and
backtrace to see whether or not the Viterbi algorithm returns the gold state sequence
NNP MD VB DT NN.

8.4.7 Extending the HMM Algorithm to Trigrams

Practical HMM taggers have a number of extensions of this simple model. One
important missing feature is a wider tag context. In the tagger described above the
probability of a tag depends only on the previous tag:

P(tn
1 ) ≈

n∏

i=1

P(ti|ti−1) (8.22)



156 CHAPTER 8 • PART-OF-SPEECH TAGGING

π

P(NNP|start) 

= .28

* P(MD|MD)
= 0

*  
P(M

D|N
NP)

.00
00

09
*.0

1  
= 

.9e
-8 

v1(2)=
.0006 x 0 = 

0

v1(1) =
 .28* .000032 

= .000009

t

MDq2

q1

o1

Janet billwill
o2 o3

back

VB

JJ

v1(3)=
.0031 x 0 

= 0

v1(4)= .
045*0=0

o4

  *  P(MD|VB) = 0

 * P(MD|JJ)

= 0

P(VB|start) 

= .0031

P(JJ |start) =

.045

backtrace

q3

q4

the

NNq5

RBq6

DTq7

v2(2) =
max * .308 =

2.772e-8

v2(5)=
max * .0002 
= .0000000001

v2(3)=
max * .000028 
=     2.5e-13

v3(6)=
max * .0104

v3(5)=
max * .
000223

v3(4)=
max * .00034

v3(3)=
max * .00067

v1(5)

v1(6)

v1(7)

v2(1)

v2(4)

v2(6)

v2(7)

backtrace

* P
(R

B|NN)

* P(NN|NN)

start start start start start

o5

NNP

P(MD|start) 

= .0006

Figure 8.9 The first few entries in the individual state columns for the Viterbi algorithm. Each cell keeps the
probability of the best path so far and a pointer to the previous cell along that path. We have only filled out
columns 1 and 2; to avoid clutter most cells with value 0 are left empty. The rest is left as an exercise for the
reader. After the cells are filled in, backtracing from the end state, we should be able to reconstruct the correct
state sequence NNP MD VB DT NN.

In practice we use more of the history, letting the probability of a tag depend on the
two previous tags:

P(tn
1 ) ≈

n∏

i=1

P(ti|ti−1, ti−2) (8.23)

Extending the algorithm from bigram to trigram taggers gives a small (perhaps a
half point) increase in performance, but conditioning on two previous tags instead of
one requires a significant change to the Viterbi algorithm. For each cell, instead of
taking a max over transitions from each cell in the previous column, we have to take
a max over paths through the cells in the previous two columns, thus considering N2

rather than N hidden states at every observation.
In addition to increasing the context window, HMM taggers have a number of

other advanced features. One is to let the tagger know the location of the end of the
sentence by adding dependence on an end-of-sequence marker for tn+1. This gives
the following equation for part-of-speech tagging:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1)≈ argmax
tn
1

[
n∏

i=1

P(wi|ti)P(ti|ti−1, ti−2)

]
P(tn+1|tn) (8.24)
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In tagging any sentence with Eq. 8.24, three of the tags used in the context will
fall off the edge of the sentence, and hence will not match regular words. These tags,
t−1, t0, and tn+1, can all be set to be a single special ‘sentence boundary’ tag that is
added to the tagset, which assumes sentences boundaries have already been marked.

One problem with trigram taggers as instantiated in Eq. 8.24 is data sparsity.
Any particular sequence of tags ti−2, ti−1, ti that occurs in the test set may simply
never have occurred in the training set. That means we cannot compute the tag
trigram probability just by the maximum likelihood estimate from counts, following
Eq. 8.25:

P(ti|ti−1, ti−2) =
C(ti−2, ti−1, ti)
C(ti−2, ti−1)

(8.25)

Just as we saw with language modeling, many of these counts will be zero
in any training set, and we will incorrectly predict that a given tag sequence will
never occur! What we need is a way to estimate P(ti|ti−1, ti−2) even if the sequence
ti−2, ti−1, ti never occurs in the training data.

The standard approach to solving this problem is the same interpolation idea
we saw in language modeling: estimate the probability by combining more robust,
but weaker estimators. For example, if we’ve never seen the tag sequence PRP VB
TO, and so can’t compute P(TO|PRP,VB) from this frequency, we still could rely
on the bigram probability P(TO|VB), or even the unigram probability P(TO). The
maximum likelihood estimation of each of these probabilities can be computed from
a corpus with the following counts:

Trigrams P̂(ti|ti−1, ti−2) =
C(ti−2, ti−1, ti)
C(ti−2, ti−1)

(8.26)

Bigrams P̂(ti|ti−1) =
C(ti−1, ti)
C(ti−1)

(8.27)

Unigrams P̂(ti) =
C(ti)

N
(8.28)

The standard way to combine these three estimators to estimate the trigram probabil-
ity P(ti|ti−1, ti−2) is via linear interpolation. We estimate the probability P(ti|ti−1ti−2)
by a weighted sum of the unigram, bigram, and trigram probabilities:

P(ti|ti−1ti−2) = λ3P̂(ti|ti−1ti−2)+λ2P̂(ti|ti−1)+λ1P̂(ti) (8.29)

We require λ1 + λ2 + λ3 = 1, ensuring that the resulting P is a probability distri-
bution. The λ s are set by deleted interpolation (Jelinek and Mercer, 1980): wedeleted

interpolation
successively delete each trigram from the training corpus and choose the λ s so as to
maximize the likelihood of the rest of the corpus. The deletion helps to set the λ s
in such a way as to generalize to unseen data and not overfit. Figure 8.10 gives a
deleted interpolation algorithm for tag trigrams.

8.4.8 Beam Search
When the number of states grows very large, the vanilla Viterbi algorithm is slow.
The complexity of the algorithm is O(N2T ); N (the number of states) can be large
for trigram taggers, which have to consider every previous pair of the 45 tags, re-
sulting in 453 = 91,125 computations per column. N can be even larger for other
applications of Viterbi, for example to decoding in neural networks, as we will see
in future chapters.
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function DELETED-INTERPOLATION(corpus) returns λ1,λ2,λ3

λ1, λ2, λ3←0
foreach trigram t1, t2, t3 with C(t1, t2, t3)> 0

depending on the maximum of the following three values
case C(t1,t2,t3)−1

C(t1,t2)−1 : increment λ3 by C(t1, t2, t3)

case C(t2,t3)−1
C(t2)−1 : increment λ2 by C(t1, t2, t3)

case C(t3)−1
N−1 : increment λ1 by C(t1, t2, t3)

end
end
normalize λ1,λ2,λ3
return λ1,λ2,λ3

Figure 8.10 The deleted interpolation algorithm for setting the weights for combining uni-
gram, bigram, and trigram tag probabilities. If the denominator is 0 for any case, we define
the result of that case to be 0. N is the number of tokens in the corpus. After Brants (2000).

One common solution to the complexity problem is the use of beam searchbeam search

decoding. In beam search, instead of keeping the entire column of states at each
time point t, we just keep the best few hypothesis at that point. At time t this requires
computing the Viterbi score for each of the N cells, sorting the scores, and keeping
only the best-scoring states. The rest are pruned out and not continued forward to
time t +1.

One way to implement beam search is to keep a fixed number of states instead of
all N current states. Here the beam width β is a fixed number of states. Alternativelybeam width

β can be modeled as a fixed percentage of the N states, or as a probability threshold.
Figure 8.11 shows the search lattice using a beam width of 2 states.

JJ

NNP NNP NNP

MD MD MD MD

VB VB

JJ JJ JJ

NN NN

RB RBRBRB

DT DT DT DT

NNP

Janet will back the bill

NN

VB

MD

NN

VB

JJ

RB

NNP

DT

NN

VB

Figure 8.11 A beam search version of Fig. 8.6, showing a beam width of 2. At each time
t, all (non-zero) states are computed, but then they are sorted and only the best 2 states are
propagated forward and the rest are pruned, shown in orange.
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8.4.9 Unknown Words
words people
never use —
could be
only I
know them Ishikawa Takuboku 1885–1912

To achieve high accuracy with part-of-speech taggers, it is also important to have
a good model for dealing with unknown words. Proper names and acronyms areunknown

words
created very often, and even new common nouns and verbs enter the language at a
surprising rate. One useful feature for distinguishing parts of speech is word shape:
words starting with capital letters are likely to be proper nouns (NNP).

But the strongest source of information for guessing the part-of-speech of un-
known words is morphology. Words that end in -s are likely to be plural nouns
(NNS), words ending with -ed tend to be past participles (VBN), words ending with
-able adjectives (JJ), and so on. We store for each final letter sequence (for sim-
plicity referred to as word suffixes) of up to 10 letters the statistics of the tag it was
associated with in training. We are thus computing for each suffix of length i the
probability of the tag ti given the suffix letters (Samuelsson 1993, Brants 2000):

P(ti|ln−i+1 . . . ln) (8.30)

Back-off is used to smooth these probabilities with successively shorter suffixes.
Because unknown words are unlikely to be closed-class words like prepositions,
suffix probabilities can be computed only for words whose training set frequency is
≤ 10, or only for open-class words. Separate suffix tries are kept for capitalized and
uncapitalized words.

Finally, because Eq. 8.30 gives a posterior estimate p(ti|wi), we can compute
the likelihood p(wi|ti) that HMMs require by using Bayesian inversion (i.e., using
Bayes’ rule and computation of the two priors P(ti) and P(ti|ln−i+1 . . . ln)).

In addition to using capitalization information for unknown words, Brants (2000)
also uses capitalization for known words by adding a capitalization feature to each
tag. Thus, instead of computing P(ti|ti−1, ti−2) as in Eq. 8.26, the algorithm com-
putes the probability P(ti,ci|ti−1,ci−1, ti−2,ci−2). This is equivalent to having a cap-
italized and uncapitalized version of each tag, doubling the size of the tagset.

Combining all these features, a trigram HMM like that of Brants (2000) has a
tagging accuracy of 96.7% on the Penn Treebank, perhaps just slightly below the
performance of the best MEMM and neural taggers.

8.5 Maximum Entropy Markov Models

While an HMM can achieve very high accuracy, we saw that it requires a number of
architectural innovations to deal with unknown words, backoff, suffixes, and so on.
It would be so much easier if we could add arbitrary features directly into the model
in a clean way, but that’s hard for generative models like HMMs. Luckily, we’ve
already seen a model for doing this: the logistic regression model of Chapter 5! But
logistic regression isn’t a sequence model; it assigns a class to a single observation.
However, we could turn logistic regression into a discriminative sequence model
simply by running it on successive words, using the class assigned to the prior word
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as a feature in the classification of the next word. When we apply logistic regression
in this way, it’s called the maximum entropy Markov model or MEMM.5MEMM

Let the sequence of words be W = wn
1 and the sequence of tags T = tn

1 . In an
HMM to compute the best tag sequence that maximizes P(T |W ) we rely on Bayes’
rule and the likelihood P(W |T ):

T̂ = argmax
T

P(T |W )

= argmax
T

P(W |T )P(T )

= argmax
T

∏

i

P(wordi|tagi)
∏

i

P(tagi|tagi−1) (8.31)

In an MEMM, by contrast, we compute the posterior P(T |W ) directly, training it to
discriminate among the possible tag sequences:

T̂ = argmax
T

P(T |W )

= argmax
T

∏

i

P(ti|wi, ti−1) (8.32)

Consider tagging just one word. A multinomial logistic regression classifier could
compute the single probability P(ti|wi, ti−1) in a different way than an HMM. Fig. 8.12
shows the intuition of the difference via the direction of the arrows; HMMs compute
likelihood (observation word conditioned on tags) but MEMMs compute posterior
(tags conditioned on observation words).

will

MD VB DT NN

Janet back the bill

NNP

will

MD VB DT NN

Janet back the bill

NNP

Figure 8.12 A schematic view of the HMM (top) and MEMM (bottom) representation of
the probability computation for the correct sequence of tags for the back sentence. The HMM
computes the likelihood of the observation given the hidden state, while the MEMM computes
the posterior of each state, conditioned on the previous state and current observation.

8.5.1 Features in a MEMM
Of course we don’t build MEMMs that condition just on wi and ti−1. The reason
to use a discriminative sequence model is that it’s easier to incorporate a lot of fea-
tures.6 Figure 8.13 shows a graphical intuition of some of these additional features.

5 ‘Maximum entropy model’ is an outdated name for logistic regression; see the history section.
6 Because in HMMs all computation is based on the two probabilities P(tag|tag) and P(word|tag), if
we want to include some source of knowledge into the tagging process, we must find a way to encode
the knowledge into one of these two probabilities. Each time we add a feature we have to do a lot of
complicated conditioning which gets harder and harder as we have more and more such features.
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will

MD VB

Janet back the bill

NNP

<s>

wi wi+1wi-1

ti-1ti-2

wi-2

Figure 8.13 An MEMM for part-of-speech tagging showing the ability to condition on
more features.

A basic MEMM part-of-speech tagger conditions on the observation word it-
self, neighboring words, and previous tags, and various combinations, using feature
templates like the following:templates

〈ti,wi−2〉,〈ti,wi−1〉,〈ti,wi〉,〈ti,wi+1〉,〈ti,wi+2〉
〈ti, ti−1〉,〈ti, ti−2, ti−1〉,

〈ti, ti−1,wi〉,〈ti,wi−1,wi〉〈ti,wi,wi+1〉, (8.33)

Recall from Chapter 5 that feature templates are used to automatically populate the
set of features from every instance in the training and test set. Thus our example
Janet/NNP will/MD back/VB the/DT bill/NN, when wi is the word back, would gen-
erate the following features:

ti = VB and wi−2 = Janet
ti = VB and wi−1 = will
ti = VB and wi = back
ti = VB and wi+1 = the
ti = VB and wi+2 = bill
ti = VB and ti−1 = MD
ti = VB and ti−1 = MD and ti−2 = NNP
ti = VB and wi = back and wi+1 = the

Also necessary are features to deal with unknown words, expressing properties of
the word’s spelling or shape:

wi contains a particular prefix (from all prefixes of length ≤ 4)
wi contains a particular suffix (from all suffixes of length ≤ 4)
wi contains a number
wi contains an upper-case letter
wi contains a hyphen
wi is all upper case
wi’s word shape
wi’s short word shape
wi is upper case and has a digit and a dash (like CFC-12)
wi is upper case and followed within 3 words by Co., Inc., etc.

Word shape features are used to represent the abstract letter pattern of the wordword shape

by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to ’d’, and retaining
punctuation. Thus for example I.M.F would map to X.X.X. and DC10-30 would
map to XXdd-dd. A second class of shorter word shape features is also used. In these
features consecutive character types are removed, so DC10-30 would be mapped to
Xd-d but I.M.F would still map to X.X.X. For example the word well-dressed would
generate the following non-zero valued feature values:
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prefix(wi) = w

prefix(wi) = we

prefix(wi) = wel

prefix(wi) = well

suffix(wi) = ssed

suffix(wi) = sed

suffix(wi) = ed

suffix(wi) = d

has-hyphen(wi)
word-shape(wi) = xxxx-xxxxxxx

short-word-shape(wi) = x-x

Features for known words, like the templates in Eq. 8.33, are computed for every
word seen in the training set. The unknown word features can also be computed for
all words in training, or only on training words whose frequency is below some
threshold. The result of the known-word templates and word-signature features is a
very large set of features. Generally a feature cutoff is used in which features are
thrown out if they have count < 5 in the training set.

8.5.2 Decoding and Training MEMMs
The most likely sequence of tags is then computed by combining these features of
the input word wi, its neighbors within l words wi+l

i−l , and the previous k tags t i−1
i−k as

follows (using θ to refer to feature weights instead of w to avoid the confusion with
w meaning words):

T̂ = argmax
T

P(T |W )

= argmax
T

∏

i

P(ti|wi+l
i−l , t

i−1
i−k )

= argmax
T

∏

i

exp


∑

j

θ j f j(ti,wi+l
i−l , t

i−1
i−k )




∑

t ′∈tagset
exp


∑

j

θ j f j(t ′,wi+l
i−l , t

i−1
i−k )




(8.34)

How should we decode to find this optimal tag sequence T̂ ? The simplest way
to turn logistic regression into a sequence model is to build a local classifier that
classifies each word left to right, making a hard classification on the first word in
the sentence, then a hard decision on the second word, and so on. This is called a
greedy decoding algorithm, because we greedily choose the best tag for each word,greedy

as shown in Fig. 8.14.

function GREEDY SEQUENCE DECODING(words W, model P) returns tag sequence T

for i = 1 to length(W)
t̂i = argmax

t ′∈ T
P(t ′ | wi+l

i−l , t
i−1
i−k )

Figure 8.14 In greedy decoding we simply run the classifier on each token, left to right,
each time making a hard decision about which is the best tag.
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The problem with the greedy algorithm is that by making a hard decision on
each word before moving on to the next word, the classifier can’t use evidence from
future decisions. Although the greedy algorithm is very fast, and occasionally has
sufficient accuracy to be useful, in general the hard decision causes too great a drop
in performance, and we don’t use it.

Instead we decode an MEMM with the Viterbi algorithm just as with the HMM,Viterbi

finding the sequence of part-of-speech tags that is optimal for the whole sentence.
For example, assume that our MEMM is only conditioning on the previous tag

ti−1 and observed word wi. Concretely, this involves filling an N × T array with
the appropriate values for P(ti|ti−1,wi), maintaining backpointers as we proceed. As
with HMM Viterbi, when the table is filled, we simply follow pointers back from the
maximum value in the final column to retrieve the desired set of labels. The requisite
changes from the HMM-style application of Viterbi have to do only with how we
fill each cell. Recall from Eq. 8.20 that the recursive step of the Viterbi equation
computes the Viterbi value of time t for state j as

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1< t ≤ T (8.35)

which is the HMM implementation of

vt( j) =
N

max
i=1

vt−1(i) P(s j|si) P(ot |s j) 1≤ j ≤ N,1< t ≤ T (8.36)

The MEMM requires only a slight change to this latter formula, replacing the a and
b prior and likelihood probabilities with the direct posterior:

vt( j) =
N

max
i=1

vt−1(i) P(s j|si,ot) 1≤ j ≤ N,1< t ≤ T (8.37)

Learning in MEMMs relies on the same supervised learning algorithms we presented
for logistic regression. Given a sequence of observations, feature functions, and cor-
responding hidden states, we use gradient descent to train the weights to maximize
the log-likelihood of the training corpus.

8.6 Bidirectionality

The one problem with the MEMM and HMM models as presented is that they are
exclusively run left-to-right. While the Viterbi algorithm still allows present deci-
sions to be influenced indirectly by future decisions, it would help even more if a
decision about word wi could directly use information about future tags ti+1 and ti+2.

Adding bidirectionality has another useful advantage. MEMMs have a theoret-
ical weakness, referred to alternatively as the label bias or observation bias prob-label bias

observation
bias lem (Lafferty et al. 2001, Toutanova et al. 2003). These are names for situations

when one source of information is ignored because it is explained away by another
source. Consider an example from Toutanova et al. (2003), the sequence will/NN
to/TO fight/VB. The tag TO is often preceded by NN but rarely by modals (MD),
and so that tendency should help predict the correct NN tag for will. But the previ-
ous transition P(twill |〈s〉) prefers the modal, and because P(TO|to, twill) is so close
to 1 regardless of twill the model cannot make use of the transition probability and
incorrectly chooses MD. The strong information that to must have the tag TO has ex-
plained away the presence of TO and so the model doesn’t learn the importance of
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the previous NN tag for predicting TO. Bidirectionality helps the model by making
the link between TO available when tagging the NN.

One way to implement bidirectionality is to switch to a more powerful model
called a conditional random field or CRF. The CRF is an undirected graphicalCRF

model, which means that it’s not computing a probability for each tag at each time
step. Instead, at each time step the CRF computes log-linear functions over a clique,
a set of relevant features. Unlike for an MEMM, these might include output features
of words in future time steps. The probability of the best sequence is similarly
computed by the Viterbi algorithm. Because a CRF normalizes probabilities over all
tag sequences, rather than over all the tags at an individual time t, training requires
computing the sum over all possible labelings, which makes CRF training quite slow.

Simpler methods can also be used; the Stanford tagger uses a bidirectionalStanford tagger

version of the MEMM called a cyclic dependency network (Toutanova et al., 2003).
Alternatively, any sequence model can be turned into a bidirectional model by

using multiple passes. For example, the first pass would use only part-of-speech
features from already-disambiguated words on the left. In the second pass, tags for
all words, including those on the right, can be used. Alternately, the tagger can be run
twice, once left-to-right and once right-to-left. In greedy decoding, for each word
the classifier chooses the highest-scoring of the tags assigned by the left-to-right and
right-to-left classifier. In Viterbi decoding, the classifier chooses the higher scoring
of the two sequences (left-to-right or right-to-left). These bidirectional models lead
directly into the bi-LSTM models that we will introduce in Chapter 9 as a standard
neural sequence model.

8.7 Part-of-Speech Tagging for Morphological Rich Lan-
guages

Augmentations to tagging algorithms become necessary when dealing with lan-
guages with rich morphology like Czech, Hungarian and Turkish.

These productive word-formation processes result in a large vocabulary for these
languages: a 250,000 word token corpus of Hungarian has more than twice as many
word types as a similarly sized corpus of English (Oravecz and Dienes, 2002), while
a 10 million word token corpus of Turkish contains four times as many word types
as a similarly sized English corpus (Hakkani-Tür et al., 2002). Large vocabular-
ies mean many unknown words, and these unknown words cause significant per-
formance degradations in a wide variety of languages (including Czech, Slovene,
Estonian, and Romanian) (Hajič, 2000).

Highly inflectional languages also have much more information than English
coded in word morphology, like case (nominative, accusative, genitive) or gender
(masculine, feminine). Because this information is important for tasks like pars-
ing and coreference resolution, part-of-speech taggers for morphologically rich lan-
guages need to label words with case and gender information. Tagsets for morpho-
logically rich languages are therefore sequences of morphological tags rather than a
single primitive tag. Here’s a Turkish example, in which the word izin has three pos-
sible morphological/part-of-speech tags and meanings (Hakkani-Tür et al., 2002):

1. Yerdeki izin temizlenmesi gerek. iz + Noun+A3sg+Pnon+Gen

The trace on the floor should be cleaned.

2. Üzerinde parmak izin kalmiş iz + Noun+A3sg+P2sg+Nom
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Your finger print is left on (it).

3. Içeri girmek için izin alman gerekiyor. izin + Noun+A3sg+Pnon+Nom

You need permission to enter.

Using a morphological parse sequence like Noun+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts of speech, and so tagsets can
be 4 to 10 times larger than the 50–100 tags we have seen for English. With such
large tagsets, each word needs to be morphologically analyzed to generate the list
of possible morphological tag sequences (part-of-speech tags) for the word. The
role of the tagger is then to disambiguate among these tags. This method also helps
with unknown words since morphological parsers can accept unknown stems and
still segment the affixes properly.

For non-word-space languages like Chinese, word segmentation (Chapter 2) is
either applied before tagging or done jointly. Although Chinese words are on aver-
age very short (around 2.4 characters per unknown word compared with 7.7 for En-
glish) the problem of unknown words is still large. While English unknown words
tend to be proper nouns in Chinese the majority of unknown words are common
nouns and verbs because of extensive compounding. Tagging models for Chinese
use similar unknown word features to English, including character prefix and suf-
fix features, as well as novel features like the radicals of each character in a word.
(Tseng et al., 2005).

A standard for multilingual tagging is the Universal POS tag set of the Universal
Dependencies project, which contains 16 tags plus a wide variety of features that
can be added to them to create a large tagset for any language (Nivre et al., 2016a).

8.8 Summary

This chapter introduced parts of speech and part-of-speech tagging:

• Languages generally have a small set of closed class words that are highly
frequent, ambiguous, and act as function words, and open-class words like
nouns, verbs, adjectives. Various part-of-speech tagsets exist, of between 40
and 200 tags.

• Part-of-speech tagging is the process of assigning a part-of-speech label to
each of a sequence of words.

• Two common approaches to sequence modeling are a generative approach,
HMM tagging, and a discriminative approach, MEMM tagging. We will see
a third, discriminative neural approach in Chapter 9.

• The probabilities in HMM taggers are estimated by maximum likelihood es-
timation on tag-labeled training corpora. The Viterbi algorithm is used for
decoding, finding the most likely tag sequence

• Beam search is a variant of Viterbi decoding that maintains only a fraction of
high scoring states rather than all states during decoding.

• Maximum entropy Markov model or MEMM taggers train logistic regres-
sion models to pick the best tag given an observation word and its context and
the previous tags, and then use Viterbi to choose the best sequence of tags.

• Modern taggers are generally run bidirectionally.
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Bibliographical and Historical Notes

What is probably the earliest part-of-speech tagger was part of the parser in Zellig
Harris’s Transformations and Discourse Analysis Project (TDAP), implemented be-
tween June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962),
although earlier systems had used part-of-speech dictionaries. TDAP used 14 hand-
written rules for part-of-speech disambiguation; the use of part-of-speech tag se-
quences and the relative frequency of tags for a word prefigures all modern algo-
rithms. The parser was implemented essentially as a cascade of finite-state trans-
ducers; see Joshi and Hopely (1999) and Karttunen (1999) for a reimplementation.

The Computational Grammar Coder (CGC) of Klein and Simmons (1963) had
three components: a lexicon, a morphological analyzer, and a context disambigua-
tor. The small 1500-word lexicon listed only function words and other irregular
words. The morphological analyzer used inflectional and derivational suffixes to as-
sign part-of-speech classes. These were run over words to produce candidate parts
of speech which were then disambiguated by a set of 500 context rules by relying on
surrounding islands of unambiguous words. For example, one rule said that between
an ARTICLE and a VERB, the only allowable sequences were ADJ-NOUN, NOUN-
ADVERB, or NOUN-NOUN. The TAGGIT tagger (Greene and Rubin, 1971) used
the same architecture as Klein and Simmons (1963), with a bigger dictionary and
more tags (87). TAGGIT was applied to the Brown corpus and, according to Francis
and Kučera (1982, p. 9), accurately tagged 77% of the corpus; the remainder of the
Brown corpus was then tagged by hand. All these early algorithms were based on
a two-stage architecture in which a dictionary was first used to assign each word a
set of potential parts of speech, and then lists of handwritten disambiguation rules
winnowed the set down to a single part of speech per word.

Soon afterwards probabilistic architectures began to be developed. Probabili-
ties were used in tagging by Stolz et al. (1965) and a complete probabilistic tagger
with Viterbi decoding was sketched by Bahl and Mercer (1976). The Lancaster-
Oslo/Bergen (LOB) corpus, a British English equivalent of the Brown corpus, was
tagged in the early 1980’s with the CLAWS tagger (Marshall 1983; Marshall 1987;
Garside 1987), a probabilistic algorithm that approximated a simplified HMM tag-
ger. The algorithm used tag bigram probabilities, but instead of storing the word
likelihood of each tag, the algorithm marked tags either as rare (P(tag|word)< .01)
infrequent (P(tag|word)< .10) or normally frequent (P(tag|word)> .10).

DeRose (1988) developed a quasi-HMM algorithm, including the use of dy-
namic programming, although computing P(t|w)P(w) instead of P(w|t)P(w). The
same year, the probabilistic PARTS tagger of Church (1988), (1989) was probably
the first implemented HMM tagger, described correctly in Church (1989), although
Church (1988) also described the computation incorrectly as P(t|w)P(w) instead
of P(w|t)P(w). Church (p.c.) explained that he had simplified for pedagogical pur-
poses because using the probability P(t|w) made the idea seem more understandable
as “storing a lexicon in an almost standard form”.

Later taggers explicitly introduced the use of the hidden Markov model (Ku-
piec 1992; Weischedel et al. 1993; Schütze and Singer 1994). Merialdo (1994)
showed that fully unsupervised EM didn’t work well for the tagging task and that
reliance on hand-labeled data was important. Charniak et al. (1993) showed the im-
portance of the most frequent tag baseline; the 92.3% number we give above was
from Abney et al. (1999). See Brants (2000) for many implementation details of an
HMM tagger whose performance is still roughly close to state of the art taggers.
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Ratnaparkhi (1996) introduced the MEMM tagger, called MXPOST, and the
modern formulation is very much based on his work.

The idea of using letter suffixes for unknown words is quite old; the early Klein
and Simmons (1963) system checked all final letter suffixes of lengths 1-5. The
probabilistic formulation we described for HMMs comes from Samuelsson (1993).
The unknown word features described on page 161 come mainly from (Ratnaparkhi,
1996), with augmentations from Toutanova et al. (2003) and Manning (2011).

State of the art taggers use neural algorithms like the sequence models in Chap-
ter 9 or (bidirectional) log-linear models Toutanova et al. (2003). HMM (Brants 2000;
Thede and Harper 1999) and MEMM tagger accuracies are likely just a tad lower.

An alternative modern formalism, the English Constraint Grammar systems (Karls-
son et al. 1995; Voutilainen 1995; Voutilainen 1999), uses a two-stage formalism
much like the early taggers from the 1950s and 1960s. A morphological analyzer
with tens of thousands of English word stem entries returns all parts of speech for a
word, using a large feature-based tagset. So the word occurred is tagged with the op-
tions 〈V PCP2 SV〉 and 〈V PAST VFIN SV〉, meaning it can be a participle (PCP2)
for an intransitive (SV) verb, or a past (PAST) finite (VFIN) form of an intransitive
(SV) verb. A set of 3,744 constraints are then applied to the input sentence to rule
out parts of speech inconsistent with the context. For example here’s a rule for the
ambiguous word that that eliminates all tags except the ADV (adverbial intensifier)
sense (this is the sense in the sentence it isn’t that odd):

ADVERBIAL-THAT RULE Given input: “that”
if (+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier */

(+2 SENT-LIM); /* and following which is a sentence boundary, */
(NOT -1 SVOC/A); /* and the previous word is not a verb like */

/* ‘consider’ which allows adjs as object complements */
then eliminate non-ADV tags else eliminate ADV tag

Manning (2011) investigates the remaining 2.7% of errors in a high-performing
tagger, the bidirectional MEMM-style model described above (Toutanova et al.,
2003). He suggests that a third or half of these remaining errors are due to errors or
inconsistencies in the training data, a third might be solvable with richer linguistic
models, and for the remainder the task is underspecified or unclear.

Supervised tagging relies heavily on in-domain training data hand-labeled by
experts. Ways to relax this assumption include unsupervised algorithms for cluster-
ing words into part-of-speech-like classes, summarized in Christodoulopoulos et al.
(2010), and ways to combine labeled and unlabeled data, for example by co-training
(Clark et al. 2003; Søgaard 2010).

See Householder (1995) for historical notes on parts of speech, and Sampson
(1987) and Garside et al. (1997) on the provenance of the Brown and other tagsets.

Exercises
8.1 Find one tagging error in each of the following sentences that are tagged with

the Penn Treebank tagset:

1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS
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8.2 Use the Penn Treebank tagset to tag each word in the following sentences
from Damon Runyon’s short stories. You may ignore punctuation. Some of
these are quite difficult; do your best.

1. It is a nice night.
2. This crap game is over a garage in Fifty-second Street. . .
3. . . . Nobody ever takes the newspapers she sells . . .
4. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a

mournful voice.
5. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is

a dish I am very fond of, . . .
6. When a guy and a doll get to taking peeks back and forth at each other,

why there you are indeed.

8.3 Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

8.4 Implement the “most likely tag” baseline. Find a POS-tagged training set,
and use it to compute for each word the tag that maximizes p(t|w). You will
need to implement a simple tokenizer to deal with sentence boundaries. Start
by assuming that all unknown words are NN and compute your error rate on
known and unknown words. Now write at least five rules to do a better job of
tagging unknown words, and show the difference in error rates.

8.5 Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled training
set, train the transition and observation probabilities of the HMM tagger di-
rectly on the hand-tagged data. Then implement the Viterbi algorithm so that
you can label an arbitrary test sentence. Now run your algorithm on the test
set. Report its error rate and compare its performance to the most frequent tag
baseline.

8.6 Do an error analysis of your tagger. Build a confusion matrix and investigate
the most frequent errors. Propose some features for improving the perfor-
mance of your tagger on these errors.



CHAPTER

9 Sequence Processing with
Recurrent Networks

Time will explain.
Jane Austen, Persuasion

Language is an inherently temporal phenomenon. When we comprehend and pro-
duce spoken language, we are processing continuous input streams of indefinite
length. And even when dealing with written text we normally process it sequen-
tially, even though we in principle have arbitrary access to all the elements at once.
The temporal nature of language is reflected in the metaphors we use; we talk of
the flow of conversations, news feeds, and twitter streams, all of which call out the
notion that language is a sequence that unfolds in time. This temporal nature is also
reflected in the algorithms we use to process language. When applied to the problem
of part-of-speech tagging, the Viterbi algorithm works its way incrementally through
its input a word at a time, taking into account information gleaned along the way.
The syntactic parsing algorithms we cover in Chapters 11, 12, and 13 operate in a
similar fashion.

In contrast, the machine learning approaches we’ve studied for sentiment analy-
sis and other classification tasks do not have this temporal nature. These approaches
have simultaneous access to all aspects of their input. This is certainly true of feed-
forward neural networks, including their application to neural language models.
Such networks employ fixed-size input vectors with associated weights to capture
all relevant aspects of an example at once. This makes it difficult to deal with se-
quences of varying length, and they fail to capture important temporal aspects of
language.

We saw one work-around for these problems with the case of neural language
models. These models operate by accepting fixed-sized windows of tokens as input;
sequences longer than the window size are processed by sliding windows over the
input making predictions as they go, with the end result being a sequence of pre-
dictions spanning the input. Importantly, the decision made for one window has no
impact on later decisions. Fig. 9.1, reproduced here from Chapter 7, illustrates this
approach with a window of size 3. Here, we’re predicting which word will come
next given the window the ground there. Subsequent words are predicted by sliding
the window forward one word at a time.

The sliding window approach is problematic for a number of reasons. First, it
shares the primary weakness of Markov approaches in that it limits the context from
which information can be extracted; anything outside the context window has no
impact on the decision being made. This is an issue since there are many language
tasks that require access to information that can be arbitrarily distant from the point
at which processing is happening. Second, the use of windows makes it difficult for
networks to learn systematic patterns arising from phenomena like constituency. For
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Figure 9.1 A simplified view of a feedforward neural language model moving through a text. At each time
step t the network takes the 3 context words, converts each to a d-dimensional embedding, and concatenates the
3 embeddings together to get the 1×Nd unit input layer x for the network.

example, in Fig. 9.1 the noun phrase the ground appears in two separate windows:
once, as shown, in the first and second positions in the window, and in the preceding
step where it appears in the second and third positions, thus forcing the network to
learn two separate patterns for what should be a constituent.

The subject of this chapter is recurrent neural networks, a class of networksrecurrent
neural networks

designed to address these challenges by dealing directly with the temporal aspect of
language, allowing us to handle variable length inputs without the use of arbitrary
fixed-sized windows, and providing the means to capture and exploit the temporal
nature of language.

9.1 Simple Recurrent Neural Networks

A recurrent neural network (RNN) is any network that contains a cycle within its
network connections. That is, any network where the value of a unit is directly, or
indirectly, dependent on earlier outputs as an input. While powerful, such networks
are difficult to reason about and to train. However, within the general class of recur-
rent networks there are constrained architectures that have proven to be extremely
effective when applied to spoken and written language. In this section, we consider a
class of recurrent networks referred to as Elman Networks (Elman, 1990) or simpleElman

Networks
recurrent networks. These networks are useful in their own right and serve as the
basis for more complex approaches to be discussed later in this chapter and again in
Chapter 10 and Chapter 11. Going forward, when we use the term RNN we’ll be
referring to these simpler more constrained networks.

Fig. 9.2 illustrates the structure of a simple RNN. As with ordinary feedforward
networks, an input vector representing the current input element, xt , is multiplied by
a weight matrix and then passed through an activation function to compute an activa-
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ht

yt

xt

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous time step.

tion value for a layer of hidden units. This hidden layer is, in turn, used to calculate
a corresponding output, yt . In a departure from our earlier window-based approach,
sequences are processed by presenting one element at a time to the network. The
key difference from a feedforward network lies in the recurrent link shown in the
figure with the dashed line. This link augments the input to the computation at the
hidden layer with the activation value of the hidden layer from the preceding point
in time.

The hidden layer from the previous time step provides a form of memory, or
context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this architecture does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension may make RNNs appear to be more exotic than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation. To see this, consider Fig. 9.3
which clarifies the nature of the recurrence and how it factors into the computation
at the hidden layer. The most significant change lies in the new set of weights,
U , that connect the hidden layer from the previous time step to the current hidden
layer. These weights determine how the network should make use of past context in
calculating the output for the current input. As with the other weights in the network,
these connections are trained via backpropagation.

9.1.1 Inference in Simple RNNs

Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output yt for an input xt , we need the activation value for the hidden
layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht−1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the
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Figure 9.3 Simple recurrent neural network illustrated as a feedforward network.

output vector.

ht = g(Uht−1 +Wxt)

yt = f (V ht)

In the commonly encountered case of soft classification, computing yt consists of
a softmax computation that provides a normalized probability distribution over the
possible output classes.

yt = softmax(V ht)

The fact that the computation at time t requires the value of the hidden layer
from time t−1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time
step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0←0
for i←1 to LENGTH(x) do

hi←g(U hi−1 + W xi)
yi← f (V hi)

return y

Figure 9.4 Forward inference in a simple recurrent network. The matrices U , V and W are
shared across time, while new values for h and y are calculated with each time step.

9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the
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Figure 9.5 A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U , V and W are shared in common across all time steps.

weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Before going on, let’s first review some of the notation that we introduced in
Chapter 7. Assuming a network with an input layer x and a non-linear activation
function g, a[i] refers to the activation value from a layer i, which is the result of
applying g to z[i], the weighted sum of the inputs to that layer.

Fig. 9.5 illustrates two considerations that we didn’t have to worry about with
backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t− 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t +1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as
the ones that follow.

Consider the situation where we are examining an input/output pair at time 2 as
shown in Fig. 9.6. What do we need to compute the gradients required to update
the weights U , V , and W here? Let’s start by reviewing how we compute the gra-
dients required to update V since this computation is unchanged from feedforward
networks. To review from Chapter 7, we need to compute the derivative of the loss
function L with respect to the weights V . However, since the loss is not expressed
directly in terms of the weights, we apply the chain rule to get there indirectly.

∂L
∂V

=
∂L
∂a

∂a
∂ z

∂ z
∂V

The first term on the right is the derivative of the loss function with respect to
the network output, a. The second term is the derivative of the network output with
respect to the intermediate network activation z, which is a function of the activation
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function g. The final term in our application of the chain rule is the derivative of the
network activation with respect to the weights V , which is the activation value of the
current hidden layer ht .

It’s useful here to use the first two terms to define δ , an error term that represents
how much of the scalar loss is attributable to each of the units in the output layer.

δout =
∂L
∂a

∂a
∂ z

(9.1)

δout = L′g′(z) (9.2)

Therefore, the final gradient we need to update the weight matrix V is just:

∂L
∂V

= δoutht (9.3)
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Figure 9.6 The backpropagation of errors in a simple RNN ti vectors represent the targets for each element
of the sequence from the training data. The red arrows illustrate the flow of backpropagated errors required to
calculate the gradients for U , V and W at time 2. The two incoming arrows converging on h2 signal that these
errors need to be summed.

Moving on, we need to compute the corresponding gradients for the weight ma-
trices W and U : ∂L

∂W and ∂L
∂U . Here we encounter the first substantive change from

feedforward networks. The hidden state at time t contributes to the output and asso-
ciated error at time t and to the output and error at the next time step, t+1. Therefore,
the error term, δh, for the hidden layer must be the sum of the error term from the
current output and its error from the next time step.

δh = g′(z)V δout +δnext

Given this total error term for the hidden layer, we can compute the gradients for
the weights U and W using the chain rule as we did in Chapter 7.
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dL
dW

=
dL
dz

dz
da

da
dW

dL
dU

=
dL
dz

dz
da

da
dU

∂L
∂W

= δhxt

∂L
∂U

= δhht−1

These gradients provide us with the information needed to update the matrices U
and W .

We’re not quite done yet, we still need to assign proportional blame (compute
the error term) back to the previous hidden layer ht−1 for use in further processing.
This involves backpropagating the error from δh to ht−1 proportionally based on the
weights in U .

δnext = g′(z)Uδh (9.4)

At this point we have all the gradients needed to perform weight updates for each of
our three sets of weights. Note that in this simple case there is no need to backprop-
agate the error through W to the input x, since the input training data is assumed to
be fixed. If we wished to update our input word or character embeddings we would
backpropagate the error through to them as well.

Taken together, all of these considerations lead to a two-pass algorithm for train-
ing the weights in RNNs. In the first pass, we perform forward inference, computing
ht , yt , and accumulating the loss at each step in time, saving the value of the hidden
layer at each step for use at the next time step. In the second phase, we process the
sequence in reverse, computing the required error terms gradients as we go, comput-
ing and saving the error term for use in the hidden layer for each step backward in
time. This general approach is commonly referred to as Backpropagation Through
Time (Werbos 1974, Rumelhart et al. 1986, Werbos 1990).

Backpropaga-
tion Through

Time

9.1.3 Unrolled Networks as Computation Graphs
We used the unrolled network shown in Fig. 9.5 as a way to illustrate the tem-
poral nature of RNNs. However, with modern computational frameworks and ad-
equate computing resources, explicitly unrolling a recurrent network into a deep
feedforward computational graph is quite practical for word-by-word approaches to
sentence-level processing. In such an approach, we provide a template that speci-
fies the basic structure of the network, including all the necessary parameters for the
input, output, and hidden layers, the weight matrices, as well as the activation and
output functions to be used. Then, when presented with a particular input sequence,
we can generate an unrolled feedforward network specific to that input, and use that
graph to perform forward inference or training via ordinary backpropagation.

For applications that involve much longer input sequences, such as speech recog-
nition, character-by-character sentence processing, or streaming of continuous in-
puts, unrolling an entire input sequence may not be feasible. In these cases, we can
unroll the input into manageable fixed-length segments and treat each segment as a
distinct training item.
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9.2 Applications of Recurrent Neural Networks

Recurrent neural networks have proven to be an effective approach to language mod-
eling, sequence labeling tasks such as part-of-speech tagging, as well as sequence
classification tasks such as sentiment analysis and topic classification. And as we’ll
see in Chapter 10 and Chapter 11, they form the basis for sequence-to-sequence
approaches to summarization, machine translation, and question answering.

9.2.1 Recurrent Neural Language Models
We’ve already seen two ways to create probabilistic language models: N-gram mod-
els and feedforward networks with sliding windows. Given a fixed preceding con-
text, both attempt to predict the next word in a sequence. More formally, they com-
pute the conditional probability of the next word in a sequence given the preceding
words, P(wn|wn−1

1 ).
In both approaches, the quality of a model is largely dependent on the size of

the context and how effectively the model makes use of it. Thus, both N-gram and
sliding-window neural networks are constrained by the Markov assumption embod-
ied in the following equation.

P(wn|wn−1
1 )≈ P(wn|wn−1

n−N+1) (9.5)

That is, anything outside the preceding context of size N has no bearing on the
computation.

Recurrent neural language models process sequences a word at a time attempting
to predict the next word in a sequence by using the current word and the previous
hidden state as input (Mikolov et al., 2010). Thus, the limited context constraint
inherent in both N-gram models and sliding window approaches is avoided since the
hidden state embodies information about all of the preceding words all the way back
to the beginning of the sequence.

Forward inference in a recurrent language model proceeds as described in Sec-
tion 9.1.1. At each step the network retrieves a word embedding for the current word
as input and combines it with the hidden layer from the previous step to compute a
new hidden layer. This hidden layer is then used to generate an output layer which is
passed through a softmax layer to generate a probability distribution over the entire
vocabulary.

P(wn|wn−1
1 ) = yn (9.6)

= softmax(V hn) (9.7)

The probability of an entire sequence is then just the product of the probabilities of
each item in the sequence.

P(wn
1) =

n∏

k=1

P(wk|wk−1
1 ) (9.8)

=

n∏

k=1

yk (9.9)
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As with the approach introduced in Chapter 7, to train such a model we use a
corpus of representative text as training material. The task is to predict the next word
in a sequence given the previous words, using cross-entropy as the loss function.
Recall that the cross-entropy loss for a single example is the negative log probability
assigned to the correct class, which is the result of applying a softmax to the final
output layer.

LCE(ŷ,y) = − log ŷi (9.10)

= − log
ezi

∑K
j=1 ez j

(9.11)

Here, the correct class i is the word that actually comes next in the data and yi is
the probability assigned to that word, and the softmax is over the entire vocabulary,
which has size K. The weights in the network are adjusted to minimize the cross-
entropy loss over the training set via gradient descent.

Generation with Neural Language Models

As we saw with the probabilistic Shakespeare generator in Chapter 3, a fun way to
gain insight into a language model is to use Shannon’s method (Shannon, 1951) to
generate random sentences. The procedure is basically the same as that described
on 39.
• To begin, sample the first word in the output from the softmax distribution that

results from using the beginning of sentence marker, <s>, as the first input.
• Use the word embedding for that first word as the input to the network at the

next time step, and then sample the next word in the same fashion.
• Continue generating until the end of sentence marker, </s>, is sampled or a

fixed length limit is reached.
This technique is called autoregressive generation since the word generated at theautoregressive

generation
each time step is conditioned on the word generated by the network at the previous
step. Fig. 9.7 illustrates this approach. In this figure, the details of the RNN’s hidden
layers and recurrent connections are hidden within the blue block.

While this is an entertaining exercise, this architecture has inspired state-of-
the-art approaches to applications such as machine translation, summarization, and
question answering. The key to these approaches is to prime the generation compo-
nent with an appropriate context. That is, instead of simply using <s> to get things
started we can provide a richer task-appropriate context. We’ll return to these more
advanced applications in Chapter 10, where we discuss encoder-decoder networks.

Finally, as we did with Shakespeare, we can move beyond informally assessing
the quality of generated output by using perplexity to objectively compare the output
to a held-out sample of the training corpus.

PP(W ) = N

√√√√
N∏

i=1

1
P(wi|wi−1)

(9.12)

The lower the perplexity, the better the model.

9.2.2 Sequence Labeling
In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each element of a sequence. The canonical example of such a
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Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over

Janet will back

RNN

the bill

NNDTVBMDNNP

Softmax

Argmax

Embdeddings

Words

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
tagset at each time step, we will again employ the cross-entropy loss during training.

A closely related, and extremely useful, application of sequence labeling is to
find and classify spans of text that correspond to concepts of interest in some task
domain. One example of such a task is named entity recognition — the prob-named entity

recognition
lem of finding all the spans in a text that correspond to names of people, places or
organizations (a problem we’ll study in more detail in Chapter 18).

To use sequence labeling for a span-recognition problem, we’ll use a technique
called IOB encoding (Ramshaw and Marcus, 1995). In its simplest form, we label
any token that begins a span of interest with the label B, tokens that occur inside a
span are tagged with an I, and any tokens outside of any span of interest are labeled
O. Consider the following example:

(9.13) United
B

cancelled
O

the
O

flight
O

from
O

Denver
B

to
O

San
B

Francisco.
I

Here, the spans of interest are United, Denver and San Francisco.
In applications where we are interested in more than one class of entity (e.g.,

finding and distinguishing names of people, locations, or organizations), we can
specialize the B and I tags to represent each of the more specific classes, thus ex-
panding the tagset from 3 tags to 2∗N +1, where N is the number of classes we’re
interested in. Applying this approach to the previous example results in the follow-
ing encoding.

(9.14) United
B-ORG

cancelled
O

the
O

flight
O

from
O

Denver
B-LOC

to
O

San
B-LOC

Francisco.
I-LOC

Given such an encoding, we’ve reduced the span recognition task to a per-word
labeling task where the inputs are our usual word embeddings and the output consists
of a sequence of softmax distributions over the tags at each point in the sequence.

Yet another application of sequence labeling is to the problem of structure pre-
diction. Here the task is to take an input sequence and produce some kind of struc-structure

prediction
tured output, such as a parse tree or meaning representation. One way to model
problems like this is to learn a sequence of actions, or operators, which when exe-
cuted would produce the desired structure. Therefore, instead of predicting a label
for each element of an input sequence, the network is trained to select a sequence of
actions, which when executed in sequence produce the desired output. The clearest
example of this approach is transition-based parsing which borrows the shift-reduce
paradigm from compiler construction. We’ll return to this application in Chapter 15
when we take up dependency parsing.

Viterbi and Conditional Random Fields (CRFs)

As we saw when we applied logistic regression to part-of-speech tagging, choosing
the maximum probability label for each element in a sequence independently does
not necessarily result in an optimal (or even very good) sequence of tags. In the case
of IOB tagging, it doesn’t even guarantee that the resulting sequence will be well-
formed. For example, nothing in approach described in the last section prevents an
output sequence from containing an I following an O, even though such a transition
is illegal. Similarly, when dealing with multiple classes nothing would prevent an
I-LOC tag from following a B-PER tag.
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One solution to this problem is to combine the sequence of outputs from a re-
current network with an output-level language model as discussed in Chapter 8. We
can then use a variant of the Viterbi algorithm to select the most likely tag sequence.
This approach is usually implemented by adding a CRF (Lample et al., 2016a) layer
as the final layer of recurrent network.

9.2.3 RNNs for Sequence Classification
Another use of RNNs is to classify entire sequences rather than the tokens within
them. We’ve already encountered this task in Chapter 4 with our discussion of sen-
timent analysis. Other examples include document-level topic classification, spam
detection, message routing for customer service applications, and deception detec-
tion. In all of these applications, sequences of text are classified as belonging to one
of a small number of categories.

To apply RNNs in this setting, the text to be classified is passed through the RNN
a word at a time generating a new hidden layer at each time step. The hidden layer
for the final element of the text, hn, is taken to constitute a compressed representation
of the entire sequence. In the simplest approach to classification, hn, serves as the
input to a subsequent feedforward network that chooses a class via a softmax over
the possible classes. Fig. 9.9 illustrates this approach.

x1 x2 x3 xn

RNN

hn

Softmax

Figure 9.9 Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

Note that in this approach there are no intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. Specifically, the out-
put from the softmax output from the feedforward classifier together with a cross-
entropy loss drives the training. The error signal from the classification is backprop-
agated all the way through the weights in the feedforward classifier through, to its
input, and then through to the three sets of weights in the RNN as described earlier
in Section 9.1.2. This combination of a simple recurrent network with a feedforward
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classifier is our first example of a deep neural network. And the training regimen
that uses the loss from a downstream application to adjust the weights all the way
through the network is referred to as end-to-end training.end-to-end

training

9.3 Deep Networks: Stacked and Bidirectional RNNs

As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNs.

9.3.1 Stacked RNNs
In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs

the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3
yn

x1 x2 x3 xn

RNN 1

RNN 3

RNN 2

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.
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The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

9.3.2 Bidirectional RNNs
In a simple recurrent network, the hidden state at a given time t represents everything
the network knows about the sequence up to that point in the sequence. That is, the
hidden state at time t is the result of a function of the inputs from the start up through
time t. We can think of this as the context of the network to the left of the current
time.

h f
t = RNNforward(xt

1)

Where h f
t corresponds to the normal hidden state at time t, and represents everything

the network has gleaned from the sequence to that point.
In many applications we have access to the entire input sequence all at once. We

might ask whether it is helpful to take advantage of the context to the right of the
current input as well. One way to recover such information is to train an RNN on an
input sequence in reverse, using exactly the same kind of networks that we’ve been
discussing. With this approach, the hidden state at time t now represents information
about the sequence to the right of the current input.

hb
t = RNNbackward(xn

t )

Here, the hidden state hb
t represents all the information we have discerned about the

sequence from t to the end of the sequence.
Combining the forward and backward networks results in a bidirectional RNN(Schusterbidirectional

RNN
and Paliwal, 1997). A Bi-RNN consists of two independent RNNs, one where the
input is processed from the start to the end, and the other from the end to the start.
We then combine the outputs of the two networks into a single representation that
captures both the left and right contexts of an input at each point in time.

ht = h f
t ⊕hb

t

Fig. 9.11 illustrates a bidirectional network where the outputs of the forward and
backward pass are concatenated. Other simple ways to combine the forward and
backward contexts include element-wise addition or multiplication. The output at
each step in time thus captures information to the left and to the right of the current
input. In sequence labeling applications, these concatenated outputs can serve as the
basis for a local labeling decision.

Bidirectional RNNs have also proven to be quite effective for sequence classi-
fication. Recall from Fig. 9.10, that for sequence classification we used the final
hidden state of the RNN as the input to a subsequent feedforward classifier. A dif-
ficulty with this approach is that the final state naturally reflects more information
about the end of the sentence than its beginning. Bidirectional RNNs provide a
simple solution to this problem; as shown in Fig. 9.12, we simply combine the final
hidden states from the forward and backward passes and use that as input for follow-
on processing. Again, concatenation is a common approach to combining the two
outputs but element-wise summation, multiplication or averaging are also used.
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y1

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

y2

+

y3
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yn

+

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

9.4 Managing Context in RNNs: LSTMs and GRUs

In practice, it is quite difficult to train RNNs for tasks that require a network to make
use of information distant from the current point of processing. Despite having
access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
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to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.

Assigning a high probability to was following airline is straightforward since airline
provides a strong local context for the singular agreement. However, assigning an
appropriate probability to were is quite difficult, not only because the plural flights is
quite distant, but also because the intervening context involves singular constituents.
Ideally, a network should be able to retain the distant information about plural flights
until it is needed, while still processing the intermediate parts of the sequence cor-
rectly.

One reason for the inability of RNNs to carry forward critical information is that
the hidden layers, and, by extension, the weights that determine the values in the hid-
den layer, are being asked to perform two tasks simultaneously: provide information
useful for the current decision, and updating and carrying forward information re-
quired for future decisions.

A second difficulty with training SRNs arises from the need to backpropagate
the error signal back through time. Recall from Section 9.1.2 that the hidden layer
at time t contributes to the loss at the next time step since it takes part in that cal-
culation. As a result, during the backward pass of training, the hidden layers are
subject to repeated multiplications, as determined by the length of the sequence. A
frequent result of this process is that the gradients are eventually driven to zero – the
so-called vanishing gradients problem.vanishing

gradients
To address these issues, more complex network architectures have been designed

to explicitly manage the task of maintaining relevant context over time. More specif-
ically, the network needs to learn to forget information that is no longer needed and
to remember information required for decisions still to come.

9.4.1 Long Short-Term Memory
Long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997)

Long
short-term

memory
divide the context management problem into two sub-problems: removing informa-
tion no longer needed from the context, and adding information likely to be needed
for later decision making. The key to solving both problems is to learn how to man-
age this context rather than hard-coding a strategy into the architecture. LSTMs
accomplish this by first adding an explicit context layer to the architecture (in addi-
tion to the usual recurrent hidden layer), and through the use of specialized neural
units that make use of gates to control the flow of information into and out of the
units that comprise the network layers. These gates are implemented through the
use of additional weights that operate sequentially on the input, and previous hidden
layer, and previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate to deleteforget gate

information from the context that is no longer needed. The forget gate computes a
weighted sum of the previous state’s hidden layer and the current input and passes
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that through a sigmoid. This mask is then multiplied by the context vector to remove
the information from context that is no longer required.

ft = σ(U f ht−1 +Wf xt)

kt = ct−1� ft

The next task is compute the actual information we need to extract from the
previous hidden state and current inputs — the same basic computation we’ve been
using for all our recurrent networks.

gt = tanh(Ught−1 +Wgxt) (9.16)

Next, we generate the mask for the add gate to select the information to add to theadd gate

current context.

it = σ(Uiht−1 +Wixt) (9.17)

jt = gt � it (9.18)

Next, we add this to the modified context vector to get our new context vector.

ct = jt + kt (9.19)

The final gate we’ll use is the output gate which is used to decide what informa-output gate

tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

ot = σ(Uoht−1 +Woxt) (9.20)

ht = ot � tanh(ct) (9.21)

(9.22)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given
the appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, ht , can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.4.2 Gated Recurrent Units
LSTMs introduce a considerable number of additional parameters to our recurrent
networks. We now have 8 sets of weights to learn (i.e., the U and W for each of the 4
gates within each unit), whereas with simple recurrent units we only had 2. Training
these additional parameters imposes a much significantly higher training cost. Gated
Recurrent Units (GRUs)(Cho et al., 2014) ease this burden by dispensing with the
use of a separate context vector, and by reducing the number of gates to 2 — a reset
gate, r and an update gate, z.

rt = σ(Urht−1 +Wrxt) (9.23)

zt = σ(Uzht−1 +Wzxt) (9.24)
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Figure 9.13 A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the
current input, x, the previous hidden state, ht−1, and the previous context, ct−1. The outputs are a new hidden
state, ht and an updated context, ct .

As with LSTMs, the use of the sigmoid in the design of these gates results in
a binary-like mask that either blocks information with values near zero or allows
information to pass through unchanged with values near one. The purpose of the
reset gate is to decide which aspects of the previous hidden state are relevant to the
current context and what can be ignored. This is accomplished by performing an
element-wise multiplication of r with the value of the previous hidden state. We
then use this masked value in computing an intermediate representation for the new
hidden state at time t.

h̃t = tanh(U(rt �ht−1)+Wxt) (9.25)

The job of the update gate z is to determine which aspects of this new state will
be used directly in the new hidden state and which aspects of the previous state need
to be preserved for future use. This is accomplished by using the values in z to
interpolate between the old hidden state and the new one.

ht = (1− zt)ht−1 + zt h̃t (9.26)

9.4.3 Gated Units, Layers and Networks
The neural units used in LSTMs and GRUs are obviously much more complex than
those used in basic feedforward networks. Fortunately, this complexity is encapsu-
lated within the basic processing units, allowing us to maintain modularity and to
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Figure 9.14 Basic neural units used in feedforward, simple recurrent networks (SRN), long
short-term memory (LSTM) and gate recurrent units.

easily experiment with different architectures. To see this, consider Fig. 9.14 which
illustrates the inputs and outputs associated with each kind of unit.

At the far left, (a) is the basic feedforward unit where a single set of weights and
a single activation function determine its output, and when arranged in a layer there
are no connections among the units in the layer. Next, (b) represents the unit in a
simple recurrent network. Now there are two inputs and an additional set of weights
to go with it. However, there is still a single activation function and output.

The increased complexity of the LSTM (c) and GRU (d) units on the right is
encapsulated within the units themselves. The only additional external complexity
for the LSTM over the basic recurrent unit (b) is the presence of the additional
context vector as an input and output. The GRU units have the same input and
output architecture as the simple recurrent unit.

This modularity is key to the power and widespread applicability of LSTM and
GRU units. LSTM and GRU units can be substituted into any of the network ar-
chitectures described in Section 9.3. And, as with simple RNNs, multi-layered net-
works making use of gated units can be unrolled into deep feedforward networks
and trained in the usual fashion with backpropagation.

9.5 Words, Subwords and Characters

To this point, we’ve been assuming that the inputs to our networks would be word
embeddings. As we’ve seen, word-based embeddings are great at capturing dis-
tributional (syntactic and semantic) similarity between words. However, there are
drawbacks to an exclusively word-based approach:

• For some languages and applications, the lexicon is simply too large to prac-
tically represent every possible word as an embedding. Some means of com-
posing words from smaller bits is needed.

• No matter how large the lexicon, we will always encounter unknown words
due to new words entering the language, misspellings and borrowings from
other languages.
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Figure 9.15 Sequence labeling RNN that accepts distributional word embeddings aug-
mented with character-level word embeddings.

• Morphological information, below the word level, is a critical source of infor-
mation for many languages and many applications. Word-based methods are
blind to such regularities.

A wide variety of alternatives to the word-based approach have been explored
over the past few years. The following are among the primary approaches that have
been tried.

• Ignore words altogether and simply use character sequences as the input to
RNNs.

• Use subword units such as those derived from byte-pair encoding or phonetic
analysis as inputs.

• Use full-blown morphological analysis to derive a linguistically motivated in-
put sequence.

Perhaps not surprisingly there is no clear one-best approach for all applications for
all languages.

One particularly successful approach combines word embeddings with embed-
dings derived from the characters that make up the words. Fig. 9.15 illustrates an
approach in the context of part-of-speech tagging. The upper part of the diagram
consists of an RNN that accepts an input sequence and outputs a softmax distribu-
tion over the tags for each element of the input. Note that this RNN can be arbitrarily
complex, consisting of stacked and/or bidirectional network layers.

The inputs to this network consist of ordinary word embeddings enriched with
character-level information. Specifically, each input consists of the concatenation
of the normal word embedding with embeddings derived from a bidirectional RNN
that accepts the character sequences for each word as input, as shown in the lower
part of the figure.

The character sequence for each word in the input is run through a bidirectional
RNN consisting of two independent RNNs — one that processes the sequence left-
to-right and the other right-to-left. As discussed in Section 9.3.2, the final hidden
states of the left-to-right and right-to-left networks are concatenated to represent the
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composite character-level representation of each word. Critically, these character
embeddings are trained in the context of the overall task; the loss from the part-of-
speech softmax layer is propagated all the way back to the character embeddings.

J a n e

Character Projection Layer

LSTM1 LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2 LSTM2Right-to-left LSTM

Left-to-right LSTM

t

LSTM2

LSTM1

Concatenation

Character-Level Word Embedding

Character Embeddings

Figure 9.16 Bi-RNN accepts word character sequences and emits embeddings derived
from a forward and backward pass over the sequence. The network itself is trained in the
context of a larger end-application where the loss is propagated all the way through to the
character vector embeddings.

9.6 Summary

This chapter has introduced the concept of recurrent neural networks and how they
can be applied to language problems. Here’s a summary of the main points that we
covered:

• In simple Recurrent Neural Networks sequences are processed naturally as an
element at a time.

• The output of a neural unit at a particular point in time is based both on the
current input and value of the hidden layer from the previous time step.

• RNNs can be trained with a straightforward extension of the backpropagation
algorithm, known as backpropagation through time (BPTT).

• Common language-based applications for RNNs include:

– Probabilistic language modeling, where the model assigns a probability
to a sequence, or to the next element of a sequence given the preceding
words.

– Auto-regressive generation using a trained language model.
– Sequence labeling, where each element of a sequence is assigned a label,

as with part-of-speech tagging.
– Sequence classification, where an entire text is assigned to a category, as

in spam detection, sentiment analysis or topic classification.

• Simple recurrent networks often fail since it is extremely difficult to success-
fully train them do to problems maintaining useful gradients over time.
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• More complex gated architectures such as LSTMs and GRUs are designed
to overcome these issues by explicitly managing the task of deciding what to
remember and forget in their hidden and context layers.

Bibliographical and Historical Notes
Influential investigations of the kind of simple RNNs discussed here were conducted
in the context of the Parallel Distributed Processing (PDP) group at UC San Diego in
the 1980’s. Much of this work was directed at human cognitive modeling rather than
practical NLP applications Rumelhart et al. 1986 McClelland et al. 1986. Models
using recurrence at the hidden layer in a feedforward network (Elman networks)
were introduced by Elman (1990). Similar architectures were investigated by Jordan
(1986) with a recurrence from the output layer, and Mathis and Mozer (1995) with
the addition of a recurrent context layer prior to the hidden layer. The possibility of
unrolling a recurrent network into an equivalent feedforward network is discussed
in (Rumelhart et al., 1986).

In parallel with work in cognitive modeling, RNNs were investigated extensively
in the continuous domain in the signal processing and speech communities (Giles
et al., 1994). Schuster and Paliwal (1997) introduced bidirectional RNNs and de-
scribed results on the TIMIT phoneme transcription task.

While theoretically interesting, the difficulty with training RNNs and manag-
ing context over long sequences impeded progress on practical applications. This
situation changed with the introduction of LSTMs in Hochreiter and Schmidhuber
(1997). Impressive performance gains were demonstrated on tasks at the bound-
ary of signal processing and language processing including phoneme recognition
(Graves and Schmidhuber, 2005), handwriting recognition (Graves et al., 2007) and
most significantly speech recognition (Graves et al., 2013).

Interest in applying neural networks to practical NLP problems surged with the
work of Collobert and Weston (2008) and Collobert et al. (2011). These efforts made
use of learned word embeddings, convolutional networks, and end-to-end training.
They demonstrated near state-of-the-art performance on a number of standard shared
tasks including part-of-speech tagging, chunking, named entity recognition and se-
mantic role labeling without the use of hand-engineered features.

Approaches that married LSTMs with pre-trained collections of word-embeddings
based on word2vec (Mikolov et al., 2013) and GLOVE (Pennington et al., 2014),
quickly came to dominate many common tasks: part-of-speech tagging (Ling et al.,
2015a), syntactic chunking (Søgaard and Goldberg, 2016), and named entity recog-
nition via IOB tagging Chiu and Nichols 2016, Ma and Hovy 2016, opinion mining
(Irsoy and Cardie, 2014), semantic role labeling (Zhou and Xu, 2015a) and AMR
parsing (Foland and Martin, 2016). As with the earlier surge of progress involving
statistical machine learning, these advances were made possible by the availability
of training data provided by CONLL, SemEval, and other shared tasks, as well as
shared resources such as Ontonotes (Pradhan et al., 2007b), and PropBank (Palmer
et al., 2005).
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10 Encoder-Decoder Models, At-
tention, and Contextual Em-
beddings

It is all well and good to copy what one sees, but it is much better to draw only what
remains in one’s memory. This is a transformation in which imagination and memory
collaborate.

Edgar Degas

In Chapter 9 we explored recurrent neural networks along with some of their com-
mon use cases, including language modeling, contextual generation, and sequence
labeling. A common thread in these applications was the notion of transduction
— input sequences being transformed into output sequences in a one-to-one fash-
ion. Here, we’ll explore an approach that extends these models and provides much
greater flexibility across a range of applications. Specifically, we’ll introduce encoder-
decoder networks, or sequence-to-sequence models, that are capable of generating
contextually appropriate, arbitrary length, output sequences. Encoder-decoder net-
works have been applied to a very wide range of applications including machine
translation, summarization, question answering, and dialogue modeling.

The key idea underlying these networks is the use of an encoder network that
takes an input sequence and creates a contextualized representation of it. This rep-
resentation is then passed to a decoder which generates a task-specific output se-
quence. The encoder and decoder networks are typically implemented with the same
architecture, often using recurrent networks of the kind we studied in Chapter 9. And
as with the deep networks introduced there, the encoder-decoder architecture allows
networks to be trained in an end-to-end fashion for each application.

10.1 Neural Language Models and Generation Revisited

To understand the design of encoder-decoder networks let’s return to neural language
models and the notion of autoregressive generation. Recall that in a simple recurrent
network, the value f the hidden state at a particular point in time is a function of the
previous hidden state and the current input; the network output is then a function of
this new hidden state.

ht = g(Uht−1 +Wxt)

yt = f (V ht)

Here, U , V , and W are weight matrices which are adjusted during training, g is a
suitable non-linear activation function such as tanh or ReLU, and in the common
case of classification f is a softmax over the set of possible outputs. In practice,
gated networks using LSTMs or GRUs are used in place of these simple RNNs. To
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Figure 10.1 Using an RNN to generate the completion of an input phrase.

reflect this, we’ll abstract away from the details of the specific RNN being used and
simply specify the inputs on which the computation is being based. So the earlier
equations will be expressed as follows with the understanding that there is a suitable
RNN underneath.

ht = g(ht−1,xt)

yt = f (ht)

To create an RNN-based language model, we train the network to predict the
next word in a sequence using a corpus of representative text. Language models
trained in this fashion are referred to as autoregressive models. Given a trained
model, we can ask the network to generate novel sequences by first randomly sam-
pling an appropriate word as the beginning of a sequence. We then condition the
generation of subsequent words on the hidden state from the previous time step as
well as the embedding for the word just generated, again sampling from the distri-
bution provided by the softmax. More specifically, during generation the softmax
output at each point in time provides us with the probability of every word in the
vocabulary given the preceding context, that is P(yi|y<i)∀i ∈ V ; we then sample a
particular word, ŷi, from this distribution and condition subsequent generation on it.
The process continues until the end of sentence token <\s> is generated.

Now, let’s consider a simple variation on this scheme. Instead of having the
language model generate a sentence from scratch, we have it complete a sequence
given a specified prefix. More specifically, we first pass the specified prefix through
the language model using forward inference to produce a sequence of hidden states,
ending with the hidden state corresponding to the last word of the prefix. We then
begin generating as we did earlier, but using the final hidden state of the prefix as
our starting point. The result of this process is a novel output sequence that should
be a reasonable completion of the prefix input.

Fig. 10.1 illustrates this basic scheme. The portion of the network on the left
processes the provided prefix, while the right side executes the subsequent auto-
regressive generation. Note that the goal of the lefthand portion of the network
is to generate a series of hidden states from the given input; there are no outputs
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associated with this part of the process until we reach the end of the prefix.
Now, consider an ingenious extension of this idea from the world of machine

translation (MT), the task of automatically translating sentences from one language
into another. The primary resources used to train modern translation systems are
known as parallel texts, or bitexts. These are large text collections consisting of pairsbitexts

of sentences from different languages that are translations of one another. Tradition-
ally in MT, the text being translated is referred to as the source and the translation
output is called the target.

To extend language models and autoregressive generation to machine transla-
tion, we’ll first add an end-of-sentence marker at the end of each bitext’s source
sentence and then simply concatenate the corresponding target to it. These concate-
nated source-target pairs can now serve as training data for a combined language
model. Training proceeds as with any RNN-based language model. The network is
trained autoregressively to predict the next word in a set of sequences comprised of
the concatenated source-target bitexts, as shown in Fig. 10.2.

To translate a source text using the trained model, we run it through the network
performing forward inference to generate hidden states until we get to the end of the
source. Then we begin autoregressive generation, asking for a word in the context
of the hidden layer from the end of the source input as well as the end-of-sentence
marker. Subsequent words are conditioned on the previous hidden state and the
embedding for the last word generated.

vivait un

</s>

hobbit

vivait un hobbit

</s>

Source

hobbita livedthere

Target

</s>lived hobbita

Figure 10.2 Training setup for a neural language model approach to machine translation. Source-target bi-
texts are concatenated and used to train a language model.

Early efforts using this clever approach demonstrated surprisingly good results
on standard datasets and led to a series of innovations that were the basis for net-
works discussed in the remainder of this chapter. Chapter 11 provides an in-depth
discussion of the fundamental issues in translation as well as the current state-of-
the-art approaches to MT. Here, we’ll focus on the powerful models that arose from
these early efforts.
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10.2 Encoder-Decoder Networks

Fig. 10.3 abstracts away from the specifics of machine translation and illustrates a
basic encoder-decoder architecture. The elements of the network on the left pro-encoder-

decoder
cess the input sequence and comprise the encoder, the entire purpose of which is to
generate a contextualized representation of the input. In this network, this represen-
tation is embodied in the final hidden state of the encoder, hn, which in turn feeds
into the first hidden state of the decoder. The decoder network on the right takes
this state and autoregressively generates a sequence of outputs.

y1 y2 y3 ym

Encoder

xnx2x1

Decoder

hn

…

… …

…

Figure 10.3 Basic RNN-based encoder-decoder architecture. The final hidden state of the encoder RNN
serves as the context for the decoder in its role as h0 in the decoder RNN.

This basic architecture is consistent with the original applications of neural mod-
els to machine translation. However, it embodies a number of design choices that
are less than optimal. Among the major ones are that the encoder and the decoder
are assumed to have the same internal structure (RNNs in this case), that the final
state of the encoder is the only context available to the decoder, and finally that
this context is only available to the decoder as its initial hidden state. Abstracting
away from these choices, we can say that encoder-decoder networks consist of three
components:

1. An encoder that accepts an input sequence, xn
1, and generates a corresponding

sequence of contextualized representations, hn
1.

2. A context vector, c, which is a function of hn
1, and conveys the essence of the

input to the decoder.

3. And a decoder, which accepts c as input and generates an arbitrary length
sequence of hidden states hm

1 , from which a corresponding sequence of output
states ym

1 , can be obtained.

Fig. 10.4 illustrates this abstracted architecture. Let’s now explore some of the pos-
sibilities for each of the components.
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y1 y2 ym

xnx2x1 …

Encoder

Decoder

Context

…

Figure 10.4 Basic architecture for an abstract encoder-decoder network. The context is a
function of the vector of contextualized input representations and may be used by the decoder
in a variety of ways.

Encoder

Simple RNNs, LSTMs, GRUs, convolutional networks, as well as transformer net-
works (discussed later in this chapter), can all be been employed as encoders. For
simplicity, our figures show only a single network layer for the encoder, however,
stacked architectures are the norm, where the output states from the top layer of the
stack are taken as the final representation. A widely used encoder design makes use
of stacked Bi-LSTMs where the hidden states from top layers from the forward and
backward passes are concatenated as described in Chapter 9 to provide the contex-
tualized representations for each time step.

Decoder

For the decoder, autoregressive generation is used to produce an output sequence,
an element at a time, until an end-of-sequence marker is generated. This incremen-
tal process is guided by the context provided by the encoder as well as any items
generated for earlier states by the decoder. Again, a typical approach is to use an
LSTM or GRU-based RNN where the context consists of the final hidden state of
the encoder, and is used to initialize the first hidden state of the decoder. (To help
keep things straight, we’ll use the superscripts e and d where needed to distinguish
the hidden states of the encoder and the decoder.) Generation proceeds as described
earlier where each hidden state is conditioned on the previous hidden state and out-
put generated in the previous state.

c = he
n

hd
0 = c

hd
t = g(ŷt−1,hd

t−1)

zt = f (hd
t )

yt = softmax(zt)

Recall, that g is a stand-in for some flavor of RNN and ŷt−1 is the embedding for the
output sampled from the softmax at the previous step.

A weakness of this approach is that the context vector, c, is only directly avail-
able at the beginning of the process and its influence will wane as the output se-
quence is generated. A solution is to make the context vector c available at each step
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in the decoding process by adding it as a parameter to the computation of the current
hidden state.

hd
t = g(ŷt−1,hd

t−1,c)

A common approach to the calculation of the output layer y is to base it solely
on this newly computed hidden state. While this cleanly separates the underlying
recurrence from the output generation task, it makes it difficult to keep track of what
has already been generated and what hasn’t. A alternative approach is to condition
the output on both the newly generated hidden state, the output generated at the
previous state, and the encoder context.

yt = softmax(ŷt−1,zt ,c)

Finally, as shown earlier, the output y at each time consists of a softmax computa-
tion over the set of possible outputs (the vocabulary in the case of language models).
What one does with this distribution is task-dependent, but it is critical since the re-
currence depends on choosing a particular output, ŷ, from the softmax to condition
the next step in decoding. We’ve already seen several of the possible options for this.
For neural generation, where we are trying to generate novel outputs, we can sim-
ply sample from the softmax distribution. However, for applications like MT where
we’re looking for a specific output sequence, random sampling isn’t appropriate and
would likely lead to some strange output. An alternative is to choose the most likely
output at each time step by taking the argmax over the softmax output:

ŷ = argmaxP(yi|y<i)

This is easy to implement but as we’ve seen several times with sequence labeling,
independently choosing the argmax over a sequence is not a reliable way of arriving
at a good output since it doesn’t guarantee that the individual choices being made
make sense together and combine into a coherent whole. With sequence labeling we
addressed this with a CRF-layer over the output token types combined with a Viterbi-
style dynamic programming search. Unfortunately, this approach is not viable here
since the dynamic programming invariant doesn’t hold.

Beam Search

A viable alternative is to view the decoding problem as a heuristic state-space search
and systematically explore the space of possible outputs. The key to such an ap-
proach is controlling the exponential growth of the search space. To accomplish
this, we’ll use a technique called beam search. Beam search operates by combin-Beam Search

ing a breadth-first-search strategy with a heuristic filter that scores each option and
prunes the search space to stay within a fixed-size memory footprint, called the beam
width.

At the first step of decoding, we select the B-best options from the softmax output
y, where B is the size of the beam. Each option is scored with its corresponding
probability from the softmax output of the decoder. These initial outputs constitute
the search frontier. We’ll refer to the sequence of partial outputs generated along
these search paths as hypotheses.

At subsequent steps, each hypothesis on the frontier is extended incrementally
by being passed to distinct decoders, which again generate a softmax over the entire
vocabulary. To provide the necessary inputs for the decoders, each hypothesis must
include not only the words generated thus far but also the context vector, and the



10.2 • ENCODER-DECODER NETWORKS 197

hidden state from the previous step. New hypotheses representing every possible
extension to the current ones are generated and added to the frontier. Each of these
new hypotheses is scored using P(yi|y<i), which is the product of the probability
of current word choice multiplied by the probability of the path that led to it. To
control the exponential growth of the frontier, it is pruned to contain only the top B
hypotheses.

This process continues until a <\s> is generated indicating that a complete can-
didate output has been found. At this point, the completed hypothesis is removed
from the frontier and the size of the beam is reduced by one. The search continues
until the beam has been reduced to 0. Leaving us with B hypotheses to consider.
Fig. 10.5 illustrates this process with a beam width of 3.

y_{i-1}

c

h_{i-1}

EOS

EOS

EOS

EOS

y_i

Decoder

Beam search with beam width = 4.

0 1 2 3 4 5 6 7

Figure 10.5 Beam decoding with a beam width of 4. At the initial step, the frontier is filled with the best 4
options from the initial state of the decoder. In a breadth-first fashion, each state on the frontier is passed to a
decoder which computes a softmax over the entire vocabulary and attempts to enter each as a new state into the
frontier subject to the constraint that they are better than the worst state already there. As completed sequences
are discovered they are recorded and removed from the frontier and the beam width is reduced by 1.

One final complication arises from the fact that the completed hypotheses may
have different lengths. Unfortunately, due to the probabilistic nature of our scoring
scheme, longer hypotheses will naturally look worse than shorter ones just based on
their length. This was not an issue during the earlier steps of decoding; due to the
breadth-first nature of beam search all the hypotheses being compared had the same
length. The usual solution to this is to apply some form of length normalization to
each of the hypotheses. With normalization, we have B hypotheses and can select
the best one, or we can pass all or a subset of them on to a downstream application
with their respective scores.

Context

We’ve defined the context vector c as a function of the hidden states of the encoder,
that is, c = f (hn

1). Unfortunately, the number of hidden states varies with the size of
the input, making it difficult to just use them directly as a context for the decode. The
basic approach described earlier avoids this issue since c is just the final hidden state
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function BEAMDECODE(c, beam width) returns best paths

y0, h0←0
path← ()
complete paths← ()
state← (c, y0, h0, path) ;initial state
frontier←〈state〉 ;initial frontier

while frontier contains incomplete paths and beamwidth > 0
extended frontier←〈〉
for each state ∈ frontier do

y←DECODE(state)
for each word i ∈ Vocabulary do

successor←NEWSTATE(state, i, yi)
new agenda←ADDTOBEAM(successor, extended frontier, beam width)

for each state in extended frontier do
if state is complete do

complete paths←APPEND(complete paths, state)
extended frontier←REMOVE(extended frontier, state)
beam width←beam width - 1

frontier←extended frontier

return completed paths

function NEWSTATE(state, word, word prob) returns new state

function ADDTOBEAM(state, frontier, width) returns updated frontier

if LENGTH(frontier) < width then
frontier← INSERT(state, frontier)

else if SCORE(state) > SCORE(WORSTOF(frontier))
frontier←REMOVE(WORSTOF(frontier))
frontier← INSERT(state, frontier)

return frontier

Figure 10.6 Beam search decoding.

of the encoder. This approach has the advantage of being simple and of reducing the
context to a fixed length vector. However, this final hidden state inevitably is more
focused on the latter parts of input sequence, rather than the input as whole.

One solution to this problem is to use Bi-RNNs, where the context can be a
function of the end state of both the forward and backward passes. As described
in Chapter 9, a straightforward approach is to concatenate the final states of the
forward and backward passes. An alternative is to simply sum or average the encoder
hidden states to produce a context vector. Unfortunately, this approach loses useful
information about each of the individual encoder states that might prove useful in
decoding.
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10.3 Attention

To overcome the deficiencies of these simple approaches to context, we’ll need a
mechanism that can take the entire encoder context into account, that dynamically
updates during the course of decoding, and that can be embodied in a fixed-size
vector. Taken together, we’ll refer such an approach as an attention mechanism.attention

mechanism
Our first step is to replace the static context vector with one that is dynamically

derived from the encoder hidden states at each point during decoding. This context
vector, ci, is generated anew with each decoding step i and takes all of the encoder
hidden states into account in its derivation. We then make this context available
during decoding by conditioning the computation of the current decoder state on it,
along with the prior hidden state and the previous output generated by the decoder.

hd
i = g(ŷi−1,hd

i−1,ci)

The first step in computing ci is to compute a vector of scores that capture the
relevance of each encoder hidden state to the decoder state captured in hd

i−1. That is,
at each state i during decoding we’ll compute score(hd

i−1,h
e
j) for each encoder state

j.
For now, let’s assume that this score provides us with a measure of how similar

the decoder hidden state is to each encoder hidden state. To implement this similarity
score, let’s begin with the straightforward approach introduced in Chapter 6 of using
the dot product between vectors.

score(hd
i−1,h

e
j) = hd

i−1 ·he
j

The result of the dot product is a scalar that reflects the degree of similarity between
the two vectors. And the vector of scores over all the encoder hidden states gives us
the relevance of each encoder state to the current step of the decoder.

While the simple dot product can be effective, it is a static measure that does not
facilitate adaptation during the course of training to fit the characteristics of given
applications. A more robust similarity score can be obtained by parameterizing the
score with its own set of weights, Ws.

score(hd
i−1,h

e
j) = hd

t−1Wshe
j

By introducing Ws to the score, we are giving the network the ability to learn which
aspects of similarity between the decoder and encoder states are important to the
current application.

To make use of these scores, we’ll next normalize them with a softmax to create
a vector of weights, αi j, that tells us the proportional relevance of each encoder
hidden state j to the current decoder state, i.

αi j = softmax(score(hd
i−1,h

e
j) ∀ j ∈ e)

=
exp(score(hd

i−1,h
e
j)∑

k exp(score(hd
i−1,h

e
k))

Finally, given the distribution in α , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden
states.

ci =
∑

j

αi jhe
j (10.1)
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With this, we finally have a fixed-length context vector that takes into account
information from the entire encoder state that is dynamically update to reflect the
needs of the decoder at each step of decoding. Fig. 10.7 illustrates an encoder-
decoder network with attention.

yi-1 yi

Encoder

xnx2x1

Decoder

hnh1

hi-1 hi

…

…

ci

…
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Figure 10.7 Encoder-decoder network with attention. Computing the value for hi is based on the previous
hidden state, the previous word generated, and the current context vector ci. This context vector is derived from
the attention computation based on comparing the previous hidden state to all of the encoder hidden states.

10.4 Applications of Encoder-Decoder Networks

The addition of attention to basic encoder-decoder networks led to rapid improve-
ment in performance across a wide-range of applications including summarization,
sentence simplification, question answering and image captioning.

10.5 Self-Attention and Transformer Networks
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10.6 Summary

• Encoder-decoder networks
• Attention
• Transformers
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CHAPTER

12 Constituency Grammars

The study of grammar has an ancient pedigree; Panini’s grammar of Sanskrit was
written over two thousand years ago and is still referenced today in teaching San-
skrit. Despite this history, knowledge of grammar remains spotty at best. In this
chapter, we make a preliminary stab at addressing some of these gaps in our knowl-
edge of grammar and syntax, as well as introducing some of the formal mechanisms
that are available for capturing this knowledge in a computationally useful manner.

The word syntax comes from the Greek sýntaxis, meaning “setting out togethersyntax

or arrangement”, and refers to the way words are arranged together. We have seen
various syntactic notions in previous chapters. The regular languages introduced in
Chapter 2 offered a simple way to represent the ordering of strings of words, and
Chapter 3 showed how to compute probabilities for these word sequences. Chap-
ter 8 showed that part-of-speech categories could act as a kind of equivalence class
for words. In this chapter and the next few we introduce a variety of syntactic phe-
nomena and models for syntax that go well beyond these simpler approaches.

The bulk of this chapter is devoted to the topic of context-free grammars. Context-
free grammars are the backbone of many formal models of the syntax of natural
language (and, for that matter, of computer languages). As such, they are integral to
many computational applications, including grammar checking, semantic interpreta-
tion, dialogue understanding, and machine translation. They are powerful enough to
express sophisticated relations among the words in a sentence, yet computationally
tractable enough that efficient algorithms exist for parsing sentences with them (as
we show in Chapter 13). In Chapter 14, we show that adding probability to context-
free grammars gives us a powerful model of disambiguation. And in Chapter 17 we
show how they provide a systematic framework for semantic interpretation.

The constituency grammars we introduce here, however, are not the only pos-
sible formal mechanism for modeling syntax. Chapter 15 will introduce syntactic
dependencies, an alternative model that is the core representation for dependency
parsing. Both constituency and dependency formalisms are important for language
processing.

In addition to introducing grammar formalism, this chapter also provides a brief
overview of the grammar of English. To illustrate our grammars, we have chosen
a domain that has relatively simple sentences, the Air Traffic Information System
(ATIS) domain (Hemphill et al., 1990). ATIS systems were an early example of
spoken language systems for helping book airline reservations. Users try to book
flights by conversing with the system, specifying constraints like I’d like to fly from
Atlanta to Denver.
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12.1 Constituency

The fundamental notion underlying the idea of constituency is that of abstraction
— groups of words behaving as single units, or constituents. A significant part of
developing a grammar involves discovering the inventory of constituents present in
the language.

How do words group together in English? Consider the noun phrase, a sequencenoun phrase

of words surrounding at least one noun. Here are some examples of noun phrases
(thanks to Damon Runyon):

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

What evidence do we have that these words group together (or “form constituents”)?
One piece of evidence is that they can all appear in similar syntactic environments,
for example, before a verb.

three parties from Brooklyn arrive. . .
a high-class spot such as Mindy’s attracts. . .
the Broadway coppers love. . .
they sit

But while the whole noun phrase can occur before a verb, this is not true of each
of the individual words that make up a noun phrase. The following are not grammat-
ical sentences of English (recall that we use an asterisk (*) to mark fragments that
are not grammatical English sentences):

*from arrive. . . *as attracts. . .
*the is. . . *spot sat. . .

Thus, to correctly describe facts about the ordering of these words in English, we
must be able to say things like “Noun Phrases can occur before verbs”.

Other kinds of evidence for constituency come from what are called preposed orpreposed

postposed constructions. For example, the prepositional phrase on September sev-postposed

enteenth can be placed in a number of different locations in the following examples,
including at the beginning (preposed) or at the end (postposed):

On September seventeenth, I’d like to fly from Atlanta to Denver
I’d like to fly on September seventeenth from Atlanta to Denver
I’d like to fly from Atlanta to Denver on September seventeenth

But again, while the entire phrase can be placed differently, the individual words
making up the phrase cannot be

*On September, I’d like to fly seventeenth from Atlanta to Denver
*On I’d like to fly September seventeenth from Atlanta to Denver
*I’d like to fly on September from Atlanta to Denver seventeenth

12.2 Context-Free Grammars

The most widely used formal system for modeling constituent structure in English
and other natural languages is the Context-Free Grammar, or CFG. Context-CFG
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free grammars are also called Phrase-Structure Grammars, and the formalism
is equivalent to Backus-Naur Form, or BNF. The idea of basing a grammar on
constituent structure dates back to the psychologist Wilhelm Wundt (1900) but was
not formalized until Chomsky (1956) and, independently, Backus (1959).

A context-free grammar consists of a set of rules or productions, each of whichrules

expresses the ways that symbols of the language can be grouped and ordered to-
gether, and a lexicon of words and symbols. For example, the following productionslexicon

express that an NP (or noun phrase) can be composed of either a ProperNoun orNP

a determiner (Det) followed by a Nominal; a Nominal in turn can consist of one or
more Nouns.

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the pre-
vious rules with others, like the following, that express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols
that correspond to words in the language (“the”, “nightclub”) are called terminalterminal

symbols; the lexicon is the set of rules that introduce these terminal symbols. The
symbols that express abstractions over these terminals are called non-terminals. Innon-terminal

each context-free rule, the item to the right of the arrow (→) is an ordered list of one
or more terminals and non-terminals; to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. Notice that in the lexicon, the
non-terminal associated with each word is its lexical category, or part-of-speech,
which we defined in Chapter 8.

A CFG can be thought of in two ways: as a device for generating sentences
and as a device for assigning a structure to a given sentence. Viewing a CFG as a
generator, we can read the→ arrow as “rewrite the symbol on the left with the string
of symbols on the right”.

So starting from the symbol: NP
we can use our first rule to rewrite NP as: Det Nominal
and then rewrite Nominal as: Det Noun
and finally rewrite these parts-of-speech as: a flight

We say the string a flight can be derived from the non-terminal NP. Thus, a CFG
can be used to generate a set of strings. This sequence of rule expansions is called a
derivation of the string of words. It is common to represent a derivation by a parsederivation

tree (commonly shown inverted with the root at the top). Figure 12.1 shows the treeparse tree

representation of this derivation.
In the parse tree shown in Fig. 12.1, we can say that the node NP dominatesdominates

all the nodes in the tree (Det, Nom, Noun, a, flight). We can say further that it
immediately dominates the nodes Det and Nom.

The formal language defined by a CFG is the set of strings that are derivable
from the designated start symbol. Each grammar must have one designated startstart symbol

symbol, which is often called S. Since context-free grammars are often used to define
sentences, S is usually interpreted as the “sentence” node, and the set of strings that
are derivable from S is the set of sentences in some simplified version of English.
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NP

Nom

Noun

flight

Det

a

Figure 12.1 A parse tree for “a flight”.

Let’s add a few additional rules to our inventory. The following rule expresses
the fact that a sentence can consist of a noun phrase followed by a verb phrase:verb phrase

S → NP VP I prefer a morning flight

A verb phrase in English consists of a verb followed by assorted other things;
for example, one kind of verb phrase consists of a verb followed by a noun phrase:

VP → Verb NP prefer a morning flight

Or the verb may be followed by a noun phrase and a prepositional phrase:

VP → Verb NP PP leave Boston in the morning

Or the verb phrase may have a verb followed by a prepositional phrase alone:

VP → Verb PP leaving on Thursday

A prepositional phrase generally has a preposition followed by a noun phrase.
For example, a common type of prepositional phrase in the ATIS corpus is used to
indicate location or direction:

PP → Preposition NP from Los Angeles

The NP inside a PP need not be a location; PPs are often used with times and
dates, and with other nouns as well; they can be arbitrarily complex. Here are ten
examples from the ATIS corpus:

to Seattle on these flights
in Minneapolis about the ground transportation in Chicago
on Wednesday of the round trip flight on United Airlines
in the evening of the AP fifty seven flight
on the ninth of July with a stopover in Nashville

Figure 12.2 gives a sample lexicon, and Fig. 12.3 summarizes the grammar rules
we’ve seen so far, which we’ll call L0. Note that we can use the or-symbol | to
indicate that a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We
start with S, expand it to NP VP, then choose a random expansion of NP (let’s say, to
I), and a random expansion of VP (let’s say, to Verb NP), and so on until we generate
the string I prefer a morning flight. Figure 12.4 shows a parse tree that represents a
complete derivation of I prefer a morning flight.

It is sometimes convenient to represent a parse tree in a more compact format
called bracketed notation; here is the bracketed representation of the parse tree ofbracketed

notation
Fig. 12.4:
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Noun→ flights | breeze | trip | morning
Verb→ is | prefer | like | need | want | fly

Adjective→ cheapest | non-stop | first | latest
| other | direct

Pronoun→ me | I | you | it
Proper-Noun→ Alaska | Baltimore | Los Angeles

| Chicago | United | American
Determiner→ the | a | an | this | these | that
Preposition→ from | to | on | near

Conjunction→ and | or | but

Figure 12.2 The lexicon for L0.

Grammar Rules Examples
S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles

Figure 12.3 The grammar for L0, with example phrases for each rule.

(12.1) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

A CFG like that of L0 defines a formal language. We saw in Chapter 2 that a for-
mal language is a set of strings. Sentences (strings of words) that can be derived by a
grammar are in the formal language defined by that grammar, and are called gram-
matical sentences. Sentences that cannot be derived by a given formal grammar aregrammatical

not in the language defined by that grammar and are referred to as ungrammatical.ungrammatical

This hard line between “in” and “out” characterizes all formal languages but is only
a very simplified model of how natural languages really work. This is because de-
termining whether a given sentence is part of a given natural language (say, English)
often depends on the context. In linguistics, the use of formal languages to model
natural languages is called generative grammar since the language is defined bygenerative

grammar
the set of possible sentences “generated” by the grammar.

12.2.1 Formal Definition of Context-Free Grammar

We conclude this section with a quick, formal description of a context-free gram-
mar and the language it generates. A context-free grammar G is defined by four
parameters: N, Σ, R, S (technically this is a “4-tuple”).
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Figure 12.4 The parse tree for “I prefer a morning flight” according to grammar L0.

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β ,

where A is a non-terminal,
β is a string of symbols from the infinite set of strings (Σ∪N)∗

S a designated start symbol and a member of N

For the remainder of the book we adhere to the following conventions when dis-
cussing the formal properties of context-free grammars (as opposed to explaining
particular facts about English or other languages).

Capital letters like A, B, and S Non-terminals
S The start symbol
Lower-case Greek letters like α , β , and γ Strings drawn from (Σ∪N)∗
Lower-case Roman letters like u, v, and w Strings of terminals

A language is defined through the concept of derivation. One string derives an-
other one if it can be rewritten as the second one by some series of rule applications.
More formally, following Hopcroft and Ullman (1979),

if A→ β is a production of R and α and γ are any strings in the set
(Σ∪N)∗, then we say that αAγ directly derives αβγ , or αAγ ⇒ αβγ .directly derives

Derivation is then a generalization of direct derivation:

Let α1, α2, . . . , αm be strings in (Σ∪N)∗,m≥ 1, such that

α1⇒ α2,α2⇒ α3, . . . ,αm−1⇒ αm

We say that α1 derives αm, or α1
∗⇒ αm.derives

We can then formally define the language LG generated by a grammar G as the
set of strings composed of terminal symbols that can be derived from the designated
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start symbol S.
LG = {w|w is in Σ∗ and S ∗⇒ w}

The problem of mapping from a string of words to its parse tree is called syn-
tactic parsing; we define algorithms for parsing in Chapter 13.syntactic

parsing

12.3 Some Grammar Rules for English

In this section, we introduce a few more aspects of the phrase structure of English;
for consistency we will continue to focus on sentences from the ATIS domain. Be-
cause of space limitations, our discussion is necessarily limited to highlights. Read-
ers are strongly advised to consult a good reference grammar of English, such as
Huddleston and Pullum (2002).

12.3.1 Sentence-Level Constructions
In the small grammar L0, we provided only one sentence-level construction for
declarative sentences like I prefer a morning flight. Among the large number of
constructions for English sentences, four are particularly common and important:
declaratives, imperatives, yes-no questions, and wh-questions.

Sentences with declarative structure have a subject noun phrase followed bydeclarative

a verb phrase, like “I prefer a morning flight”. Sentences with this structure have
a great number of different uses that we follow up on in Chapter 26. Here are a
number of examples from the ATIS domain:

I want a flight from Ontario to Chicago
The flight should be eleven a.m. tomorrow
The return flight should leave at around seven p.m.

Sentences with imperative structure often begin with a verb phrase and haveimperative

no subject. They are called imperative because they are almost always used for
commands and suggestions; in the ATIS domain they are commands to the system.

Show the lowest fare
Give me Sunday’s flights arriving in Las Vegas from New York City
List all flights between five and seven p.m.

We can model this sentence structure with another rule for the expansion of S:

S → VP

Sentences with yes-no question structure are often (though not always) used toyes-no question

ask questions; they begin with an auxiliary verb, followed by a subject NP, followed
by a VP. Here are some examples. Note that the third example is not a question at
all but a request; Chapter 26 discusses the uses of these question forms to perform
different pragmatic functions such as asking, requesting, or suggesting.

Do any of these flights have stops?
Does American’s flight eighteen twenty five serve dinner?
Can you give me the same information for United?

Here’s the rule:

S → Aux NP VP
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The most complex sentence-level structures we examine here are the various wh-
structures. These are so named because one of their constituents is a wh-phrase, thatwh-phrase

is, one that includes a wh-word (who, whose, when, where, what, which, how, why).wh-word

These may be broadly grouped into two classes of sentence-level structures. The
wh-subject-question structure is identical to the declarative structure, except that
the first noun phrase contains some wh-word.

What airlines fly from Burbank to Denver?
Which flights depart Burbank after noon and arrive in Denver by six p.m?
Whose flights serve breakfast?

Here is a rule. Exercise 12.7 discusses rules for the constituents that make up the
Wh-NP.

S → Wh-NP VP

In the wh-non-subject-question structure, the wh-phrase is not the subject of thewh-non-subject-
question

sentence, and so the sentence includes another subject. In these types of sentences
the auxiliary appears before the subject NP, just as in the yes-no question structures.
Here is an example followed by a sample rule:

What flights do you have from Burbank to Tacoma Washington?

S → Wh-NP Aux NP VP

Constructions like the wh-non-subject-question contain what are called long-
distance dependencies because the Wh-NP what flights is far away from the predi-long-distance

dependencies
cate that it is semantically related to, the main verb have in the VP. In some models
of parsing and understanding compatible with the grammar rule above, long-distance
dependencies like the relation between flights and have are thought of as a semantic
relation. In such models, the job of figuring out that flights is the argument of have
is done during semantic interpretation. In other models of parsing, the relationship
between flights and have is considered to be a syntactic relation, and the grammar is
modified to insert a small marker called a trace or empty category after the verb.
We return to such empty-category models when we introduce the Penn Treebank on
page 217.

12.3.2 Clauses and Sentences
Before we move on, we should clarify the status of the S rules in the grammars we
just described. S rules are intended to account for entire sentences that stand alone
as fundamental units of discourse. However, S can also occur on the right-hand side
of grammar rules and hence can be embedded within larger sentences. Clearly then,
there’s more to being an S than just standing alone as a unit of discourse.

What differentiates sentence constructions (i.e., the S rules) from the rest of the
grammar is the notion that they are in some sense complete. In this way they corre-
spond to the notion of a clause, which traditional grammars often describe as form-clause

ing a complete thought. One way of making this notion of “complete thought” more
precise is to say an S is a node of the parse tree below which the main verb of the S
has all of its arguments. We define verbal arguments later, but for now let’s just see
an illustration from the tree for I prefer a morning flight in Fig. 12.4 on page 208.
The verb prefer has two arguments: the subject I and the object a morning flight.
One of the arguments appears below the VP node, but the other one, the subject NP,
appears only below the S node.
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12.3.3 The Noun Phrase
Our L0 grammar introduced three of the most frequent types of noun phrases that
occur in English: pronouns, proper nouns and the NP→Det Nominal construction.
The central focus of this section is on the last type since that is where the bulk of
the syntactic complexity resides. These noun phrases consist of a head, the central
noun in the noun phrase, along with various modifiers that can occur before or after
the head noun. Let’s take a close look at the various parts.

The Determiner

Noun phrases can begin with simple lexical determiners, as in the following exam-
ples:

a stop the flights this flight
those flights any flights some flights

The role of the determiner in English noun phrases can also be filled by more
complex expressions, as follows:

United’s flight
United’s pilot’s union
Denver’s mayor’s mother’s canceled flight

In these examples, the role of the determiner is filled by a possessive expression
consisting of a noun phrase followed by an ’s as a possessive marker, as in the
following rule.

Det → NP ′s

The fact that this rule is recursive (since an NP can start with a Det) helps us model
the last two examples above, in which a sequence of possessive expressions serves
as a determiner.

Under some circumstances determiners are optional in English. For example,
determiners may be omitted if the noun they modify is plural:

(12.2) Show me flights from San Francisco to Denver on weekdays

As we saw in Chapter 8, mass nouns also don’t require determination. Recall that
mass nouns often (not always) involve something that is treated like a substance
(including e.g., water and snow), don’t take the indefinite article “a”, and don’t tend
to pluralize. Many abstract nouns are mass nouns (music, homework). Mass nouns
in the ATIS domain include breakfast, lunch, and dinner:

(12.3) Does this flight serve dinner?

The Nominal

The nominal construction follows the determiner and contains any pre- and post-
head noun modifiers. As indicated in grammar L0, in its simplest form a nominal
can consist of a single noun.

Nominal → Noun

As we’ll see, this rule also provides the basis for the bottom of various recursive
rules used to capture more complex nominal constructions.
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Before the Head Noun

A number of different kinds of word classes can appear before the head noun (theCardinal
numbers

“postdeterminers”) in a nominal. These include cardinal numbers, ordinal num-
bers, quantifiers, and adjectives. Examples of cardinal numbers:ordinal

numbers
quantifiers

two friends one stop

Ordinal numbers include first, second, third, and so on, but also words like next,
last, past, other, and another:

the first one the next day the second leg
the last flight the other American flight

Some quantifiers (many, (a) few, several) occur only with plural count nouns:

many fares

Adjectives occur after quantifiers but before nouns.

a first-class fare a non-stop flight
the longest layover the earliest lunch flight

Adjectives can also be grouped into a phrase called an adjective phrase or AP.adjective
phrase

APs can have an adverb before the adjective (see Chapter 8 for definitions of adjec-
tives and adverbs):

the least expensive fare

After the Head Noun

A head noun can be followed by postmodifiers. Three kinds of nominal postmodi-
fiers are common in English:

prepositional phrases all flights from Cleveland
non-finite clauses any flights arriving after eleven a.m.
relative clauses a flight that serves breakfast

They are especially common in the ATIS corpus since they are used to mark the
origin and destination of flights.

Here are some examples of prepositional phrase postmodifiers, with brackets
inserted to show the boundaries of each PP; note that two or more PPs can be strung
together within a single NP:

all flights [from Cleveland] [to Newark]
arrival [in San Jose] [before seven p.m.]
a reservation [on flight six oh six] [from Tampa] [to Montreal]

Here’s a new nominal rule to account for postnominal PPs:

Nominal → Nominal PP

The three most common kinds of non-finite postmodifiers are the gerundive (-non-finite

ing), -ed, and infinitive forms.
Gerundive postmodifiers are so called because they consist of a verb phrase thatgerundive

begins with the gerundive (-ing) form of the verb. Here are some examples:

any of those [leaving on Thursday]
any flights [arriving after eleven a.m.]
flights [arriving within thirty minutes of each other]
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We can define the Nominals with gerundive modifiers as follows, making use of
a new non-terminal GerundVP:

Nominal → Nominal GerundVP

We can make rules for GerundVP constituents by duplicating all of our VP pro-
ductions, substituting GerundV for V.

GerundVP → GerundV NP

| GerundV PP | GerundV | GerundV NP PP

GerundV can then be defined as

GerundV → being | arriving | leaving | . . .

The phrases in italics below are examples of the two other common kinds of
non-finite clauses, infinitives and -ed forms:

the last flight to arrive in Boston
I need to have dinner served
Which is the aircraft used by this flight?

A postnominal relative clause (more correctly a restrictive relative clause), is
a clause that often begins with a relative pronoun (that and who are the most com-relative

pronoun
mon). The relative pronoun functions as the subject of the embedded verb in the
following examples:

a flight that serves breakfast
flights that leave in the morning
the one that leaves at ten thirty five

We might add rules like the following to deal with these:

Nominal → Nominal RelClause

RelClause → (who | that) VP

The relative pronoun may also function as the object of the embedded verb, as
in the following example; we leave for the reader the exercise of writing grammar
rules for more complex relative clauses of this kind.

the earliest American Airlines flight that I can get

Various postnominal modifiers can be combined, as the following examples
show:

a flight [from Phoenix to Detroit] [leaving Monday evening]
evening flights [from Nashville to Houston] [that serve dinner]
a friend [living in Denver] [that would like to visit me in DC]

Before the Noun Phrase

Word classes that modify and appear before NPs are called predeterminers. Manypredeterminers

of these have to do with number or amount; a common predeterminer is all:

all the flights all flights all non-stop flights

The example noun phrase given in Fig. 12.5 illustrates some of the complexity
that arises when these rules are combined.
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Figure 12.5 A parse tree for “all the morning flights from Denver to Tampa leaving before 10”.

12.3.4 The Verb Phrase
The verb phrase consists of the verb and a number of other constituents. In the
simple rules we have built so far, these other constituents include NPs and PPs and
combinations of the two:

VP → Verb disappear
VP → Verb NP prefer a morning flight
VP → Verb NP PP leave Boston in the morning
VP → Verb PP leaving on Thursday

Verb phrases can be significantly more complicated than this. Many other kinds
of constituents, such as an entire embedded sentence, can follow the verb. These are
called sentential complements:sentential

complements

You [VP [V said [S you had a two hundred sixty-six dollar fare]]
[VP [V Tell] [NP me] [S how to get from the airport in Philadelphia to down-
town]]
I [VP [V think [S I would like to take the nine thirty flight]]

Here’s a rule for these:

VP → Verb S

Similarly, another potential constituent of the VP is another VP. This is often the
case for verbs like want, would like, try, intend, need:

I want [VP to fly from Milwaukee to Orlando]
Hi, I want [VP to arrange three flights]
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Frame Verb Example
/0 eat, sleep I ate
NP prefer, find, leave Find [NP the flight from Pittsburgh to Boston]
NP NP show, give Show [NP me] [NP airlines with flights from Pittsburgh]
PPfrom PPto fly, travel I would like to fly [PP from Boston] [PP to Philadelphia]
NP PPwith help, load Can you help [NP me] [PP with a flight]
VPto prefer, want, need I would prefer [VPto to go by United Airlines]
VPbrst can, would, might I can [VPbrst go from Boston]
S mean Does this mean [S AA has a hub in Boston]

Figure 12.6 Subcategorization frames for a set of example verbs.

While a verb phrase can have many possible kinds of constituents, not every
verb is compatible with every verb phrase. For example, the verb want can be used
either with an NP complement (I want a flight . . . ) or with an infinitive VP comple-
ment (I want to fly to . . . ). By contrast, a verb like find cannot take this sort of VP
complement (* I found to fly to Dallas).

This idea that verbs are compatible with different kinds of complements is a very
old one; traditional grammar distinguishes between transitive verbs like find, whichtransitive

take a direct object NP (I found a flight), and intransitive verbs like disappear,intransitive

which do not (*I disappeared a flight).
Where traditional grammars subcategorize verbs into these two categories (tran-subcategorize

sitive and intransitive), modern grammars distinguish as many as 100 subcategories.
We say that a verb like find subcategorizes for an NP, and a verb like want sub-Subcategorizes

for
categorizes for either an NP or a non-finite VP. We also call these constituents the
complements of the verb (hence our use of the term sentential complement above).complements

So we say that want can take a VP complement. These possible sets of complements
are called the subcategorization frame for the verb. Another way of talking aboutSubcategorization

frame
the relation between the verb and these other constituents is to think of the verb as
a logical predicate and the constituents as logical arguments of the predicate. So we
can think of such predicate-argument relations as FIND(I, A FLIGHT) or WANT(I, TO
FLY). We talk more about this view of verbs and arguments in Chapter 16 when we
talk about predicate calculus representations of verb semantics. Subcategorization
frames for a set of example verbs are given in Fig. 12.6.

We can capture the association between verbs and their complements by making
separate subtypes of the class Verb (e.g., Verb-with-NP-complement, Verb-with-Inf-
VP-complement, Verb-with-S-complement, and so on):

Verb-with-NP-complement → find | leave | repeat | . . .
Verb-with-S-complement → think | believe | say | . . .

Verb-with-Inf-VP-complement → want | try | need | . . .

Each VP rule could then be modified to require the appropriate verb subtype:

VP → Verb-with-no-complement disappear
VP → Verb-with-NP-comp NP prefer a morning flight
VP → Verb-with-S-comp S said there were two flights

A problem with this approach is the significant increase in the number of rules
and the associated loss of generality.
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12.3.5 Coordination
The major phrase types discussed here can be conjoined with conjunctions like and,conjunctions

or, and but to form larger constructions of the same type. For example, a coordinatecoordinate

noun phrase can consist of two other noun phrases separated by a conjunction:

Please repeat [NP [NP the flights] and [NP the costs]]
I need to know [NP [NP the aircraft] and [NP the flight number]]

Here’s a rule that allows these structures:

NP → NP and NP

Note that the ability to form coordinate phrases through conjunctions is often
used as a test for constituency. Consider the following examples, which differ from
the ones given above in that they lack the second determiner.

Please repeat the [Nom [Nom flights] and [Nom costs]]
I need to know the [Nom [Nom aircraft] and [Nom flight number]]

The fact that these phrases can be conjoined is evidence for the presence of the
underlying Nominal constituent we have been making use of. Here’s a rule for this:

Nominal → Nominal and Nominal

The following examples illustrate conjunctions involving VPs and Ss.

What flights do you have [VP [VP leaving Denver] and [VP arriving in
San Francisco]]
[S [S I’m interested in a flight from Dallas to Washington] and [S I’m
also interested in going to Baltimore]]

The rules for VP and S conjunctions mirror the NP one given above.

VP → VP and VP

S → S and S

Since all the major phrase types can be conjoined in this fashion, it is also possible
to represent this conjunction fact more generally; a number of grammar formalisms
such as GPSG ((Gazdar et al., 1985)) do this using metarules such as the following:metarules

X → X and X

This metarule simply states that any non-terminal can be conjoined with the same
non-terminal to yield a constituent of the same type. Of course, the variable X
must be designated as a variable that stands for any non-terminal rather than a non-
terminal itself.

12.4 Treebanks

Sufficiently robust grammars consisting of context-free grammar rules can be used
to assign a parse tree to any sentence. This means that it is possible to build a
corpus where every sentence in the collection is paired with a corresponding parse
tree. Such a syntactically annotated corpus is called a treebank. Treebanks playtreebank
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an important role in parsing, as we discuss in Chapter 13, as well as in linguistic
investigations of syntactic phenomena.

A wide variety of treebanks have been created, generally through the use of
parsers (of the sort described in the next few chapters) to automatically parse each
sentence, followed by the use of humans (linguists) to hand-correct the parses. The
Penn Treebank project (whose POS tagset we introduced in Chapter 8) has pro-Penn Treebank

duced treebanks from the Brown, Switchboard, ATIS, and Wall Street Journal cor-
pora of English, as well as treebanks in Arabic and Chinese. A number of treebanks
use the dependency representation we will introduce in Chapter 15, including many
that are part of the Universal Dependencies project (Nivre et al., 2016b).

12.4.1 Example: The Penn Treebank Project

Figure 12.7 shows sentences from the Brown and ATIS portions of the Penn Tree-
bank.1 Note the formatting differences for the part-of-speech tags; such small dif-
ferences are common and must be dealt with in processing treebanks. The Penn
Treebank part-of-speech tagset was defined in Chapter 8. The use of LISP-style
parenthesized notation for trees is extremely common and resembles the bracketed
notation we saw earlier in (12.1). For those who are not familiar with it we show a
standard node-and-line tree representation in Fig. 12.8.

((S

(NP-SBJ (DT That)

(JJ cold) (, ,)

(JJ empty) (NN sky) )

(VP (VBD was)

(ADJP-PRD (JJ full)

(PP (IN of)

(NP (NN fire)

(CC and)

(NN light) ))))

(. .) ))

((S

(NP-SBJ The/DT flight/NN )

(VP should/MD

(VP arrive/VB

(PP-TMP at/IN

(NP eleven/CD a.m/RB ))

(NP-TMP tomorrow/NN )))))

(a) (b)

Figure 12.7 Parsed sentences from the LDC Treebank3 version of the Brown (a) and ATIS
(b) corpora.

Figure 12.9 shows a tree from the Wall Street Journal. This tree shows an-
other feature of the Penn Treebanks: the use of traces (-NONE- nodes) to marktraces

long-distance dependencies or syntactic movement. For example, quotations oftensyntactic
movement

follow a quotative verb like say. But in this example, the quotation “We would have
to wait until we have collected on those assets” precedes the words he said. An
empty S containing only the node -NONE- marks the position after said where the
quotation sentence often occurs. This empty node is marked (in Treebanks II and
III) with the index 2, as is the quotation S at the beginning of the sentence. Such
co-indexing may make it easier for some parsers to recover the fact that this fronted
or topicalized quotation is the complement of the verb said. A similar -NONE- node

1 The Penn Treebank project released treebanks in multiple languages and in various stages; for ex-
ample, there were Treebank I (Marcus et al., 1993), Treebank II (Marcus et al., 1994), and Treebank III
releases of English treebanks. We use Treebank III for our examples.
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Figure 12.8 The tree corresponding to the Brown corpus sentence in the previous figure.

marks the fact that there is no syntactic subject right before the verb to wait; instead,
the subject is the earlier NP We. Again, they are both co-indexed with the index 1.

( (S (‘‘ ‘‘)

(S-TPC-2

(NP-SBJ-1 (PRP We) )

(VP (MD would)

(VP (VB have)

(S

(NP-SBJ (-NONE- *-1) )

(VP (TO to)

(VP (VB wait)

(SBAR-TMP (IN until)

(S

(NP-SBJ (PRP we) )

(VP (VBP have)

(VP (VBN collected)

(PP-CLR (IN on)

(NP (DT those)(NNS assets)))))))))))))

(, ,) (’’ ’’)

(NP-SBJ (PRP he) )

(VP (VBD said)

(S (-NONE- *T*-2) ))

(. .) ))

Figure 12.9 A sentence from the Wall Street Journal portion of the LDC Penn Treebank.
Note the use of the empty -NONE- nodes.

The Penn Treebank II and Treebank III releases added further information to
make it easier to recover the relationships between predicates and arguments. Cer-
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Grammar Lexicon
S→ NP VP . PRP→ we | he
S→ NP VP DT→ the | that | those
S→ “ S ” , NP VP . JJ→ cold | empty | full
S→ -NONE- NN→ sky | fire | light | flight | tomorrow
NP→ DT NN NNS→ assets
NP→ DT NNS CC→ and
NP→ NN CC NN IN→ of | at | until | on
NP→ CD RB CD→ eleven
NP→ DT JJ , JJ NN RB→ a.m.
NP→ PRP VB→ arrive | have | wait
NP→ -NONE- VBD→ was | said
VP→MD VP VBP→ have
VP→ VBD ADJP VBN→ collected
VP→ VBD S MD→ should | would
VP→ VBN PP TO→ to
VP→ VB S
VP→ VB SBAR
VP→ VBP VP
VP→ VBN PP
VP→ TO VP
SBAR→ IN S
ADJP→ JJ PP
PP→ IN NP

Figure 12.10 A sample of the CFG grammar rules and lexical entries that would be ex-
tracted from the three treebank sentences in Fig. 12.7 and Fig. 12.9.

tain phrases were marked with tags indicating the grammatical function of the phrase
(as surface subject, logical topic, cleft, non-VP predicates) its presence in particular
text categories (headlines, titles), and its semantic function (temporal phrases, lo-
cations) (Marcus et al. 1994, Bies et al. 1995). Figure 12.9 shows examples of the
-SBJ (surface subject) and -TMP (temporal phrase) tags. Figure 12.8 shows in addi-
tion the -PRD tag, which is used for predicates that are not VPs (the one in Fig. 12.8
is an ADJP). We’ll return to the topic of grammatical function when we consider
dependency grammars and parsing in Chapter 15.

12.4.2 Treebanks as Grammars
The sentences in a treebank implicitly constitute a grammar of the language repre-
sented by the corpus being annotated. For example, from the three parsed sentences
in Fig. 12.7 and Fig. 12.9, we can extract each of the CFG rules in them. For sim-
plicity, let’s strip off the rule suffixes (-SBJ and so on). The resulting grammar is
shown in Fig. 12.10.

The grammar used to parse the Penn Treebank is relatively flat, resulting in very
many and very long rules. For example, among the approximately 4,500 different
rules for expanding VPs are separate rules for PP sequences of any length and every
possible arrangement of verb arguments:

VP → VBD PP
VP → VBD PP PP
VP → VBD PP PP PP
VP → VBD PP PP PP PP
VP → VB ADVP PP
VP → VB PP ADVP
VP → ADVP VB PP
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as well as even longer rules, such as

VP → VBP PP PP PP PP PP ADVP PP

which comes from the VP marked in italics:

This mostly happens because we go from football in the fall to lifting in the
winter to football again in the spring.

Some of the many thousands of NP rules include

NP → DT JJ NN
NP → DT JJ NNS
NP → DT JJ NN NN
NP → DT JJ JJ NN
NP → DT JJ CD NNS
NP → RB DT JJ NN NN
NP → RB DT JJ JJ NNS
NP → DT JJ JJ NNP NNS
NP → DT NNP NNP NNP NNP JJ NN
NP → DT JJ NNP CC JJ JJ NN NNS
NP → RB DT JJS NN NN SBAR
NP → DT VBG JJ NNP NNP CC NNP
NP → DT JJ NNS , NNS CC NN NNS NN
NP → DT JJ JJ VBG NN NNP NNP FW NNP
NP → NP JJ , JJ ‘‘ SBAR ’’ NNS

The last two of those rules, for example, come from the following two noun phrases:

[DT The] [JJ state-owned] [JJ industrial] [VBG holding] [NN company] [NNP Instituto]
[NNP Nacional] [FW de] [NNP Industria]
[NP Shearson’s] [JJ easy-to-film], [JJ black-and-white] “[SBAR Where We Stand]”
[NNS commercials]

Viewed as a large grammar in this way, the Penn Treebank III Wall Street Journal
corpus, which contains about 1 million words, also has about 1 million non-lexical
rule tokens, consisting of about 17,500 distinct rule types.

Various facts about the treebank grammars, such as their large numbers of flat
rules, pose problems for probabilistic parsing algorithms. For this reason, it is com-
mon to make various modifications to a grammar extracted from a treebank. We
discuss these further in Chapter 14.

12.4.3 Heads and Head Finding
We suggested informally earlier that syntactic constituents could be associated with
a lexical head; N is the head of an NP, V is the head of a VP. This idea of a head for
each constituent dates back to Bloomfield (1914). It is central to constituent-based
grammar formalisms such as Head-Driven Phrase Structure Grammar (Pollard and
Sag, 1994), as well as the dependency-based approaches to grammar we’ll discuss
in Chapter 15. Heads and head-dependent relations have also come to play a central
role in computational linguistics with their use in probabilistic parsing (Chapter 14)
and in dependency parsing (Chapter 15).

In one simple model of lexical heads, each context-free rule is associated with
a head (Charniak 1997, Collins 1999). The head is the word in the phrase that is
grammatically the most important. Heads are passed up the parse tree; thus, each
non-terminal in a parse tree is annotated with a single word, which is its lexical head.
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S(dumped)

VP(dumped)

PP(into)

NP(bin)

NN(bin)

bin

DT(a)

a

P

into

NP(sacks)

NNS(sacks)

sacks

VBD(dumped)

dumped

NP(workers)

NNS(workers)

workers

Figure 12.11 A lexicalized tree from Collins (1999).

Figure 12.11 shows an example of such a tree from Collins (1999), in which each
non-terminal is annotated with its head.

For the generation of such a tree, each CFG rule must be augmented to identify
one right-side constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter. Choosing these head daughters is
simple for textbook examples (NN is the head of NP) but is complicated and indeed
controversial for most phrases. (Should the complementizer to or the verb be the
head of an infinite verb-phrase?) Modern linguistic theories of syntax generally
include a component that defines heads (see, e.g., (Pollard and Sag, 1994)).

An alternative approach to finding a head is used in most practical computational
systems. Instead of specifying head rules in the grammar itself, heads are identified
dynamically in the context of trees for specific sentences. In other words, once
a sentence is parsed, the resulting tree is walked to decorate each node with the
appropriate head. Most current systems rely on a simple set of handwritten rules,
such as a practical one for Penn Treebank grammars given in Collins (1999) but
developed originally by Magerman (1995). For example, the rule for finding the
head of an NP is as follows (Collins, 1999, p. 238):

• If the last word is tagged POS, return last-word.
• Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,

or JJR.
• Else search from left to right for the first child which is an NP.
• Else search from right to left for the first child which is a $, ADJP, or PRN.
• Else search from right to left for the first child which is a CD.
• Else search from right to left for the first child which is a JJ, JJS, RB or QP.
• Else return the last word

Selected other rules from this set are shown in Fig. 12.12. For example, for VP
rules of the form VP→ Y1 · · · Yn, the algorithm would start from the left of Y1 · · ·
Yn looking for the first Yi of type TO; if no TOs are found, it would search for the
first Yi of type VBD; if no VBDs are found, it would search for a VBN, and so on.
See Collins (1999) for more details.
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Parent Direction Priority List
ADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS

SBAR RB
ADVP Right RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
PRN Left
PRT Right RP
QP Left $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
S Left TO IN VP S SBAR ADJP UCP NP
SBAR Left WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG
VP Left TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP
Figure 12.12 Selected head rules from Collins (1999). The set of head rules is often called a head percola-
tion table.

12.5 Grammar Equivalence and Normal Form

A formal language is defined as a (possibly infinite) set of strings of words. This
suggests that we could ask if two grammars are equivalent by asking if they gener-
ate the same set of strings. In fact, it is possible to have two distinct context-free
grammars generate the same language.

We usually distinguish two kinds of grammar equivalence: weak equivalence
and strong equivalence. Two grammars are strongly equivalent if they generate the
same set of strings and if they assign the same phrase structure to each sentence
(allowing merely for renaming of the non-terminal symbols). Two grammars are
weakly equivalent if they generate the same set of strings but do not assign the same
phrase structure to each sentence.

It is sometimes useful to have a normal form for grammars, in which each ofnormal form

the productions takes a particular form. For example, a context-free grammar is in
Chomsky normal form (CNF) (Chomsky, 1963) if it is ε-free and if in additionChomsky

normal form
each production is either of the form A→ B C or A→ a. That is, the right-hand side
of each rule either has two non-terminal symbols or one terminal symbol. Chomsky
normal form grammars are binary branching, that is they have binary trees (downbinary

branching
to the prelexical nodes). We make use of this binary branching property in the CKY
parsing algorithm in Chapter 13.

Any context-free grammar can be converted into a weakly equivalent Chomsky
normal form grammar. For example, a rule of the form

A → B C D

can be converted into the following two CNF rules (Exercise 12.8 asks the reader to
formulate the complete algorithm):

A → B X

X → C D

Sometimes using binary branching can actually produce smaller grammars. For
example, the sentences that might be characterized as

VP -> VBD NP PP*

are represented in the Penn Treebank by this series of rules:

VP → VBD NP PP

VP → VBD NP PP PP
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VP → VBD NP PP PP PP

VP → VBD NP PP PP PP PP

...

but could also be generated by the following two-rule grammar:

VP → VBD NP PP

VP → VP PP

The generation of a symbol A with a potentially infinite sequence of symbols B with
a rule of the form A → A B is known as Chomsky-adjunction.Chomsky-

adjunction

12.6 Lexicalized Grammars

The approach to grammar presented thus far emphasizes phrase-structure rules while
minimizing the role of the lexicon. However, as we saw in the discussions of
agreement, subcategorization, and long-distance dependencies, this approach leads
to solutions that are cumbersome at best, yielding grammars that are redundant,
hard to manage, and brittle. To overcome these issues, numerous alternative ap-
proaches have been developed that all share the common theme of making bet-
ter use of the lexicon. Among the more computationally relevant approaches are
Lexical-Functional Grammar (LFG) (Bresnan, 1982), Head-Driven Phrase Structure
Grammar (HPSG) (Pollard and Sag, 1994), Tree-Adjoining Grammar (TAG) (Joshi,
1985), and Combinatory Categorial Grammar (CCG). These approaches differ with
respect to how lexicalized they are — the degree to which they rely on the lexicon
as opposed to phrase structure rules to capture facts about the language.

The following section provides an introduction to CCG, a heavily lexicalized
approach motivated by both syntactic and semantic considerations, which we will
return to in Chapter 16. Chapter 15 discusses dependency grammars, an approach
that eliminates phrase-structure rules entirely.

12.6.1 Combinatory Categorial Grammar
In this section, we provide an overview of categorial grammar (Ajdukiewicz 1935,categorial

grammar
Bar-Hillel 1953), an early lexicalized grammar model, as well as an important mod-
ern extension, combinatory categorial grammar, or CCG (Steedman 1996, Steed-

combinatory
categorial
grammar

man 1989, Steedman 2000).
The categorial approach consists of three major elements: a set of categories,

a lexicon that associates words with categories, and a set of rules that govern how
categories combine in context.

Categories

Categories are either atomic elements or single-argument functions that return a cat-
egory as a value when provided with a desired category as argument. More formally,
we can define C , a set of categories for a grammar as follows:

• A ⊆ C , where A is a given set of atomic elements
• (X/Y), (X\Y) ∈ C , if X, Y ∈ C

The slash notation shown here is used to define the functions in the grammar.
It specifies the type of the expected argument, the direction it is expected be found,
and the type of the result. Thus, (X/Y) is a function that seeks a constituent of type
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Y to its right and returns a value of X; (X\Y) is the same except it seeks its argument
to the left.

The set of atomic categories is typically very small and includes familiar el-
ements such as sentences and noun phrases. Functional categories include verb
phrases and complex noun phrases among others.

The Lexicon

The lexicon in a categorial approach consists of assignments of categories to words.
These assignments can either be to atomic or functional categories, and due to lexical
ambiguity words can be assigned to multiple categories. Consider the following
sample lexical entries.

flight : N

Miami : NP

cancel : (S\NP)/NP

Nouns and proper nouns like flight and Miami are assigned to atomic categories,
reflecting their typical role as arguments to functions. On the other hand, a transitive
verb like cancel is assigned the category (S\NP)/NP: a function that seeks an NP on
its right and returns as its value a function with the type (S\NP). This function can,
in turn, combine with an NP on the left, yielding an S as the result. This captures the
kind of subcategorization information discussed in Section 12.3.4, however here the
information has a rich, computationally useful, internal structure.

Ditransitive verbs like give, which expect two arguments after the verb, would
have the category ((S\NP)/NP)/NP: a function that combines with an NP on its
right to yield yet another function corresponding to the transitive verb (S\NP)/NP
category such as the one given above for cancel.

Rules

The rules of a categorial grammar specify how functions and their arguments com-
bine. The following two rule templates constitute the basis for all categorial gram-
mars.

X/Y Y ⇒ X (12.4)

Y X\Y ⇒ X (12.5)

The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. We’ll refer to the first as forward function appli-
cation, and the second as backward function application. The result of applying
either of these rules is the category specified as the value of the function being ap-
plied.

Given these rules and a simple lexicon, let’s consider an analysis of the sentence
United serves Miami. Assume that serves is a transitive verb with the category
(S\NP)/NP and that United and Miami are both simple NPs. Using both forward
and backward function application, the derivation would proceed as follows:

United serves Miami

NP (S\NP)/NP NP
>

S\NP
<

S
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Categorial grammar derivations are illustrated growing down from the words,
rule applications are illustrated with a horizontal line that spans the elements in-
volved, with the type of the operation indicated at the right end of the line. In this
example, there are two function applications: one forward function application indi-
cated by the > that applies the verb serves to the NP on its right, and one backward
function application indicated by the < that applies the result of the first to the NP
United on its left.

With the addition of another rule, the categorial approach provides a straight-
forward way to implement the coordination metarule described earlier on page 216.
Recall that English permits the coordination of two constituents of the same type,
resulting in a new constituent of the same type. The following rule provides the
mechanism to handle such examples.

X CONJ X ⇒ X (12.6)

This rule states that when two constituents of the same category are separated by a
constituent of type CONJ they can be combined into a single larger constituent of
the same type. The following derivation illustrates the use of this rule.

We flew to Geneva and drove to Chamonix

NP (S\NP)/PP PP/NP NP CONJ (S\NP)/PP PP/NP NP
> >

PP PP
> >

S\NP S\NP
<Φ>

S\NP
<

S

Here the two S\NP constituents are combined via the conjunction operator <Φ>

to form a larger constituent of the same type, which can then be combined with the
subject NP via backward function application.

These examples illustrate the lexical nature of the categorial grammar approach.
The grammatical facts about a language are largely encoded in the lexicon, while the
rules of the grammar are boiled down to a set of three rules. Unfortunately, the basic
categorial approach does not give us any more expressive power than we had with
traditional CFG rules; it just moves information from the grammar to the lexicon. To
move beyond these limitations CCG includes operations that operate over functions.

The first pair of operators permit us to compose adjacent functions.

X/Y Y/Z ⇒ X/Z (12.7)

Y\Z X\Y ⇒ X\Z (12.8)

The first rule, called forward composition, can be applied to adjacent con-forward
composition

stituents where the first is a function seeking an argument of type Y to its right, and
the second is a function that providesY as a result. This rule allows us to compose
these two functions into a single one with the type of the first constituent and the
argument of the second. Although the notation is a little awkward, the second rule,
backward composition is the same, except that we’re looking to the left instead ofbackward

composition
to the right for the relevant arguments. Both kinds of composition are signalled by a
B in CCG diagrams, accompanied by a < or > to indicate the direction.

The next operator is type raising. Type raising elevates simple categories to thetype raising

status of functions. More specifically, type raising takes a category and converts
it to function that seeks as an argument a function that takes the original category
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as its argument. The following schema show two versions of type raising: one for
arguments to the right, and one for the left.

X ⇒ T/(T\X) (12.9)

X ⇒ T\(T/X) (12.10)

The category T in these rules can correspond to any of the atomic or functional
categories already present in the grammar.

A particularly useful example of type raising transforms a simple NP argument
in subject position to a function that can compose with a following VP. To see how
this works, let’s revisit our earlier example of United serves Miami. Instead of clas-
sifying United as an NP which can serve as an argument to the function attached to
serve, we can use type raising to reinvent it as a function in its own right as follows.

NP ⇒ S/(S\NP)

Combining this type-raised constituent with the forward composition rule (12.7)
permits the following alternative to our previous derivation.

United serves Miami

NP (S\NP)/NP NP
>T

S/(S\NP)
>B

S/NP
>

S
By type raising United to S/(S\NP), we can compose it with the transitive verb
serves to yield the (S/NP) function needed to complete the derivation.

There are several interesting things to note about this derivation. First, is it
provides a left-to-right, word-by-word derivation that more closely mirrors the way
humans process language. This makes CCG a particularly apt framework for psy-
cholinguistic studies. Second, this derivation involves the use of an intermediate
unit of analysis, United serves, that does not correspond to a traditional constituent
in English. This ability to make use of such non-constituent elements provides CCG
with the ability to handle the coordination of phrases that are not proper constituents,
as in the following example.

(12.11) We flew IcelandAir to Geneva and SwissAir to London.

Here, the segments that are being coordinated are IcelandAir to Geneva and
SwissAir to London, phrases that would not normally be considered constituents, as
can be seen in the following standard derivation for the verb phrase flew IcelandAir
to Geneva.

flew IcelandAir to Geneva

(VP/PP)/NP NP PP/NP NP
> >

VP/PP PP
>

VP
In this derivation, there is no single constituent that corresponds to IcelandAir

to Geneva, and hence no opportunity to make use of the <Φ> operator. Note that
complex CCG categories can can get a little cumbersome, so we’ll use VP as a
shorthand for (S\NP) in this and the following derivations.

The following alternative derivation provides the required element through the
use of both backward type raising (12.10) and backward function composition (12.8).
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flew IcelandAir to Geneva

(V P/PP)/NP NP PP/NP NP
<T >

(V P/PP)\((V P/PP)/NP) PP
<T

V P\(V P/PP)
<B

V P\((V P/PP)/NP)
<

V P
Applying the same analysis to SwissAir to London satisfies the requirements

for the <Φ> operator, yielding the following derivation for our original example
(12.11).

flew IcelandAir to Geneva and SwissAir to London

(V P/PP)/NP NP PP/NP NP CONJ NP PP/NP NP
<T > <T >

(V P/PP)\((V P/PP)/NP) PP (V P/PP)\((V P/PP)/NP) PP
<T <T

V P\(V P/PP) V P\(V P/PP)
< <

V P\((V P/PP)/NP) V P\((V P/PP)/NP)
<Φ>

V P\((V P/PP)/NP)
<

V P

Finally, let’s examine how these advanced operators can be used to handle long-
distance dependencies (also referred to as syntactic movement or extraction). As
mentioned in Section 12.3.1, long-distance dependencies arise from many English
constructions including wh-questions, relative clauses, and topicalization. What
these constructions have in common is a constituent that appears somewhere dis-
tant from its usual, or expected, location. Consider the following relative clause as
an example.

the flight that United diverted

Here, divert is a transitive verb that expects two NP arguments, a subject NP to its
left and a direct object NP to its right; its category is therefore (S\NP)/NP. However,
in this example the direct object the flight has been “moved” to the beginning of the
clause, while the subject United remains in its normal position. What is needed is a
way to incorporate the subject argument, while dealing with the fact that the flight is
not in its expected location.

The following derivation accomplishes this, again through the combined use of
type raising and function composition.

the flight that United diverted

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP
As we saw with our earlier examples, the first step of this derivation is type raising
United to the category S/(S\NP) allowing it to combine with diverted via forward
composition. The result of this composition is S/NP which preserves the fact that we
are still looking for an NP to fill the missing direct object. The second critical piece
is the lexical category assigned to the word that: (NP\NP)/(S/NP). This function
seeks a verb phrase missing an argument to its right, and transforms it into an NP
seeking a missing element to its left, precisely where we find the flight.
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CCGBank

As with phrase-structure approaches, treebanks play an important role in CCG-
based approaches to parsing. CCGBank (Hockenmaier and Steedman, 2007) is the
largest and most widely used CCG treebank. It was created by automatically trans-
lating phrase-structure trees from the Penn Treebank via a rule-based approach. The
method produced successful translations of over 99% of the trees in the Penn Tree-
bank resulting in 48,934 sentences paired with CCG derivations. It also provides
a lexicon of 44,000 words with over 1200 categories. Chapter 14 will discuss how
these resources can be used to train CCG parsers.

12.7 Summary

This chapter has introduced a number of fundamental concepts in syntax through
the use of context-free grammars.

• In many languages, groups of consecutive words act as a group or a con-
stituent, which can be modeled by context-free grammars (which are also
known as phrase-structure grammars).

• A context-free grammar consists of a set of rules or productions, expressed
over a set of non-terminal symbols and a set of terminal symbols. Formally,
a particular context-free language is the set of strings that can be derived
from a particular context-free grammar.

• A generative grammar is a traditional name in linguistics for a formal lan-
guage that is used to model the grammar of a natural language.

• There are many sentence-level grammatical constructions in English; declar-
ative, imperative, yes-no question, and wh-question are four common types;
these can be modeled with context-free rules.

• An English noun phrase can have determiners, numbers, quantifiers, and
adjective phrases preceding the head noun, which can be followed by a num-
ber of postmodifiers; gerundive VPs, infinitives VPs, and past participial
VPs are common possibilities.

• Subjects in English agree with the main verb in person and number.

• Verbs can be subcategorized by the types of complements they expect. Sim-
ple subcategories are transitive and intransitive; most grammars include
many more categories than these.

• Treebanks of parsed sentences exist for many genres of English and for many
languages. Treebanks can be searched with tree-search tools.

• Any context-free grammar can be converted to Chomsky normal form, in
which the right-hand side of each rule has either two non-terminals or a single
terminal.

• Lexicalized grammars place more emphasis on the structure of the lexicon,
lessening the burden on pure phrase-structure rules.

• Combinatorial categorial grammar (CCG) is an important computationally
relevant lexicalized approach.
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Bibliographical and Historical Notes

[The origin of the idea of phrasal constituency, cited in Percival (1976)]:
...den sprachlichen Ausdruck für die willkürliche

Gliederung einer Gesammtvorstellung in ihre
in logische Beziehung zueinander gesetzten Bestandteile

[the linguistic expression for the arbitrary division of a total idea
into its constituent parts placed in logical relations to one another]

W. Wundt

According to Percival (1976), the idea of breaking up a sentence into a hierar-
chy of constituents appeared in the Völkerpsychologie of the groundbreaking psy-
chologist Wilhelm Wundt (Wundt, 1900). Wundt’s idea of constituency was taken
up into linguistics by Leonard Bloomfield in his early book An Introduction to the
Study of Language (Bloomfield, 1914). By the time of his later book, Language
(Bloomfield, 1933), what was then called “immediate-constituent analysis” was a
well-established method of syntactic study in the United States. By contrast, tra-
ditional European grammar, dating from the Classical period, defined relations be-
tween words rather than constituents, and European syntacticians retained this em-
phasis on such dependency grammars, the subject of Chapter 15.

American Structuralism saw a number of specific definitions of the immediate
constituent, couched in terms of their search for a “discovery procedure”: a method-
ological algorithm for describing the syntax of a language. In general, these attempt
to capture the intuition that “The primary criterion of the immediate constituent is the
degree in which combinations behave as simple units” (Bazell, 1966, p. 284). The
most well known of the specific definitions is Harris’ idea of distributional similarity
to individual units, with the substitutability test. Essentially, the method proceeded
by breaking up a construction into constituents by attempting to substitute simple
structures for possible constituents—if a substitution of a simple form, say, man,
was substitutable in a construction for a more complex set (like intense young man),
then the form intense young man was probably a constituent. Harris’s test was the
beginning of the intuition that a constituent is a kind of equivalence class.

The first formalization of this idea of hierarchical constituency was the phrase-
structure grammar defined in Chomsky (1956) and further expanded upon (and
argued against) in Chomsky (1957) and Chomsky (1975). From this time on, most
generative linguistic theories were based at least in part on context-free grammars or
generalizations of them (such as Head-Driven Phrase Structure Grammar (Pollard
and Sag, 1994), Lexical-Functional Grammar (Bresnan, 1982), Government and
Binding (Chomsky, 1981), and Construction Grammar (Kay and Fillmore, 1999),
inter alia); many of these theories used schematic context-free templates known as
X-bar schemata, which also relied on the notion of syntactic head.X-bar

schemata
Shortly after Chomsky’s initial work, the context-free grammar was reinvented

by Backus (1959) and independently by Naur et al. (1960) in their descriptions of
the ALGOL programming language; Backus (1996) noted that he was influenced by
the productions of Emil Post and that Naur’s work was independent of his (Backus’)
own. (Recall the discussion on page ?? of multiple invention in science.) After this
early work, a great number of computational models of natural language processing
were based on context-free grammars because of the early development of efficient
algorithms to parse these grammars (see Chapter 13).
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As we have already noted, grammars based on context-free rules are not ubiqui-
tous. Various classes of extensions to CFGs are designed specifically to handle long-
distance dependencies. We noted earlier that some grammars treat long-distance-
dependent items as being related semantically but not syntactically; the surface syn-
tax does not represent the long-distance link (Kay and Fillmore 1999, Culicover and
Jackendoff 2005). But there are alternatives.

One extended formalism is Tree Adjoining Grammar (TAG) (Joshi, 1985).
The primary TAG data structure is the tree, rather than the rule. Trees come in two
kinds: initial trees and auxiliary trees. Initial trees might, for example, represent
simple sentential structures, and auxiliary trees add recursion into a tree. Trees are
combined by two operations called substitution and adjunction. The adjunction
operation handles long-distance dependencies. See Joshi (1985) for more details.
An extension of Tree Adjoining Grammar, called Lexicalized Tree Adjoining Gram-
mars is discussed in Chapter 14. Tree Adjoining Grammar is a member of the family
of mildly context-sensitive languages.

We mentioned on page 217 another way of handling long-distance dependencies,
based on the use of empty categories and co-indexing. The Penn Treebank uses
this model, which draws (in various Treebank corpora) from the Extended Standard
Theory and Minimalism (Radford, 1997).

Readers interested in the grammar of English should get one of the three large
reference grammars of English: Huddleston and Pullum (2002), Biber et al. (1999),
and Quirk et al. (1985). Another useful reference is McCawley (1998).

There are many good introductory textbooks on syntax from different perspec-
tives. Sag et al. (2003) is an introduction to syntax from a generative perspective,generative

focusing on the use of phrase-structure rules, unification, and the type hierarchy in
Head-Driven Phrase Structure Grammar. Van Valin, Jr. and La Polla (1997) is an
introduction from a functional perspective, focusing on cross-linguistic data and onfunctional

the functional motivation for syntactic structures.

Exercises
12.1 Draw tree structures for the following ATIS phrases:

1. Dallas
2. from Denver
3. after five p.m.
4. arriving in Washington
5. early flights
6. all redeye flights
7. on Thursday
8. a one-way fare
9. any delays in Denver

12.2 Draw tree structures for the following ATIS sentences:

1. Does American Airlines have a flight between five a.m. and six a.m.?
2. I would like to fly on American Airlines.
3. Please repeat that.
4. Does American 487 have a first-class section?
5. I need to fly between Philadelphia and Atlanta.
6. What is the fare from Atlanta to Denver?
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7. Is there an American Airlines flight from Philadelphia to Dallas?

12.3 Assume a grammar that has many VP rules for different subcategorizations,
as expressed in Section 12.3.4, and differently subcategorized verb rules like
Verb-with-NP-complement. How would the rule for postnominal relative clauses
(12.4) need to be modified if we wanted to deal properly with examples like
the earliest flight that you have? Recall that in such examples the pronoun
that is the object of the verb get. Your rules should allow this noun phrase but
should correctly rule out the ungrammatical S *I get.

12.4 Does your solution to the previous problem correctly model the NP the earliest
flight that I can get? How about the earliest flight that I think my mother
wants me to book for her? Hint: this phenomenon is called long-distance
dependency.

12.5 Write rules expressing the verbal subcategory of English auxiliaries; for ex-
ample, you might have a rule verb-with-bare-stem-VP-complement→ can.

12.6 NPs like Fortune’s office or my uncle’s marks are called possessive or genitivepossessive

genitive noun phrases. We can model possessive noun phrases by treating the sub-NP
like Fortune’s or my uncle’s as a determiner of the following head noun. Write
grammar rules for English possessives. You may treat ’s as if it were a separate
word (i.e., as if there were always a space before ’s).

12.7 Page 210 discussed the need for a Wh-NP constituent. The simplest Wh-NP
is one of the Wh-pronouns (who, whom, whose, which). The Wh-words what
and which can be determiners: which four will you have?, what credit do you
have with the Duke? Write rules for the different types of Wh-NPs.

12.8 Write an algorithm for converting an arbitrary context-free grammar into Chom-
sky normal form.
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CHAPTER

13 Constituency Parsing

One morning I shot an elephant in my pajamas.
How he got into my pajamas I don’t know.

Groucho Marx, Animal Crackers, 1930

Syntactic parsing is the task of recognizing a sentence and assigning a syntactic
structure to it. This chapter focuses on the structures assigned by context-free gram-
mars of the kind described in Chapter 12. Since they are based on a purely declar-
ative formalism, context-free grammars don’t specify how the parse tree for a given
sentence should be computed. We therefore need to specify algorithms that employ
these grammars to efficiently produce correct trees.

Parse trees are directly useful in applications such as grammar checking in
word-processing systems: a sentence that cannot be parsed may have grammatical
errors (or at least be hard to read). More typically, however, parse trees serve as an
important intermediate stage of representation for semantic analysis (as we show in
Chapter 17) and thus play an important role in applications like question answering
and information extraction. For example, to answer the question

What books were written by British women authors before 1800?

we’ll need to know that the subject of the sentence was what books and that the by-
adjunct was British women authors to help us figure out that the user wants a list of
books (and not a list of authors).

Before presenting any algorithms, we begin by discussing how the ambiguity
arises again in this context and the problems it presents. The section that fol-
lows then presents the Cocke-Kasami-Younger (CKY) algorithm (Kasami 1965,
Younger 1967), the standard dynamic programming approach to syntactic parsing.
Recall that we’ve already seen applications of dynamic programming algorithms in
the Minimum-Edit-Distance and Viterbi algorithms of earlier chapters. Finally, we
discuss partial parsing methods, for use in situations in which a superficial syntac-
tic analysis of an input may be sufficient.

13.1 Ambiguity

Ambiguity is perhaps the most serious problem faced by syntactic parsers. Chap-
ter 8 introduced the notions of part-of-speech ambiguity and part-of-speech dis-
ambiguation. Here, we introduce a new kind of ambiguity, called structural ambi-
guity, which arises from many commonly used rules in phrase-structure grammars.structural

ambiguity
To illustrate the issues associated with structural ambiguity, we’ll make use of a new
toy grammar L1, shown in Figure 13.1, which consists of the L0 grammar from the
last chapter augmented with a few additional rules.

Structural ambiguity occurs when the grammar can assign more than one parse
to a sentence. Groucho Marx’s well-known line as Captain Spaulding in Animal
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Grammar Lexicon
S → NP VP Det → that | this | the | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP
Figure 13.1 The L1 miniature English grammar and lexicon.

S

VP

NP

Nominal

PP

in my pajamas

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

S

VP

PP

in my pajamas

VP

NP

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

Crackers is ambiguous because the phrase in my pajamas can be part of the NP
headed by elephant or a part of the verb phrase headed by shot. Figure 13.2 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be at-attachment
ambiguity

tached to the parse tree at more than one place. The Groucho Marx sentence is
an example of PP-attachment ambiguity. Various kinds of adverbial phrases are
also subject to this kind of ambiguity. For instance, in the following example the
gerundive-VP flying to Paris can be part of a gerundive sentence whose subject is
the Eiffel Tower or it can be an adjunct modifying the VP headed by saw:

(13.1) We saw the Eiffel Tower flying to Paris.
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In coordination ambiguity different sets of phrases can be conjoined by a con-coordination
ambiguity

junction like and. For example, the phrase old men and women can be bracketed as
[old [men and women]], referring to old men and old women, or as [old men] and
[women], in which case it is only the men who are old.

These ambiguities combine in complex ways in real sentences. A program that
summarized the news, for example, would need to be able to parse sentences like
the following from the Brown corpus:

(13.2) President Kennedy today pushed aside other White House business to
devote all his time and attention to working on the Berlin crisis address he
will deliver tomorrow night to the American people over nationwide
television and radio.

This sentence has a number of ambiguities, although since they are semantically
unreasonable, it requires a careful reading to see them. The last noun phrase could be
parsed [nationwide [television and radio]] or [[nationwide television] and radio].
The direct object of pushed aside should be other White House business but could
also be the bizarre phrase [other White House business to devote all his time and
attention to working] (i.e., a structure like Kennedy affirmed [his intention to propose
a new budget to address the deficit]). Then the phrase on the Berlin crisis address he
will deliver tomorrow night to the American people could be an adjunct modifying
the verb pushed. A PP like over nationwide television and radio could be attached
to any of the higher VPs or NPs (e.g., it could modify people or night).

The fact that there are many grammatically correct but semantically unreason-
able parses for naturally occurring sentences is an irksome problem that affects all
parsers. Ultimately, most natural language processing systems need to be able to
choose a single correct parse from the multitude of possible parses through a process
of syntactic disambiguation. Effective disambiguation algorithms require statisti-syntactic

disambiguation
cal, semantic, and contextual knowledge sources that vary in how well they can be
integrated into parsing algorithms.

Fortunately, the CKY algorithm presented in the next section is designed to effi-
ciently handle structural ambiguities of the kind we’ve been discussing. And as we’ll
see in Chapter 14, there are straightforward ways to integrate statistical techniques
into the basic CKY framework to produce highly accurate parsers.

13.2 CKY Parsing: A Dynamic Programming Approach

The previous section introduced some of the problems associated with ambiguous
grammars. Fortunately, dynamic programming provides a powerful framework for
addressing these problems, just as it did with the Minimum Edit Distance, Viterbi,
and Forward algorithms. Recall that dynamic programming approaches systemati-
cally fill in tables of solutions to sub-problems. When complete, the tables contain
the solution to all the sub-problems needed to solve the problem as a whole. In
the case of syntactic parsing, these sub-problems represent parse trees for all the
constituents detected in the input.

The dynamic programming advantage arises from the context-free nature of our
grammar rules — once a constituent has been discovered in a segment of the input
we can record its presence and make it available for use in any subsequent derivation
that might require it. This provides both time and storage efficiencies since subtrees
can be looked up in a table, not reanalyzed. This section presents the Cocke-Kasami-
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Younger (CKY) algorithm, the most widely used dynamic-programming based ap-
proach to parsing. Related approaches include the Earley algorithm (Earley, 1970)
and chart parsing (Kaplan 1973, Kay 1982).

13.2.1 Conversion to Chomsky Normal Form
We begin our investigation of the CKY algorithm by examining the requirement
that grammars used with it must be in Chomsky Normal Form (CNF). Recall from
Chapter 12 that grammars in CNF are restricted to rules of the form A → B C or
A → w. That is, the right-hand side of each rule must expand either to two non-
terminals or to a single terminal. Restricting a grammar to CNF does not lead to
any loss in expressiveness, since any context-free grammar can be converted into
a corresponding CNF grammar that accepts exactly the same set of strings as the
original grammar.

Let’s start with the process of converting a generic CFG into one represented in
CNF. Assuming we’re dealing with an ε-free grammar, there are three situations we
need to address in any generic grammar: rules that mix terminals with non-terminals
on the right-hand side, rules that have a single non-terminal on the right-hand side,
and rules in which the length of the right-hand side is greater than 2.

The remedy for rules that mix terminals and non-terminals is to simply introduce
a new dummy non-terminal that covers only the original terminal. For example, a
rule for an infinitive verb phrase such as INF-VP → to VP would be replaced by the
two rules INF-VP → TO VP and TO → to.

Rules with a single non-terminal on the right are called unit productions. WeUnit
productions

can eliminate unit productions by rewriting the right-hand side of the original rules
with the right-hand side of all the non-unit production rules that they ultimately lead
to. More formally, if A ∗⇒ B by a chain of one or more unit productions and B→ γ

is a non-unit production in our grammar, then we add A→ γ for each such rule in
the grammar and discard all the intervening unit productions. As we demonstrate
with our toy grammar, this can lead to a substantial flattening of the grammar and a
consequent promotion of terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are normalized through the introduc-
tion of new non-terminals that spread the longer sequences over several new rules.
Formally, if we have a rule like

A → B C γ

we replace the leftmost pair of non-terminals with a new non-terminal and introduce
a new production result in the following new rules:

A → X1 γ

X1 → B C

In the case of longer right-hand sides, we simply iterate this process until the of-
fending rule has been replaced by rules of length 2. The choice of replacing the
leftmost pair of non-terminals is purely arbitrary; any systematic scheme that results
in binary rules would suffice.

In our current grammar, the rule S → Aux NP VP would be replaced by the two
rules S → X1 VP and X1 → Aux NP.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged.
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L1 Grammar L1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
Figure 13.3 L1 Grammar and its conversion to CNF. Note that although they aren’t shown
here, all the original lexical entries from L1 carry over unchanged as well.

2. Convert terminals within rules to dummy non-terminals.
3. Convert unit productions.
4. Make all rules binary and add them to new grammar.

Figure 13.3 shows the results of applying this entire conversion procedure to
the L1 grammar introduced earlier on page 233. Note that this figure doesn’t show
the original lexical rules; since these original lexical rules are already in CNF, they
all carry over unchanged to the new grammar. Figure 13.3 does, however, show
the various places where the process of eliminating unit productions has, in effect,
created new lexical rules. For example, all the original verbs have been promoted to
both VPs and to Ss in the converted grammar.

13.2.2 CKY Recognition
With our grammar now in CNF, each non-terminal node above the part-of-speech
level in a parse tree will have exactly two daughters. A two-dimensional matrix can
be used to encode the structure of an entire tree. For a sentence of length n, we will
work with the upper-triangular portion of an (n+1)× (n+1) matrix. Each cell [i, j]
in this matrix contains the set of non-terminals that represent all the constituents that
span positions i through j of the input. Since our indexing scheme begins with 0,
it’s natural to think of the indexes as pointing at the gaps between the input words
(as in 0 Book 1 that 2 flight 3). It follows then that the cell that represents the entire
input resides in position [0,n] in the matrix.

Since each non-terminal entry in our table has two daughters in the parse, it fol-
lows that for each constituent represented by an entry [i, j], there must be a position
in the input, k, where it can be split into two parts such that i < k < j. Given such
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a position k, the first constituent [i,k] must lie to the left of entry [i, j] somewhere
along row i, and the second entry [k, j] must lie beneath it, along column j.

To make this more concrete, consider the following example with its completed
parse matrix, shown in Fig. 13.4.

(13.3) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each word in
the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.

Book the flight through Houston

S, VP, Verb, 
Nominal, 
Noun

S,VP,X2 S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Figure 13.4 Completed parse table for Book the flight through Houston.

Given this setup, CKY recognition consists of filling the parse table in the right
way. To do this, we’ll proceed in a bottom-up fashion so that at the point where
we are filling any cell [i, j], the cells containing the parts that could contribute to
this entry (i.e., the cells to the left and the cells below) have already been filled.
The algorithm given in Fig. 13.5 fills the upper-triangular matrix a column at a time
working from left to right, with each column filled from bottom to top, as the right
side of Fig. 13.4 illustrates. This scheme guarantees that at each point in time we
have all the information we need (to the left, since all the columns to the left have
already been filled, and below since we’re filling bottom to top). It also mirrors on-
line parsing since filling the columns from left to right corresponds to processing
each word one at a time.

function CKY-PARSE(words, grammar) returns table

for j← from 1 to LENGTH(words) do
for all {A | A → words[ j] ∈ grammar}

table[ j−1, j]← table[ j−1, j] ∪ A
for i← from j−2 downto 0 do

for k← i+1 to j−1 do
for all {A | A → BC ∈ grammar and B ∈ table[i,k] and C ∈ table[k, j]}

table[i,j]← table[i,j] ∪ A

Figure 13.5 The CKY algorithm.
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...

...

[0,n]

[i,i+1] [i,i+2] [i,j-2] [i,j-1]

[i+1,j]

[i+2,j]

[j-1,j]

[j-2,j]

[i,j]

...

[0,1]

[n-1, n]

Figure 13.6 All the ways to fill the [i, j]th cell in the CKY table.

The outermost loop of the algorithm given in Fig. 13.5 iterates over the columns,
and the second loop iterates over the rows, from the bottom up. The purpose of the
innermost loop is to range over all the places where a substring spanning i to j in
the input might be split in two. As k ranges over the places where the string can be
split, the pairs of cells we consider move, in lockstep, to the right along row i and
down along column j. Figure 13.6 illustrates the general case of filling cell [i, j]. At
each such split, the algorithm considers whether the contents of the two cells can be
combined in a way that is sanctioned by a rule in the grammar. If such a rule exists,
the non-terminal on its left-hand side is entered into the table.

Figure 13.7 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to add
an entry to the table. Note that the action in cell [0,5] indicates the presence of three
alternative parses for this input, one where the PP modifies the flight, one where
it modifies the booking, and one that captures the second argument in the original
VP→ Verb NP PP rule, now captured indirectly with the VP→ X2 PP rule.

13.2.3 CKY Parsing
The algorithm given in Fig. 13.5 is a recognizer, not a parser; for it to succeed, it
simply has to find an S in cell [0,n]. To turn it into a parser capable of returning all
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Book the flight through Houston
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Figure 13.7 Filling the cells of column 5 after reading the word Houston.



240 CHAPTER 13 • CONSTITUENCY PARSING

possible parses for a given input, we can make two simple changes to the algorithm:
the first change is to augment the entries in the table so that each non-terminal is
paired with pointers to the table entries from which it was derived (more or less as
shown in Fig. 13.7), the second change is to permit multiple versions of the same
non-terminal to be entered into the table (again as shown in Fig. 13.7). With these
changes, the completed table contains all the possible parses for a given input. Re-
turning an arbitrary single parse consists of choosing an S from cell [0,n] and then
recursively retrieving its component constituents from the table.

Of course, returning all the parses for a given input may incur considerable cost
since an exponential number of parses may be associated with a given input. In such
cases, returning all the parses will have an unavoidable exponential cost. Looking
forward to Chapter 14, we can also think about retrieving the best parse for a given
input by further augmenting the table to contain the probabilities of each entry. Re-
trieving the most probable parse consists of running a suitably modified version of
the Viterbi algorithm from Chapter 8 over the completed parse table.

13.2.4 CKY in Practice
Finally, we should note that while the restriction to CNF does not pose a prob-
lem theoretically, it does pose some non-trivial problems in practice. Obviously, as
things stand now, our parser isn’t returning trees that are consistent with the grammar
given to us by our friendly syntacticians. In addition to making our grammar devel-
opers unhappy, the conversion to CNF will complicate any syntax-driven approach
to semantic analysis.

One approach to getting around these problems is to keep enough information
around to transform our trees back to the original grammar as a post-processing step
of the parse. This is trivial in the case of the transformation used for rules with length
greater than 2. Simply deleting the new dummy non-terminals and promoting their
daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the ba-
sic CKY algorithm to handle them directly than it is to store the information needed
to recover the correct trees. Exercise 13.3 asks you to make this change. Many of
the probabilistic parsers presented in Chapter 14 use the CKY algorithm altered in
just this manner. Another solution is to adopt a more complex dynamic program-
ming solution that simply accepts arbitrary CFGs. The next section presents such an
approach.

13.3 Partial Parsing

Many language processing tasks do not require complex, complete parse trees for all
inputs. For these tasks, a partial parse, or shallow parse, of input sentences maypartial parse

shallow parse be sufficient. For example, information extraction systems generally do not extract
all the possible information from a text: they simply identify and classify the seg-
ments in a text that are likely to contain valuable information. Similarly, information
retrieval systems may index texts according to a subset of the constituents found in
them.

There are many different approaches to partial parsing. Some make use of
cascades of finite state transducers to produce tree-like representations. These ap-
proaches typically produce flatter trees than the ones we’ve been discussing in this
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chapter and the previous one. This flatness arises from the fact that finite state trans-
ducer approaches generally defer decisions that may require semantic or contex-
tual factors, such as prepositional phrase attachments, coordination ambiguities, and
nominal compound analyses. Nevertheless, the intent is to produce parse trees that
link all the major constituents in an input.

An alternative style of partial parsing is known as chunking. Chunking is thechunking

process of identifying and classifying the flat, non-overlapping segments of a sen-
tence that constitute the basic non-recursive phrases corresponding to the major
content-word parts-of-speech: noun phrases, verb phrases, adjective phrases, and
prepositional phrases. The task of finding all the base noun phrases in a text is
particularly common. Since chunked texts lack a hierarchical structure, a simple
bracketing notation is sufficient to denote the location and the type of the chunks in
a given example:

(13.4) [NP The morning flight] [PP from] [NP Denver] [VP has arrived.]

This bracketing notation makes clear the two fundamental tasks that are involved
in chunking: segmenting (finding the non-overlapping extents of the chunks) and
labeling (assigning the correct tag to the discovered chunks).

Some input words may not be part of any chunk, particularly in tasks like base
NP:

(13.5) [NP The morning flight] from [NP Denver] has arrived.

What constitutes a syntactic base phrase depends on the application (and whether
the phrases come from a treebank). Nevertheless, some standard guidelines are fol-
lowed in most systems. First and foremost, base phrases of a given type do not
recursively contain any constituents of the same type. Eliminating this kind of recur-
sion leaves us with the problem of determining the boundaries of the non-recursive
phrases. In most approaches, base phrases include the headword of the phrase, along
with any pre-head material within the constituent, while crucially excluding any
post-head material. Eliminating post-head modifiers obviates the need to resolve at-
tachment ambiguities. This exclusion does lead to certain oddities, such as PPs and
VPs often consisting solely of their heads. Thus, our earlier example a flight from
Indianapolis to Houston on NWA is reduced to the following:

(13.6) [NP a flight] [PP from] [NP Indianapolis][PP to][NP Houston][PP on][NP
NWA]

13.3.1 Machine Learning-Based Approaches to Chunking
State-of-the-art approaches to chunking use supervised machine learning to train a
chunker by using annotated data as a training set and training any sequence labeler.
It’s common to model chunking as IOB tagging. In IOB tagging we introduce a tagIOB

for the beginning (B) and inside (I) of each chunk type, and one for tokens outside
(O) any chunk. The number of tags is thus 2n + 1 tags, where n is the number
of chunk types. IOB tagging can represent exactly the same information as the
bracketed notation. The following example shows the bracketing notation of (13.4)
on page 241 reframed as a tagging task:

(13.7) The
B NP

morning
I NP

flight
I NP

from
B PP

Denver
B NP

has
B VP

arrived
I VP

The same sentence with only the base-NPs tagged illustrates the role of the O tags.
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B_NP I_NP ?      

The flight from Denver has arrived  

Classifier

DT NN NN IN NNP

Corresponding feature representation

The, DT, B_NP, morning, NN, I_NP, flight, NN, from, IN, Denver, NNP

Label

I_NP

morning

Figure 13.8 A sequence model for chunking. The chunker slides a context window over the sentence, clas-
sifying words as it proceeds. At this point, the classifier is attempting to label flight, using features like words,
embeddings, part-of-speech tags and previously assigned chunk tags.

(13.8) The
B NP

morning
I NP

flight
I NP

from
O

Denver
B NP

has
O

arrived.
O

There is no explicit encoding of the end of a chunk in IOB tagging; the end of any
chunk is implicit in any transition from an I or B to a B or O tag. This encoding
reflects the notion that when sequentially labeling words, it is generally easier (at
least in English) to detect the beginning of a new chunk than it is to know when a
chunk has ended.

Since annotation efforts are expensive and time consuming, chunkers usually
rely on existing treebanks like the Penn Treebank (Chapter 12), extracting syntactic
phrases from the full parse constituents of a sentence, finding the appropriate heads
and then including the material to the left of the head, ignoring the text to the right.
This is somewhat error-prone since it relies on the accuracy of the head-finding rules
described in Chapter 12.

Given a training set, any sequence model can be used. Figure 13.8 shows an
illustration of a simple feature-based model, using features like the words and parts-
of-speech within a 2 word window, and the chunk tags of the preceding inputs in the
window. In training, each training vector would consist of the values of 13 features;
the two words to the left of the decision point, their parts-of-speech and chunk tags,
the word to be tagged along with its part-of-speech, the two words that follow along
with their parts-of speech, and the correct chunk tag, in this case, I NP. During
classification, the classifier is given the same vector without the answer and assigns
the most appropriate tag from its tagset. Viterbi decoding is commonly used.

13.3.2 Chunking-System Evaluations
As with the evaluation of part-of-speech taggers, the evaluation of chunkers pro-
ceeds by comparing chunker output with gold-standard answers provided by human
annotators. However, unlike part-of-speech tagging, word-by-word accuracy mea-
sures are not appropriate. Instead, chunkers are evaluated according to the notions of
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precision, recall, and the F-measure that we saw in text classification in Chapter 4,
repeated here as a quick refresher.

Precision measures the percentage of system-provided chunks that were correct.precision

Correct here means that both the boundaries of the chunk and the chunk’s label are
correct. Precision is therefore defined as

Precision: = Number of correct chunks given by system
Total number of chunks given by system

Recall measures the percentage of chunks actually present in the input that wererecall

correctly identified by the system. Recall is defined as

Recall: = Number of correct chunks given by system
Total number of actual chunks in the text

The F-measure (van Rijsbergen, 1975) provides a way to combine these twoF-measure

measures into a single metric:

Fβ =
(β 2 +1)PR

β 2P+R

The β parameter differentially weights the importance of recall and precision, based
perhaps on the needs of an application. Values of β > 1 favor recall, while values of
β < 1 favor precision. When β = 1, precision and recall are equally balanced; this
is sometimes called Fβ=1 or just F1:

F1 =
2PR

P+R
(13.9)

13.4 Summary

The two major ideas introduced in this chapter are those of parsing and partial
parsing. Here’s a summary of the main points we covered about these ideas:

• Structural ambiguity is a significant problem for parsers. Common sources
of structural ambiguity include PP-attachment, coordination ambiguity,
and noun-phrase bracketing ambiguity.

• Dynamic programming parsing algorithms, such as CKY, use a table of
partial parses to efficiently parse ambiguous sentences.

• CKY restricts the form of the grammar to Chomsky normal form (CNF).
• Many practical problems, including information extraction problems, can be

solved without full parsing.
• Partial parsing and chunking are methods for identifying shallow syntactic

constituents in a text.
• State-of-the-art methods for partial parsing use supervised machine learning

techniques.

Bibliographical and Historical Notes
Writing about the history of compilers, Knuth notes:
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In this field there has been an unusual amount of parallel discovery of
the same technique by people working independently.

Well, perhaps not unusual, since multiple discovery is the norm in science (see
page ??). But there has certainly been enough parallel publication that this his-
tory errs on the side of succinctness in giving only a characteristic early mention of
each algorithm; the interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve (1955), who
gave a breadth-first, bottom-up parsing algorithm as part of an illustration of a ma-
chine translation procedure. Top-down approaches to parsing and translation were
described (presumably independently) by at least Glennie (1960), Irons (1961), and
Kuno and Oettinger (1963). Dynamic programming parsing, once again, has a his-
tory of independent discovery. According to Martin Kay (personal communica-
tion), a dynamic programming parser containing the roots of the CKY algorithm
was first implemented by John Cocke in 1960. Later work extended and formalized
the algorithm, as well as proving its time complexity (Kay 1967, Younger 1967,
Kasami 1965). The related well-formed substring table (WFST) seems to haveWFST

been independently proposed by Kuno (1965) as a data structure that stores the re-
sults of all previous computations in the course of the parse. Based on a general-
ization of Cocke’s work, a similar data structure had been independently described
in Kay (1967) (and Kay 1973). The top-down application of dynamic programming
to parsing was described in Earley’s Ph.D. dissertation (Earley 1968, Earley 1970).
Sheil (1976) showed the equivalence of the WFST and the Earley algorithm. Norvig
(1991) shows that the efficiency offered by dynamic programming can be captured
in any language with a memoization function (such as in LISP) simply by wrapping
the memoization operation around a simple top-down parser.

While parsing via cascades of finite-state automata had been common in the
early history of parsing (Harris, 1962), the focus shifted to full CFG parsing quite
soon afterward. Church (1980) argued for a return to finite-state grammars as a
processing model for natural language understanding; other early finite-state parsing
models include Ejerhed (1988). Abney (1991) argued for the important practical role
of shallow parsing.

The classic reference for parsing algorithms is Aho and Ullman (1972); although
the focus of that book is on computer languages, most of the algorithms have been
applied to natural language. A good programming languages textbook such as Aho
et al. (1986) is also useful.

Exercises
13.1 Implement the algorithm to convert arbitrary context-free grammars to CNF.

Apply your program to the L1 grammar.

13.2 Implement the CKY algorithm and test it with your converted L1 grammar.

13.3 Rewrite the CKY algorithm given in Fig. 13.5 on page 237 so that it can accept
grammars that contain unit productions.

13.4 Discuss the relative advantages and disadvantages of partial versus full pars-
ing.
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13.5 Discuss how to augment a parser to deal with input that may be incorrect, for
example, containing spelling errors or mistakes arising from automatic speech
recognition.
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CHAPTER

14 Statistical Constituency Pars-
ing

The characters in Damon Runyon’s short stories are willing to bet “on any propo-
sition whatever”, as Runyon says about Sky Masterson in The Idyll of Miss Sarah
Brown, from the probability of getting aces back-to-back to the odds against a man
being able to throw a peanut from second base to home plate. There is a moral
here for language processing: with enough knowledge we can figure the probability
of just about anything. The last two chapters have introduced models of syntactic
constituency structure and its parsing. Here, we show that it is possible to build
probabilistic models of syntactic knowledge and efficient probabilistic parsers.

One crucial use of probabilistic parsing is to solve the problem of disambigua-
tion. Recall from Chapter 13 that sentences on average tend to be syntactically
ambiguous because of phenomena like coordination ambiguity and attachment
ambiguity. The CKY parsing algorithm can represent these ambiguities in an effi-
cient way but is not equipped to resolve them. A probabilistic parser offers a solution
to the problem: compute the probability of each interpretation and choose the most
probable interpretation. The most commonly used probabilistic constituency gram-
mar formalism is the probabilistic context-free grammar (PCFG), a probabilistic
augmentation of context-free grammars in which each rule is associated with a prob-
ability. We introduce PCFGs in the next section, showing how they can be trained
on Treebank grammars and how they can be parsed with a probabilistic version of
the CKY algorithm of Chapter 13.

We then show a number of ways that we can improve on this basic probabil-
ity model (PCFGs trained on Treebank grammars), such as by modifying the set of
non-terminals (making them either more specific or more general), or adding more
sophisticated conditioning factors like subcategorization or dependencies. Heav-
ily lexicalized grammar formalisms such as Lexical-Functional Grammar (LFG)
(Bresnan, 1982), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag,
1994), Tree-Adjoining Grammar (TAG) (Joshi, 1985), and Combinatory Categorial
Grammar (CCG) pose additional problems for probabilistic parsers. Section 14.7
introduces the task of supertagging and the use of heuristic search methods based
on the A* algorithm in the context of CCG parsing.

Finally, we describe the standard techniques and metrics for evaluating parsers.

14.1 Probabilistic Context-Free Grammars

The simplest augmentation of the context-free grammar is the Probabilistic Context-
Free Grammar (PCFG), also known as the Stochastic Context-Free GrammarPCFG

(SCFG), first proposed by Booth (1969). Recall that a context-free grammar G isSCFG

defined by four parameters (N, Σ, R, S); a probabilistic context-free grammar is also
defined by four parameters, with a slight augmentation to each of the rules in R:
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N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β [p],

where A is a non-terminal,
β is a string of symbols from the infinite set of strings (Σ∪N)∗,
and p is a number between 0 and 1 expressing P(β |A)

S a designated start symbol

That is, a PCFG differs from a standard CFG by augmenting each rule in R with
a conditional probability:

A→ β [p] (14.1)

Here p expresses the probability that the given non-terminal A will be expanded
to the sequence β . That is, p is the conditional probability of a given expansion β

given the left-hand-side (LHS) non-terminal A. We can represent this probability as

P(A→ β )

or as
P(A→ β |A)

or as
P(RHS|LHS)

Thus, if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1: ∑

β

P(A→ β ) = 1

Figure 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature En-
glish CFG grammar and lexicon. Note that the probabilities of all of the expansions
of each non-terminal sum to 1. Also note that these probabilities were made up
for pedagogical purposes. A real grammar has a great many more rules for each
non-terminal; hence, the probabilities of any particular rule would tend to be much
smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentencesconsistent

in the language equals 1. Certain kinds of recursive rules cause a grammar to be
inconsistent by causing infinitely looping derivations for some sentences. For ex-
ample, a rule S→ S with probability 1 would lead to lost probability mass due to
derivations that never terminate. See Booth and Thompson (1973) for more details
on consistent and inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful
probabilities concerning a sentence and its parse tree(s), including the probability of
a particular parse tree (useful in disambiguation) and the probability of a sentence
or a piece of a sentence (useful in language modeling). Let’s see how this works.

14.1.1 PCFGs for Disambiguation
A PCFG assigns a probability to each parse tree T (i.e., each derivation) of a sen-
tence S. This attribute is useful in disambiguation. For example, consider the two
parses of the sentence “Book the dinner flight” shown in Fig. 14.2. The sensible
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Grammar Lexicon
S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.05] | money [.05]
NP → Pronoun [.35] | flight [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | NWA [.40]
VP → Verb [.35] Aux → does [.60] | can [.40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFG that is a probabilistic augmentation of the L1 miniature English CFG
grammar and lexicon of Fig. 13.1. These probabilities were made up for pedagogical purposes
and are not based on a corpus (since any real corpus would have many more rules, so the true
probabilities of each rule would be much smaller).

parse on the left means “Book a flight that serves dinner”. The nonsensical parse
on the right, however, would have to mean something like “Book a flight on behalf
of ‘the dinner”’ just as a structurally similar sentence like “Can you book John a
flight?” means something like “Can you book a flight on behalf of John?”

The probability of a particular parse T is defined as the product of the probabil-
ities of all the n rules used to expand each of the n non-terminal nodes in the parse
tree T, where each rule i can be expressed as LHSi→ RHSi:

P(T,S) =
n∏

i=1

P(RHSi|LHSi) (14.2)

The resulting probability P(T,S) is both the joint probability of the parse and the
sentence and also the probability of the parse P(T ). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T )P(S|T ) (14.3)

But since a parse tree includes all the words of the sentence, P(S|T ) is 1. Thus,

P(T,S) = P(T )P(S|T ) = P(T ) (14.4)

We can compute the probability of each of the trees in Fig. 14.2 by multiplying
the probabilities of each of the rules used in the derivation. For example, the proba-
bility of the left tree in Fig. 14.2a (call it Tle f t ) and the right tree (Fig. 14.2b or Tright )
can be computed as follows:

P(Tle f t) = .05∗ .20∗ .20∗ .20∗ .75∗ .30∗ .60∗ .10∗ .40 = 2.2×10−6

P(Tright) = .05∗ .10∗ .20∗ .15∗ .75∗ .75∗ .30∗ .60∗ .10∗ .40 = 6.1×10−7
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S

VP

NP

Nominal

Noun

flight

Nominal

Noun

dinner

Det

the

Verb

Book

S

VP

NP

Nominal

Noun

flight

NP

Nominal

Noun

dinner

Det

the

Verb

Book

Rules P Rules P
S → VP .05 S → VP .05
VP → Verb NP .20 VP → Verb NP NP .10
NP → Det Nominal .20 NP → Det Nominal .20
Nominal → Nominal Noun .20 NP → Nominal .15
Nominal → Noun .75 Nominal → Noun .75

Nominal → Noun .75
Verb → book .30 Verb → book .30
Det → the .60 Det → the .60
Noun → dinner .10 Noun → dinner .10
Noun → flight .40 Noun → flight .40

Figure 14.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds
to the sensible meaning “Book a flight that serves dinner”, while the parse on the right corre-
sponds to the nonsensical meaning “Book a flight on behalf of ‘the dinner’ ”.

We can see that the left tree in Fig. 14.2 has a much higher probability than the
tree on the right. Thus, this parse would correctly be chosen by a disambiguation
algorithm that selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability
is the correct way to do disambiguation. Consider all the possible parse trees for a
given sentence S. The string of words S is called the yield of any parse tree over S.yield

Thus, out of all parse trees with a yield of S, the disambiguation algorithm picks the
parse tree that is most probable given S:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T |S) (14.5)

By definition, the probability P(T |S) can be rewritten as P(T,S)/P(S), thus leading
to

T̂ (S) = argmax
T s.t.S=yield(T )

P(T,S)
P(S)

(14.6)

Since we are maximizing over all parse trees for the same sentence, P(S) will be a
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constant for each tree, so we can eliminate it:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T,S) (14.7)

Furthermore, since we showed above that P(T,S) = P(T ), the final equation for
choosing the most likely parse neatly simplifies to choosing the parse with the high-
est probability:

T̂ (S) = argmax
T s.t.S=yield(T )

P(T ) (14.8)

14.1.2 PCFGs for Language Modeling
A second attribute of a PCFG is that it assigns a probability to the string of words
constituting a sentence. This is important in language modeling, whether for use
in speech recognition, machine translation, spelling correction, augmentative com-
munication, or other applications. The probability of an unambiguous sentence is
P(T,S) = P(T ) or just the probability of the single parse tree for that sentence. The
probability of an ambiguous sentence is the sum of the probabilities of all the parse
trees for the sentence:

P(S) =
∑

T s.t.S=yield(T )
P(T,S) (14.9)

=
∑

T s.t.S=yield(T )
P(T ) (14.10)

An additional feature of PCFGs that is useful for language modeling is their ability
to assign a probability to substrings of a sentence. For example, suppose we want
to know the probability of the next word wi in a sentence given all the words we’ve
seen so far w1, ...,wi−1. The general formula for this is

P(wi|w1,w2, ...,wi−1) =
P(w1,w2, ...,wi−1,wi)

P(w1,w2, ...,wi−1)
(14.11)

We saw in Chapter 3 a simple approximation of this probability using N-grams,
conditioning on only the last word or two instead of the entire context; thus, the
bigram approximation would give us

P(wi|w1,w2, ...,wi−1)≈
P(wi−1,wi)

P(wi−1)
(14.12)

But the fact that the N-gram model can only make use of a couple words of context
means it is ignoring potentially useful prediction cues. Consider predicting the word
after in the following sentence from Chelba and Jelinek (2000):

(14.13) the contract ended with a loss of 7 cents after trading as low as 9 cents

A trigram grammar must predict after from the words 7 cents, while it seems clear
that the verb ended and the subject contract would be useful predictors that a PCFG-
based parser could help us make use of. Indeed, it turns out that PCFGs allow us to
condition on the entire previous context w1,w2, ...,wi−1 shown in Eq. 14.11.

In summary, this section and the previous one have shown that PCFGs can be
applied both to disambiguation in syntactic parsing and to word prediction in lan-
guage modeling. Both of these applications require that we be able to compute the
probability of parse tree T for a given sentence S. The next few sections introduce
some algorithms for computing this probability.
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14.2 Probabilistic CKY Parsing of PCFGs

The parsing problem for PCFGs is to produce the most-likely parse T̂ for a given
sentence S, that is,

T̂ (S) = argmax
T s.t.S=yield(T )

P(T ) (14.14)

The algorithms for computing the most likely parse are simple extensions of the
standard algorithms for parsing; most modern probabilistic parsers are based on the
probabilistic CKY algorithm, first described by Ney (1991). The probabilistic CKYprobabilistic

CKY
algorithm assumes the PCFG is in Chomsky normal form. Recall from page 222 that
in CNF, the right-hand side of each rule must expand to either two non-terminals or
to a single terminal, i.e., rules have the form A → B C, or A → w.

For the CKY algorithm, we represented each sentence as having indices between
the words. Thus, an example sentence like

(14.15) Book the flight through Houston.

would assume the following indices between each word:

(14.16) 0© Book 1© the 2© flight 3© through 4© Houston 5©
Using these indices, each constituent in the CKY parse tree is encoded in a

two-dimensional matrix. Specifically, for a sentence of length n and a grammar
that contains V non-terminals, we use the upper-triangular portion of an (n+ 1)×
(n+ 1) matrix. For CKY, each cell table[i, j] contained a list of constituents that
could span the sequence of words from i to j. For probabilistic CKY, it’s slightly
simpler to think of the constituents in each cell as constituting a third dimension of
maximum length V . This third dimension corresponds to each non-terminal that can
be placed in this cell, and the value of the cell is then a probability for that non-
terminal/constituent rather than a list of constituents. In summary, each cell [i, j,A]
in this (n+1)× (n+1)×V matrix is the probability of a constituent of type A that
spans positions i through j of the input.

Figure 14.3 gives the probabilistic CKY algorithm.

function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability

for j← from 1 to LENGTH(words) do
for all { A | A → words[ j] ∈ grammar}

table[ j−1, j,A]←P(A→ words[ j])
for i← from j−2 downto 0 do

for k← i+1 to j−1 do
for all { A | A → BC ∈ grammar,

and table[i,k,B] > 0 and table[k, j,C] > 0 }
if (table[i,j,A] < P(A → BC) × table[i,k,B] × table[k,j,C]) then

table[i,j,A]←P(A → BC) × table[i,k,B] × table[k,j,C]
back[i,j,A]←{k,B,C}

return BUILD TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Figure 14.3 The probabilistic CKY algorithm for finding the maximum probability parse
of a string of num words words given a PCFG grammar with num rules rules in Chomsky
normal form. back is an array of backpointers used to recover the best parse. The build tree
function is left as an exercise to the reader.
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Like the basic CKY algorithm in Fig. 13.5, the probabilistic CKY algorithm
requires a grammar in Chomsky normal form. Converting a probabilistic grammar
to CNF requires that we also modify the probabilities so that the probability of each
parse remains the same under the new CNF grammar. Exercise 14.2 asks you to
modify the algorithm for conversion to CNF in Chapter 13 so that it correctly handles
rule probabilities.

In practice, a generalized CKY algorithm that handles unit productions directly
is typically used. Recall that Exercise 13.3 asked you to make this change in CKY;
Exercise 14.3 asks you to extend this change to probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-
grammar, which is already in CNF:

S → NP VP .80 Det → the .40
NP → Det N .30 Det → a .40
V P → V NP .20 N → meal .01

V → includes .05 N → f light .02

Given this grammar, Fig. 14.4 shows the first steps in the probabilistic CKY
parse of the sentence “The flight includes a meal”.

The flight

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

Det: .40

includes a meal

[3,4]

[4,5]

N: .02

V: .05

NP: .30 *.40 *.02
= .0024

[0,4]

[1,4]

[2,4]

[3,5]

[2,5]

[1,5]

[0,5]

Det: .40

N: .01

Figure 14.4 The beginning of the probabilistic CKY matrix. Filling out the rest of the chart
is left as Exercise 14.4 for the reader.
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14.3 Ways to Learn PCFG Rule Probabilities

Where do PCFG rule probabilities come from? There are two ways to learn proba-
bilities for the rules of a grammar. The simplest way is to use a treebank, a corpus
of already parsed sentences. Recall that we introduced in Chapter 12 the idea of
treebanks and the commonly used Penn Treebank (Marcus et al., 1993), a collec-
tion of parse trees in English, Chinese, and other languages that is distributed by the
Linguistic Data Consortium. Given a treebank, we can compute the probability of
each expansion of a non-terminal by counting the number of times that expansion
occurs and then normalizing.

P(α → β |α) =
Count(α → β )∑
γ

Count(α → γ)
=

Count(α → β )

Count(α)
(14.17)

If we don’t have a treebank but we do have a (non-probabilistic) parser, we can
generate the counts we need for computing PCFG rule probabilities by first parsing
a corpus of sentences with the parser. If sentences were unambiguous, it would be
as simple as this: parse the corpus, increment a counter for every rule in the parse,
and then normalize to get probabilities.

But wait! Since most sentences are ambiguous, that is, have multiple parses, we
don’t know which parse to count the rules in. Instead, we need to keep a separate
count for each parse of a sentence and weight each of these partial counts by the
probability of the parse it appears in. But to get these parse probabilities to weight
the rules, we need to already have a probabilistic parser.

The intuition for solving this chicken-and-egg problem is to incrementally im-
prove our estimates by beginning with a parser with equal rule probabilities, then
parse the sentence, compute a probability for each parse, use these probabilities to
weight the counts, re-estimate the rule probabilities, and so on, until our proba-
bilities converge. The standard algorithm for computing this solution is called the
inside-outside algorithm; it was proposed by Baker (1979) as a generalization of theinside-outside

forward-backward algorithm for HMMs. Like forward-backward, inside-outside is
a special case of the Expectation Maximization (EM) algorithm, and hence has two
steps: the expectation step, and the maximization step. See Lari and Young (1990)
or Manning and Schütze (1999) for more on the algorithm.

14.4 Problems with PCFGs

While probabilistic context-free grammars are a natural extension to context-free
grammars, they have two main problems as probability estimators:

Poor independence assumptions: CFG rules impose an independence assumption
on probabilities that leads to poor modeling of structural dependencies across
the parse tree.

Lack of lexical conditioning: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization ambiguities, preposition
attachment, and coordinate structure ambiguities.

Because of these problems, probabilistic constituent parsing models use some
augmented version of PCFGs, or modify the Treebank-based grammar in some way.
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In the next few sections after discussing the problems in more detail we introduce
some of these augmentations.

14.4.1 Independence Assumptions Miss Rule Dependencies
Let’s look at these problems in more detail. Recall that in a CFG the expansion of a
non-terminal is independent of the context, that is, of the other nearby non-terminals
in the parse tree. Similarly, in a PCFG, the probability of a particular rule like
NP→Det N is also independent of the rest of the tree. By definition, the probability
of a group of independent events is the product of their probabilities. These two facts
explain why in a PCFG we compute the probability of a tree by just multiplying the
probabilities of each non-terminal expansion.

Unfortunately, this CFG independence assumption results in poor probability
estimates. This is because in English the choice of how a node expands can after all
depend on the location of the node in the parse tree. For example, in English it turns
out that NPs that are syntactic subjects are far more likely to be pronouns, and NPs
that are syntactic objects are far more likely to be non-pronominal (e.g., a proper
noun or a determiner noun sequence), as shown by these statistics for NPs in the
Switchboard corpus (Francis et al., 1999):1

Pronoun Non-Pronoun
Subject 91% 9%
Object 34% 66%

Unfortunately, there is no way to represent this contextual difference in the prob-
abilities in a PCFG. Consider two expansions of the non-terminal NP as a pronoun
or as a determiner+noun. How shall we set the probabilities of these two rules? If
we set their probabilities to their overall probability in the Switchboard corpus, the
two rules have about equal probability.

NP → DT NN .28
NP → PRP .25

Because PCFGs don’t allow a rule probability to be conditioned on surrounding
context, this equal probability is all we get; there is no way to capture the fact that in
subject position, the probability for NP→ PRP should go up to .91, while in object
position, the probability for NP→ DT NN should go up to .66.

These dependencies could be captured if the probability of expanding an NP as
a pronoun (e.g., NP→ PRP) versus a lexical NP (e.g., NP→ DT NN) were condi-
tioned on whether the NP was a subject or an object. Section 14.5 introduces the
technique of parent annotation for adding this kind of conditioning.

14.4.2 Lack of Sensitivity to Lexical Dependencies
A second class of problems with PCFGs is their lack of sensitivity to the words in
the parse tree. Words do play a role in PCFGs since the parse probability includes
the probability of a word given a part-of-speech (e.g., from rules like V→ sleep,
NN→ book, etc.).

1 Distribution of subjects from 31,021 declarative sentences; distribution of objects from 7,489 sen-
tences. This tendency is caused by the use of subject position to realize the topic or old information
in a sentence (Givón, 1990). Pronouns are a way to talk about old information, while non-pronominal
(“lexical”) noun-phrases are often used to introduce new referents (Chapter 22).
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But it turns out that lexical information is useful in other places in the grammar,
such as in resolving prepositional phrase (PP) attachment ambiguities. Since prepo-
sitional phrases in English can modify a noun phrase or a verb phrase, when a parser
finds a prepositional phrase, it must decide where to attach it into the tree. Consider
the following example:

(14.18) Workers dumped sacks into a bin.

Figure 14.5 shows two possible parse trees for this sentence; the one on the left is
the correct parse; Fig. 14.6 shows another perspective on the preposition attachment
problem, demonstrating that resolving the ambiguity in Fig. 14.5 is equivalent to
deciding whether to attach the prepositional phrase into the rest of the tree at the
NP or VP nodes; we say that the correct parse requires VP attachment, and theVP attachment

incorrect parse implies NP attachment.NP attachment

S

VP

PP

NP

NN

bin

DT

a

P

into

NP

NNS

sacks

VBD

dumped

NP

NNS

workers

S

VP

NP

PP

NP

NN

bin

DT

a

P

into

NP

NNS

sacks

VBD

dumped

NP

NNS

workers

Figure 14.5 Two possible parse trees for a prepositional phrase attachment ambiguity. The left parse is
the sensible one, in which “into a bin” describes the resulting location of the sacks. In the right incorrect parse,
the sacks to be dumped are the ones which are already “into a bin”, whatever that might mean.

Why doesn’t a PCFG already deal with PP attachment ambiguities? Note that
the two parse trees in Fig. 14.5 have almost exactly the same rules; they differ only
in that the left-hand parse has this rule:

V P → V BD NP PP

while the right-hand parse has these:

V P → V BD NP
NP → NP PP

Depending on how these probabilities are set, a PCFG will always either prefer
NP attachment or VP attachment. As it happens, NP attachment is slightly more
common in English, so if we trained these rule probabilities on a corpus, we might
always prefer NP attachment, causing us to misparse this sentence.

But suppose we set the probabilities to prefer the VP attachment for this sen-
tence. Now we would misparse the following, which requires NP attachment:



256 CHAPTER 14 • STATISTICAL CONSTITUENCY PARSING

S

VP

NP

NNS

sacks

VBD

dumped

NP

NNS

workers

PP

NP

NN

bin

DT

a

P

into

Figure 14.6 Another view of the preposition attachment problem. Should the PP on the right attach to the
VP or NP nodes of the partial parse tree on the left?

(14.19) fishermen caught tons of herring

What information in the input sentence lets us know that (14.19) requires NP
attachment while (14.18) requires VP attachment? These preferences come from
the identities of the verbs, nouns, and prepositions. The affinity between the verb
dumped and the preposition into is greater than the affinity between the noun sacks
and the preposition into, thus leading to VP attachment. On the other hand, in (14.19)
the affinity between tons and of is greater than that between caught and of, leading to
NP attachment. Thus, to get the correct parse for these kinds of examples, we need
a model that somehow augments the PCFG probabilities to deal with these lexical
dependency statistics for different verbs and prepositions.lexical

dependency
Coordination ambiguities are another case in which lexical dependencies are

the key to choosing the proper parse. Figure 14.7 shows an example from Collins
(1999) with two parses for the phrase dogs in houses and cats. Because dogs is
semantically a better conjunct for cats than houses (and because most dogs can’t fit
inside cats), the parse [dogs in [NP houses and cats]] is intuitively unnatural and
should be dispreferred. The two parses in Fig. 14.7, however, have exactly the same
PCFG rules, and thus a PCFG will assign them the same probability.

In summary, we have shown in this section and the previous one that probabilistic
context-free grammars are incapable of modeling important structural and lexical
dependencies. In the next two sections we sketch current methods for augmenting
PCFGs to deal with both these issues.

14.5 Improving PCFGs by Splitting Non-Terminals

Let’s start with the first of the two problems with PCFGs mentioned above: their
inability to model structural dependencies, like the fact that NPs in subject position
tend to be pronouns, whereas NPs in object position tend to have full lexical (non-
pronominal) form. How could we augment a PCFG to correctly model this fact?
One idea would be to split the NP non-terminal into two versions: one for sub-split

jects, one for objects. Having two nodes (e.g., NPsubject and NPobject) would allow
us to correctly model their different distributional properties, since we would have
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cats

Conj

and

NP

PP

NP

Noun

houses

Prep
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dogs

NP

PP

NP

NP

Noun

cats
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and

NP

Noun

houses

Prep

in

NP

Noun

dogs

Figure 14.7 An instance of coordination ambiguity. Although the left structure is intu-
itively the correct one, a PCFG will assign them identical probabilities since both structures
use exactly the same set of rules. After Collins (1999).

different probabilities for the rule NPsubject → PRP and the rule NPobject → PRP.
One way to implement this intuition of splits is to do parent annotation (John-parent

annotation
son, 1998), in which we annotate each node with its parent in the parse tree. Thus,
an NP node that is the subject of the sentence and hence has parent S would be anno-
tated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.
Figure 14.8 shows an example of a tree produced by a grammar that parent-annotates
the phrasal non-terminals (like NP and VP).

a) S

VP

NP

NN

flight

DT

a

VBD

need

NP

PRP

I

b) S

VPˆS

NPˆVP

NN

flight

DT

a

VBD

need

NPˆS

PRP

I

Figure 14.8 A standard PCFG parse tree (a) and one which has parent annotation on the
nodes which aren’t pre-terminal (b). All the non-terminal nodes (except the pre-terminal
part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by
splitting the pre-terminal part-of-speech nodes (Klein and Manning, 2003b). For ex-
ample, different kinds of adverbs (RB) tend to occur in different syntactic positions:
the most common adverbs with ADVP parents are also and now, with VP parents
n’t and not, and with NP parents only and just. Thus, adding tags like RBˆADVP,
RBˆVP, and RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN can mark a wide variety of parts-of-speech,
including subordinating conjunctions (while, as, if), complementizers (that, for),
and prepositions (of, in, from). Some of these differences can be captured by parent
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annotation (subordinating conjunctions occur under S, prepositions under PP), while
others require splitting the pre-terminal nodes. Figure 14.9 shows an example from
Klein and Manning (2003b) in which even a parent-annotated grammar incorrectly
parses works as a noun in to see if advertising works. Splitting pre-terminals to allow
if to prefer a sentential complement results in the correct verbal parse.

Node-splitting is not without problems; it increases the size of the grammar and
hence reduces the amount of training data available for each grammar rule, leading
to overfitting. Thus, it is important to split to just the correct level of granularity for a
particular training set. While early models employed handwritten rules to try to find
an optimal number of non-terminals (Klein and Manning, 2003b), modern models
automatically search for the optimal splits. The split and merge algorithm of Petrovsplit and merge

et al. (2006), for example, starts with a simple X-bar grammar, alternately splits the
non-terminals, and merges non-terminals, finding the set of annotated nodes that
maximizes the likelihood of the training set treebank.

14.6 Probabilistic Lexicalized CFGs

The previous section showed that a simple probabilistic CKY algorithm for pars-
ing raw PCFGs can achieve extremely high parsing accuracy if the grammar rule
symbols are redesigned by automatic splits and merges.

In this section, we discuss an alternative family of models in which instead of
modifying the grammar rules, we modify the probabilistic model of the parser to
allow for lexicalized rules. The resulting family of lexicalized parsers includes the
Collins parser (Collins, 1999) and the Charniak parser (Charniak, 1997).

We saw in Section 12.4.3 that syntactic constituents could be associated with a
lexical head, and we defined a lexicalized grammar in which each non-terminallexicalized

grammar
in the tree is annotated with its lexical head, where a rule like V P→ V BD NP PP

VPˆS

VPˆVP

PPˆVP

NPˆPP

NNS

works

NN
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VB
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TO

to

VPˆS

VPˆVP

SBARˆVP

SˆSBAR

VPˆS

VBZˆVP

works

NPˆS

NNˆNP

advertising

INˆSBAR

if

VBˆVP

see

TOˆVP

to

Figure 14.9 An incorrect parse even with a parent-annotated parse (left). The correct parse (right), was
produced by a grammar in which the pre-terminal nodes have been split, allowing the probabilistic grammar to
capture the fact that if prefers sentential complements. Adapted from Klein and Manning (2003b).



14.6 • PROBABILISTIC LEXICALIZED CFGS 259

would be extended as

VP(dumped) → VBD(dumped) NP(sacks) PP(into) (14.20)

In the standard type of lexicalized grammar, we actually make a further exten-
sion, which is to associate the head tag, the part-of-speech tags of the headwords,head tag

with the non-terminal symbols as well. Each rule is thus lexicalized by both the
headword and the head tag of each constituent resulting in a format for lexicalized
rules like

VP(dumped,VBD) → VBD(dumped,VBD) NP(sacks,NNS) PP(into,P) (14.21)

We show a lexicalized parse tree with head tags in Fig. 14.10, extended from Fig. 12.11.

TOP

S(dumped,VBD)

VP(dumped,VBD)

PP(into,P)

NP(bin,NN)

NN(bin,NN)

bin

DT(a,DT)

a

P(into,P)

into

NP(sacks,NNS)

NNS(sacks,NNS)

sacks

VBD(dumped,VBD)

dumped

NP(workers,NNS)

NNS(workers,NNS)

workers

Internal Rules Lexical Rules
TOP → S(dumped,VBD) NNS(workers,NNS) → workers
S(dumped,VBD) → NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) → dumped
NP(workers,NNS) → NNS(workers,NNS) NNS(sacks,NNS) → sacks
VP(dumped,VBD) → VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) P(into,P) → into
PP(into,P) → P(into,P) NP(bin,NN) DT(a,DT) → a
NP(bin,NN) → DT(a,DT) NN(bin,NN) NN(bin,NN) → bin

Figure 14.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below
we show the PCFG rules needed for this parse tree, internal rules on the left, and lexical rules on the right.

To generate such a lexicalized tree, each PCFG rule must be augmented to iden-
tify one right-hand constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter, and the head tag to the part-of-speech
tag of the headword. Recall that we gave in Fig. 12.12 a set of handwritten rules for
identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is as a parent annotation, that
is, as a simple context-free grammar with many copies of each rule, one copy for
each possible headword/head tag for each constituent. Thinking of a probabilistic
lexicalized CFG in this way would lead to the set of simple PCFG rules shown below
the tree in Fig. 14.10.

Note that Fig. 14.10 shows two kinds of rules: lexical rules, which expresslexical rules

the expansion of a pre-terminal to a word, and internal rules, which express theinternal rules
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other rule expansions. We need to distinguish these kinds of rules in a lexicalized
grammar because they are associated with very different kinds of probabilities. The
lexical rules are deterministic, that is, they have probability 1.0 since a lexicalized
pre-terminal like NN(bin,NN) can only expand to the word bin. But for the internal
rules, we need to estimate probabilities.

Suppose we were to treat a probabilistic lexicalized CFG like a really big CFG
that just happened to have lots of very complex non-terminals and estimate the
probabilities for each rule from maximum likelihood estimates. Thus, according
to Eq. 14.17, the MLE estimate for the probability for the rule P(VP(dumped,VBD)
→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P)) would be

Count(VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

Count(VP(dumped,VBD))
(14.22)

But there’s no way we can get good estimates of counts like those in (14.22) because
they are so specific: we’re unlikely to see many (or even any) instances of a sentence
with a verb phrase headed by dumped that has one NP argument headed by sacks
and a PP argument headed by into. In other words, counts of fully lexicalized PCFG
rules like this will be far too sparse, and most rule probabilities will come out 0.

The idea of lexicalized parsing is to make some further independence assump-
tions to break down each rule so that we would estimate the probability

P(VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

as the product of smaller independent probability estimates for which we could ac-
quire reasonable counts. The next section summarizes one such method, the Collins
parsing method.

14.6.1 The Collins Parser
Statistical parsers differ in exactly which independence assumptions they make.
Let’s look at the assumptions in a simplified version of the Collins parser. The first
intuition of the Collins parser is to think of the right-hand side of every (internal)
CFG rule as consisting of a head non-terminal, together with the non-terminals to
the left of the head and the non-terminals to the right of the head. In the abstract, we
think about these rules as follows:

LHS→ Ln Ln−1 ...L1 H R1 ...Rn−1 Rn (14.23)

Since this is a lexicalized grammar, each of the symbols like L1 or R3 or H or LHS
is actually a complex symbol representing the category and its head and head tag,
like VP(dumped,VP) or NP(sacks,NNS).

Now, instead of computing a single MLE probability for this rule, we are going
to break down this rule via a neat generative story, a slight simplification of what is
called Collins Model 1. This new generative story is that given the left-hand side,
we first generate the head of the rule and then generate the dependents of the head,
one by one, from the inside out. Each of these steps will have its own probability.

We also add a special STOP non-terminal at the left and right edges of the rule;
this non-terminal allows the model to know when to stop generating dependents on a
given side. We generate dependents on the left side of the head until we’ve generated
STOP on the left side of the head, at which point we move to the right side of the
head and start generating dependents there until we generate STOP. So it’s as if we
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are generating a rule augmented as follows:

P(VP(dumped,VBD)→ (14.24)

STOP VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) STOP)

Let’s see the generative story for this augmented rule. We make use of three kinds
of probabilities: PH for generating heads, PL for generating dependents on the left,
and PR for generating dependents on the right.

1. Generate the head VBD(dumped,VBD) with probability
P(H|LHS) = P(VBD(dumped,VBD) | VP(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)

2. Generate the left dependent (which is STOP, since there isn’t
one) with probability
P(STOP| VP(dumped,VBD) VBD(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)STOP

3. Generate right dependent NP(sacks,NNS) with probability
Pr(NP(sacks,NNS| VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

NP(sacks,NNS)VBD(dumped,VBD)STOP

4. Generate the right dependent PP(into,P) with probability
Pr(PP(into,P) | VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

PP(into,P)NP(sacks,NNS)VBD(dumped,VBD)STOP

5) Generate the right dependent STOP with probability
Pr(STOP | VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOPPP(into,P)NP(sacks,NNS)VBD(dumped,VBD)STOP

In summary, the probability of this rule

P(VP(dumped,VBD)→ (14.25)

VBD(dumped, VBD) NP(sacks,NNS) PP(into,P))

is estimated as

PH (VBD|VP, dumped) × PL(STOP|VP,VBD,dumped) (14.26)

× PR(NP(sacks,NNS)|VP,VBD,dumped)

× PR(PP(into,P)|VP,VBD,dumped)

× PR(STOP|VP,VBD,dumped)

Each of these probabilities can be estimated from much smaller amounts of data
than the full probability in (14.25). For example, the maximum likelihood estimate
for the component probability PR(NP(sacks,NNS)|VP,VBD,dumped) is

Count(VP(dumped,VBD) with NNS(sacks) as a daughter somewhere on the right)

Count( VP(dumped,VBD) )
(14.27)
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These counts are much less subject to sparsity problems than are complex counts
like those in (14.25).

More generally, if H is a head with head word hw and head tag ht, lw/lt and
rw/rt are the word/tag on the left and right respectively, and P is the parent, then the
probability of an entire rule can be expressed as follows:

1. Generate the head of the phrase H(hw,ht) with probability:

PH(H(hw,ht)|P,hw,ht)

2. Generate modifiers to the left of the head with total probability

n+1∏

i=1

PL(Li(lwi, lti)|P,H,hw,ht)

such that Ln+1(lwn+1, ltn+1) = STOP, and we stop generating once we’ve gen-
erated a STOP token.

3. Generate modifiers to the right of the head with total probability:

n+1∏

i=1

PR(Ri(rwi,rti)|P,H,hw,ht)

such that Rn+1(rwn+1,rtn+1) = STOP, and we stop generating once we’ve gen-
erated a STOP token.

The parsing algorithm for the Collins model is an extension of probabilistic
CKY. Extending the CKY algorithm to handle basic lexicalized probabilities is left
as Exercises 14.5 and 14.6 for the reader.

14.7 Probabilistic CCG Parsing

Lexicalized grammar frameworks such as CCG pose problems for which the phrase-
based methods we’ve been discussing are not particularly well-suited. To quickly
review, CCG consists of three major parts: a set of categories, a lexicon that asso-
ciates words with categories, and a set of rules that govern how categories combine
in context. Categories can be either atomic elements, such as S and NP, or functions
such as (S\NP)/NP which specifies the transitive verb category. Rules specify how
functions, their arguments, and other functions combine. For example, the following
rule templates, forward and backward function application, specify the way that
functions apply to their arguments.

X/Y Y ⇒ X

Y X\Y ⇒ X

The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. The result of applying either of these rules is the
category specified as the value of the function being applied. For the purposes of
this discussion, we’ll rely on these two rules along with the forward and backward
composition rules and type-raising, as described in Chapter 12.
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14.7.1 Ambiguity in CCG
As is always the case in parsing, managing ambiguity is the key to successful CCG
parsing. The difficulties with CCG parsing arise from the ambiguity caused by the
large number of complex lexical categories combined with the very general nature of
the grammatical rules. To see some of the ways that ambiguity arises in a categorial
framework, consider the following example.

(14.28) United diverted the flight to Reno.

Our grasp of the role of the flight in this example depends on whether the prepo-
sitional phrase to Reno is taken as a modifier of the flight, as a modifier of the entire
verb phrase, or as a potential second argument to the verb divert. In a context-free
grammar approach, this ambiguity would manifest itself as a choice among the fol-
lowing rules in the grammar.

Nominal → Nominal PP

VP → VP PP

VP → Verb NP PP

In a phrase-structure approach we would simply assign the word to to the cate-
gory P allowing it to combine with Reno to form a prepositional phrase. The sub-
sequent choice of grammar rules would then dictate the ultimate derivation. In the
categorial approach, we can associate to with distinct categories to reflect the ways
in which it might interact with other elements in a sentence. The fairly abstract
combinatoric rules would then sort out which derivations are possible. Therefore,
the source of ambiguity arises not from the grammar but rather from the lexicon.

Let’s see how this works by considering several possible derivations for this
example. To capture the case where the prepositional phrase to Reno modifies the
flight, we assign the preposition to the category (NP\NP)/NP, which gives rise to
the following derivation.

United diverted the flight to Reno

NP (S\NP)/NP NP/N N (NP\NP)/NP NP
> >

NP NP\NP
<

NP
>

S\NP
<

S

Here, the category assigned to to expects to find two arguments: one to the right as
with a traditional preposition, and one to the left that corresponds to the NP to be
modified.

Alternatively, we could assign to to the category (S\S)/NP, which permits the
following derivation where to Reno modifies the preceding verb phrase.

United diverted the flight to Reno

NP (S\NP)/NP NP/N N (S\S)/NP NP
> >

NP S\S
>

S\NP
<B

S\NP
<

S
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A third possibility is to view divert as a ditransitive verb by assigning it to the
category ((S\NP)/PP)/NP, while treating to Reno as a simple prepositional phrase.

United diverted the flight to Reno

NP ((S\NP)/PP)/NP NP/N N PP/NP NP
> >

NP PP
>

(S\NP)/PP
>

S\NP
<

S

While CCG parsers are still subject to ambiguity arising from the choice of
grammar rules, including the kind of spurious ambiguity discussed in Chapter 12,
it should be clear that the choice of lexical categories is the primary problem to be
addressed in CCG parsing.

14.7.2 CCG Parsing Frameworks
Since the rules in combinatory grammars are either binary or unary, a bottom-up,
tabular approach based on the CKY algorithm should be directly applicable to CCG
parsing. Recall from Fig. 14.3 that PCKY employs a table that records the location,
category and probability of all valid constituents discovered in the input. Given an
appropriate probability model for CCG derivations, the same kind of approach can
work for CCG parsing.

Unfortunately, the large number of lexical categories available for each word,
combined with the promiscuity of CCG’s combinatoric rules, leads to an explosion
in the number of (mostly useless) constituents added to the parsing table. The key
to managing this explosion of zombie constituents is to accurately assess and ex-
ploit the most likely lexical categories possible for each word — a process called
supertagging.

The following sections describe two approaches to CCG parsing that make use of
supertags. Section 14.7.4, presents an approach that structures the parsing process
as a heuristic search through the use of the A* algorithm. The following section
then briefly describes a more traditional maximum entropy approach that manages
the search space complexity through the use of adaptive supertagging — a process
that iteratively considers more and more tags until a parse is found.

14.7.3 Supertagging
Chapter 8 introduced the task of part-of-speech tagging, the process of assigning the
correct lexical category to each word in a sentence. Supertagging is the correspond-supertagging

ing task for highly lexicalized grammar frameworks, where the assigned tags often
dictate much of the derivation for a sentence.

CCG supertaggers rely on treebanks such as CCGbank to provide both the over-
all set of lexical categories as well as the allowable category assignments for each
word in the lexicon. CCGbank includes over 1000 lexical categories, however, in
practice, most supertaggers limit their tagsets to those tags that occur at least 10
times in the training corpus. This results in an overall total of around 425 lexical
categories available for use in the lexicon. Note that even this smaller number is
large in contrast to the 45 POS types used by the Penn Treebank tagset.
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As with traditional part-of-speech tagging, the standard approach to building a
CCG supertagger is to use supervised machine learning to build a sequence classi-
fier using labeled training data. A common approach is to use the maximum entropy
Markov model (MEMM), as described in Chapter 8, to find the most likely sequence
of tags given a sentence. The features in such a model consist of the current word
wi, its surrounding words within l words wi+l

i−l , as well as the k previously assigned
supertags t i−1

i−k . This type of model is summarized in the following equation from
Chapter 8. Training by maximizing log-likelihood of the training corpus and decod-
ing via the Viterbi algorithm are the same as described in Chapter 8.

T̂ = argmax
T

P(T |W )

= argmax
T

∏

i

P(ti|wi+l
i−l , t

i−1
i−k )

= argmax
T

∏

i

exp

(∑

i

wi fi(ti,wi+l
i−l , t

i−1
i−k )

)

∑

t ′∈tagset
exp

(∑

i

wi fi(t ′,wi+l
i−l , t

i−1
i−k )

) (14.29)

Word and tag-based features with k and l both set to 2 provides reasonable results
given sufficient training data. Additional features such as POS tags and short char-
acter suffixes are also commonly used to improve performance.

Unfortunately, even with additional features the large number of possible su-
pertags combined with high per-word ambiguity leads to error rates that are too
high for practical use in a parser. More specifically, the single best tag sequence
T̂ will typically contain too many incorrect tags for effective parsing to take place.
To overcome this, we can instead return a probability distribution over the possible
supertags for each word in the input. The following table illustrates an example dis-
tribution for a simple example sentence. In this table, each column represents the
probability of each supertag for a given word in the context of the input sentence.
The “...” represent all the remaining supertags possible for each word.

United serves Denver
N/N: 0.4 (S\NP)/NP: 0.8 NP: 0.9
NP: 0.3 N: 0.1 N/N: 0.05
S/S: 0.1 ... ...
S\S: .05

...

In a MEMM framework, the probability of the optimal tag sequence defined in
Eq. 14.29 is efficiently computed with a suitably modified version of the Viterbi
algorithm. However, since Viterbi only finds the single best tag sequence it doesn’t
provide exactly what we need here; we need to know the probability of each pos-
sible word/tag pair. The probability of any given tag for a word is the sum of the
probabilities of all the supertag sequences that contain that tag at that location. A
table representing these values can be computed efficiently by using a version of the
forward-backward algorithm used for HMMs.

The same result can also be achieved through recurrent neural network (RNN)
sequence models, which have the advantage of embeddings to represent inputs and
allow representations that span the entire sentence, as opposed to size-limited sliding
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windows. RNN approaches also avoid the use of high-level features, such as part of
speech tags, which is helpful since errors in tag assignment can propagate to errors
in supertags. As with the forward-backward algorithm, RNN-based methods can
provide a probability distribution over the lexical categories for each word in the
input.

14.7.4 CCG Parsing using the A* Algorithm
The A* algorithm is a heuristic search method that employs an agenda to find an
optimal solution. Search states representing partial solutions are added to an agenda
based on a cost function, with the least-cost option being selected for further ex-
ploration at each iteration. When a state representing a complete solution is first
selected from the agenda, it is guaranteed to be optimal and the search terminates.

The A* cost function, f (n), is used to efficiently guide the search to a solution.
The f -cost has two components: g(n), the exact cost of the partial solution repre-
sented by the state n, and h(n) a heuristic approximation of the cost of a solution
that makes use of n. When h(n) satisfies the criteria of not overestimating the actual
cost, A* will find an optimal solution. Not surprisingly, the closer the heuristic can
get to the actual cost, the more effective A* is at finding a solution without having
to explore a significant portion of the solution space.

When applied to parsing, search states correspond to edges representing com-
pleted constituents. As with the PCKY algorithm, edges specify a constituent’s start
and end positions, its grammatical category, and its f -cost. Here, the g component
represents the current cost of an edge and the h component represents an estimate
of the cost to complete a derivation that makes use of that edge. The use of A*
for phrase structure parsing originated with (Klein and Manning, 2003a), while the
CCG approach presented here is based on (Lewis and Steedman, 2014).

Using information from a supertagger, an agenda and a parse table are initial-
ized with states representing all the possible lexical categories for each word in the
input, along with their f -costs. The main loop removes the lowest cost edge from
the agenda and tests to see if it is a complete derivation. If it reflects a complete
derivation it is selected as the best solution and the loop terminates. Otherwise, new
states based on the applicable CCG rules are generated, assigned costs, and entered
into the agenda to await further processing. The loop continues until a complete
derivation is discovered, or the agenda is exhausted, indicating a failed parse. The
algorithm is given in Fig. 14.11.

Heuristic Functions

Before we can define a heuristic function for our A* search, we need to decide how
to assess the quality of CCG derivations. For the generic PCFG model, we defined
the probability of a tree as the product of the probability of the rules that made up
the tree. Given CCG’s lexical nature, we’ll make the simplifying assumption that the
probability of a CCG derivation is just the product of the probability of the supertags
assigned to the words in the derivation, ignoring the rules used in the derivation.
More formally, given a sentence S and derivation D that contains supertag sequence
T , we have:

P(D,S) = P(T,S) (14.30)

=

n∏

i=1

P(ti|si) (14.31)
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function CCG-ASTAR-PARSE(words) returns table or failure

supertags←SUPERTAGGER(words)
for i← from 1 to LENGTH(words) do

for all {A | (words[i], A, score) ∈ supertags}
edge←MAKEEDGE(i−1, i, A, score)
table← INSERTEDGE(table, edge)
agenda← INSERTEDGE(agenda, edge)

loop do
if EMPTY?(agenda) return failure
current←POP(agenda)
if COMPLETEDPARSE?(current) return table
table← INSERTEDGE(chart, edge)
for each rule in APPLICABLERULES(edge) do

successor←APPLY(rule, edge)
if successor not ∈ in agenda or chart

agenda← INSERTEDGE(agenda, successor)
else if successor ∈ agenda with higher cost

agenda←REPLACEEDGE(agenda, successor)

Figure 14.11 A*-based CCG parsing.

To better fit with the traditional A* approach, we’d prefer to have states scored by
a cost function where lower is better (i.e., we’re trying to minimize the cost of a
derivation). To achieve this, we’ll use negative log probabilities to score deriva-
tions; this results in the following equation, which we’ll use to score completed
CCG derivations.

P(D,S) = P(T,S) (14.32)

=

n∑

i=1

− logP(ti|si) (14.33)

Given this model, we can define our f -cost as follows. The f -cost of an edge is
the sum of two components: g(n), the cost of the span represented by the edge, and
h(n), the estimate of the cost to complete a derivation containing that edge (these
are often referred to as the inside and outside costs). We’ll define g(n) for an edge
using Equation 14.33. That is, it is just the sum of the costs of the supertags that
comprise the span.

For h(n), we need a score that approximates but never overestimates the actual
cost of the final derivation. A simple heuristic that meets this requirement assumes
that each of the words in the outside span will be assigned its most probable su-
pertag. If these are the tags used in the final derivation, then its score will equal
the heuristic. If any other tags are used in the final derivation the f -cost will be
higher since the new tags must have higher costs, thus guaranteeing that we will not
overestimate.

Putting this all together, we arrive at the following definition of a suitable f -cost
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for an edge.

f (wi, j, ti, j) = g(wi, j)+h(wi, j) (14.34)

=

j∑

k=i

− logP(tk|wk)+

i−1∑

k=1

min
t∈tags

(− logP(t|wk))+

N∑

k= j+1

min
t∈tags

(− logP(t|wk))

As an example, consider an edge representing the word serves with the supertag N
in the following example.

(14.35) United serves Denver.

The g-cost for this edge is just the negative log probability of this tag, −log10(0.1),
or 1. The outside h-cost consists of the most optimistic supertag assignments for
United and Denver, which are N/N and NP respectively. The resulting f -cost for
this edge is therefore 1.443.

An Example

Fig. 14.12 shows the initial agenda and the progress of a complete parse for this
example. After initializing the agenda and the parse table with information from the
supertagger, it selects the best edge from the agenda — the entry for United with
the tag N/N and f -cost 0.591. This edge does not constitute a complete parse and is
therefore used to generate new states by applying all the relevant grammar rules. In
this case, applying forward application to United: N/N and serves: N results in the
creation of the edge United serves: N[0,2], 1.795 to the agenda.

Skipping ahead, at the third iteration an edge representing the complete deriva-
tion United serves Denver, S[0,3], .716 is added to the agenda. However, the algo-
rithm does not terminate at this point since the cost of this edge (.716) does not place
it at the top of the agenda. Instead, the edge representing Denver with the category
NP is popped. This leads to the addition of another edge to the agenda (type-raising
Denver). Only after this edge is popped and dealt with does the earlier state repre-
senting a complete derivation rise to the top of the agenda where it is popped, goal
tested, and returned as a solution.

The effectiveness of the A* approach is reflected in the coloring of the states
in Fig. 14.12 as well as the final parsing table. The edges shown in blue (includ-
ing all the initial lexical category assignments not explicitly shown) reflect states in
the search space that never made it to the top of the agenda and, therefore, never
contributed any edges to the final table. This is in contrast to the PCKY approach
where the parser systematically fills the parse table with all possible constituents for
all possible spans in the input, filling the table with myriad constituents that do not
contribute to the final analysis.

14.8 Evaluating Parsers

The standard techniques for evaluating parsers and grammars are called the PAR-
SEVAL measures; they were proposed by Black et al. (1991) and were based on
the same ideas from signal-detection theory that we saw in earlier chapters. The
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United serves: N[0,2]
1.795

United: N/N
.591

Denver: N/N
2.494

Denver: N
1.795

serves: N
1.494

United: S\S
1.494

United: S/S
1.1938

United: NP
.716

Denver: NP
.591

serves: (S\NP)/NP
.591

serves Denver: S\NP[1,3]
.591

United serves Denver: S[0,3]
.716

Denver: S/(S\NP)[0,1]
.591

1

2 3

4 5

6

Initial 
Agenda

Goal State

…

S: 0.716

S/NP: 0.591

United serves

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

N/N: 0.591
NP: 0.716
S/S: 1.1938
S\S: 1.494
…

Denver

(S\NP)/NP: 0.591
N: 1.494
…

NP: 0.591
N: 1.795
N/N: 2.494
…

N: 1.795

Figure 14.12 Example of an A* search for the example “United serves Denver”. The circled numbers on the
blue boxes indicate the order in which the states are popped from the agenda. The costs in each state are based
on f-costs using negative log10 probabilities.

intuition of the PARSEVAL metric is to measure how much the constituents in the
hypothesis parse tree look like the constituents in a hand-labeled, gold-reference
parse. PARSEVAL thus assumes we have a human-labeled “gold standard” parse
tree for each sentence in the test set; we generally draw these gold-standard parses
from a treebank like the Penn Treebank.

Given these gold-standard reference parses for a test set, a given constituent in
a hypothesis parse Ch of a sentence s is labeled “correct” if there is a constituent in
the reference parse Cr with the same starting point, ending point, and non-terminal
symbol. We can then measure the precision and recall just as we did for chunking in
the previous chapter.
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labeled recall: = # of correct constituents in hypothesis parse of s
# of correct constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
# of total constituents in hypothesis parse of s

As with other uses of precision and recall, we often report a combination of
the two, the F-measure (van Rijsbergen, 1975), which, as we saw in Chapter 4, isF-measure

defined as:

Fβ =
(β 2 +1)PR

β 2P+R

Values of β > 1 favor recall and values of β < 1 favor precision. When β = 1,
precision and recall are equally balanced; this is called Fβ=1 or just F1:

F1 =
2PR

P+R
(14.36)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

For comparing parsers that use different grammars, the PARSEVAL metric in-
cludes a canonicalization algorithm for removing information likely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score
(Black et al., 1991). The canonical implementation of the PARSEVAL metrics is
called evalb (Sekine and Collins, 1997).evalb

Nonetheless, phrasal constituents are not always an appropriate unit for parser
evaluation. In lexically-oriented grammars, such as CCG and LFG, the ultimate goal
is to extract the appropriate predicate-argument relations or grammatical dependen-
cies, rather than a specific derivation. Such relations are also more directly relevant
to further semantic processing. For these purposes, we can use alternative evalua-
tion metrics based on the precision and recall of labeled dependencies whose labels
indicate the grammatical relations (Lin 1995, Carroll et al. 1998, Collins et al. 1999).

Finally, you might wonder why we don’t evaluate parsers by measuring how
many sentences are parsed correctly instead of measuring component accuracy in
the form of constituents or dependencies. The reason we use components is that it
gives us a more fine-grained metric. This is especially true for long sentences, where
most parsers don’t get a perfect parse. If we just measured sentence accuracy, we
wouldn’t be able to distinguish between a parse that got most of the parts wrong and
one that just got one part wrong.

14.9 Summary

This chapter has sketched the basics of probabilistic parsing, concentrating on
probabilistic context-free grammars and probabilistic lexicalized context-free
grammars.

• Probabilistic grammars assign a probability to a sentence or string of words
while attempting to capture more sophisticated syntactic information than the
N-gram grammars of Chapter 3.
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• A probabilistic context-free grammar (PCFG) is a context-free
grammar in which every rule is annotated with the probability of that rule
being chosen. Each PCFG rule is treated as if it were conditionally inde-
pendent; thus, the probability of a sentence is computed by multiplying the
probabilities of each rule in the parse of the sentence.

• The probabilistic CKY (Cocke-Kasami-Younger) algorithm is a probabilistic
version of the CKY parsing algorithm. There are also probabilistic versions
of other parsers like the Earley algorithm.

• PCFG probabilities can be learned by counting in a parsed corpus or by pars-
ing a corpus. The inside-outside algorithm is a way of dealing with the fact
that the sentences being parsed are ambiguous.

• Raw PCFGs suffer from poor independence assumptions among rules and lack
of sensitivity to lexical dependencies.

• One way to deal with this problem is to split and merge non-terminals (auto-
matically or by hand).

• Probabilistic lexicalized CFGs are another solution to this problem in which
the basic PCFG model is augmented with a lexical head for each rule. The
probability of a rule can then be conditioned on the lexical head or nearby
heads.

• Parsers for lexicalized PCFGs (like the Charniak and Collins parsers) are
based on extensions to probabilistic CKY parsing.

• Parsers are evaluated with three metrics: labeled recall, labeled precision,
and cross-brackets.

Bibliographical and Historical Notes
Many of the formal properties of probabilistic context-free grammars were first
worked out by Booth (1969) and Salomaa (1969). Baker (1979) proposed the inside-
outside algorithm for unsupervised training of PCFG probabilities, and used a CKY-
style parsing algorithm to compute inside probabilities. Jelinek and Lafferty (1991)
extended the CKY algorithm to compute probabilities for prefixes. Stolcke (1995)
adapted the Earley algorithm to use with PCFGs.

A number of researchers starting in the early 1990s worked on adding lexical de-
pendencies to PCFGs and on making PCFG rule probabilities more sensitive to sur-
rounding syntactic structure. For example, Schabes et al. (1988) and Schabes (1990)
presented early work on the use of heads. Many papers on the use of lexical depen-
dencies were first presented at the DARPA Speech and Natural Language Workshop
in June 1990. A paper by Hindle and Rooth (1990) applied lexical dependencies
to the problem of attaching prepositional phrases; in the question session to a later
paper, Ken Church suggested applying this method to full parsing (Marcus, 1990).
Early work on such probabilistic CFG parsing augmented with probabilistic depen-
dency information includes Magerman and Marcus (1991), Black et al. (1992), Bod
(1993), and Jelinek et al. (1994), in addition to Collins (1996), Charniak (1997), and
Collins (1999) discussed above. Other recent PCFG parsing models include Klein
and Manning (2003a) and Petrov et al. (2006).

This early lexical probabilistic work led initially to work focused on solving
specific parsing problems like preposition-phrase attachment by using methods in-
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cluding transformation-based learning (TBL) (Brill and Resnik, 1994), maximum
entropy (Ratnaparkhi et al., 1994), memory-based learning (Zavrel and Daelemans,
1997), log-linear models (Franz, 1997), decision trees that used semantic distance
between heads (computed from WordNet) (Stetina and Nagao, 1997), and boosting
(Abney et al., 1999). Another direction extended the lexical probabilistic parsing
work to build probabilistic formulations of grammars other than PCFGs, such as
probabilistic TAG grammar (Resnik 1992, Schabes 1992), based on the TAG gram-
mars discussed in Chapter 12, probabilistic LR parsing (Briscoe and Carroll, 1993),
and probabilistic link grammar (Lafferty et al., 1992). The supertagging approach
we saw for CCG was developed for TAG grammars (Bangalore and Joshi 1999,
Joshi and Srinivas 1994), based on the lexicalized TAG grammars of Schabes et al.
(1988).

Exercises
14.1 Implement the CKY algorithm.

14.2 Modify the algorithm for conversion to CNF from Chapter 13 to correctly
handle rule probabilities. Make sure that the resulting CNF assigns the same
total probability to each parse tree.

14.3 Recall that Exercise 13.3 asked you to update the CKY algorithm to han-
dle unit productions directly rather than converting them to CNF. Extend this
change to probabilistic CKY.

14.4 Fill out the rest of the probabilistic CKY chart in Fig. 14.4.

14.5 Sketch how the CKY algorithm would have to be augmented to handle lexi-
calized probabilities.

14.6 Implement your lexicalized extension of the CKY algorithm.

14.7 Implement the PARSEVAL metrics described in Section 14.8. Next, either
use a treebank or create your own hand-checked parsed test set. Now use your
CFG (or other) parser and grammar, parse the test set and compute labeled
recall, labeled precision, and cross-brackets.



CHAPTER

15 Dependency Parsing

The focus of the three previous chapters has been on context-free grammars and
their use in automatically generating constituent-based representations. Here we
present another family of grammar formalisms called dependency grammars thatdependency

grammars
are quite important in contemporary speech and language processing systems. In
these formalisms, phrasal constituents and phrase-structure rules do not play a direct
role. Instead, the syntactic structure of a sentence is described solely in terms of the
words (or lemmas) in a sentence and an associated set of directed binary grammatical
relations that hold among the words.

The following diagram illustrates a dependency-style analysis using the standard
graphical method favored in the dependency-parsing community.

(15.1)
I prefer the morning flight through Denver

nsubj

dobj

det

nmod

nmod

case

root

Relations among the words are illustrated above the sentence with directed, la-
beled arcs from heads to dependents. We call this a typed dependency structuretyped

dependency
because the labels are drawn from a fixed inventory of grammatical relations. It also
includes a root node that explicitly marks the root of the tree, the head of the entire
structure.

Figure 15.1 shows the same dependency analysis as a tree alongside its corre-
sponding phrase-structure analysis of the kind given in Chapter 12. Note the ab-
sence of nodes corresponding to phrasal constituents or lexical categories in the
dependency parse; the internal structure of the dependency parse consists solely
of directed relations between lexical items in the sentence. These relationships di-
rectly encode important information that is often buried in the more complex phrase-
structure parses. For example, the arguments to the verb prefer are directly linked to
it in the dependency structure, while their connection to the main verb is more dis-
tant in the phrase-structure tree. Similarly, morning and Denver, modifiers of flight,
are linked to it directly in the dependency structure.

A major advantage of dependency grammars is their ability to deal with lan-
guages that are morphologically rich and have a relatively free word order. Forfree word order

example, word order in Czech can be much more flexible than in English; a gram-
matical object might occur before or after a location adverbial. A phrase-structure
grammar would need a separate rule for each possible place in the parse tree where
such an adverbial phrase could occur. A dependency-based approach would just
have one link type representing this particular adverbial relation. Thus, a depen-
dency grammar approach abstracts away from word-order information, representing
only the information that is necessary for the parse.

An additional practical motivation for a dependency-based approach is that the
head-dependent relations provide an approximation to the semantic relationship be-
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prefer

flight

Denver

through

morningthe

I

S

VP

NP

Nom
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NP
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Noun
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Noun
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Det
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Verb

prefer

NP

Pro

I

Figure 15.1 A dependency-style parse alongside the corresponding constituent-based analysis for I prefer the
morning flight through Denver.

tween predicates and their arguments that makes them directly useful for many ap-
plications such as coreference resolution, question answering and information ex-
traction. Constituent-based approaches to parsing provide similar information, but it
often has to be distilled from the trees via techniques such as the head-finding rules
discussed in Chapter 12.

In the following sections, we’ll discuss in more detail the inventory of relations
used in dependency parsing, as well as the formal basis for these dependency struc-
tures. We’ll then move on to discuss the dominant families of algorithms that are
used to automatically produce these structures. Finally, we’ll discuss how to eval-
uate dependency parsers and point to some of the ways they are used in language
processing applications.

15.1 Dependency Relations

The traditional linguistic notion of grammatical relation provides the basis for thegrammatical
relation

binary relations that comprise these dependency structures. The arguments to these
relations consist of a head and a dependent. We’ve already discussed the notion ofhead

dependent heads in Chapter 12 and Chapter 14 in the context of constituent structures. There,
the head word of a constituent was the central organizing word of a larger constituent
(e.g, the primary noun in a noun phrase, or verb in a verb phrase). The remaining
words in the constituent are either direct, or indirect, dependents of their head. In
dependency-based approaches, the head-dependent relationship is made explicit by
directly linking heads to the words that are immediately dependent on them, bypass-
ing the need for constituent structures.

In addition to specifying the head-dependent pairs, dependency grammars allow
us to further classify the kinds of grammatical relations, or grammatical function,grammatical

function
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Clausal Argument Relations Description
NSUBJ Nominal subject
DOBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
NUMMOD Numeric modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 15.2 Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

in terms of the role that the dependent plays with respect to its head. Familiar notions
such as subject, direct object and indirect object are among the kind of relations we
have in mind. In English these notions strongly correlate with, but by no means de-
termine, both position in a sentence and constituent type and are therefore somewhat
redundant with the kind of information found in phrase-structure trees. However, in
more flexible languages the information encoded directly in these grammatical rela-
tions is critical since phrase-based constituent syntax provides little help.

Not surprisingly, linguists have developed taxonomies of relations that go well
beyond the familiar notions of subject and object. While there is considerable vari-
ation from theory to theory, there is enough commonality that efforts to develop a
computationally useful standard are now possible. The Universal DependenciesUniversal

Dependencies
project (Nivre et al., 2016b) provides an inventory of dependency relations that are
linguistically motivated, computationally useful, and cross-linguistically applicable.
Fig. 15.2 shows a subset of the relations from this effort. Fig. 15.3 provides some
example sentences illustrating selected relations.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
that can modify their heads.

Consider the following example sentence:

(15.2)
United canceled the morning flights to Houston

nsubj

dobj

det

nmod

nmod

case

root

The clausal relations NSUBJ and DOBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.
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Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.
Figure 15.3 Examples of core Universal Dependency relations.

15.2 Dependency Formalisms

In their most general form, the dependency structures we’re discussing are simply
directed graphs. That is, structures G = (V,A) consisting of a set of vertices V , and
a set of ordered pairs of vertices A, which we’ll refer to as arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes. The set of arcs, A, captures the head-
dependent and grammatical function relationships between the elements in V .

Further constraints on these dependency structures are specific to the underlying
grammatical theory or formalism. Among the more frequent restrictions are that the
structures must be connected, have a designated root node, and be acyclic or planar.
Of most relevance to the parsing approaches discussed in this chapter is the common,
computationally-motivated, restriction to rooted trees. That is, a dependency treedependency

tree
is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in V .

Taken together, these constraints ensure that each word has a single head, that the
dependency structure is connected, and that there is a single root node from which
one can follow a unique directed path to each of the words in the sentence.

15.2.1 Projectivity
The notion of projectivity imposes an additional constraint that is derived from the
order of the words in the input, and is closely related to the context-free nature of
human languages discussed in Chapter 12. An arc from a head to a dependent is
said to be projective if there is a path from the head to every word that lies between
the head and the dependent in the sentence. A dependency tree is then said to be
projective if all the arcs that make it up are projective. All the dependency trees
we’ve seen thus far have been projective. There are, however, many perfectly valid
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constructions which lead to non-projective trees, particularly in languages with a
relatively flexible word order.

Consider the following example.

(15.3)
JetBlue canceled our flight this morning which was already late

nsubj

dobj

mod

det

nmod

det case

mod

adv

root

In this example, the arc from flight to its modifier was is non-projective since
there is no path from flight to the intervening words this and morning. As we can
see from this diagram, projectivity (and non-projectivity) can be detected in the way
we’ve been drawing our trees. A dependency tree is projective if it can be drawn
with no crossing edges. Here there is no way to link flight to its dependent was
without crossing the arc that links morning to its head.

Our concern with projectivity arises from two related issues. First, the most
widely used English dependency treebanks were automatically derived from phrase-
structure treebanks through the use of head-finding rules (Chapter 12). The trees
generated in such a fashion are guaranteed to be projective since they’re generated
from context-free grammars.

Second, there are computational limitations to the most widely used families of
parsing algorithms. The transition-based approaches discussed in Section 15.4 can
only produce projective trees, hence any sentences with non-projective structures
will necessarily contain some errors. This limitation is one of the motivations for
the more flexible graph-based parsing approach described in Section 15.5.

15.3 Dependency Treebanks

As with constituent-based methods, treebanks play a critical role in the development
and evaluation of dependency parsers. Dependency treebanks have been created
using similar approaches to those discussed in Chapter 12 — having human annota-
tors directly generate dependency structures for a given corpus, or using automatic
parsers to provide an initial parse and then having annotators hand correct those
parsers. We can also use a deterministic process to translate existing constituent-
based treebanks into dependency trees through the use of head rules.

For the most part, directly annotated dependency treebanks have been created for
morphologically rich languages such as Czech, Hindi and Finnish that lend them-
selves to dependency grammar approaches, with the Prague Dependency Treebank
(Bejček et al., 2013) for Czech being the most well-known effort. The major English
dependency treebanks have largely been extracted from existing resources such as
the Wall Street Journal sections of the Penn Treebank (Marcus et al., 1993). The
more recent OntoNotes project (Hovy et al. 2006, Weischedel et al. 2011) extends
this approach going beyond traditional news text to include conversational telephone
speech, weblogs, usenet newsgroups, broadcasts, and talk shows in English, Chinese
and Arabic.

The translation process from constituent to dependency structures has two sub-
tasks: identifying all the head-dependent relations in the structure and identifying
the correct dependency relations for these relations. The first task relies heavily on
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the use of head rules discussed in Chapter 12 first developed for use in lexicalized
probabilistic parsers (Magerman 1994, Collins 1999, Collins 2003). Here’s a simple
and effective algorithm from Xia and Palmer (2001).

1. Mark the head child of each node in a phrase structure, using the appropriate
head rules.

2. In the dependency structure, make the head of each non-head child depend on
the head of the head-child.

When a phrase-structure parse contains additional information in the form of
grammatical relations and function tags, as in the case of the Penn Treebank, these
tags can be used to label the edges in the resulting tree. When applied to the parse
tree in Fig. 15.4, this algorithm would produce the dependency structure in exam-
ple 15.4.

(15.4)
Vinken will join the board as a nonexecutive director Nov 29

sbj

aux

dobj

clr

tmp

nmod

case

nmod

amod num

root

The primary shortcoming of these extraction methods is that they are limited by
the information present in the original constituent trees. Among the most impor-
tant issues are the failure to integrate morphological information with the phrase-
structure trees, the inability to easily represent non-projective structures, and the
lack of internal structure to most noun-phrases, as reflected in the generally flat
rules used in most treebank grammars. For these reasons, outside of English, most
dependency treebanks are developed directly using human annotators.

15.4 Transition-Based Dependency Parsing

Our first approach to dependency parsing is motivated by a stack-based approach
called shift-reduce parsing originally developed for analyzing programming lan-shift-reduce

parsing
guages (Aho and Ullman, 1972). This classic approach is simple and elegant, em-
ploying a context-free grammar, a stack, and a list of tokens to be parsed. Input
tokens are successively shifted onto the stack and the top two elements of the stack
are matched against the right-hand side of the rules in the grammar; when a match is
found the matched elements are replaced on the stack (reduced) by the non-terminal
from the left-hand side of the rule being matched. In adapting this approach for
dependency parsing, we forgo the explicit use of a grammar and alter the reduce
operation so that instead of adding a non-terminal to a parse tree, it introduces a
dependency relation between a word and its head. More specifically, the reduce ac-
tion is replaced with two possible actions: assert a head-dependent relation between
the word at the top of the stack and the word below it, or vice versa. Figure 15.5
illustrates the basic operation of such a parser.

A key element in transition-based parsing is the notion of a configuration whichconfiguration

consists of a stack, an input buffer of words, or tokens, and a set of relations rep-
resenting a dependency tree. Given this framework, the parsing process consists of
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Figure 15.4 A phrase-structure tree from the Wall Street Journal component of the Penn Treebank 3.

a sequence of transitions through the space of possible configurations. The goal of
this process is to find a final configuration where all the words have been accounted
for and an appropriate dependency tree has been synthesized.

To implement such a search, we’ll define a set of transition operators, which
when applied to a configuration produce new configurations. Given this setup, we
can view the operation of a parser as a search through a space of configurations for
a sequence of transitions that leads from a start state to a desired goal state. At the
start of this process we create an initial configuration in which the stack contains the
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Dependency
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wnw1 w2

s2

...

s1
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Parser

Input buffer
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Figure 15.5 Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

ROOT node, the word list is initialized with the set of the words or lemmatized tokens
in the sentence, and an empty set of relations is created to represent the parse. In the
final goal state, the stack and the word list should be empty, and the set of relations
will represent the final parse.

In the standard approach to transition-based parsing, the operators used to pro-
duce new configurations are surprisingly simple and correspond to the intuitive ac-
tions one might take in creating a dependency tree by examining the words in a
single pass over the input from left to right (Covington, 2001):

• Assign the current word as the head of some previously seen word,
• Assign some previously seen word as the head of the current word,
• Or postpone doing anything with the current word, adding it to a store for later

processing.

To make these actions more precise, we’ll create three transition operators that
will operate on the top two elements of the stack:

• LEFTARC: Assert a head-dependent relation between the word at the top of
the stack and the word directly beneath it; remove the lower word from the
stack.

• RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the word at the top of the stack;

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

This particular set of operators implements what is known as the arc standardarc standard

approach to transition-based parsing (Covington 2001, Nivre 2003). There are two
notable characteristics to this approach: the transition operators only assert relations
between elements at the top of the stack, and once an element has been assigned
its head it is removed from the stack and is not available for further processing.
As we’ll see, there are alternative transition systems which demonstrate different
parsing behaviors, but the arc standard approach is quite effective and is simple to
implement.
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To assure that these operators are used properly we’ll need to add some pre-
conditions to their use. First, since, by definition, the ROOT node cannot have any
incoming arcs, we’ll add the restriction that the LEFTARC operator cannot be ap-
plied when ROOT is the second element of the stack. Second, both reduce operators
require two elements to be on the stack to be applied. Given these transition opera-
tors and preconditions, the specification of a transition-based parser is quite simple.
Fig. 15.6 gives the basic algorithm.

function DEPENDENCYPARSE(words) returns dependency tree

state←{[root], [words], [] } ; initial configuration
while state not final

t←ORACLE(state) ; choose a transition operator to apply
state←APPLY(t, state) ; apply it, creating a new state

return state

Figure 15.6 A generic transition-based dependency parser

At each step, the parser consults an oracle (we’ll come back to this shortly) that
provides the correct transition operator to use given the current configuration. It then
applies that operator to the current configuration, producing a new configuration.
The process ends when all the words in the sentence have been consumed and the
ROOT node is the only element remaining on the stack.

The efficiency of transition-based parsers should be apparent from the algorithm.
The complexity is linear in the length of the sentence since it is based on a single left
to right pass through the words in the sentence. More specifically, each word must
first be shifted onto the stack and then later reduced.

Note that unlike the dynamic programming and search-based approaches dis-
cussed in Chapters 12 and 13, this approach is a straightforward greedy algorithm
— the oracle provides a single choice at each step and the parser proceeds with that
choice, no other options are explored, no backtracking is employed, and a single
parse is returned in the end.

Figure 15.7 illustrates the operation of the parser with the sequence of transitions
leading to a parse for the following example.

(15.5)
Book me the morning flight

iobj

dobj

det

nmod

root

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack Word List Relations
[root, book, me] [the, morning, flight]

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack Word List Relations
[root, book] [the, morning, flight] (book→ me)
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Step Stack Word List Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT

1 [root, book] [me, the, morning, flight] SHIFT

2 [root, book, me] [the, morning, flight] RIGHTARC (book→ me)
3 [root, book] [the, morning, flight] SHIFT

4 [root, book, the] [morning, flight] SHIFT

5 [root, book, the, morning] [flight] SHIFT

6 [root, book, the, morning, flight] [] LEFTARC (morning← flight)
7 [root, book, the, flight] [] LEFTARC (the← flight)
8 [root, book, flight] [] RIGHTARC (book→ flight)
9 [root, book] [] RIGHTARC (root→ book)

10 [root] [] Done
Figure 15.7 Trace of a transition-based parse.

After several subsequent applications of the SHIFT and LEFTARC operators, the con-
figuration in Step 6 looks like the following:

Stack Word List Relations
[root, book, the, morning, flight] [] (book→ me)

Here, all the remaining words have been passed onto the stack and all that is left
to do is to apply the appropriate reduce operators. In the current configuration, we
employ the LEFTARC operator resulting in the following state.

Stack Word List Relations
[root, book, the, flight] [] (book→ me)

(morning← flight)

At this point, the parse for this sentence consists of the following structure.

(15.6)
Book me the morning flight

iobj nmod

There are several important things to note when examining sequences such as
the one in Figure 15.7. First, the sequence given is not the only one that might lead
to a reasonable parse. In general, there may be more than one path that leads to the
same result, and due to ambiguity, there may be other transition sequences that lead
to different equally valid parses.

Second, we are assuming that the oracle always provides the correct operator
at each point in the parse — an assumption that is unlikely to be true in practice.
As a result, given the greedy nature of this algorithm, incorrect choices will lead to
incorrect parses since the parser has no opportunity to go back and pursue alternative
choices. Section 15.4.2 will introduce several techniques that allow transition-based
approaches to explore the search space more fully.

Finally, for simplicity, we have illustrated this example without the labels on
the dependency relations. To produce labeled trees, we can parameterize the LEFT-
ARC and RIGHTARC operators with dependency labels, as in LEFTARC(NSUBJ) or
RIGHTARC(DOBJ). This is equivalent to expanding the set of transition operators
from our original set of three to a set that includes LEFTARC and RIGHTARC opera-
tors for each relation in the set of dependency relations being used, plus an additional
one for the SHIFT operator. This, of course, makes the job of the oracle more difficult
since it now has a much larger set of operators from which to choose.
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15.4.1 Creating an Oracle
State-of-the-art transition-based systems use supervised machine learning methods
to train classifiers that play the role of the oracle. Given appropriate training data,
these methods learn a function that maps from configurations to transition operators.

As with all supervised machine learning methods, we will need access to appro-
priate training data and we will need to extract features useful for characterizing the
decisions to be made. The source for this training data will be representative tree-
banks containing dependency trees. The features will consist of many of the same
features we encountered in Chapter 8 for part-of-speech tagging, as well as those
used in Chapter 14 for statistical parsing models.

Generating Training Data

Let’s revisit the oracle from the algorithm in Fig. 15.6 to fully understand the learn-
ing problem. The oracle takes as input a configuration and returns as output a tran-
sition operator. Therefore, to train a classifier, we will need configurations paired
with transition operators (i.e., LEFTARC, RIGHTARC, or SHIFT). Unfortunately,
treebanks pair entire sentences with their corresponding trees, and therefore they
don’t directly provide what we need.

To generate the required training data, we will employ the oracle-based parsing
algorithm in a clever way. We will supply our oracle with the training sentences
to be parsed along with their corresponding reference parses from the treebank. To
produce training instances, we will then simulate the operation of the parser by run-
ning the algorithm and relying on a new training oracle to give us correct transitiontraining oracle

operators for each successive configuration.
To see how this works, let’s first review the operation of our parser. It begins with

a default initial configuration where the stack contains the ROOT, the input list is just
the list of words, and the set of relations is empty. The LEFTARC and RIGHTARC
operators each add relations between the words at the top of the stack to the set of
relations being accumulated for a given sentence. Since we have a gold-standard
reference parse for each training sentence, we know which dependency relations are
valid for a given sentence. Therefore, we can use the reference parse to guide the
selection of operators as the parser steps through a sequence of configurations.

To be more precise, given a reference parse and a configuration, the training
oracle proceeds as follows:

• Choose LEFTARC if it produces a correct head-dependent relation given the
reference parse and the current configuration,

• Otherwise, choose RIGHTARC if (1) it produces a correct head-dependent re-
lation given the reference parse and (2) all of the dependents of the word at
the top of the stack have already been assigned,

• Otherwise, choose SHIFT.

The restriction on selecting the RIGHTARC operator is needed to ensure that a
word is not popped from the stack, and thus lost to further processing, before all its
dependents have been assigned to it.

More formally, during training the oracle has access to the following informa-
tion:

• A current configuration with a stack S and a set of dependency relations Rc

• A reference parse consisting of a set of vertices V and a set of dependency
relations Rp
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Step Stack Word List Predicted Action
0 [root] [book, the, flight, through, houston] SHIFT

1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] SHIFT

3 [root, book, the, flight] [through, houston] LEFTARC

4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] SHIFT

6 [root, book, flight, through, houston] [] LEFTARC

7 [root, book, flight, houston ] [] RIGHTARC

8 [root, book, flight] [] RIGHTARC

9 [root, book] [] RIGHTARC

10 [root] [] Done
Figure 15.8 Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Given this information, the oracle chooses transitions as follows:

LEFTARC(r): if (S1 r S2) ∈ Rp

RIGHTARC(r): if (S2 r S1) ∈ Rp and ∀r′,w s.t.(S1 r′ w) ∈ Rp then (S1 r′ w) ∈
Rc

SHIFT: otherwise

Let’s walk through the steps of this process with the following example as shown
in Fig. 15.8.

(15.7)
Book the flight through Houston

dobj

det

nmod

case

root

At Step 1, LEFTARC is not applicable in the initial configuration since it asserts
a relation, (root ← book), not in the reference answer; RIGHTARC does assert a
relation contained in the final answer (root → book), however book has not been
attached to any of its dependents yet, so we have to defer, leaving SHIFT as the only
possible action. The same conditions hold in the next two steps. In step 3, LEFTARC
is selected to link the to its head.

Now consider the situation in Step 4.

Stack Word buffer Relations
[root, book, flight] [through, Houston] (the← flight)

Here, we might be tempted to add a dependency relation between book and flight,
which is present in the reference parse. But doing so now would prevent the later
attachment of Houston since flight would have been removed from the stack. For-
tunately, the precondition on choosing RIGHTARC prevents this choice and we’re
again left with SHIFT as the only viable option. The remaining choices complete the
set of operators needed for this example.

To recap, we derive appropriate training instances consisting of configuration-
transition pairs from a treebank by simulating the operation of a parser in the con-
text of a reference dependency tree. We can deterministically record correct parser
actions at each step as we progress through each training example, thereby creating
the training set we require.
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Features

Having generated appropriate training instances (configuration-transition pairs), we
need to extract useful features from the configurations so we can train classifiers.
The features that are used to train transition-based systems vary by language, genre,
and the kind of classifier being employed. For example, morphosyntactic features
such as case marking on subjects or direct objects may be more or less important
depending on the language being processed. That said, the basic features that we
have already seen with part-of-speech tagging and partial parsing have proven to
be useful in training dependency parsers across a wide range of languages. Word
forms, lemmas and parts of speech are all powerful features, as are the head, and
dependency relation to the head.

In the transition-based parsing framework, such features need to be extracted
from the configurations that make up the training data. Recall that configurations
consist of three elements: the stack, the buffer and the current set of relations. In
principle, any property of any or all of these elements can be represented as features
in the usual way for training. However, to avoid sparsity and encourage generaliza-
tion, it is best to focus the learning algorithm on the most useful aspects of decision
making at each point in the parsing process. The focus of feature extraction for
transition-based parsing is, therefore, on the top levels of the stack, the words near
the front of the buffer, and the dependency relations already associated with any of
those elements.

By combining simple features, such as word forms or parts of speech, with spe-
cific locations in a configuration, we can employ the notion of a feature templatefeature

template
that we’ve already encountered with sentiment analysis and part-of-speech tagging.
Feature templates allow us to automatically generate large numbers of specific fea-
tures from a training set. As an example, consider the following feature templates
that are based on single positions in a configuration.

〈s1.w,op〉,〈s2.w,op〉〈s1.t,op〉,〈s2.t,op〉
〈b1.w,op〉,〈b1.t,op〉〈s1.wt,op〉 (15.8)

In these examples, individual features are denoted as location.property, where s
denotes the stack, b the word buffer, and r the set of relations. Individual properties
of locations include w for word forms, l for lemmas, and t for part-of-speech. For
example, the feature corresponding to the word form at the top of the stack would be
denoted as s1.w, and the part of speech tag at the front of the buffer b1.t. We can also
combine individual features via concatenation into more specific features that may
prove useful. For example, the feature designated by s1.wt represents the word form
concatenated with the part of speech of the word at the top of the stack. Finally, op
stands for the transition operator for the training example in question (i.e., the label
for the training instance).

Let’s consider the simple set of single-element feature templates given above
in the context of the following intermediate configuration derived from a training
oracle for Example 15.2.

Stack Word buffer Relations
[root, canceled, flights] [to Houston] (canceled→ United)

(flights→ morning)
(flights→ the)

The correct transition here is SHIFT (you should convince yourself of this before
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proceeding). The application of our set of feature templates to this configuration
would result in the following set of instantiated features.

〈s1.w = flights,op = shift〉 (15.9)

〈s2.w = canceled,op = shift〉
〈s1.t = NNS,op = shift〉
〈s2.t = VBD,op = shift〉
〈b1.w = to,op = shift〉
〈b1.t = TO,op = shift〉

〈s1.wt = flightsNNS,op = shift〉

Given that the left and right arc transitions operate on the top two elements of
the stack, features that combine properties from these positions are even more useful.
For example, a feature like s1.t ◦ s2.t concatenates the part of speech tag of the word
at the top of the stack with the tag of the word beneath it.

〈s1.t ◦ s2.t = NNSVBD,op = shift〉 (15.10)

Not surprisingly, if two properties are useful then three or more should be even
better. Figure 15.9 gives a baseline set of feature templates that have been employed
(Zhang and Clark 2008, Huang and Sagae 2010, Zhang and Nivre 2011).

Note that some of these features make use of dynamic features — features such
as head words and dependency relations that have been predicted at earlier steps in
the parsing process, as opposed to features that are derived from static properties of
the input.

Source Feature templates
One word s1.w s1.t s1.wt

s2.w s2.t s2.wt
b1.w b1.w b0.wt

Two word s1.w◦ s2.w s1.t ◦ s2.t s1.t ◦b1.w
s1.t ◦ s2.wt s1.w◦ s2.w◦ s2.t s1.w◦ s1.t ◦ s2.t
s1.w◦ s1.t ◦ s2.t s1.w◦ s1.t

Figure 15.9 Standard feature templates for training transition-based dependency parsers.
In the template specifications sn refers to a location on the stack, bn refers to a location in the
word buffer, w refers to the wordform of the input, and t refers to the part of speech of the
input.

Learning

Over the years, the dominant approaches to training transition-based dependency
parsers have been multinomial logistic regression and support vector machines, both
of which can make effective use of large numbers of sparse features of the kind
described in the last section. More recently, neural network, or deep learning,
approaches of the kind described in Chapter 8 have been applied successfully to
transition-based parsing (Chen and Manning, 2014). These approaches eliminate the
need for complex, hand-crafted features and have been particularly effective at over-
coming the data sparsity issues normally associated with training transition-based
parsers.
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15.4.2 Advanced Methods in Transition-Based Parsing
The basic transition-based approach can be elaborated in a number of ways to im-
prove performance by addressing some of the most obvious flaws in the approach.

Alternative Transition Systems

The arc-standard transition system described above is only one of many possible sys-
tems. A frequently used alternative is the arc eager transition system. The arc eagerarc eager

approach gets its name from its ability to assert rightward relations much sooner
than in the arc standard approach. To see this, let’s revisit the arc standard trace of
Example 15.7, repeated here.

Book the flight through Houston

dobj

det

nmod

case

root

Consider the dependency relation between book and flight in this analysis. As
is shown in Fig. 15.8, an arc-standard approach would assert this relation at Step 8,
despite the fact that book and flight first come together on the stack much earlier at
Step 4. The reason this relation can’t be captured at this point is due to the presence
of the post-nominal modifier through Houston. In an arc-standard approach, depen-
dents are removed from the stack as soon as they are assigned their heads. If flight
had been assigned book as its head in Step 4, it would no longer be available to serve
as the head of Houston.

While this delay doesn’t cause any issues in this example, in general the longer
a word has to wait to get assigned its head the more opportunities there are for
something to go awry. The arc-eager system addresses this issue by allowing words
to be attached to their heads as early as possible, before all the subsequent words
dependent on them have been seen. This is accomplished through minor changes to
the LEFTARC and RIGHTARC operators and the addition of a new REDUCE operator.

• LEFTARC: Assert a head-dependent relation between the word at the front of
the input buffer and the word at the top of the stack; pop the stack.

• RIGHTARC: Assert a head-dependent relation between the word on the top of
the stack and the word at front of the input buffer; shift the word at the front
of the input buffer to the stack.

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

• REDUCE: Pop the stack.

The LEFTARC and RIGHTARC operators are applied to the top of the stack and
the front of the input buffer, instead of the top two elements of the stack as in the
arc-standard approach. The RIGHTARC operator now moves the dependent to the
stack from the buffer rather than removing it, thus making it available to serve as the
head of following words. The new REDUCE operator removes the top element from
the stack. Together these changes permit a word to be eagerly assigned its head and
still allow it to serve as the head for later dependents. The trace shown in Fig. 15.10
illustrates the new decision sequence for this example.

In addition to demonstrating the arc-eager transition system, this example demon-
strates the power and flexibility of the overall transition-based approach. We were
able to swap in a new transition system without having to make any changes to the
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Step Stack Word List Action Relation Added
0 [root] [book, the, flight, through, houston] RIGHTARC (root→ book)
1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] LEFTARC (the← flight)
3 [root, book] [flight, through, houston] RIGHTARC (book→ flight)
4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] LEFTARC (through← houston)
6 [root, book, flight] [houston] RIGHTARC (flight→ houston)
7 [root, book, flight, houston] [] REDUCE

8 [root, book, flight] [] REDUCE

9 [root, book] [] REDUCE

10 [root] [] Done
Figure 15.10 A processing trace of Book the flight through Houston using the arc-eager
transition operators.

underlying parsing algorithm. This flexibility has led to the development of a di-
verse set of transition systems that address different aspects of syntax and semantics
including: assigning part of speech tags (Choi and Palmer, 2011a), allowing the
generation of non-projective dependency structures (Nivre, 2009), assigning seman-
tic roles (Choi and Palmer, 2011b), and parsing texts containing multiple languages
(Bhat et al., 2017).

Beam Search

The computational efficiency of the transition-based approach discussed earlier de-
rives from the fact that it makes a single pass through the sentence, greedily making
decisions without considering alternatives. Of course, this is also the source of its
greatest weakness – once a decision has been made it can not be undone, even in
the face of overwhelming evidence arriving later in a sentence. Another approach
is to systematically explore alternative decision sequences, selecting the best among
those alternatives. The key problem for such a search is to manage the large number
of potential sequences. Beam search accomplishes this by combining a breadth-firstBeam search

search strategy with a heuristic filter that prunes the search frontier to stay within a
fixed-size beam width.beam width

In applying beam search to transition-based parsing, we’ll elaborate on the al-
gorithm given in Fig. 15.6. Instead of choosing the single best transition operator
at each iteration, we’ll apply all applicable operators to each state on an agenda and
then score the resulting configurations. We then add each of these new configura-
tions to the frontier, subject to the constraint that there has to be room within the
beam. As long as the size of the agenda is within the specified beam width, we can
add new configurations to the agenda. Once the agenda reaches the limit, we only
add new configurations that are better than the worst configuration on the agenda
(removing the worst element so that we stay within the limit). Finally, to insure that
we retrieve the best possible state on the agenda, the while loop continues as long as
there are non-final states on the agenda.

The beam search approach requires a more elaborate notion of scoring than we
used with the greedy algorithm. There, we assumed that a classifier trained using
supervised machine learning would serve as an oracle, selecting the best transition
operator based on features extracted from the current configuration. Regardless of
the specific learning approach, this choice can be viewed as assigning a score to all
the possible transitions and picking the best one.

T̂ (c) = argmaxScore(t,c)
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With a beam search we are now searching through the space of decision se-
quences, so it makes sense to base the score for a configuration on its entire history.
More specifically, we can define the score for a new configuration as the score of its
predecessor plus the score of the operator used to produce it.

ConfigScore(c0) = 0.0
ConfigScore(ci) = ConfigScore(ci−1)+Score(ti,ci−1)

This score is used both in filtering the agenda and in selecting the final answer.
The new beam search version of transition-based parsing is given in Fig. 15.11.

function DEPENDENCYBEAMPARSE(words, width) returns dependency tree

state←{[root], [words], [], 0.0} ;initial configuration
agenda←〈state〉 ;initial agenda

while agenda contains non-final states
newagenda←〈〉
for each state ∈ agenda do

for all {t | t ∈ VALIDOPERATORS(state)} do
child←APPLY(t, state)
newagenda←ADDTOBEAM(child, newagenda, width)

agenda←newagenda
return BESTOF(agenda)

function ADDTOBEAM(state, agenda, width) returns updated agenda

if LENGTH(agenda) < width then
agenda← INSERT(state, agenda)

else if SCORE(state) > SCORE(WORSTOF(agenda))
agenda←REMOVE(WORSTOF(agenda))
agenda← INSERT(state, agenda)

return agenda

Figure 15.11 Beam search applied to transition-based dependency parsing.

15.5 Graph-Based Dependency Parsing

Graph-based approaches to dependency parsing search through the space of possible
trees for a given sentence for a tree (or trees) that maximize some score. These
methods encode the search space as directed graphs and employ methods drawn
from graph theory to search the space for optimal solutions. More formally, given a
sentence S we’re looking for the best dependency tree in Gs, the space of all possible
trees for that sentence, that maximizes some score.

T̂ (S) = argmax
t∈GS

score(t,S)

As with the probabilistic approaches to context-free parsing discussed in Chap-
ter 14, the overall score for a tree can be viewed as a function of the scores of the
parts of the tree. The focus of this section is on edge-factored approaches where theedge-factored
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score for a tree is based on the scores of the edges that comprise the tree.

score(t,S) =
∑

e∈t

score(e)

There are several motivations for the use of graph-based methods. First, unlike
transition-based approaches, these methods are capable of producing non-projective
trees. Although projectivity is not a significant issue for English, it is definitely a
problem for many of the world’s languages. A second motivation concerns parsing
accuracy, particularly with respect to longer dependencies. Empirically, transition-
based methods have high accuracy on shorter dependency relations but accuracy de-
clines significantly as the distance between the head and dependent increases (Mc-
Donald and Nivre, 2011). Graph-based methods avoid this difficulty by scoring
entire trees, rather than relying on greedy local decisions.

The following section examines a widely-studied approach based on the use of a
maximum spanning tree (MST) algorithm for weighted, directed graphs. We thenmaximum

spanning tree
discuss features that are typically used to score trees, as well as the methods used to
train the scoring models.

15.5.1 Parsing
The approach described here uses an efficient greedy algorithm to search for optimal
spanning trees in directed graphs. Given an input sentence, it begins by constructing
a fully-connected, weighted, directed graph where the vertices are the input words
and the directed edges represent all possible head-dependent assignments. An addi-
tional ROOT node is included with outgoing edges directed at all of the other vertices.
The weights in the graph reflect the score for each possible head-dependent relation
as provided by a model generated from training data. Given these weights, a maxi-
mum spanning tree of this graph emanating from the ROOT represents the preferred
dependency parse for the sentence. A directed graph for the example Book that
flight is shown in Fig. 15.12, with the maximum spanning tree corresponding to the
desired parse shown in blue. For ease of exposition, we’ll focus here on unlabeled
dependency parsing. Graph-based approaches to labeled parsing are discussed in
Section 15.5.3.

Before describing the algorithm it’s useful to consider two intuitions about di-
rected graphs and their spanning trees. The first intuition begins with the fact that
every vertex in a spanning tree has exactly one incoming edge. It follows from this
that every connected component of a spanning tree will also have one incoming edge.
The second intuition is that the absolute values of the edge scores are not critical to
determining its maximum spanning tree. Instead, it is the relative weights of the
edges entering each vertex that matters. If we were to subtract a constant amount
from each edge entering a given vertex it would have no impact on the choice of
the maximum spanning tree since every possible spanning tree would decrease by
exactly the same amount.

The first step of the algorithm itself is quite straightforward. For each vertex
in the graph, an incoming edge (representing a possible head assignment) with the
highest score is chosen. If the resulting set of edges produces a spanning tree then
we’re done. More formally, given the original fully-connected graph G = (V,E), a
subgraph T = (V,F) is a spanning tree if it has no cycles and each vertex (other than
the root) has exactly one edge entering it. If the greedy selection process produces
such a tree then it is the best possible one.
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Figure 15.12 Initial rooted, directed graph for Book that flight.

Unfortunately, this approach doesn’t always lead to a tree since the set of edges
selected may contain cycles. Fortunately, in yet another case of multiple discovery,
there is a straightforward way to eliminate cycles generated during the greedy se-
lection phase. Chu and Liu (1965) and Edmonds (1967) independently developed
an approach that begins with greedy selection and follows with an elegant recursive
cleanup phase that eliminates cycles.

The cleanup phase begins by adjusting all the weights in the graph by subtracting
the score of the maximum edge entering each vertex from the score of all the edges
entering that vertex. This is where the intuitions mentioned earlier come into play.
We have scaled the values of the edges so that the weight of the edges in the cycle
have no bearing on the weight of any of the possible spanning trees. Subtracting the
value of the edge with maximum weight from each edge entering a vertex results
in a weight of zero for all of the edges selected during the greedy selection phase,
including all of the edges involved in the cycle.

Having adjusted the weights, the algorithm creates a new graph by selecting a
cycle and collapsing it into a single new node. Edges that enter or leave the cycle
are altered so that they now enter or leave the newly collapsed node. Edges that do
not touch the cycle are included and edges within the cycle are dropped.

Now, if we knew the maximum spanning tree of this new graph, we would have
what we need to eliminate the cycle. The edge of the maximum spanning tree di-
rected towards the vertex representing the collapsed cycle tells us which edge to
delete to eliminate the cycle. How do we find the maximum spanning tree of this
new graph? We recursively apply the algorithm to the new graph. This will either
result in a spanning tree or a graph with a cycle. The recursions can continue as long
as cycles are encountered. When each recursion completes we expand the collapsed
vertex, restoring all the vertices and edges from the cycle with the exception of the
single edge to be deleted.

Putting all this together, the maximum spanning tree algorithm consists of greedy
edge selection, re-scoring of edge costs and a recursive cleanup phase when needed.
The full algorithm is shown in Fig. 15.13.

Fig. 15.14 steps through the algorithm with our Book that flight example. The
first row of the figure illustrates greedy edge selection with the edges chosen shown
in blue (corresponding to the set F in the algorithm). This results in a cycle between
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function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F← []
T’← []
score’← []
for each v ∈ V do

bestInEdge←argmaxe=(u,v)∈ E score[e]
F←F ∪ bestInEdge
for each e=(u,v) ∈ E do

score’[e]←score[e] − score[bestInEdge]

if T=(V,F) is a spanning tree then return it
else

C←a cycle in F
G’←CONTRACT(G, C)
T’←MAXSPANNINGTREE(G’, root, score’)
T←EXPAND(T’, C)
return T

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

Figure 15.13 The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.

that and flight. The scaled weights using the maximum value entering each node are
shown in the graph to the right.

Collapsing the cycle between that and flight to a single node (labelled tf) and
recursing with the newly scaled costs is shown in the second row. The greedy selec-
tion step in this recursion yields a spanning tree that links root to book, as well as an
edge that links book to the contracted node. Expanding the contracted node, we can
see that this edge corresponds to the edge from book to flight in the original graph.
This in turn tells us which edge to drop to eliminate the cycle

On arbitrary directed graphs, this version of the CLE algorithm runs in O(mn)
time, where m is the number of edges and n is the number of nodes. Since this par-
ticular application of the algorithm begins by constructing a fully connected graph
m = n2 yielding a running time of O(n3). Gabow et al. (1986) present a more effi-
cient implementation with a running time of O(m+nlogn).

15.5.2 Features and Training
Given a sentence, S, and a candidate tree, T , edge-factored parsing models reduce
the score for the tree to a sum of the scores of the edges that comprise the tree.

score(S,T ) =
∑

e∈T

score(S,e)

Each edge score can, in turn, be reduced to a weighted sum of features extracted
from it.

score(S,e) =

N∑

i=1

wi fi(S,e)
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Figure 15.14 Chu-Liu-Edmonds graph-based example for Book that flight

Or more succinctly.

score(S,e) = w · f

Given this formulation, we are faced with two problems in training our parser:
identifying relevant features and finding the weights used to score those features.

The features used to train edge-factored models mirror those used in training
transition-based parsers (as shown in Fig. 15.9). This is hardly surprising since in
both cases we’re trying to capture information about the relationship between heads
and their dependents in the context of a single relation. To summarize this earlier
discussion, commonly used features include:

• Wordforms, lemmas, and parts of speech of the headword and its dependent.
• Corresponding features derived from the contexts before, after and between

the words.
• Word embeddings.
• The dependency relation itself.
• The direction of the relation (to the right or left).
• The distance from the head to the dependent.

As with transition-based approaches, pre-selected combinations of these features are
often used as well.

Given a set of features, our next problem is to learn a set of weights correspond-
ing to each. Unlike many of the learning problems discussed in earlier chapters,
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here we are not training a model to associate training items with class labels, or
parser actions. Instead, we seek to train a model that assigns higher scores to cor-
rect trees than to incorrect ones. An effective framework for problems like this is to
use inference-based learning combined with the perceptron learning rule. In thisinference-based

learning
framework, we parse a sentence (i.e, perform inference) from the training set using
some initially random set of initial weights. If the resulting parse matches the cor-
responding tree in the training data, we do nothing to the weights. Otherwise, we
find those features in the incorrect parse that are not present in the reference parse
and we lower their weights by a small amount based on the learning rate. We do this
incrementally for each sentence in our training data until the weights converge.

State-of-the-art algorithms in multilingual parsing are based on recurrent neural
networks (RNNs) (Zeman et al. 2017, Dozat et al. 2017).

15.5.3 Advanced Issues in Graph-Based Parsing

15.6 Evaluation

As with phrase structure-based parsing, the evaluation of dependency parsers pro-
ceeds by measuring how well they work on a test-set. An obvious metric would be
exact match (EM) — how many sentences are parsed correctly. This metric is quite
pessimistic, with most sentences being marked wrong. Such measures are not fine-
grained enough to guide the development process. Our metrics need to be sensitive
enough to tell if actual improvements are being made.

For these reasons, the most common method for evaluating dependency parsers
are labeled and unlabeled attachment accuracy. Labeled attachment refers to the
proper assignment of a word to its head along with the correct dependency relation.
Unlabeled attachment simply looks at the correctness of the assigned head, ignor-
ing the dependency relation. Given a system output and a corresponding reference
parse, accuracy is simply the percentage of words in an input that are assigned the
correct head with the correct relation. These metrics are usually referred to as the
labeled attachment score (LAS) and unlabeled attachment score (UAS). Finally, we
can make use of a label accuracy score (LS), the percentage of tokens with correct
labels, ignoring where the relations are coming from.

As an example, consider the reference parse and system parse for the following
example shown in Fig. 15.15.

(15.11) Book me the flight through Houston.

The system correctly finds 4 of the 6 dependency relations present in the refer-
ence parse and receives an LAS of 2/3. However, one of the 2 incorrect relations
found by the system holds between book and flight, which are in a head-dependent
relation in the reference parse; the system therefore achieves a UAS of 5/6.

Beyond attachment scores, we may also be interested in how well a system is
performing on a particular kind of dependency relation, for example NSUBJ, across
a development corpus. Here we can make use of the notions of precision and recall
introduced in Chapter 8, measuring the percentage of relations labeled NSUBJ by
the system that were correct (precision), and the percentage of the NSUBJ relations
present in the development set that were in fact discovered by the system (recall).
We can employ a confusion matrix to keep track of how often each dependency type
was confused for another.
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Figure 15.15 Reference and system parses for Book me the flight through Houston, resulting in an LAS of
2/3 and an UAS of 5/6.

15.7 Summary

This chapter has introduced the concept of dependency grammars and dependency
parsing. Here’s a summary of the main points that we covered:

• In dependency-based approaches to syntax, the structure of a sentence is de-
scribed in terms of a set of binary relations that hold between the words in a
sentence. Larger notions of constituency are not directly encoded in depen-
dency analyses.

• The relations in a dependency structure capture the head-dependent relation-
ship among the words in a sentence.

• Dependency-based analysis provides information directly useful in further
language processing tasks including information extraction, semantic parsing
and question answering.

• Transition-based parsing systems employ a greedy stack-based algorithm to
create dependency structures.

• Graph-based methods for creating dependency structures are based on the use
of maximum spanning tree methods from graph theory.

• Both transition-based and graph-based approaches are developed using super-
vised machine learning techniques.

• Treebanks provide the data needed to train these systems. Dependency tree-
banks can be created directly by human annotators or via automatic transfor-
mation from phrase-structure treebanks.

• Evaluation of dependency parsers is based on labeled and unlabeled accuracy
scores as measured against withheld development and test corpora.

Bibliographical and Historical Notes
The dependency-based approach to grammar is much older than the relatively re-
cent phrase-structure or constituency grammars that have been the primary focus of
both theoretical and computational linguistics for years. It has its roots in the an-
cient Greek and Indian linguistic traditions. Contemporary theories of dependency
grammar all draw heavily on the work of Tesnière (1959). The most influential
dependency grammar frameworks include Meaning-Text Theory (MTT) (Mel’c̆uk,
1988), Word Grammar (Hudson, 1984), Functional Generative Description (FDG)
(Sgall et al., 1986). These frameworks differ along a number of dimensions in-
cluding the degree and manner in which they deal with morphological, syntactic,
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semantic and pragmatic factors, their use of multiple layers of representation, and
the set of relations used to categorize dependency relations.

Automatic parsing using dependency grammars was first introduced into compu-
tational linguistics by early work on machine translation at the RAND Corporation
led by David Hays. This work on dependency parsing closely paralleled work on
constituent parsing and made explicit use of grammars to guide the parsing process.
After this early period, computational work on dependency parsing remained inter-
mittent over the following decades. Notable implementations of dependency parsers
for English during this period include Link Grammar (Sleator and Temperley, 1993),
Constraint Grammar (Karlsson et al., 1995), and MINIPAR (Lin, 2003).

Dependency parsing saw a major resurgence in the late 1990’s with the appear-
ance of large dependency-based treebanks and the associated advent of data driven
approaches described in this chapter. Eisner (1996) developed an efficient dynamic
programming approach to dependency parsing based on bilexical grammars derived
from the Penn Treebank. Covington (2001) introduced the deterministic word by
word approach underlying current transition-based approaches. Yamada and Mat-
sumoto (2003) and Kudo and Matsumoto (2002) introduced both the shift-reduce
paradigm and the use of supervised machine learning in the form of support vector
machines to dependency parsing.

Nivre (2003) defined the modern, deterministic, transition-based approach to de-
pendency parsing. Subsequent work by Nivre and his colleagues formalized and an-
alyzed the performance of numerous transition systems, training methods, and meth-
ods for dealing with non-projective language Nivre and Scholz 2004, Nivre 2006,
Nivre and Nilsson 2005, Nivre et al. 2007, Nivre 2007.

The graph-based maximum spanning tree approach to dependency parsing was
introduced by McDonald et al. 2005, McDonald et al. 2005.

The earliest source of data for training and evaluating dependency English parsers
came from the WSJ Penn Treebank (Marcus et al., 1993) described in Chapter 12.
The use of head-finding rules developed for use with probabilistic parsing facili-
tated the automatic extraction of dependency parses from phrase-based ones (Xia
and Palmer, 2001).

The long-running Prague Dependency Treebank project (Hajič, 1998) is the most
significant effort to directly annotate a corpus with multiple layers of morphological,
syntactic and semantic information. The current PDT 3.0 now contains over 1.5 M
tokens (Bejček et al., 2013).

Universal Dependencies (UD) (Nivre et al., 2016b) is a project directed at cre-
ating a consistent framework for dependency treebank annotation across languages
with the goal of advancing parser development across the world’s languages. Under
the auspices of this effort, treebanks for over 30 languages have been annotated and
made available in a single consistent format. The UD annotation scheme evolved out
of several distinct efforts including Stanford dependencies (de Marneffe et al. 2006,
de Marneffe and Manning 2008, de Marneffe et al. 2014), Google’s universal part-
of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic
tagsets (Zeman, 2008). Driven in part by the UD framework, dependency treebanks
of a significant size and quality are now available in over 30 languages (Nivre et al.,
2016b).

The Conference on Natural Language Learning (CoNLL) has conducted an in-
fluential series of shared tasks related to dependency parsing over the years (Buch-
holz and Marsi 2006, Nilsson et al. 2007, Surdeanu et al. 2008a, Hajič et al. 2009).
More recent evaluations have focused on parser robustness with respect to morpho-
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logically rich languages (Seddah et al., 2013), and non-canonical language forms
such as social media, texts, and spoken language (Petrov and McDonald, 2012).
Choi et al. (2015) presents a performance analysis of 10 dependency parsers across
a range of metrics, as well as DEPENDABLE, a robust parser evaluation tool.

Exercises
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CHAPTER

16 Logical Representations of
Sentence Meaning

ISHMAEL: Surely all this is not without meaning.
Herman Melville, Moby Dick

In this chapter we introduce the idea that the meaning of linguistic expressions can
be captured in formal structures called meaning representations. Consider tasksmeaning

representations
that require some form of semantic processing, like learning to use a new piece of
software by reading the manual, deciding what to order at a restaurant by reading
a menu, or following a recipe. Accomplishing these tasks requires representations
that link the linguistic elements to the necessary non-linguistic knowledge of the
world. Reading a menu and deciding what to order, giving advice about where to
go to dinner, following a recipe, and generating new recipes all require knowledge
about food and its preparation, what people like to eat, and what restaurants are like.
Learning to use a piece of software by reading a manual, or giving advice on using
software, requires knowledge about the software and similar apps, computers, and
users in general.

In this chapter, we assume that linguistic expressions have meaning representa-
tions that are made up of the same kind of stuff that is used to represent this kind of
everyday common-sense knowledge of the world. The process whereby such repre-
sentations are created and assigned to linguistic inputs is called semantic parsing orsemantic

parsing
semantic analysis, and the entire enterprise of designing meaning representations
and associated semantic parsers is referred to as computational semantics.computational

semantics

∃e,y Having(e)∧Haver(e,Speaker)∧HadT hing(e,y)∧Car(y)

h / have-01

c / cari / i 

arg0 arg1 (h / have-01
        arg0: (i / i)
        arg1: (c / car))

Having:
      Haver:  Speaker
      HadThing:  Car

Figure 16.1 A list of symbols, two directed graphs, and a record structure: a sampler of
meaning representations for I have a car.

Consider Fig. 16.1, which shows example meaning representations for the sen-
tence I have a car using four commonly used meaning representation languages.
The top row illustrates a sentence in First-Order Logic, covered in detail in Sec-
tion 16.3; the directed graph and its corresponding textual form is an example of
an Abstract Meaning Representation (AMR) form (Banarescu et al., 2013), and
on the right is a frame-based or slot-filler representation, discussed in Section 16.5
and again in Chapter 18.
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While there are non-trivial differences among these approaches, they all share
the notion that a meaning representation consists of structures composed from a
set of symbols, or representational vocabulary. When appropriately arranged, these
symbol structures are taken to correspond to objects, properties of objects, and rela-
tions among objects in some state of affairs being represented or reasoned about. In
this case, all four representations make use of symbols corresponding to the speaker,
a car, and a relation denoting the possession of one by the other.

Importantly, these representations can be viewed from at least two distinct per-
spectives in all of these approaches: as representations of the meaning of the par-
ticular linguistic input I have a car, and as representations of the state of affairs in
some world. It is this dual perspective that allows these representations to be used
to link linguistic inputs to the world and to our knowledge of it.

In the next sections we give some background: our desiderata for a meaning
representation language and some guarantees that these representations will actually
do what we need them to do—provide a correspondence to the state of affairs being
represented. In Section 16.3 we introduce First-Order Logic, historically the primary
technique for investigating natural language semantics, and see in Section 16.4 how
it can be used to capture the semantics of events and states in English. Chapter 17
then introduces techniques for semantic parsing: generating these formal meaning
representations given linguistic inputs.

16.1 Computational Desiderata for Representations

Let’s consider why meaning representations are needed and what they should do for
us. To focus this discussion, let’s consider a system that gives restaurant advice to
tourists based on a knowledge base.

Verifiability

Consider the following simple question:

(16.1) Does Maharani serve vegetarian food?

To answer this question, we have to know what it’s asking, and know whether what
it’s asking is true of Maharini or not. verifiability is a system’s ability to compareverifiability

the state of affairs described by a representation to the state of affairs in some world
as modeled in a knowledge base. For example we’ll need some sort of representation
like Serves(Maharani,VegetarianFood), which a system can can match against its
knowledge base of facts about particular restaurants, and if it find a representation
matching this proposition, it can answer yes. Otherwise, it must either say No if its
knowledge of local restaurants is complete, or say that it doesn’t know if it knows
its knowledge is incomplete.

Unambiguous Representations

Semantics, like all the other domains we have studied, is subject to ambiguity.
Words and sentences have different meaning representations in different contexts.
Consider the following example:

(16.2) I wanna eat someplace that’s close to ICSI.

This sentence can either mean that the speaker wants to eat at some nearby location,
or under a Godzilla-as-speaker interpretation, the speaker may want to devour some
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nearby location. The sentence is ambiguous; a single linguistic expression can have
one of two meanings. But our meaning representations itself cannot be ambiguous.
The representation of an input’s meaning should be free from any ambiguity, so that
the the system can reason over a representation that means either one thing or the
other in order to decide how to answer.

A concept closely related to ambiguity is vagueness: in which a meaning repre-vagueness

sentation leaves some parts of the meaning underspecified. Vagueness does not give
rise to multiple representations. Consider the following request:

(16.3) I want to eat Italian food.

While Italian food may provide enough information to provide recommendations, it
is nevertheless vague as to what the user really wants to eat. A vague representation
of the meaning of this phrase may be appropriate for some purposes, while a more
specific representation may be needed for other purposes.

Canonical Form

The doctrine of canonical form says that distinct inputs that mean the same thingcanonical form

should have the same meaning representation. This approach greatly simplifies rea-
soning, since systems need only deal with a single meaning representation for a
potentially wide range of expressions.

Consider the following alternative ways of expressing (16.1):

(16.4) Does Maharani have vegetarian dishes?
(16.5) Do they have vegetarian food at Maharani?
(16.6) Are vegetarian dishes served at Maharani?
(16.7) Does Maharani serve vegetarian fare?

Despite the fact these alternatives use different words and syntax, we want them
to map to a single canonical meaning representations. If they were all different,
assuming the system’s knowledge base contains only a single representation of this
fact, most of the representations wouldn’t match. We could, of course, store all
possible alternative representations of the same fact in the knowledge base, but doing
so would lead to enormous difficult in keeping the knowledge base consistent.

Canonical form does complicate the task of semantic parsing. Our system must
conclude that vegetarian fare, vegetarian dishes, and vegetarian food refer to the
same thing, that having and serving are equivalent here, and that all these parse
structures still lead to the same meaning representation. Or consider this pair of
examples:

(16.8) Maharani serves vegetarian dishes.
(16.9) Vegetarian dishes are served by Maharani.

Despite the different placement of the arguments to serve, a system must still assign
Maharani and vegetarian dishes to the same roles in the two examples by draw-
ing on grammatical knowledge, such as the relationship between active and passive
sentence constructions.

Inference and Variables

What about more complex requests such as:

(16.10) Can vegetarians eat at Maharani?

This request results in the same answer as the others not because they mean the same
thing, but because there is a common-sense connection between what vegetarians eat
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and what vegetarian restaurants serve. This is a fact about the world. We’ll need to
connect the meaning representation of this request with this fact about the world in a
knowledge base. A system must be able to use inference—to draw valid conclusionsinference

based on the meaning representation of inputs and its background knowledge. It
must be possible for the system to draw conclusions about the truth of propositions
that are not explicitly represented in the knowledge base but that are nevertheless
logically derivable from the propositions that are present.

Now consider the following somewhat more complex request:

(16.11) I’d like to find a restaurant where I can get vegetarian food.

This request does not make reference to any particular restaurant; the user wants in-
formation about an unknown restaurant that serves vegetarian food. Since no restau-
rants are named, simple matching is not going to work. Answering this request
requires the use of variables, using some representation like the following:variables

Serves(x,VegetarianFood) (16.12)

Matching succeeds only if the variable x can be replaced by some object in the
knowledge base in such a way that the entire proposition will then match. The con-
cept that is substituted for the variable can then be used to fulfill the user’s request.
It is critical for any meaning representation language to be able to handle these kinds
of indefinite references.

Expressiveness

Finally, a meaning representation scheme must be expressive enough to handle a
wide range of subject matter, ideally any sensible natural language utterance. Al-
though this is probably too much to expect from any single representational system,
First-Order Logic, as described in Section 16.3, is expressive enough to handle quite
a lot of what needs to be represented.

16.2 Model-Theoretic Semantics

What is it about about meaning representation languages that allows them to fulfill
these desiderata, bridging the gap from formal representations to representations that
tell us something about some state of affairs in the world?

The answer is a model. A model is a formal construct that stands for the partic-model

ular state of affairs in the world. Expressions in a meaning representation language
can be mapped to elements of the model, like objects, properties of objects, and
relations among objects. If the model accurately captures the facts we’re interested
in, then a consistent mapping between the meaning representation and the model
provides the bridge between meaning representation and world. Models provide a
surprisingly simple and powerful way to ground the expressions in meaning repre-
sentation languages.

First, some terminology. The vocabulary of a meaning representation consists of
two parts: the non-logical vocabulary and the logical vocabulary. The non-logical
vocabulary consists of the open-ended set of names for the objects, properties, andnon-logical

vocabulary
relations that make up the world we’re trying to represent. These appear in various
schemes as predicates, nodes, labels on links, or labels in slots in frames, The log-
ical vocabulary consists of the closed set of symbols, operators, quantifiers, links,logical

vocabulary
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etc., that provide the formal means for composing expressions in a given meaning
representation language.

Each element of the non-logical vocabulary must have a denotation in the model,denotation

meaning that every element corresponds to a fixed, well-defined part of the model.
Let’s start with objects. The domain of a model is the set of objects that are beingdomain

represented. Each distinct concept, category, or individual denotes a unique element
in the domain.

We represent properties of objects in a model by denoting the domain elements
that have the property; that is, properties denote sets. The denotation of the property
red is the set of things we think are red. Similarly, a relations among object denote a
set of ordered lists, or tuples, of domain elements that take part in the relations: the
denotation of the relation Married is set of pairs of domain objects that are married.
This approach to properties and relations is called extensional, because we defineextensional

concepts by their extension, their denotations. To summarize:

• Objects denote elements of the domain
• Properties denote sets of elements of the domain
• Relations denote sets of tuples of elements of the domain

We now need a mapping that gets us from our meaning representation to the
corresponding denotations: a function that maps from the non-logical vocabulary of
our meaning representation to the proper denotations in the model. We’ll call such
a mapping an interpretation.interpretation

Let’s return to our restaurant advice application, and let its domain consist of
sets of restaurants, patrons, facts about the likes and dislikes of the patrons, and
facts about the restaurants such as their cuisine, typical cost, and noise level. To
begin populating our domain, D , let’s assume that we’re dealing with four patrons
designated by the non-logical symbols Matthew, Franco, Katie, and Caroline. de-
noting four unique domain elements. We’ll use the constants a,b,c and, d to stand
for these domain elements. We’re deliberately using meaningless, non-mnemonic
names for our domain elements to emphasize the fact that whatever it is that we
know about these entities has to come from the formal properties of the model and
not from the names of the symbols. Continuing, let’s assume that our application
includes three restaurants, designated as Frasca, Med, and Rio in our meaning rep-
resentation, that denote the domain elements e, f , and g. Finally, let’s assume that
we’re dealing with the three cuisines Italian, Mexican, and Eclectic, denoted by h, i,
and j in our model.

Properties like Noisy denote the subset of restaurants from our domain that are
known to be noisy. Two-place relational notions, such as which restaurants individ-
ual patrons Like, denote ordered pairs, or tuples, of the objects from the domain.
And, since we decided to represent cuisines as objects in our model, we can cap-
ture which restaurants Serve which cuisines as a set of tuples. One possible state of
affairs using this scheme is given in Fig. 16.2.

Given this simple scheme, we can ground our meaning representations by con-
sulting the appropriate denotations in the corresponding model. For example, we can
evaluate a representation claiming that Matthew likes the Rio, or that The Med serves
Italian by mapping the objects in the meaning representations to their corresponding
domain elements and mapping any links, predicates, or slots in the meaning repre-
sentation to the appropriate relations in the model. More concretely, we can verify
a representation asserting that Matthew likes Frasca by first using our interpretation
function to map the symbol Matthew to its denotation a, Frasca to e, and the Likes
relation to the appropriate set of tuples. We then check that set of tuples for the
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Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
Italian, Mexican, Eclectic h, i, j

Properties
Noisy Noisy = {e, f ,g}

Frasca, Med, and Rio are noisy

Relations
Likes Likes = {〈a, f 〉,〈c, f 〉,〈c,g〉,〈b,e〉,〈d, f 〉,〈d,g〉}

Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {〈 f , j〉,〈g, i〉,〈e,h〉}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 16.2 A model of the restaurant world.

presence of the tuple 〈a,e〉. If, as it is in this case, the tuple is present in the model,
then we can conclude that Matthew likes Frasca is true; if it isn’t then we can’t.

This is all pretty straightforward—we’re using sets and operations on sets to
ground the expressions in our meaning representations. Of course, the more inter-
esting part comes when we consider more complex examples such as the following:

(16.13) Katie likes the Rio and Matthew likes the Med.
(16.14) Katie and Caroline like the same restaurants.
(16.15) Franco likes noisy, expensive restaurants.
(16.16) Not everybody likes Frasca.

Our simple scheme for grounding the meaning of representations is not adequate
for examples such as these. Plausible meaning representations for these examples
will not map directly to individual entities, properties, or relations. Instead, they
involve complications such as conjunctions, equality, quantified variables, and nega-
tions. To assess whether these statements are consistent with our model, we’ll have
to tear them apart, assess the parts, and then determine the meaning of the whole
from the meaning of the parts.

Consider the first example above. A meaning representation for this example
will include two distinct propositions expressing the individual patron’s preferences,
conjoined with some kind of implicit or explicit conjunction operator. Our model
doesn’t have a relation that encodes pairwise preferences for all of the patrons and
restaurants in our model, nor does it need to. We know from our model that Matthew
likes the Med and separately that Katie likes the Rio (that is, the tuples 〈a, f 〉 and
〈c,g〉 are members of the set denoted by the Likes relation). All we really need to
know is how to deal with the semantics of the conjunction operator. If we assume
the simplest possible semantics for the English word and, the whole statement is
true if it is the case that each of the components is true in our model. In this case,
both components are true since the appropriate tuples are present and therefore the
sentence as a whole is true.

What we’ve done with this example is provide a truth-conditional semantics
truth-

conditional
semantics
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Formula → AtomicFormula
| Formula Connective Formula
| Quantifier Variable, . . . Formula
| ¬ Formula
| (Formula)

AtomicFormula → Predicate(Term, . . .)
Term → Function(Term, . . .)

| Constant
| Variable

Connective → ∧ | ∨ | =⇒
Quantifier → ∀ | ∃
Constant → A | VegetarianFood | Maharani · · ·
Variable → x | y | · · ·

Predicate → Serves | Near | · · ·
Function → LocationOf | CuisineOf | · · ·

Figure 16.3 A context-free grammar specification of the syntax of First-Order Logic rep-
resentations. Adapted from Russell and Norvig (2002).

for the assumed conjunction operator in some meaning representation. That is,
we’ve provided a method for determining the truth of a complex expression from
the meanings of the parts (by consulting a model) and the meaning of an operator by
consulting a truth table. Meaning representation languages are truth-conditional to
the extent that they give a formal specification as to how we can determine the mean-
ing of complex sentences from the meaning of their parts. In particular, we need to
know the semantics of the entire logical vocabulary of the meaning representation
scheme being used.

Note that although the details of how this happens depend on details of the par-
ticular meaning representation being used, it should be clear that assessing the truth
conditions of examples like these involves nothing beyond the simple set operations
we’ve been discussing. We return to these issues in the next section in the context of
the semantics of First-Order Logic.

16.3 First-Order Logic

First-Order Logic (FOL) is a flexible, well-understood, and computationally tractable
meaning representation language that satisfies many of the desiderata given in Sec-
tion 16.1. It provides a sound computational basis for the verifiability, inference,
and expressiveness requirements, as well as a sound model-theoretic semantics.

An additional attractive feature of FOL is that it makes few specific commitments
as to how things ought to be represented, and those it does are shared by many of
the schemes mentioned earlier: the represented world consists of objects, properties
of objects, and relations among objects.

The remainder of this section introduces the basic syntax and semantics of FOL
and then describes the application of FOL to the representation of events.

16.3.1 Basic Elements of First-Order Logic
Let’s explore FOL by first examining its various atomic elements and then showing
how they can be composed to create larger meaning representations. Figure 16.3,
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which provides a complete context-free grammar for the particular syntax of FOL
that we will use, is our roadmap for this section.

Let’s begin by examining the notion of a term, the FOL device for representingterm

objects. As can be seen from Fig. 16.3, FOL provides three ways to represent these
basic building blocks: constants, functions, and variables. Each of these devices can
be thought of as designating an object in the world under consideration.

Constants in FOL refer to specific objects in the world being described. Suchconstant

constants are conventionally depicted as either single capitalized letters such as A
and B or single capitalized words that are often reminiscent of proper nouns such as
Maharani and Harry. Like programming language constants, FOL constants refer
to exactly one object. Objects can, however, have multiple constants that refer to
them.

Functions in FOL correspond to concepts that are often expressed in English asfunction

genitives such as Frasca’s location. A FOL translation of such an expression might
look like the following.

LocationOf (Frasca) (16.17)

FOL functions are syntactically the same as single argument predicates. It is im-
portant to remember, however, that while they have the appearance of predicates,
they are in fact terms in that they refer to unique objects. Functions provide a con-
venient way to refer to specific objects without having to associate a named constant
with them. This is particularly convenient in cases in which many named objects,
like restaurants, have a unique concept such as a location associated with them.

Variables are our final FOL mechanism for referring to objects. Variables, de-variable

picted as single lower-case letters, let us make assertions and draw inferences about
objects without having to make reference to any particular named object. This ability
to make statements about anonymous objects comes in two flavors: making state-
ments about a particular unknown object and making statements about all the objects
in some arbitrary world of objects. We return to the topic of variables after we have
presented quantifiers, the elements of FOL that make variables useful.

Now that we have the means to refer to objects, we can move on to the FOL
mechanisms that are used to state relations that hold among objects. Predicates are
symbols that refer to, or name, the relations that hold among some fixed number
of objects in a given domain. Returning to the example introduced informally in
Section 16.1, a reasonable FOL representation for Maharani serves vegetarian food
might look like the following formula:

Serves(Maharani,VegetarianFood) (16.18)

This FOL sentence asserts that Serves, a two-place predicate, holds between the
objects denoted by the constants Maharani and VegetarianFood.

A somewhat different use of predicates is illustrated by the following fairly typ-
ical representation for a sentence like Maharani is a restaurant:

Restaurant(Maharani) (16.19)

This is an example of a one-place predicate that is used, not to relate multiple objects,
but rather to assert a property of a single object. In this case, it encodes the category
membership of Maharani.

With the ability to refer to objects, to assert facts about objects, and to relate
objects to one another, we can create rudimentary composite representations. These
representations correspond to the atomic formula level in Fig. 16.3. This ability
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to compose complex representations is, however, not limited to the use of single
predicates. Larger composite representations can also be put together through the
use of logical connectives. As can be seen from Fig. 16.3, logical connectives letlogical

connectives
us create larger representations by conjoining logical formulas using one of three
operators. Consider, for example, the following BERP sentence and one possible
representation for it:

(16.20) I only have five dollars and I don’t have a lot of time.

Have(Speaker,FiveDollars)∧¬Have(Speaker,LotOfTime) (16.21)

The semantic representation for this example is built up in a straightforward way
from the semantics of the individual clauses through the use of the∧ and¬ operators.
Note that the recursive nature of the grammar in Fig. 16.3 allows an infinite number
of logical formulas to be created through the use of these connectives. Thus, as with
syntax, we can use a finite device to create an infinite number of representations.

16.3.2 Variables and Quantifiers
We now have all the machinery necessary to return to our earlier discussion of vari-
ables. As noted above, variables are used in two ways in FOL: to refer to particular
anonymous objects and to refer generically to all objects in a collection. These two
uses are made possible through the use of operators known as quantifiers. The twoquantifiers

operators that are basic to FOL are the existential quantifier, which is denoted ∃ and
is pronounced as “there exists”, and the universal quantifier, which is denoted ∀ and
is pronounced as “for all”.

The need for an existentially quantified variable is often signaled by the presence
of an indefinite noun phrase in English. Consider the following example:

(16.22) a restaurant that serves Mexican food near ICSI.

Here, reference is being made to an anonymous object of a specified category with
particular properties. The following would be a reasonable representation of the
meaning of such a phrase:

∃xRestaurant(x) ∧ Serves(x,MexicanFood) (16.23)

∧ Near((LocationOf (x),LocationOf (ICSI))

The existential quantifier at the head of this sentence instructs us on how to
interpret the variable x in the context of this sentence. Informally, it says that for
this sentence to be true there must be at least one object such that if we were to
substitute it for the variable x, the resulting sentence would be true. For example,
if AyCaramba is a Mexican restaurant near ICSI, then substituting AyCaramba for x
results in the following logical formula:

Restaurant(AyCaramba)∧Serves(AyCaramba,MexicanFood) (16.24)

∧Near((LocationOf (AyCaramba),LocationOf (ICSI))

Based on the semantics of the ∧ operator, this sentence will be true if all of its
three component atomic formulas are true. These in turn will be true if they are
either present in the system’s knowledge base or can be inferred from other facts in
the knowledge base.

The use of the universal quantifier also has an interpretation based on substi-
tution of known objects for variables. The substitution semantics for the universal
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quantifier takes the expression for all quite literally; the ∀ operator states that for the
logical formula in question to be true, the substitution of any object in the knowledge
base for the universally quantified variable should result in a true formula. This is in
marked contrast to the ∃ operator, which only insists on a single valid substitution
for the sentence to be true.

Consider the following example:

(16.25) All vegetarian restaurants serve vegetarian food.

A reasonable representation for this sentence would be something like the following:

∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood) (16.26)

For this sentence to be true, every substitution of a known object for x must result in a
sentence that is true. We can divide the set of all possible substitutions into the set of
objects consisting of vegetarian restaurants and the set consisting of everything else.
Let us first consider the case in which the substituted object actually is a vegetarian
restaurant; one such substitution would result in the following sentence:

VegetarianRestaurant(Maharani) =⇒ Serves(Maharani,VegetarianFood)
(16.27)

If we assume that we know that the consequent clause

Serves(Maharani,VegetarianFood) (16.28)

is true, then this sentence as a whole must be true. Both the antecedent and the
consequent have the value True and, therefore, according to the first two rows of
Fig. 16.4 on page 309 the sentence itself can have the value True. This result will be
the same for all possible substitutions of Terms representing vegetarian restaurants
for x.

Remember, however, that for this sentence to be true, it must be true for all
possible substitutions. What happens when we consider a substitution from the set
of objects that are not vegetarian restaurants? Consider the substitution of a non-
vegetarian restaurant such as AyCaramba for the variable x:

VegetarianRestaurant(AyCaramba) =⇒ Serves(AyCaramba,VegetarianFood)

Since the antecedent of the implication is False, we can determine from Fig. 16.4
that the sentence is always True, again satisfying the ∀ constraint.

Note that it may still be the case that AyCaramba serves vegetarian food with-
out actually being a vegetarian restaurant. Note also that, despite our choice of
examples, there are no implied categorical restrictions on the objects that can be
substituted for x by this kind of reasoning. In other words, there is no restriction of
x to restaurants or concepts related to them. Consider the following substitution:

VegetarianRestaurant(Carburetor) =⇒ Serves(Carburetor,VegetarianFood)

Here the antecedent is still false so the rule remains true under this kind of irrelevant
substitution.

To review, variables in logical formulas must be either existentially (∃) or uni-
versally (∀) quantified. To satisfy an existentially quantified variable, at least one
substitution must result in a true sentence. To satisfy a universally quantified vari-
able, all substitutions must result in true sentences.
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16.3.3 Lambda Notation
The final element we need to complete our discussion of FOL is called the lambda
notation (Church, 1940). This notation provides a way to abstract from fully speci-lambda

notation
fied FOL formulas in a way that will be particularly useful for semantic analysis. The
lambda notation extends the syntax of FOL to include expressions of the following
form:

λx.P(x) (16.29)

Such expressions consist of the Greek symbol λ , followed by one or more variables,
followed by a FOL formula that makes use of those variables.

The usefulness of these λ -expressions is based on the ability to apply them to
logical terms to yield new FOL expressions where the formal parameter variables are
bound to the specified terms. This process is known as λ -reduction, and consistsλ -reduction
of a simple textual replacement of the λ variables and the removal of the λ . The
following expressions illustrate the application of a λ -expression to the constant A,
followed by the result of performing a λ -reduction on this expression:

λx.P(x)(A) (16.30)

P(A)

An important and useful variation of this technique is the use of one λ -expression
as the body of another as in the following expression:

λx.λy.Near(x,y) (16.31)

This fairly abstract expression can be glossed as the state of something being near
something else. The following expressions illustrate a single λ -application and sub-
sequent reduction with this kind of embedded λ -expression:

λx.λy.Near(x,y)(Bacaro) (16.32)

λy.Near(Bacaro,y)

The important point here is that the resulting expression is still a λ -expression; the
first reduction bound the variable x and removed the outer λ , thus revealing the
inner expression. As might be expected, this resulting λ -expression can, in turn,
be applied to another term to arrive at a fully specified logical formula, as in the
following:

λy.Near(Bacaro,y)(Centro) (16.33)

Near(Bacaro,Centro)

This general technique, called currying1 (Schönfinkel, 1924) is a way of convertingcurrying

a predicate with multiple arguments into a sequence of single-argument predicates.
As we show in Chapter 17, the λ -notation provides a way to incrementally gather

arguments to a predicate when they do not all appear together as daughters of the
predicate in a parse tree.

16.3.4 The Semantics of First-Order Logic
The various objects, properties, and relations represented in a FOL knowledge base
acquire their meanings by virtue of their correspondence to objects, properties, and

1 Currying is the standard term, although Heim and Kratzer (1998) present an interesting argument for
the term Schönkfinkelization over currying, since Curry later built on Schönfinkel’s work.
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relations out in the external world being modeled. We can accomplish this by em-
ploying the model-theoretic approach introduced in Section 16.2. Recall that this
approach employs simple set-theoretic notions to provide a truth-conditional map-
ping from the expressions in a meaning representation to the state of affairs being
modeled. We can apply this approach to FOL by going through all the elements in
Fig. 16.3 on page 304 and specifying how each should be accounted for.

We can start by asserting that the objects in our world, FOL terms, denote ele-
ments in a domain, and asserting that atomic formulas are captured either as sets of
domain elements for properties, or as sets of tuples of elements for relations. As an
example, consider the following:

(16.34) Centro is near Bacaro.

Capturing the meaning of this example in FOL involves identifying the Terms
and Predicates that correspond to the various grammatical elements in the sentence
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(Centro,Bacaro) (16.35)

The meaning of this logical formula is based on whether the domain elements de-
noted by the terms Centro and Bacaro are contained among the tuples denoted by
the relation denoted by the predicate Near in the current model.

The interpretation of formulas involving logical connectives is based on the
meanings of the components in the formulas combined with the meanings of the
connectives they contain. Figure 16.4 gives interpretations for each of the logical
operators shown in Fig. 16.3.

P Q ¬ P P ∧ Q P ∨ Q P =⇒ Q
False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 16.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ∧ (and) and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of the corresponding English
terms. However, it is worth pointing out that the ∨ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the =⇒ (im-
plies) operator is only loosely based on any common-sense notions of implication
or causation.

The final bit we need to address involves variables and quantifiers. Recall that
there are no variables in our set-based models, only elements of the domain and
relations that hold among them. We can provide a model-based account for formulas
with variables by employing the notion of a substitution introduced earlier on page
306. Formulas involving ∃ are true if a substitution of terms for variables results
in a formula that is true in the model. Formulas involving ∀ must be true under all
possible substitutions.

16.3.5 Inference
A meaning representation language must support inference to add valid new propo-
sitions to a knowledge base or to determine the truth of propositions not explicitly
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contained within a knowledge base (Section 16.1). This section briefly discusses
modus ponens, the most widely implemented inference method provided by FOL.

Modus ponens is a form of inference that corresponds to what is informallyModus ponens

known as if-then reasoning. We can abstractly define modus ponens as follows,
where α and β should be taken as FOL formulas:

α

α =⇒ β

β
(16.36)

A schema like this indicates that the formula below the line can be inferred from the
formulas above the line by some form of inference. Modus ponens states that if the
left-hand side of an implication rule is true, then the right-hand side of the rule can
be inferred. In the following discussions, we will refer to the left-hand side of an
implication as the antecedent and the right-hand side as the consequent.

For a typical use of modus ponens, consider the following example, which uses
a rule from the last section:

VegetarianRestaurant(Leaf )
∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood)

Serves(Leaf ,VegetarianFood)
(16.37)

Here, the formula VegetarianRestaurant(Leaf ) matches the antecedent of the rule,
thus allowing us to use modus ponens to conclude Serves(Leaf ,VegetarianFood).

Modus ponens can be put to practical use in one of two ways: forward chaining
and backward chaining. In forward chaining systems, modus ponens is used inforward

chaining
precisely the manner just described. As individual facts are added to the knowledge
base, modus ponens is used to fire all applicable implication rules. In this kind of
arrangement, as soon as a new fact is added to the knowledge base, all applicable
implication rules are found and applied, each resulting in the addition of new facts to
the knowledge base. These new propositions in turn can be used to fire implication
rules applicable to them. The process continues until no further facts can be deduced.

The forward chaining approach has the advantage that facts will be present in
the knowledge base when needed, because, in a sense all inference is performed in
advance. This can substantially reduce the time needed to answer subsequent queries
since they should all amount to simple lookups. The disadvantage of this approach
is that facts that will never be needed may be inferred and stored.

In backward chaining, modus ponens is run in reverse to prove specific propo-backward
chaining

sitions called queries. The first step is to see if the query formula is true by determin-
ing if it is present in the knowledge base. If it is not, then the next step is to search
for applicable implication rules present in the knowledge base. An applicable rule
is one whereby the consequent of the rule matches the query formula. If there are
any such rules, then the query can be proved if the antecedent of any one them can
be shown to be true. This can be performed recursively by backward chaining on
the antecedent as a new query. The Prolog programming language is a backward
chaining system that implements this strategy.

To see how this works, let’s assume that we have been asked to verify the truth of
the proposition Serves(Leaf ,VegetarianFood), assuming the facts given above the
line in (16.37). Since this proposition is not present in the knowledge base, a search
for an applicable rule is initiated resulting in the rule given above. After substituting
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the constant Leaf for the variable x, our next task is to prove the antecedent of the
rule, VegetarianRestaurant(Leaf ), which, of course, is one of the facts we are given.

Note that it is critical to distinguish between reasoning by backward chaining
from queries to known facts and reasoning backwards from known consequents to
unknown antecedents. To be specific, by reasoning backwards we mean that if the
consequent of a rule is known to be true, we assume that the antecedent will be as
well. For example, let’s assume that we know that Serves(Leaf ,VegetarianFood) is
true. Since this fact matches the consequent of our rule, we might reason backwards
to the conclusion that VegetarianRestaurant(Leaf ).

While backward chaining is a sound method of reasoning, reasoning backwards
is an invalid, though frequently useful, form of plausible reasoning. Plausible rea-
soning from consequents to antecedents is known as abduction, and as we show inabduction

Chapter 23, is often useful in accounting for many of the inferences people make
while analyzing extended discourses.

While forward and backward reasoning are sound, neither is complete. Thiscomplete

means that there are valid inferences that cannot be found by systems using these
methods alone. Fortunately, there is an alternative inference technique called reso-
lution that is sound and complete. Unfortunately, inference systems based on res-resolution

olution are far more computationally expensive than forward or backward chaining
systems. In practice, therefore, most systems use some form of chaining and place
a burden on knowledge-base developers to encode the knowledge in a fashion that
permits the necessary inferences to be drawn.

16.4 Event and State Representations

Much of the semantics that we wish to capture consists of representations of states
and events. States are conditions, or properties, that remain unchanged over an
extended period of time, and events denote changes in some state of affairs. The
representation of both states and events may involve a host of participants, props,
times and locations.

The representations for events and states that we have used thus far have con-
sisted of single predicates with as many arguments as are needed to incorporate all
the roles associated with a given example. For example, the representation for Leaf
serves vegetarian fare consists of a single predicate with arguments for the entity
doing the serving and the thing served.

Serves(Leaf ,VegetarianFare) (16.38)

This approach assumes that the predicate used to represent an event verb has the
same number of arguments as are present in the verb’s syntactic subcategorization
frame. Unfortunately, this is clearly not always the case. Consider the following
examples of the verb eat:

(16.39) I ate.
(16.40) I ate a turkey sandwich.
(16.41) I ate a turkey sandwich at my desk.
(16.42) I ate at my desk.
(16.43) I ate lunch.
(16.44) I ate a turkey sandwich for lunch.
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(16.45) I ate a turkey sandwich for lunch at my desk.

Clearly, choosing the correct number of arguments for the predicate represent-
ing the meaning of eat is a tricky problem. These examples introduce five distinct
arguments, or roles, in an array of different syntactic forms, locations, and combina-
tions. Unfortunately, predicates in FOL have fixed arity – they take a fixed numberarity

of arguments.
To address this problem, we introduce the notion of an event variable to allowevent variable

us to make assertions about particular events. To do this, we can refactor our event
predicates to have an existentially quantified variable as their first, and only, argu-
ment. Using this event variable, we can introduce additional predicates to represent
the other information we have about the event. These predicates take an event vari-
able as their first argument and related FOL terms as their second argument. The
following formula illustrates this scheme with the meaning representation of 16.40
from our earlier discussion.

∃e Eating(e) ∧ Eater(e,Speaker)∧Eaten(e,TurkeySandwich)

Here, the quantified variable e stands for the eating event and is used to bind the
event predicate with the core information provided via the named roles Eater and
Eaten. To handle the more complex examples, we simply add additional relations
to capture the provided information, as in the following for 16.45.

∃e Eating(e) ∧ Eater(e,Speaker)∧Eaten(e,TurkeySandwich) (16.46)

∧ Meal(e,Lunch)∧Location(e,Desk)

Event representations of this sort are referred to as neo-Davidsonian event rep-neo-
Davidsonian

resentations (Davidson 1967, Parsons 1990) after the philosopher Donald Davidson
who introduced the notion of an event variable (Davidson, 1967). To summarize, in
the neo-Davidsonian approach to event representations:

• Events are captured with predicates that take a single event variable as an
argument.

• There is no need to specify a fixed number of arguments for a given FOL
predicate; rather, as many roles and fillers can be glued on as are provided in
the input.

• No more roles are postulated than are mentioned in the input.
• The logical connections among closely related inputs that share the same pred-

icate are satisfied without the need for additional inference.

This approach still leaves us with the problem of determining the set of predi-
cates needed to represent roles associated with specific events like Eater and Eaten,
as well as more general concepts like Location and Time. We’ll return to this prob-
lem in more detail in Chapter 20.

16.4.1 Representing Time
In our discussion of events, we did not seriously address the issue of capturing the
time when the represented events are supposed to have occurred. The representation
of such information in a useful form is the domain of temporal logic. This dis-temporal logic

cussion introduces the most basic concerns of temporal logic and briefly discusses
the means by which human languages convey temporal information, which, among
other things, includes tense logic, the ways that verb tenses convey temporal infor-tense logic
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mation. A more detailed discussion of robust approaches to the representation and
analysis of temporal expressions is presented in Chapter 18.

The most straightforward theory of time holds that it flows inexorably forward
and that events are associated with either points or intervals in time, as on a timeline.
We can order distinct events by situating them on the timeline; one event precedes
another if the flow of time leads from the first event to the second. Accompanying
these notions in most theories is the idea of the current moment in time. Combin-
ing this notion with the idea of a temporal ordering relationship yields the familiar
notions of past, present, and future.

Many schemes can represent this kind of temporal information. The one pre-
sented here is a fairly simple one that stays within the FOL framework of reified
events that we have been pursuing. Consider the following examples:

(16.47) I arrived in New York.
(16.48) I am arriving in New York.
(16.49) I will arrive in New York.

These sentences all refer to the same kind of event and differ solely in the tense of
the verb. In our current scheme for representing events, all three would share the
following kind of representation, which lacks any temporal information:

∃eArriving(e)∧Arriver(e,Speaker)∧Destination(e,NewYork) (16.50)

The temporal information provided by the tense of the verbs can be exploited
by predicating additional information about the event variable e. Specifically, we
can add temporal variables representing the interval corresponding to the event, the
end point of the event, and temporal predicates relating this end point to the current
time as indicated by the tense of the verb. Such an approach yields the following
representations for our arriving examples:

∃e, i,n Arriving(e) ∧ Arriver(e,Speaker)∧Destination(e,NewYork)

∧ IntervalOf (e, i)∧EndPoint(i,n)∧Precedes(n,Now)

∃e, i,n Arriving(e) ∧ Arriver(e,Speaker)∧Destination(e,NewYork)

∧ IntervalOf (e, i)∧MemberOf (i,Now)

∃e, i,n Arriving(e) ∧ Arriver(e,Speaker)∧Destination(e,NewYork)

∧ IntervalOf (e, i)∧EndPoint(i,n)∧Precedes(Now,n)

This representation introduces a variable to stand for the interval of time as-
sociated with the event and a variable that stands for the end of that interval. The
two-place predicate Precedes represents the notion that the first time-point argument
precedes the second in time; the constant Now refers to the current time. For past
events, the end point of the interval must precede the current time. Similarly, for fu-
ture events the current time must precede the end of the event. For events happening
in the present, the current time is contained within the event interval.

Unfortunately, the relation between simple verb tenses and points in time is by
no means straightforward. Consider the following examples:

(16.51) Ok, we fly from San Francisco to Boston at 10.
(16.52) Flight 1390 will be at the gate an hour now.

In the first example, the present tense of the verb fly is used to refer to a future event,
while in the second the future tense is used to refer to a past event.

More complications occur when we consider some of the other verb tenses. Con-
sider the following examples:
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(16.53) Flight 1902 arrived late.
(16.54) Flight 1902 had arrived late.

Although both refer to events in the past, representing them in the same way seems
wrong. The second example seems to have another unnamed event lurking in the
background (e.g., Flight 1902 had already arrived late when something else hap-
pened). To account for this phenomena, Reichenbach (1947) introduced the notion
of a reference point. In our simple temporal scheme, the current moment in timereference point

is equated with the time of the utterance and is used as a reference point for when
the event occurred (before, at, or after). In Reichenbach’s approach, the notion of
the reference point is separated from the utterance time and the event time. The
following examples illustrate the basics of this approach:

(16.55) When Mary’s flight departed, I ate lunch.
(16.56) When Mary’s flight departed, I had eaten lunch.

In both of these examples, the eating event has happened in the past, that is, prior
to the utterance. However, the verb tense in the first example indicates that the eating
event began when the flight departed, while the second example indicates that the
eating was accomplished prior to the flight’s departure. Therefore, in Reichenbach’s
terms the departure event specifies the reference point. These facts can be accom-
modated by additional constraints relating the eating and departure events. In the
first example, the reference point precedes the eating event, and in the second exam-
ple, the eating precedes the reference point. Figure 16.5 illustrates Reichenbach’s
approach with the primary English tenses. Exercise 16.6 asks you to represent these
examples in FOL.

Past Perfect Simple Past Present Perfect

Simple Future Future PerfectPresent

E E

E E

R

R

U R,E U R,U

U,R,E U,R U

Figure 16.5 Reichenbach’s approach applied to various English tenses. In these diagrams,
time flows from left to right, E denotes the time of the event, R denotes the reference time,
and U denotes the time of the utterance.

This discussion has focused narrowly on the broad notions of past, present, and
future and how they are signaled by various English verb tenses. Of course, lan-
guages have many other ways to convey temporal information, including temporal
expressions:

(16.57) I’d like to go at 6:45 in the morning.
(16.58) Somewhere around noon, please.
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As we show in Chapter 18, grammars for such temporal expressions are of consid-
erable practical importance to information extraction and question-answering appli-
cations.

Finally, we should note that a systematic conceptual organization is reflected in
examples like these. In particular, temporal expressions in English are frequently
expressed in spatial terms, as is illustrated by the various uses of at, in, somewhere,
and near in these examples (Lakoff and Johnson 1980, Jackendoff 1983). Metaphor-
ical organizations such as these, in which one domain is systematically expressed in
terms of another, are very common in languages of the world.

16.4.2 Aspect
In the last section, we discussed ways to represent the time of an event with respect
to the time of an utterance describing it. In this section, we address the notion of
aspect, which concerns a cluster of related topics, including whether an event hasaspect

ended or is ongoing, whether it is conceptualized as happening at a point in time or
over some interval, and whether any particular state in the world comes about be-
cause of it. Based on these and related notions, event expressions have traditionally
been divided into four general classes illustrated in the following examples:

Stative: I know my departure gate.
Activity: John is flying.
Accomplishment: Sally booked her flight.
Achievement: She found her gate.

Although the earliest versions of this classification were discussed by Aristotle,
the one presented here is due to Vendler (1967).

Stative expressions represent the notion of an event participant having a partic-stative

ular property, or being in a state, at a given point in time. As such, these expressions
can be thought of as capturing an aspect of a world at a single point in time. Consider
the following ATIS examples.

(16.59) I like Flight 840 arriving at 10:06.
(16.60) I need the cheapest fare.
(16.61) I want to go first class.

In examples like these, the event participant denoted by the subject can be seen as
experiencing something at a specific point in time. Whether or not the experiencer
was in the same state earlier or will be in the future is left unspecified.

Activity expressions describe events undertaken by a participant and have noactivity

particular end point. Unlike statives, activities are seen as occurring over some span
of time and are therefore not associated with single points in time. Consider the
following examples:

(16.62) She drove a Mazda.
(16.63) I live in Brooklyn.

These examples both specify that the subject is engaged in, or has engaged in, the
activity specified by the verb for some period of time.

The final aspectual class, achievement expressions, is similar to accomplish-achievement
expressions

ments in that these expressions result in a state. Consider the following:

(16.64) She found her gate.
(16.65) I reached New York.
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Unlike accomplishments, achievement events are thought of as happening in an in-
stant and are not equated with any particular activity leading up to the state. To be
more specific, the events in these examples may have been preceded by extended
searching or traveling events, but the events corresponding directly to found and
reach are conceived of as points, not intervals.

Note that since both accomplishments and achievements are events that result
in a state, they are sometimes characterized as subtypes of a single aspectual class.
Members of this combined class are known as telic eventualities.telic

eventualities

16.5 Description Logics

As noted at the beginning of this chapter, a fair number of representational schemes
have been invented to capture the meaning of linguistic utterances. It is now widely
accepted that meanings represented in these various approaches can, in principle, be
translated into equivalent statements in FOL with relative ease. The difficulty is that
in many of these approaches the semantics of a statement are defined procedurally.
That is, the meaning arises from whatever the system that interprets it does with it.

Description logics are an effort to better specify the semantics of these earlier
structured network representations and to provide a conceptual framework that is
especially well suited to certain kinds of domain modeling. Formally, the term De-
scription Logics refers to a family of logical approaches that correspond to varying
subsets of FOL. The restrictions placed on the expressiveness of Description Logics
serve to guarantee the tractability of various critical kinds of inference. Our focus
here, however, will be on the modeling aspects of DLs rather than on computational
complexity issues.

When using Description Logics to model an application domain, the emphasis
is on the representation of knowledge about categories, individuals that belong to
those categories, and the relationships that can hold among these individuals. The
set of categories, or concepts, that make up a particular application domain is called
its terminology. The portion of a knowledge base that contains the terminology isterminology

traditionally called the TBox; this is in contrast to the ABox that contains facts aboutTBox

ABox individuals. The terminology is typically arranged into a hierarchical organization
called an ontology that captures the subset/superset relations among the categories.ontology

Returning to our earlier culinary domain, we represented domain concepts us-
ing unary predicates such as Restaurant(x); the DL equivalent omits the variable,
so the restaurant category is simply written as Restaurant.2 To capture the fact
that a particular domain element, such as Frasca, is a restaurant, we assert Restau-
rant(Frasca) in much the same way we would in FOL. The semantics of these
categories are specified in precisely the same way that was introduced earlier in
Section 16.2: a category like Restaurant simply denotes the set of domain elements
that are restaurants.

Once we’ve specified the categories of interest in a particular domain, the next
step is to arrange them into a hierarchical structure. There are two ways to cap-
ture the hierarchical relationships present in a terminology: we can directly assert
relations between categories that are related hierarchically, or we can provide com-
plete definitions for our concepts and then rely on inference to provide hierarchical

2 DL statements are conventionally typeset with a sans serif font. We’ll follow that convention here,
reverting to our standard mathematical notation when giving FOL equivalents of DL statements.
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relationships. The choice between these methods hinges on the use to which the re-
sulting categories will be put and the feasibility of formulating precise definitions for
many naturally occurring categories. We’ll discuss the first option here and return to
the notion of definitions later in this section.

To directly specify a hierarchical structure, we can assert subsumption relationssubsumption

between the appropriate concepts in a terminology. The subsumption relation is
conventionally written as C v D and is read as C is subsumed by D; that is, all
members of the category C are also members of the category D. Not surprisingly, the
formal semantics of this relation are provided by a simple set relation; any domain
element that is in the set denoted by C is also in the set denoted by D.

Adding the following statements to the TBox asserts that all restaurants are com-
mercial establishments and, moreover, that there are various subtypes of restaurants.

Restaurant v CommercialEstablishment (16.66)

ItalianRestaurant v Restaurant (16.67)

ChineseRestaurant v Restaurant (16.68)

MexicanRestaurant v Restaurant (16.69)

Ontologies such as this are conventionally illustrated with diagrams such as the one
shown in Fig. 16.6, where subsumption relations are denoted by links between the
nodes representing the categories.

Restaurant

Chinese
Restaurant 

Mexican
Restaurant

Italian
Restaurant

Commercial
Establishment

Figure 16.6 A graphical network representation of a set of subsumption relations in the
restaurant domain.

Note, that it was precisely the vague nature of semantic network diagrams like
this that motivated the development of Description Logics. For example, from this
diagram we can’t tell whether the given set of categories is exhaustive or disjoint.
That is, we can’t tell if these are all the kinds of restaurants that we’ll be dealing with
in our domain or whether there might be others. We also can’t tell if an individual
restaurant must fall into only one of these categories, or if it is possible, for example,
for a restaurant to be both Italian and Chinese. The DL statements given above are
more transparent in their meaning; they simply assert a set of subsumption relations
between categories and make no claims about coverage or mutual exclusion.

If an application requires coverage and disjointness information, then such in-
formation must be made explicitly. The simplest ways to capture this kind of in-
formation is through the use of negation and disjunction operators. For example,
the following assertion would tell us that Chinese restaurants can’t also be Italian
restaurants.

ChineseRestaurantv not ItalianRestaurant (16.70)
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Specifying that a set of subconcepts covers a category can be achieved with disjunc-
tion, as in the following:

Restaurantv (16.71)

(or ItalianRestaurant ChineseRestaurant MexicanRestaurant)

Having a hierarchy such as the one given in Fig. 16.6 tells us next to nothing
about the concepts in it. We certainly don’t know anything about what makes a
restaurant a restaurant, much less Italian, Chinese, or expensive. What is needed are
additional assertions about what it means to be a member of any of these categories.
In Description Logics such statements come in the form of relations between the
concepts being described and other concepts in the domain. In keeping with its
origins in structured network representations, relations in Description Logics are
typically binary and are often referred to as roles, or role-relations.

To see how such relations work, let’s consider some of the facts about restaurants
discussed earlier in the chapter. We’ll use the hasCuisine relation to capture infor-
mation as to what kinds of food restaurants serve and the hasPriceRange relation
to capture how pricey particular restaurants tend to be. We can use these relations
to say something more concrete about our various classes of restaurants. Let’s start
with our ItalianRestaurant concept. As a first approximation, we might say some-
thing uncontroversial like Italian restaurants serve Italian cuisine. To capture these
notions, let’s first add some new concepts to our terminology to represent various
kinds of cuisine.

MexicanCuisine v Cuisine

ItalianCuisine v Cuisine

ChineseCuisine v Cuisine

VegetarianCuisine v Cuisine

ExpensiveRestaurant v Restaurant

ModerateRestaurant v Restaurant

CheapRestaurant v Restaurant

Next, let’s revise our earlier version of ItalianRestaurant to capture cuisine infor-
mation.

ItalianRestaurant v Restaurantu∃hasCuisine.ItalianCuisine (16.72)

The correct way to read this expression is that individuals in the category Italian-
Restaurant are subsumed both by the category Restaurant and by an unnamed
class defined by the existential clause—the set of entities that serve Italian cuisine.
An equivalent statement in FOL would be

∀xItalianRestaurant(x) → Restaurant(x) (16.73)

∧(∃yServes(x,y)∧ ItalianCuisine(y))

This FOL translation should make it clear what the DL assertions given above do
and do not entail. In particular, they don’t say that domain entities classified as Ital-
ian restaurants can’t engage in other relations like being expensive or even serving
Chinese cuisine. And critically, they don’t say much about domain entities that we
know do serve Italian cuisine. In fact, inspection of the FOL translation makes it
clear that we cannot infer that any new entities belong to this category based on their
characteristics. The best we can do is infer new facts about restaurants that we’re
explicitly told are members of this category.
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Of course, inferring the category membership of individuals given certain char-
acteristics is a common and critical reasoning task that we need to support. This
brings us back to the alternative approach to creating hierarchical structures in a
terminology: actually providing a definition of the categories we’re creating in the
form of necessary and sufficient conditions for category membership. In this case,
we might explicitly provide a definition for ItalianRestaurant as being those restau-
rants that serve Italian cuisine, and ModerateRestaurant as being those whose
price range is moderate.

ItalianRestaurant ≡ Restaurantu∃hasCuisine.ItalianCuisine (16.74)

ModerateRestaurant ≡ RestaurantuhasPriceRange.ModeratePrices (16.75)

While our earlier statements provided necessary conditions for membership in these
categories, these statements provide both necessary and sufficient conditions.

Finally, let’s now consider the superficially similar case of vegetarian restaurants.
Clearly, vegetarian restaurants are those that serve vegetarian cuisine. But they don’t
merely serve vegetarian fare, that’s all they serve. We can accommodate this kind of
constraint by adding an additional restriction in the form of a universal quantifier to
our earlier description of VegetarianRestaurants, as follows:

VegetarianRestaurant ≡ Restaurant (16.76)

u∃hasCuisine.VegetarianCuisine
u∀hasCuisine.VegetarianCuisine

Inference

Paralleling the focus of Description Logics on categories, relations, and individuals
is a processing focus on a restricted subset of logical inference. Rather than employ-
ing the full range of reasoning permitted by FOL, DL reasoning systems emphasize
the closely coupled problems of subsumption and instance checking.

Subsumption, as a form of inference, is the task of determining, based on thesubsumption

facts asserted in a terminology, whether a superset/subset relationship exists between
two concepts. Correspondingly, instance checking asks if an individual can be ainstance

checking
member of a particular category given the facts we know about both the individual
and the terminology. The inference mechanisms underlying subsumption and in-
stance checking go beyond simply checking for explicitly stated subsumption rela-
tions in a terminology. They must explicitly reason using the relational information
asserted about the terminology to infer appropriate subsumption and membership
relations.

Returning to our restaurant domain, let’s add a new kind of restaurant using the
following statement:

IlFornaiovModerateRestaurantu∃hasCuisine.ItalianCuisine (16.77)

Given this assertion, we might ask whether the IlFornaio chain of restaurants might
be classified as an Italian restaurant or a vegetarian restaurant. More precisely, we
can pose the following questions to our reasoning system:

IlFornaio v ItalianRestaurant (16.78)

IlFornaio v VegetarianRestaurant (16.79)

The answer to the first question is positive since IlFornaio meets the criteria we
specified for the category ItalianRestaurant: it’s a Restaurant since we explicitly
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Figure 16.7 A graphical network representation of the complete set of subsumption rela-
tions in the restaurant domain given the current set of assertions in the TBox.

classified it as a ModerateRestaurant, which is a subtype of Restaurant, and it
meets the has.Cuisine class restriction since we’ve asserted that directly.

The answer to the second question is negative. Recall, that our criteria for veg-
etarian restaurants contains two requirements: it has to serve vegetarian fare, and
that’s all it can serve. Our current definition for IlFornaio fails on both counts since
we have not asserted any relations that state that IlFornaio serves vegetarian fare,
and the relation we have asserted, hasCuisine.ItalianCuisine, contradicts the sec-
ond criteria.

A related reasoning task, based on the basic subsumption inference, is to derive
the implied hierarchy for a terminology given facts about the categories in the ter-implied

hierarchy
minology. This task roughly corresponds to a repeated application of the subsump-
tion operator to pairs of concepts in the terminology. Given our current collection of
statements, the expanded hierarchy shown in Fig. 16.7 can be inferred. You should
convince yourself that this diagram contains all and only the subsumption links that
should be present given our current knowledge.

Instance checking is the task of determining whether a particular individual can
be classified as a member of a particular category. This process takes what is known
about a given individual, in the form of relations and explicit categorical statements,
and then compares that information with what is known about the current terminol-
ogy. It then returns a list of the most specific categories to which the individual can
belong.

As an example of a categorization problem, consider an establishment that we’re
told is a restaurant and serves Italian cuisine.

Restaurant(Gondolier)

hasCuisine(Gondolier, ItalianCuisine)

Here, we’re being told that the entity denoted by the term Gondolier is a restau-
rant and serves Italian food. Given this new information and the contents of our
current TBox, we might reasonably like to ask if this is an Italian restaurant, if it is
a vegetarian restaurant, or if it has moderate prices.

Assuming the definitional statements given earlier, we can indeed categorize
the Gondolier as an Italian restaurant. That is, the information we’ve been given
about it meets the necessary and sufficient conditions required for membership in
this category. And as with the IlFornaio category, this individual fails to match the
stated criteria for the VegetarianRestaurant. Finally, the Gondolier might also
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turn out to be a moderately priced restaurant, but we can’t tell at this point since
we don’t know anything about its prices. What this means is that given our current
knowledge the answer to the query ModerateRestaurant(Gondolier) would be false
since it lacks the required hasPriceRange relation.

The implementation of subsumption, instance checking, as well as other kinds of
inferences needed for practical applications, varies according to the expressivity of
the Description Logic being used. However, for a Description Logic of even modest
power, the primary implementation techniques are based on satisfiability methods
that in turn rely on the underlying model-based semantics introduced earlier in this
chapter.

OWL and the Semantic Web

The highest-profile role for Description Logics, to date, has been as a part of the
development of the Semantic Web. The Semantic Web is an ongoing effort to pro-
vide a way to formally specify the semantics of the contents of the Web (Fensel
et al., 2003). A key component of this effort involves the creation and deployment
of ontologies for various application areas of interest. The meaning representation
language used to represent this knowledge is the Web Ontology Language (OWL)Web Ontology

Language
(McGuiness and van Harmelen, 2004). OWL embodies a Description Logic that
corresponds roughly to the one we’ve been describing here.

16.6 Summary

This chapter has introduced the representational approach to meaning. The follow-
ing are some of the highlights of this chapter:

• A major approach to meaning in computational linguistics involves the cre-
ation of formal meaning representations that capture the meaning-related
content of linguistic inputs. These representations are intended to bridge the
gap from language to common-sense knowledge of the world.

• The frameworks that specify the syntax and semantics of these representa-
tions are called meaning representation languages. A wide variety of such
languages are used in natural language processing and artificial intelligence.

• Such representations need to be able to support the practical computational
requirements of semantic processing. Among these are the need to determine
the truth of propositions, to support unambiguous representations, to rep-
resent variables, to support inference, and to be sufficiently expressive.

• Human languages have a wide variety of features that are used to convey
meaning. Among the most important of these is the ability to convey a predicate-
argument structure.

• First-Order Logic is a well-understood, computationally tractable meaning
representation language that offers much of what is needed in a meaning rep-
resentation language.

• Important elements of semantic representation including states and events
can be captured in FOL.

• Semantic networks and frames can be captured within the FOL framework.
• Modern Description Logics consist of useful and computationally tractable

subsets of full First-Order Logic. The most prominent use of a description
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logic is the Web Ontology Language (OWL), used in the specification of the
Semantic Web.

Bibliographical and Historical Notes
The earliest computational use of declarative meaning representations in natural lan-
guage processing was in the context of question-answering systems (Green et al. 1961,
Raphael 1968, Lindsey 1963). These systems employed ad hoc representations for
the facts needed to answer questions. Questions were then translated into a form that
could be matched against facts in the knowledge base. Simmons (1965) provides an
overview of these early efforts.

Woods (1967) investigated the use of FOL-like representations in question an-
swering as a replacement for the ad hoc representations in use at the time. Woods
(1973) further developed and extended these ideas in the landmark Lunar system.
Interestingly, the representations used in Lunar had both truth-conditional and pro-
cedural semantics. Winograd (1972) employed a similar representation based on the
Micro-Planner language in his SHRDLU system.

During this same period, researchers interested in the cognitive modeling of lan-
guage and memory had been working with various forms of associative network
representations. Masterman (1957) was the first to make computational use of a
semantic network-like knowledge representation, although semantic networks are
generally credited to Quillian (1968). A considerable amount of work in the seman-
tic network framework was carried out during this era (Norman and Rumelhart 1975,
Schank 1972, Wilks 1975c, Wilks 1975b, Kintsch 1974). It was during this period
that a number of researchers began to incorporate Fillmore’s notion of case roles
(Fillmore, 1968) into their representations. Simmons (1973) was the earliest adopter
of case roles as part of representations for natural language processing.

Detailed analyses by Woods (1975) and Brachman (1979) aimed at figuring out
what semantic networks actually mean led to the development of a number of more
sophisticated network-like languages including KRL (Bobrow and Winograd, 1977)
and KL-ONE (Brachman and Schmolze, 1985). As these frameworks became more
sophisticated and well defined, it became clear that they were restricted variants of
FOL coupled with specialized indexing inference procedures. A useful collection of
papers covering much of this work can be found in Brachman and Levesque (1985).
Russell and Norvig (2002) describe a modern perspective on these representational
efforts.

Linguistic efforts to assign semantic structures to natural language sentences in
the generative era began with the work of Katz and Fodor (1963). The limitations
of their simple feature-based representations and the natural fit of logic to many
of the linguistic problems of the day quickly led to the adoption of a variety of
predicate-argument structures as preferred semantic representations (Lakoff 1972a,
McCawley 1968). The subsequent introduction by Montague (1973) of the truth-
conditional model-theoretic framework into linguistic theory led to a much tighter
integration between theories of formal syntax and a wide range of formal semantic
frameworks. Good introductions to Montague semantics and its role in linguistic
theory can be found in Dowty et al. (1981) and Partee (1976).

The representation of events as reified objects is due to Davidson (1967). The
approach presented here, which explicitly reifies event participants, is due to Parsons
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(1990).
Most current computational approaches to temporal reasoning are based on Allen’s

notion of temporal intervals (Allen, 1984); see Chapter 18. ter Meulen (1995) pro-
vides a modern treatment of tense and aspect. Davis (1990) describes the use of FOL
to represent knowledge across a wide range of common-sense domains including
quantities, space, time, and beliefs.

A recent comprehensive treatment of logic and language can be found in van
Benthem and ter Meulen (1997). A classic semantics text is Lyons (1977). McCaw-
ley (1993) is an indispensable textbook covering a wide range of topics concerning
logic and language. Chierchia and McConnell-Ginet (1991) also broadly covers
semantic issues from a linguistic perspective. Heim and Kratzer (1998) is a more
recent text written from the perspective of current generative theory.

Exercises
16.1 Peruse your daily newspaper for three examples of ambiguous sentences or

headlines. Describe the various sources of the ambiguities.
16.2 Consider a domain in which the word coffee can refer to the following con-

cepts in a knowledge-based system: a caffeinated or decaffeinated beverage,
ground coffee used to make either kind of beverage, and the beans themselves.
Give arguments as to which of the following uses of coffee are ambiguous and
which are vague.

1. I’ve had my coffee for today.
2. Buy some coffee on your way home.
3. Please grind some more coffee.

16.3 The following rule, which we gave as a translation for Example 16.25, is not
a reasonable definition of what it means to be a vegetarian restaurant.

∀xVegetarianRestaurant(x) =⇒ Serves(x,VegetarianFood)

Give a FOL rule that better defines vegetarian restaurants in terms of what they
serve.

16.4 Give FOL translations for the following sentences:
1. Vegetarians do not eat meat.
2. Not all vegetarians eat eggs.

16.5 Give a set of facts and inferences necessary to prove the following assertions:
1. McDonald’s is not a vegetarian restaurant.
2. Some vegetarians can eat at McDonald’s.

Don’t just place these facts in your knowledge base. Show that they can be
inferred from some more general facts about vegetarians and McDonald’s.

16.6 For the following sentences, give FOL translations that capture the temporal
relationships between the events.

1. When Mary’s flight departed, I ate lunch.
2. When Mary’s flight departed, I had eaten lunch.

16.7 On page 309, we gave the representation Near(Centro,Bacaro) as a transla-
tion for the sentence Centro is near Bacaro. In a truth-conditional semantics,
this formula is either true or false given some model. Critique this truth-
conditional approach with respect to the meaning of words like near.
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CHAPTER

18 Information Extraction

I am the very model of a modern Major-General,
I’ve information vegetable, animal, and mineral,

I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical...

Gilbert and Sullivan, Pirates of Penzance

Imagine that you are an analyst with an investment firm that tracks airline stocks.
You’re given the task of determining the relationship (if any) between airline an-
nouncements of fare increases and the behavior of their stocks the next day. His-
torical data about stock prices is easy to come by, but what about the airline an-
nouncements? You will need to know at least the name of the airline, the nature of
the proposed fare hike, the dates of the announcement, and possibly the response of
other airlines. Fortunately, these can be all found in news articles like this one:

Citing high fuel prices, United Airlines said Friday it has increased fares
by $6 per round trip on flights to some cities also served by lower-
cost carriers. American Airlines, a unit of AMR Corp., immediately
matched the move, spokesman Tim Wagner said. United, a unit of UAL
Corp., said the increase took effect Thursday and applies to most routes
where it competes against discount carriers, such as Chicago to Dallas
and Denver to San Francisco.

This chapter presents techniques for extracting limited kinds of semantic con-
tent from text. This process of information extraction (IE), turns the unstructuredinformation

extraction
information embedded in texts into structured data, for example for populating a
relational database to enable further processing.

We begin with the first step in most IE tasks, finding the proper names or named
entities in a text. The task of named entity recognition (NER) is to find eachnamed entity

recognition
mention of a named entity in the text and label its type. What constitutes a named
entity type is task specific; people, places, and organizations are common, but gene
or protein names (Cohen and Demner-Fushman, 2014) or financial asset classes
might be relevant for some tasks. Once all the named entities in a text have been
extracted, they can be linked together in sets corresponding to real-world entities,
inferring, for example, that mentions of United Airlines and United refer to the same
company. This is the joint task of coreference resolution and entity linking which
we defer til Chapter 22.

Next, we turn to the task of relation extraction: finding and classifying semanticrelation
extraction

relations among the text entities. These are often binary relations like child-of, em-
ployment, part-whole, and geospatial relations. Relation extraction has close links
to populating a relational database.

Finally, we discuss three tasks related to events. Event extraction is findingevent
extraction

events in which these entities participate, like, in our sample text, the fare increases
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by United and American and the reporting events said and cite. Event coreference
(Chapter 22) is needed to figure out which event mentions in a text refer to the same
event; in our running example the two instances of increase and the phrase the move
all refer to the same event.

To figure out when the events in a text happened we extract temporal expres-
sions like days of the week (Friday and Thursday), relative expressions like twotemporal

expression
days from now or next year and times such as 3:30 P.M.. These expressions must be
normalized onto specific calendar dates or times of day to situate events in time. Intemporal

normalization
our sample task, this will allow us to link Friday to the time of United’s announce-
ment, and Thursday to the previous day’s fare increase, and produce a timeline in
which United’s announcement follows the fare increase and American’s announce-
ment follows both of those events.

Finally, many texts describe recurring stereotypical events or situations. The task
of template filling is to find such situations in documents and fill in the templatetemplate filling

slots. These slot-fillers may consist of text segments extracted directly from the text,
or concepts like times, amounts, or ontology entities that have been inferred from
text elements through additional processing.

Our airline text is an example of this kind of stereotypical situation since airlines
often raise fares and then wait to see if competitors follow along. In this situa-
tion, we can identify United as a lead airline that initially raised its fares, $6 as the
amount, Thursday as the increase date, and American as an airline that followed
along, leading to a filled template like the following.

FARE-RAISE ATTEMPT:



LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES




18.1 Named Entity Recognition

The first step in information extraction is to detect the entities in the text. A named
entity is, roughly speaking, anything that can be referred to with a proper name:named entity

a person, a location, an organization. The term is commonly extended to include
things that aren’t entities per se, including dates, times, and other kinds of temporal
expressions, and even numerical expressions like prices. Here’s the sample texttemporal

expressions
introduced earlier with the named entities marked:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money.

In addition to their use in extracting events and the relationship between par-
ticipants, named entities are useful for many other language processing tasks. In
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sentiment analysis we might want to know a consumer’s sentiment toward a partic-
ular entity. Entities are a useful first stage in question answering, or for linking text
to information in structured knowledge sources like Wikipedia.

Figure 18.1 shows typical generic named entity types. Many applications will
also need to use specific entity types like proteins, genes, commercial products, or
works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political

Entity
GPE countries, states, provinces Palo Alto is raising the fees for parking.

Facility FAC bridges, buildings, airports Consider the Golden Gate Bridge.
Vehicles VEH planes, trains, automobiles It was a classic Ford Falcon.

Figure 18.1 A list of generic named entity types with the kinds of entities they refer to.

Named entity recognition means finding spans of text that constitute proper
names and then classifying the type of the entity. Recognition is difficult partly be-
cause of the ambiguity of segmentation; we need to decide what’s an entity and what
isn’t, and where the boundaries are. Another difficulty is caused by type ambiguity.
The mention JFK can refer to a person, the airport in New York, or any number of
schools, bridges, and streets around the United States. Some examples of this kind
of cross-type confusion are given in Figures 18.2 and 18.3.

Name Possible Categories
Washington Person, Location, Political Entity, Organization, Vehicle
Downing St. Location, Organization
IRA Person, Organization, Monetary Instrument
Louis Vuitton Person, Organization, Commercial Product

Figure 18.2 Common categorical ambiguities associated with various proper names.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.
The [VEH Washington] had proved to be a leaky ship, every passage I made...

Figure 18.3 Examples of type ambiguities in the use of the name Washington.

18.1.1 NER as Sequence Labeling
The standard algorithm for named entity recognition is as a word-by-word sequence
labeling task, in which the assigned tags capture both the boundary and the type. A
sequence classifier like an MEMM/CRF, a bi-LSTM, or a transformer is trained to
label the tokens in a text with tags that indicate the presence of particular kinds of
named entities. Consider the following simplified excerpt from our running exam-
ple.

[ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched
the move, spokesman [PER Tim Wagner] said.
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Figure 18.4 shows the same excerpt represented with IOB tagging. In IOB tag-IOB

ging we introduce a tag for the beginning (B) and inside (I) of each entity type,
and one for tokens outside (O) any entity. The number of tags is thus 2n+ 1 tags,
where n is the number of entity types. IOB tagging can represent exactly the same
information as the bracketed notation.

Words IOB Label IO Label
American B-ORG I-ORG
Airlines I-ORG I-ORG
, O O
a O O
unit O O
of O O
AMR B-ORG I-ORG
Corp. I-ORG I-ORG
, O O
immediately O O
matched O O
the O O
move O O
, O O
spokesman O O
Tim B-PER I-PER
Wagner I-PER I-PER
said O O
. O O

Figure 18.4 Named entity tagging as a sequence model, showing IOB and IO encodings.

We’ve also shown IO tagging, which loses some information by eliminating the
B tag. Without the B tag IO tagging is unable to distinguish between two entities of
the same type that are right next to each other. Since this situation doesn’t arise very
often (usually there is at least some punctuation or other deliminator), IO tagging
may be sufficient, and has the advantage of using only n+1 tags.

In the following three sections we introduce the three standard families of al-
gorithms for NER tagging: feature based (MEMM/CRF), neural (bi-LSTM), and
rule-based.

18.1.2 A feature-based algorithm for NER

identity of wi, identity of neighboring words
embeddings for wi, embeddings for neighboring words
part of speech of wi, part of speech of neighboring words
base-phrase syntactic chunk label of wi and neighboring words
presence of wi in a gazetteer
wi contains a particular prefix (from all prefixes of length ≤ 4)
wi contains a particular suffix (from all suffixes of length ≤ 4)
wi is all upper case
word shape of wi, word shape of neighboring words
short word shape of wi, short word shape of neighboring words
presence of hyphen

Figure 18.5 Typical features for a feature-based NER system.
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The first approach is to extract features and train an MEMM or CRF sequence
model of the type we saw for part-of-speech tagging in Chapter 8. Figure 18.5 lists
standard features used in such feature-based systems. We’ve seen many of these
features before in the context of part-of-speech tagging, particularly for tagging un-
known words. This is not surprising, as many unknown words are in fact named
entities. Word shape features are thus particularly important in the context of NER.
Recall that word shape features are used to represent the abstract letter pattern ofword shape

the word by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to ’d’, and
retaining punctuation. Thus for example I.M.F would map to X.X.X. and DC10-30
would map to XXdd-dd. A second class of shorter word shape features is also used.
In these features consecutive character types are removed, so DC10-30 would be
mapped to Xd-d but I.M.F would still map to X.X.X. This feature by itself accounts
for a considerable part of the success of feature-based NER systems for English
news text. Shape features are also particularly important in recognizing names of
proteins and genes in biological texts.

For example the named entity token L’Occitane would generate the following
non-zero valued feature values:

prefix(wi) = L suffix(wi) = tane

prefix(wi) = L’ suffix(wi) = ane

prefix(wi) = L’O suffix(wi) = ne

prefix(wi) = L’Oc suffix(wi) = e

word-shape(wi) = X’Xxxxxxxx short-word-shape(wi) = X’Xx

A gazetteer is a list of place names, often providing millions of entries for lo-gazetteer

cations with detailed geographical and political information.1 A related resource
is name-lists; the United States Census Bureau also provides extensive lists of first
names and surnames derived from its decadal census in the U.S.2 Similar lists of cor-
porations, commercial products, and all manner of things biological and mineral are
also available from a variety of sources. Gazetteer and name features are typically
implemented as a binary feature for each name list. Unfortunately, such lists can
be difficult to create and maintain, and their usefulness varies considerably. While
gazetteers can be quite effective, lists of persons and organizations are not always
helpful (Mikheev et al., 1999).

Feature effectiveness depends on the application, genre, media, and language.
For example, shape features, critical for English newswire texts, are of little use
with automatic speech recognition transcripts, or other non-edited or informally-
edited sources, or for languages like Chinese that don’t use orthographic case. The
features in Fig. 18.5 should therefore be thought of as only a starting point.

Figure 18.6 illustrates the result of adding part-of-speech tags, syntactic base-
phrase chunk tags, and some shape information to our earlier example.

Given such a training set, a sequence classifier like an MEMM can be trained to
label new sentences. Figure 18.7 illustrates the operation of such a sequence labeler
at the point where the token Corp. is next to be labeled. If we assume a context win-
dow that includes the two preceding and following words, then the features available
to the classifier are those shown in the boxed area.

1 www.geonames.org
2 www.census.gov
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Word POS Chunk Short shape Label
American NNP B-NP Xx B-ORG
Airlines NNPS I-NP Xx I-ORG
, , O , O
a DT B-NP x O
unit NN I-NP x O
of IN B-PP x O
AMR NNP B-NP X B-ORG
Corp. NNP I-NP Xx. I-ORG
, , O , O
immediately RB B-ADVP x O
matched VBD B-VP x O
the DT B-NP x O
move NN I-NP x O
, , O , O
spokesman NN B-NP x O
Tim NNP I-NP Xx B-PER
Wagner NNP I-NP Xx I-PER
said VBD B-VP x O
. , O . O

Figure 18.6 Word-by-word feature encoding for NER.

Classifier

IN NNP NNP RB

unit ofa...

x
B-PP

...AMR Corp. immediately

B-NP
X

I-NP
X.

B-ADVP
x

O B-ORG ? ......

,

,
O ,

matched

Figure 18.7 Named entity recognition as sequence labeling. The features available to the classifier during
training and classification are those in the boxed area.

18.1.3 A neural algorithm for NER

The standard neural algorithm for NER is based on the bi-LSTM introduced in Chap-
ter 9. Recall that in that model, word and character embeddings are computed for
input word wi. These are passed through a left-to-right LSTM and a right-to-left
LSTM, whose outputs are concatenated (or otherwise combined) to produce a sin-
gle output layer at position i. In the simplest method, this layer can then be directly
passed onto a softmax that creates a probability distribution over all NER tags, and
the most likely tag is chosen as ti.

For named entity tagging this greedy approach to decoding is insufficient, since
it doesn’t allow us to impose the strong constraints neighboring tokens have on each
other (e.g., the tag I-PER must follow another I-PER or B-PER). Instead a CRF layer
is normally used on top of the bi-LSTM output, and the Viterbi decoding algorithm
is used to decode. Fig. 18.8 shows a sketch of the algorithm
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Mark Watney visits Mars

LSTM1 LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2 LSTM2

Concatenation

Right-to-left LSTM

Left-to-right LSTM

B-PER I-PER O B-LOCCRF Layer

Char LSTM Char LSTM Char LSTM Char LSTM
GloVe GloVe GloVe GloVe

Char+GloVe
Embeddings

Figure 18.8 Putting it all together: character embeddings and words together in a bi-LSTM
sequence model. After Lample et al. (2016b).

18.1.4 Rule-based NER
While machine learned (neural or MEMM/CRF) sequence models are the norm in
academic research, commercial approaches to NER are often based on pragmatic
combinations of lists and rules, with some smaller amount of supervised machine
learning (Chiticariu et al., 2013). For example IBM System T is a text understand-
ing architecture in which a user specifies complex declarative constraints for tagging
tasks in a formal query language that includes regular expressions, dictionaries, se-
mantic constraints, NLP operators, and table structures, all of which the system
compiles into an efficient extractor (Chiticariu et al., 2018).

One common approach is to make repeated rule-based passes over a text, allow-
ing the results of one pass to influence the next. The stages typically first involve
the use of rules that have extremely high precision but low recall. Subsequent stages
employ more error-prone statistical methods that take the output of the first pass into
account.

1. First, use high-precision rules to tag unambiguous entity mentions.
2. Then, search for substring matches of the previously detected names.
3. Consult application-specific name lists to identify likely name entity mentions

from the given domain.
4. Finally, apply probabilistic sequence labeling techniques that make use of the

tags from previous stages as additional features.

The intuition behind this staged approach is twofold. First, some of the entity
mentions in a text will be more clearly indicative of a given entity’s class than others.
Second, once an unambiguous entity mention is introduced into a text, it is likely that
subsequent shortened versions will refer to the same entity (and thus the same type
of entity).

18.1.5 Evaluation of Named Entity Recognition
The familiar metrics of recall, precision, and F1 measure are used to evaluate NER
systems. Remember that recall is the ratio of the number of correctly labeled re-
sponses to the total that should have been labeled; precision is the ratio of the num-
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ARTIFACT

GENERAL
AFFILIATION

ORG
AFFILIATION

PART-
WHOLE

PERSON-
SOCIAL PHYSICAL

Located

Near

Business

Family Lasting 
Personal

Citizen-
Resident-
Ethnicity-
Religion

Org-Location-
Origin

Founder

Employment
Membership

Ownership
Student-Alum

Investor

User-Owner-Inventor-
Manufacturer

Geographical
Subsidiary

Sports-Affiliation

Figure 18.9 The 17 relations used in the ACE relation extraction task.

ber of correctly labeled responses to the total labeled; and F-measure is the harmonic
mean of the two. For named entities, the entity rather than the word is the unit of
response. Thus in the example in Fig. 18.6, the two entities Tim Wagner and AMR
Corp. and the non-entity said would each count as a single response.

The fact that named entity tagging has a segmentation component which is not
present in tasks like text categorization or part-of-speech tagging causes some prob-
lems with evaluation. For example, a system that labeled American but not American
Airlines as an organization would cause two errors, a false positive for O and a false
negative for I-ORG. In addition, using entities as the unit of response but words as
the unit of training means that there is a mismatch between the training and test
conditions.

18.2 Relation Extraction

Next on our list of tasks is to discern the relationships that exist among the detected
entities. Let’s return to our sample airline text:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text tells us, for example, that Tim Wagner is a spokesman for American
Airlines, that United is a unit of UAL Corp., and that American is a unit of AMR.
These binary relations are instances of more generic relations such as part-of or
employs that are fairly frequent in news-style texts. Figure 18.9 lists the 17 relations
used in the ACE relation extraction evaluations and Fig. 18.10 shows some sample
relations. We might also extract more domain-specific relation such as the notion of
an airline route. For example from this text we can conclude that United has routes
to Chicago, Dallas, Denver, and San Francisco.
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Relations Types Examples
Physical-Located PER-GPE He was in Tennessee
Part-Whole-Subsidiary ORG-ORG XYZ, the parent company of ABC
Person-Social-Family PER-PER Yoko’s husband John
Org-AFF-Founder PER-ORG Steve Jobs, co-founder of Apple...
Figure 18.10 Semantic relations with examples and the named entity types they involve.

Domain D = {a,b,c,d,e, f ,g,h, i}
United, UAL, American Airlines, AMR a,b,c,d
Tim Wagner e
Chicago, Dallas, Denver, and San Francisco f ,g,h, i

Classes
United, UAL, American, and AMR are organizations Org = {a,b,c,d}
Tim Wagner is a person Pers = {e}
Chicago, Dallas, Denver, and San Francisco are places Loc = { f ,g,h, i}
Relations
United is a unit of UAL PartOf = {〈a,b〉,〈c,d〉}
American is a unit of AMR
Tim Wagner works for American Airlines OrgAff = {〈c,e〉}
United serves Chicago, Dallas, Denver, and San Francisco Serves = {〈a, f 〉,〈a,g〉,〈a,h〉,〈a, i〉}
Figure 18.11 A model-based view of the relations and entities in our sample text.

These relations correspond nicely to the model-theoretic notions we introduced
in Chapter 16 to ground the meanings of the logical forms. That is, a relation consists
of a set of ordered tuples over elements of a domain. In most standard information-
extraction applications, the domain elements correspond to the named entities that
occur in the text, to the underlying entities that result from co-reference resolution, or
to entities selected from a domain ontology. Figure 18.11 shows a model-based view
of the set of entities and relations that can be extracted from our running example.
Notice how this model-theoretic view subsumes the NER task as well; named entity
recognition corresponds to the identification of a class of unary relations.

Sets of relations have been defined for many other domains as well. For example
UMLS, the Unified Medical Language System from the US National Library of
Medicine has a network that defines 134 broad subject categories, entity types, and
54 relations between the entities, such as the following:

Entity Relation Entity
Injury disrupts Physiological Function
Bodily Location location-of Biologic Function
Anatomical Structure part-of Organism
Pharmacologic Substance causes Pathological Function
Pharmacologic Substance treats Pathologic Function

Given a medical sentence like this one:

(18.1) Doppler echocardiography can be used to diagnose left anterior descending
artery stenosis in patients with type 2 diabetes

We could thus extract the UMLS relation:

Echocardiography, Doppler Diagnoses Acquired stenosis

Wikipedia also offers a large supply of relations, drawn from infoboxes, struc-infoboxes

tured tables associated with certain Wikipedia articles. For example, the Wikipedia
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infobox for Stanford includes structured facts like state = "California" or
president = "Mark Tessier-Lavigne". These facts can be turned into rela-
tions like president-of or located-in. or into relations in a metalanguage called RDFRDF

(Resource Description Framework). An RDF triple is a tuple of entity-relation-RDF triple

entity, called a subject-predicate-object expression. Here’s a sample RDF triple:

subject predicate object
Golden Gate Park location San Francisco

For example the crowdsourced DBpedia (Bizer et al., 2009) is an ontology
derived from Wikipedia containing over 2 billion RDF triples. Another dataset
from Wikipedia infoboxes, Freebase (Bollacker et al., 2008), now part of WikidataFreebase

(Vrandečić and Krötzsch, 2014), has relations like:

people/person/nationality
location/location/contains

WordNet or other ontologies offer useful ontological relations that express hier-
archical relations between words or concepts. For example WordNet has the is-a oris-a

hypernym relation between classes,hypernym

Giraffe is-a ruminant is-a ungulate is-a mammal is-a vertebrate ...

WordNet also has Instance-of relation between individuals and classes, so that for
example San Francisco is in the Instance-of relation with city. Extracting these
relations is an important step in extending or building ontologies.

There are five main classes of algorithms for relation extraction: handwritten
patterns, supervised machine learning, semi-supervised (via bootstrapping and
via distant supervision), and unsupervised. We’ll introduce each of these in the
next sections.

18.2.1 Using Patterns to Extract Relations
The earliest and still common algorithm for relation extraction is lexico-syntactic
patterns, first developed by Hearst (1992a). Consider the following sentence:

Agar is a substance prepared from a mixture of red algae, such as Ge-
lidium, for laboratory or industrial use.

Hearst points out that most human readers will not know what Gelidium is, but that
they can readily infer that it is a kind of (a hyponym of) red algae, whatever that is.
She suggests that the following lexico-syntactic pattern

NP0 such as NP1{,NP2 . . . ,(and|or)NPi}, i≥ 1 (18.2)

implies the following semantics

∀NPi, i≥ 1,hyponym(NPi,NP0) (18.3)

allowing us to infer
hyponym(Gelidium, red algae) (18.4)

Figure 18.12 shows five patterns Hearst (1992a, 1998) suggested for inferring
the hyponym relation; we’ve shown NPH as the parent/hyponym. Modern versions
of the pattern-based approach extend it by adding named entity constraints. For
example if our goal is to answer questions about “Who holds what office in which
organization?”, we can use patterns like the following:
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NP {, NP}* {,} (and|or) other NPH temples, treasuries, and other important civic buildings
NPH such as {NP,}* {(or|and)} NP red algae such as Gelidium
such NPH as {NP,}* {(or|and)} NP such authors as Herrick, Goldsmith, and Shakespeare
NPH {,} including {NP,}* {(or|and)} NP common-law countries, including Canada and England
NPH {,} especially {NP}* {(or|and)} NP European countries, especially France, England, and Spain

Figure 18.12 Hand-built lexico-syntactic patterns for finding hypernyms, using {} to mark optionality
(Hearst 1992a, Hearst 1998).

PER, POSITION of ORG:
George Marshall, Secretary of State of the United States

PER (named|appointed|chose|etc.) PER Prep? POSITION
Truman appointed Marshall Secretary of State

PER [be]? (named|appointed|etc.) Prep? ORG POSITION
George Marshall was named US Secretary of State

Hand-built patterns have the advantage of high-precision and they can be tailored
to specific domains. On the other hand, they are often low-recall, and it’s a lot of
work to create them for all possible patterns.

18.2.2 Relation Extraction via Supervised Learning
Supervised machine learning approaches to relation extraction follow a scheme that
should be familiar by now. A fixed set of relations and entities is chosen, a training
corpus is hand-annotated with the relations and entities, and the annotated texts are
then used to train classifiers to annotate an unseen test set.

The most straightforward approach has three steps, illustrated in Fig. 18.13. Step
one is to find pairs of named entities (usually in the same sentence). In step two, a
filtering classifier is trained to make a binary decision as to whether a given pair of
named entities are related (by any relation). Positive examples are extracted directly
from all relations in the annotated corpus, and negative examples are generated from
within-sentence entity pairs that are not annotated with a relation. In step 3, a classi-
fier is trained to assign a label to the relations that were found by step 2. The use of
the filtering classifier can speed up the final classification and also allows the use of
distinct feature-sets appropriate for each task. For each of the two classifiers, we can
use any of the standard classification techniques (logistic regression, neural network,
SVM, etc.)

function FINDRELATIONS(words) returns relations

relations←nil
entities←FINDENTITIES(words)
forall entity pairs 〈e1, e2〉 in entities do

if RELATED?(e1, e2)
relations←relations+CLASSIFYRELATION(e1, e2)

Figure 18.13 Finding and classifying the relations among entities in a text.

For the feature-based classifiers like logistic regression or random forests the
most important step is to identify useful features. Let’s consider features for clas-
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sifying the relationship between American Airlines (Mention 1, or M1) and Tim
Wagner (Mention 2, M2) from this sentence:

(18.5) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

Useful word features include

• The headwords of M1 and M2 and their concatenation
Airlines Wagner Airlines-Wagner

• Bag-of-words and bigrams in M1 and M2
American, Airlines, Tim, Wagner, American Airlines, Tim Wagner

• Words or bigrams in particular positions
M2: -1 spokesman
M2: +1 said

• Bag of words or bigrams between M1 and M2:
a, AMR, of, immediately, matched, move, spokesman, the, unit

• Stemmed versions of the same

Embeddings can be used to represent words in any of these features. Useful named
entity features include

• Named-entity types and their concatenation
(M1: ORG, M2: PER, M1M2: ORG-PER)

• Entity Level of M1 and M2 (from the set NAME, NOMINAL, PRONOUN)
M1: NAME [it or he would be PRONOUN]
M2: NAME [the company would be NOMINAL]

• Number of entities between the arguments (in this case 1, for AMR)

The syntactic structure of a sentence can also signal relationships among its
entities. Syntax is often featured by using strings representing syntactic paths: the
(dependency or constituency) path traversed through the tree in getting from one
entity to the other.

• Base syntactic chunk sequence from M1 to M2
NP NP PP VP NP NP

• Constituent paths between M1 and M2
NP ↑ NP ↑ S ↑ S ↓ NP

• Dependency-tree paths
Airlines←sub j matched←comp said→sub j Wagner

Figure 18.14 summarizes many of the features we have discussed that could be
used for classifying the relationship between American Airlines and Tim Wagner
from our example text.

Neural models for relation extraction similarly treat the task as supervised clas-
sification. One option is to use a similar architecture as we saw for named entity
tagging: a bi-LSTM model with word embeddings as inputs and a single softmax
classification of the sentence output as a 1-of-N relation label. Because relations
often hold between entities that are far part in a sentence (or across sentences), it
may be possible to get higher performance from algorithms like convolutional nets
(dos Santos et al., 2015) or chain or tree LSTMS (Miwa and Bansal 2016, Peng
et al. 2017).

In general, if the test set is similar enough to the training set, and if there is
enough hand-labeled data, supervised relation extraction systems can get high ac-
curacies. But labeling a large training set is extremely expensive and supervised
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M1 headword airlines (as a word token or an embedding)
M2 headword Wagner
Word(s) before M1 NONE
Word(s) after M2 said

Bag of words between {a, unit, of, AMR, Inc., immediately, matched, the, move, spokesman }
M1 type ORG
M2 type PERS
Concatenated types ORG-PERS

Constituent path NP ↑ NP ↑ S ↑ S ↓ NP
Base phrase path NP→ NP→ PP→ NP→V P→ NP→ NP
Typed-dependency path Airlines←sub j matched←comp said→sub j Wagner
Figure 18.14 Sample of features extracted during classification of the <American Airlines, Tim Wagner>
tuple; M1 is the first mention, M2 the second.

models are brittle: they don’t generalize well to different text genres. For this rea-
son, much research in relation extraction has focused on the semi-supervised and
unsupervised approaches we turn to next.

18.2.3 Semisupervised Relation Extraction via Bootstrapping
Supervised machine learning assumes that we have lots of labeled data. Unfortu-
nately, this is expensive. But suppose we just have a few high-precision seed pat-
terns, like those in Section 18.2.1, or perhaps a few seed tuples. That’s enoughseed patterns

seed tuples to bootstrap a classifier! Bootstrapping proceeds by taking the entities in the seed
bootstrapping pair, and then finding sentences (on the web, or whatever dataset we are using) that

contain both entities. From all such sentences, we extract and generalize the context
around the entities to learn new patterns. Fig. 18.15 sketches a basic algorithm.

function BOOTSTRAP(Relation R) returns new relation tuples

tuples←Gather a set of seed tuples that have relation R
iterate

sentences←find sentences that contain entities in tuples
patterns←generalize the context between and around entities in sentences
newpairs←use patterns to grep for more tuples
newpairs←newpairs with high confidence
tuples← tuples + newpairs

return tuples

Figure 18.15 Bootstrapping from seed entity pairs to learn relations.

Suppose, for example, that we need to create a list of airline/hub pairs, and we
know only that Ryanair has a hub at Charleroi. We can use this seed fact to discover
new patterns by finding other mentions of this relation in our corpus. We search
for the terms Ryanair, Charleroi and hub in some proximity. Perhaps we find the
following set of sentences:

(18.6) Budget airline Ryanair, which uses Charleroi as a hub, scrapped all
weekend flights out of the airport.

(18.7) All flights in and out of Ryanair’s Belgian hub at Charleroi airport were
grounded on Friday...
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(18.8) A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000
passengers had already been affected.

From these results, we can use the context of words between the entity mentions,
the words before mention one, the word after mention two, and the named entity
types of the two mentions, and perhaps other features, to extract general patterns
such as the following:

/ [ORG], which uses [LOC] as a hub /

/ [ORG]’s hub at [LOC] /

/ [LOC] a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.
Bootstrapping systems also assign confidence values to new tuples to avoid se-confidence

values
mantic drift. In semantic drift, an erroneous pattern leads to the introduction ofsemantic drift

erroneous tuples, which, in turn, lead to the creation of problematic patterns and the
meaning of the extracted relations ‘drifts’. Consider the following example:

(18.9) Sydney has a ferry hub at Circular Quay.

If accepted as a positive example, this expression could lead to the incorrect in-
troduction of the tuple 〈Sydney,CircularQuay〉. Patterns based on this tuple could
propagate further errors into the database.

Confidence values for patterns are based on balancing two factors: the pattern’s
performance with respect to the current set of tuples and the pattern’s productivity
in terms of the number of matches it produces in the document collection. More
formally, given a document collection D , a current set of tuples T , and a proposed
pattern p, we need to track two factors:

• hits: the set of tuples in T that p matches while looking in D

• f inds: The total set of tuples that p finds in D

The following equation balances these considerations (Riloff and Jones, 1999).

Conf RlogF(p) =
hitsp

findsp
× log(findsp) (18.10)

This metric is generally normalized to produce a probability.
We can assess the confidence in a proposed new tuple by combining the evidence

supporting it from all the patterns P′ that match that tuple in D (Agichtein and
Gravano, 2000). One way to combine such evidence is the noisy-or technique.noisy-or

Assume that a given tuple is supported by a subset of the patterns in P, each with
its own confidence assessed as above. In the noisy-or model, we make two basic
assumptions. First, that for a proposed tuple to be false, all of its supporting patterns
must have been in error, and second, that the sources of their individual failures are
all independent. If we loosely treat our confidence measures as probabilities, then
the probability of any individual pattern p failing is 1−Conf (p); the probability of
all of the supporting patterns for a tuple being wrong is the product of their individual
failure probabilities, leaving us with the following equation for our confidence in a
new tuple.

Conf (t) = 1−
∏

p∈P′
(1−Conf (p)) (18.11)

Setting conservative confidence thresholds for the acceptance of new patterns
and tuples during the bootstrapping process helps prevent the system from drifting
away from the targeted relation.
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18.2.4 Distant Supervision for Relation Extraction
Although text that has been hand-labeled with relation labels is extremely expensive
to produce, there are ways to find indirect sources of training data. The distant
supervision method of Mintz et al. (2009) combines the advantages of bootstrappingdistant

supervision
with supervised learning. Instead of just a handful of seeds, distant supervision uses
a large database to acquire a huge number of seed examples, creates lots of noisy
pattern features from all these examples and then combines them in a supervised
classifier.

For example suppose we are trying to learn the place-of-birth relationship be-
tween people and their birth cities. In the seed-based approach, we might have only
5 examples to start with. But Wikipedia-based databases like DBPedia or Freebase
have tens of thousands of examples of many relations; including over 100,000 ex-
amples of place-of-birth, (<Edwin Hubble, Marshfield>, <Albert Einstein,

Ulm>, etc.,). The next step is to run named entity taggers on large amounts of text—
Mintz et al. (2009) used 800,000 articles from Wikipedia—and extract all sentences
that have two named entities that match the tuple, like the following:

...Hubble was born in Marshfield...

...Einstein, born (1879), Ulm...

...Hubble’s birthplace in Marshfield...

Training instances can now be extracted from this data, one training instance
for each identical tuple <relation, entity1, entity2>. Thus there will be one
training instance for each of:

<born-in, Edwin Hubble, Marshfield>

<born-in, Albert Einstein, Ulm>

<born-year, Albert Einstein, 1879>

and so on.
We can then apply feature-based or neural classification. For feature-based clas-

sification, standard supervised relation extraction features like the named entity la-
bels of the two mentions, the words and dependency paths in between the mentions,
and neighboring words. Each tuple will have features collected from many training
instances; the feature vector for a single training instance like (<born-in,Albert
Einstein, Ulm> will have lexical and syntactic features from many different sen-
tences that mention Einstein and Ulm.

Because distant supervision has very large training sets, it is also able to use very
rich features that are conjunctions of these individual features. So we will extract
thousands of patterns that conjoin the entity types with the intervening words or
dependency paths like these:

PER was born in LOC
PER, born (XXXX), LOC
PER’s birthplace in LOC

To return to our running example, for this sentence:

(18.12) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

we would learn rich conjunction features like this one:

M1 = ORG & M2 = PER & nextword=“said”& path= NP ↑ NP ↑ S ↑ S ↓ NP

The result is a supervised classifier that has a huge rich set of features to use
in detecting relations. Since not every test sentence will have one of the training
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relations, the classifier will also need to be able to label an example as no-relation.
This label is trained by randomly selecting entity pairs that do not appear in any
Freebase relation, extracting features for them, and building a feature vector for
each such tuple. The final algorithm is sketched in Fig. 18.16.

function DISTANT SUPERVISION(Database D, Text T) returns relation classifier C

foreach relation R
foreach tuple (e1,e2) of entities with relation R in D

sentences←Sentences in T that contain e1 and e2
f←Frequent features in sentences
observations←observations + new training tuple (e1, e2, f, R)

C←Train supervised classifier on observations
return C

Figure 18.16 The distant supervision algorithm for relation extraction. A neural classifier
might not need to use the feature set f .

Distant supervision shares advantages with each of the methods we’ve exam-
ined. Like supervised classification, distant supervision uses a classifier with lots
of features, and supervised by detailed hand-created knowledge. Like pattern-based
classifiers, it can make use of high-precision evidence for the relation between en-
tities. Indeed, distance supervision systems learn patterns just like the hand-built
patterns of early relation extractors. For example the is-a or hypernym extraction
system of Snow et al. (2005) used hypernym/hyponym NP pairs from WordNet as
distant supervision, and then learned new patterns from large amounts of text. Their
system induced exactly the original 5 template patterns of Hearst (1992a), but also
70,000 additional patterns including these four:

NPH like NP Many hormones like leptin...
NPH called NP ...using a markup language called XHTML
NP is a NPH Ruby is a programming language...
NP, a NPH IBM, a company with a long...

This ability to use a large number of features simultaneously means that, un-
like the iterative expansion of patterns in seed-based systems, there’s no semantic
drift. Like unsupervised classification, it doesn’t use a labeled training corpus of
texts, so it isn’t sensitive to genre issues in the training corpus, and relies on very
large amounts of unlabeled data. Distant supervision also has the advantage that it
can create training tuples to be used with neural classifiers, where features are not
required.

But distant supervision can only help in extracting relations for which a large
enough database already exists. To extract new relations without datasets, or rela-
tions for new domains, purely unsupervised methods must be used.

18.2.5 Unsupervised Relation Extraction
The goal of unsupervised relation extraction is to extract relations from the web
when we have no labeled training data, and not even any list of relations. This task
is often called open information extraction or Open IE. In Open IE, the relations

open
information

extraction
are simply strings of words (usually beginning with a verb).

For example, the ReVerb system (Fader et al., 2011) extracts a relation from a
sentence s in 4 steps:
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1. Run a part-of-speech tagger and entity chunker over s
2. For each verb in s, find the longest sequence of words w that start with a verb

and satisfy syntactic and lexical constraints, merging adjacent matches.
3. For each phrase w, find the nearest noun phrase x to the left which is not a

relative pronoun, wh-word or existential “there”. Find the nearest noun phrase
y to the right.

4. Assign confidence c to the relation r = (x,w,y) using a confidence classifier
and return it.

A relation is only accepted if it meets syntactic and lexical constraints. The
syntactic constraints ensure that it is a verb-initial sequence that might also include
nouns (relations that begin with light verbs like make, have, or do often express the
core of the relation with a noun, like have a hub in):

V | VP | VW*P
V = verb particle? adv?
W = (noun | adj | adv | pron | det )
P = (prep | particle | inf. marker)

The lexical constraints are based on a dictionary D that is used to prune very rare,
long relation strings. The intuition is to eliminate candidate relations that don’t oc-
cur with sufficient number of distinct argument types and so are likely to be bad
examples. The system first runs the above relation extraction algorithm offline on
500 million web sentences and extracts a list of all the relations that occur after nor-
malizing them (removing inflection, auxiliary verbs, adjectives, and adverbs). Each
relation r is added to the dictionary if it occurs with at least 20 different arguments.
Fader et al. (2011) used a dictionary of 1.7 million normalized relations.

Finally, a confidence value is computed for each relation using a logistic re-
gression classifier. The classifier is trained by taking 1000 random web sentences,
running the extractor, and hand labelling each extracted relation as correct or incor-
rect. A confidence classifier is then trained on this hand-labeled data, using features
of the relation and the surrounding words. Fig. 18.17 shows some sample features
used in the classification.

(x,r,y) covers all words in s
the last preposition in r is for
the last preposition in r is on
len(s) ≤ 10
there is a coordinating conjunction to the left of r in s
r matches a lone V in the syntactic constraints
there is preposition to the left of x in s
there is an NP to the right of y in s

Figure 18.17 Features for the classifier that assigns confidence to relations extracted by the
Open Information Extraction system REVERB (Fader et al., 2011).

For example the following sentence:
(18.13) United has a hub in Chicago, which is the headquarters of United

Continental Holdings.
has the relation phrases has a hub in and is the headquarters of (it also has has and
is, but longer phrases are preferred). Step 3 finds United to the left and Chicago to
the right of has a hub in, and skips over which to find Chicago to the left of is the
headquarters of. The final output is:
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r1: <United, has a hub in, Chicago>

r2: <Chicago, is the headquarters of, United Continental Holdings>

The great advantage of unsupervised relation extraction is its ability to handle
a huge number of relations without having to specify them in advance. The disad-
vantage is the need to map these large sets of strings into some canonical form for
adding to databases or other knowledge sources. Current methods focus heavily on
relations expressed with verbs, and so will miss many relations that are expressed
nominally.

18.2.6 Evaluation of Relation Extraction
Supervised relation extraction systems are evaluated by using test sets with human-
annotated, gold-standard relations and computing precision, recall, and F-measure.
Labeled precision and recall require the system to classify the relation correctly,
whereas unlabeled methods simply measure a system’s ability to detect entities that
are related.

Semi-supervised and unsupervised methods are much more difficult to evalu-
ate, since they extract totally new relations from the web or a large text. Because
these methods use very large amounts of text, it is generally not possible to run them
solely on a small labeled test set, and as a result it’s not possible to pre-annotate a
gold set of correct instances of relations.

For these methods it’s possible to approximate (only) precision by drawing a
random sample of relations from the output, and having a human check the accuracy
of each of these relations. Usually this approach focuses on the tuples to be extracted
from a body of text rather than on the relation mentions; systems need not detect
every mention of a relation to be scored correctly. Instead, the evaluation is based
on the set of tuples occupying the database when the system is finished. That is,
we want to know if the system can discover that Ryanair has a hub at Charleroi; we
don’t really care how many times it discovers it. The estimated precision P̂ is then

P̂ =
# of correctly extracted relation tuples in the sample

total # of extracted relation tuples in the sample.
(18.14)

Another approach that gives us a little bit of information about recall is to com-
pute precision at different levels of recall. Assuming that our system is able to
rank the relations it produces (by probability, or confidence) we can separately com-
pute precision for the top 1000 new relations, the top 10,000 new relations, the top
100,000, and so on. In each case we take a random sample of that set. This will
show us how the precision curve behaves as we extract more and more tuples. But
there is no way to directly evaluate recall.

18.3 Extracting Times

Times and dates are a particularly important kind of named entity that play a role
in question answering, in calendar and personal assistant applications. In order to
reason about times and dates, after we extract these temporal expressions they must
be normalized—converted to a standard format so we can reason about them. In this
section we consider both the extraction and normalization of temporal expressions.
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18.3.1 Temporal Expression Extraction
Temporal expressions are those that refer to absolute points in time, relative times,
durations, and sets of these. Absolute temporal expressions are those that can beabsolute

mapped directly to calendar dates, times of day, or both. Relative temporal expres-relative

sions map to particular times through some other reference point (as in a week from
last Tuesday). Finally, durations denote spans of time at varying levels of granular-duration

ity (seconds, minutes, days, weeks, centuries, etc.). Figure 18.18 lists some sample
temporal expressions in each of these categories.

Absolute Relative Durations
April 24, 1916 yesterday four hours
The summer of ’77 next semester three weeks
10:15 AM two weeks from yesterday six days
The 3rd quarter of 2006 last quarter the last three quarters
Figure 18.18 Examples of absolute, relational and durational temporal expressions.

Temporal expressions are grammatical constructions that have temporal lexical
triggers as their heads. Lexical triggers might be nouns, proper nouns, adjectives,lexical triggers

and adverbs; full temporal expressions consist of their phrasal projections: noun
phrases, adjective phrases, and adverbial phrases. Figure 18.19 provides examples.

Category Examples
Noun morning, noon, night, winter, dusk, dawn
Proper Noun January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective recent, past, annual, former
Adverb hourly, daily, monthly, yearly

Figure 18.19 Examples of temporal lexical triggers.

Let’s look at the TimeML annotation scheme, in which temporal expressions are
annotated with an XML tag, TIMEX3, and various attributes to that tag (Pustejovsky
et al. 2005, Ferro et al. 2005). The following example illustrates the basic use of this
scheme (we defer discussion of the attributes until Section 18.3.2).

A fare increase initiated <TIMEX3>last week</TIMEX3> by UAL
Corp’s United Airlines was matched by competitors over<TIMEX3>the
weekend</TIMEX3>, marking the second successful fare increase in
<TIMEX3>two weeks</TIMEX3>.

The temporal expression recognition task consists of finding the start and end of
all of the text spans that correspond to such temporal expressions. Rule-based ap-
proaches to temporal expression recognition use cascades of automata to recognize
patterns at increasing levels of complexity. Tokens are first part-of-speech tagged,
and then larger and larger chunks are recognized from the results from previous
stages, based on patterns containing trigger words (e.g., February) or classes (e.g.,
MONTH). Figure 18.20 gives a fragment from a rule-based system.

Sequence-labeling approaches follow the same IOB scheme used for named-
entity tags, marking words that are either inside, outside or at the beginning of a
TIMEX3-delimited temporal expression with the I, O, and B tags as follows:

A
O

fare
O

increase
O

initiated
O

last
B

week
I

by
O

UAL
O

Corp’s...
O
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# yesterday/today/tomorrow
$string =˜ s/((($OT+the$CT+\s+)?$OT+day$CT+\s+$OT+(before|after)$CT+\s+)?$OT+$TERelDayExpr$CT+
(\s+$OT+(morning|afternoon|evening|night)$CT+)?)/<TIMEX$tever TYPE=\"DATE\">$1
<\/TIMEX$tever>/gio;

$string =˜ s/($OT+\w+$CT+\s+)<TIMEX$tever TYPE=\"DATE\"[ˆ>]*>($OT+(Today|Tonight)$CT+)
<\/TIMEX$tever>/$1$4/gso;

# this (morning/afternoon/evening)
$string =˜ s/(($OT+(early|late)$CT+\s+)?$OT+this$CT+\s*$OT+(morning|afternoon|evening)$CT+)/

<TIMEX$tever TYPE=\"DATE\">$1<\/TIMEX$tever>/gosi;
$string =˜ s/(($OT+(early|late)$CT+\s+)?$OT+last$CT+\s*$OT+night$CT+)/<TIMEX$tever

TYPE=\"DATE\">$1<\/TIMEX$tever>/gsio;

Figure 18.20 Perl fragment from the GUTime temporal tagging system in Tarsqi (Verhagen et al., 2005).

Features are extracted from the token and its context, and a statistical sequence
labeler is trained (any sequence model can be used). Figure 18.21 lists standard
features used in temporal tagging.

Feature Explanation
Token The target token to be labeled
Tokens in window Bag of tokens in the window around a target
Shape Character shape features
POS Parts of speech of target and window words
Chunk tags Base-phrase chunk tag for target and words in a window
Lexical triggers Presence in a list of temporal terms

Figure 18.21 Typical features used to train IOB-style temporal expression taggers.

Temporal expression recognizers are evaluated with the usual recall, precision,
and F-measures. A major difficulty for all of these very lexicalized approaches is
avoiding expressions that trigger false positives:

(18.15) 1984 tells the story of Winston Smith...
(18.16) ...U2’s classic Sunday Bloody Sunday

18.3.2 Temporal Normalization
Temporal normalization is the process of mapping a temporal expression to eithertemporal

normalization
a specific point in time or to a duration. Points in time correspond to calendar dates,
to times of day, or both. Durations primarily consist of lengths of time but may also
include information about start and end points. Normalized times are represented
with the VALUE attribute from the ISO 8601 standard for encoding temporal values
(ISO8601, 2004). Fig. 18.22 reproduces our earlier example with the value attributes
added in.

<TIMEX3 i d = ’ ’ t 1 ’ ’ t y p e =”DATE” v a l u e =”2007−07−02” f u n c t i o n I n D o c u m e n t =”CREATION TIME”
> J u l y 2 , 2007 < / TIMEX3> A f a r e i n c r e a s e i n i t i a t e d <TIMEX3 i d =” t 2 ” t y p e =”DATE”
v a l u e =”2007−W26” anchorTimeID=” t 1 ”> l a s t week< / TIMEX3> by Un i t ed A i r l i n e s was
matched by c o m p e t i t o r s ove r <TIMEX3 i d =” t 3 ” t y p e =”DURATION” v a l u e =”P1WE”
anchorTimeID=” t 1 ”> t h e weekend < / TIMEX3> , marking t h e second s u c c e s s f u l f a r e
i n c r e a s e i n <TIMEX3 i d =” t 4 ” t y p e =”DURATION” v a l u e =”P2W” anchorTimeID=” t 1 ”> two
weeks < / TIMEX3> .

Figure 18.22 TimeML markup including normalized values for temporal expressions.

The dateline, or document date, for this text was July 2, 2007. The ISO repre-
sentation for this kind of expression is YYYY-MM-DD, or in this case, 2007-07-02.
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The encodings for the temporal expressions in our sample text all follow from this
date, and are shown here as values for the VALUE attribute.

The first temporal expression in the text proper refers to a particular week of the
year. In the ISO standard, weeks are numbered from 01 to 53, with the first week
of the year being the one that has the first Thursday of the year. These weeks are
represented with the template YYYY-Wnn. The ISO week for our document date is
week 27; thus the value for last week is represented as “2007-W26”.

The next temporal expression is the weekend. ISO weeks begin on Monday;
thus, weekends occur at the end of a week and are fully contained within a single
week. Weekends are treated as durations, so the value of the VALUE attribute has
to be a length. Durations are represented according to the pattern Pnx, where n is
an integer denoting the length and x represents the unit, as in P3Y for three years
or P2D for two days. In this example, one weekend is captured as P1WE. In this
case, there is also sufficient information to anchor this particular weekend as part of
a particular week. Such information is encoded in the ANCHORTIMEID attribute.
Finally, the phrase two weeks also denotes a duration captured as P2W. There is a
lot more to the various temporal annotation standards—far too much to cover here.
Figure 18.23 describes some of the basic ways that other times and durations are
represented. Consult ISO8601 (2004), Ferro et al. (2005), and Pustejovsky et al.
(2005) for more details.

Unit Pattern Sample Value
Fully specified dates YYYY-MM-DD 1991-09-28
Weeks YYYY-Wnn 2007-W27
Weekends PnWE P1WE
24-hour clock times HH:MM:SS 11:13:45
Dates and times YYYY-MM-DDTHH:MM:SS 1991-09-28T11:00:00
Financial quarters Qn 1999-Q3
Figure 18.23 Sample ISO patterns for representing various times and durations.

Most current approaches to temporal normalization are rule-based (Chang and
Manning 2012, Strötgen and Gertz 2013). Patterns that match temporal expres-
sions are associated with semantic analysis procedures. As in the compositional
rule-to-rule approach introduced in Chapter 17, the meaning of a constituent is com-
puted from the meaning of its parts using a method specific to the constituent, al-
though here the semantic composition rules involve temporal arithmetic rather than
λ -calculus attachments.

Fully qualified date expressions contain a year, month, and day in some con-fully qualified

ventional form. The units in the expression must be detected and then placed in the
correct place in the corresponding ISO pattern. The following pattern normalizes
expressions like April 24, 1916.

FQTE → Month Date , Year {Year.val − Month.val − Date.val}

The non-terminals Month, Date, and Year represent constituents that have already
been recognized and assigned semantic values, accessed through the *.val notation.
The value of this FQE constituent can, in turn, be accessed as FQTE.val during
further processing.

Fully qualified temporal expressions are fairly rare in real texts. Most temporal
expressions in news articles are incomplete and are only implicitly anchored, of-
ten with respect to the dateline of the article, which we refer to as the document’s
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temporal anchor. The values of temporal expressions such as today, yesterday, ortemporal
anchor

tomorrow can all be computed with respect to this temporal anchor. The semantic
procedure for today simply assigns the anchor, and the attachments for tomorrow
and yesterday add a day and subtract a day from the anchor, respectively. Of course,
given the cyclic nature of our representations for months, weeks, days, and times of
day, our temporal arithmetic procedures must use modulo arithmetic appropriate to
the time unit being used.

Unfortunately, even simple expressions such as the weekend or Wednesday in-
troduce a fair amount of complexity. In our current example, the weekend clearly
refers to the weekend of the week that immediately precedes the document date. But
this won’t always be the case, as is illustrated in the following example.

(18.17) Random security checks that began yesterday at Sky Harbor will continue
at least through the weekend.

In this case, the expression the weekend refers to the weekend of the week that the
anchoring date is part of (i.e., the coming weekend). The information that signals
this meaning comes from the tense of continue, the verb governing the weekend.

Relative temporal expressions are handled with temporal arithmetic similar to
that used for today and yesterday. The document date indicates that our example
article is ISO week 27, so the expression last week normalizes to the current week
minus 1. To resolve ambiguous next and last expressions we consider the distance
from the anchoring date to the nearest unit. Next Friday can refer either to the
immediately next Friday or to the Friday following that, but the closer the document
date is to a Friday, the more likely it is that the phrase will skip the nearest one. Such
ambiguities are handled by encoding language and domain-specific heuristics into
the temporal attachments.

18.4 Extracting Events and their Times

The task of event extraction is to identify mentions of events in texts. For theevent
extraction

purposes of this task, an event mention is any expression denoting an event or state
that can be assigned to a particular point, or interval, in time. The following markup
of the sample text on page 343 shows all the events in this text.

[EVENT Citing] high fuel prices, United Airlines [EVENT said] Fri-
day it has [EVENT increased] fares by $6 per round trip on flights to
some cities also served by lower-cost carriers. American Airlines, a unit
of AMR Corp., immediately [EVENT matched] [EVENT the move],
spokesman Tim Wagner [EVENT said]. United, a unit of UAL Corp.,
[EVENT said] [EVENT the increase] took effect Thursday and [EVENT
applies] to most routes where it [EVENT competes] against discount
carriers, such as Chicago to Dallas and Denver to San Francisco.

In English, most event mentions correspond to verbs, and most verbs introduce
events. However, as we can see from our example, this is not always the case. Events
can be introduced by noun phrases, as in the move and the increase, and some verbs
fail to introduce events, as in the phrasal verb took effect, which refers to when the
event began rather than to the event itself. Similarly, light verbs such as make, take,
and have often fail to denote events; for light verbs the event is often expressed by
the nominal direct object (took a flight), and these light verbs just provide a syntactic
structure for the noun’s arguments.
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Various versions of the event extraction task exist, depending on the goal. For
example in the TempEval shared tasks (Verhagen et al. 2009) the goal is to extract
events and aspects like their aspectual and temporal properties. Events are to be
classified as actions, states, reporting events (say, report, tell, explain), perceptionreporting

events
events, and so on. The aspect, tense, and modality of each event also needs to be
extracted. Thus for example the various said events in the sample text would be
annotated as (class=REPORTING, tense=PAST, aspect=PERFECTIVE).

Event extraction is generally modeled via supervised learning, detecting events
via sequence models with IOB tagging, and assigning event classes and attributes
with multi-class classifiers. Feature-based models use surface information like parts
of speech, lexical items, and verb tense information; see Fig. 18.24.

Feature Explanation
Character affixes Character-level prefixes and suffixes of target word
Nominalization suffix Character-level suffixes for nominalizations (e.g., -tion)
Part of speech Part of speech of the target word
Light verb Binary feature indicating that the target is governed by a light verb
Subject syntactic category Syntactic category of the subject of the sentence
Morphological stem Stemmed version of the target word
Verb root Root form of the verb basis for a nominalization
WordNet hypernyms Hypernym set for the target
Figure 18.24 Features commonly used in both rule-based and machine learning approaches to event detec-
tion.

18.4.1 Temporal Ordering of Events
With both the events and the temporal expressions in a text having been detected, the
next logical task is to use this information to fit the events into a complete timeline.
Such a timeline would be useful for applications such as question answering and
summarization. This ambitious task is the subject of considerable current research
but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on the
events and temporal expressions mentioned in a text. Such an ordering can provide
many of the same benefits as a true timeline. An example of such a partial ordering
is the determination that the fare increase by American Airlines came after the fare
increase by United in our sample text. Determining such an ordering can be viewed
as a binary relation detection and classification task similar to those described earlier
in Section 18.2. The temporal relation between events is classified into one of the
standard set of Allen relations shown in Fig. 18.25 (Allen, 1984), using feature-Allen relations

based classifiers as in Section 18.2, trained on the TimeBank corpus with features
like words/embeddings, parse paths, tense and aspect.

The TimeBank corpus consists of text annotated with much of the informationTimeBank

we’ve been discussing throughout this section (Pustejovsky et al., 2003b). Time-
Bank 1.2 consists of 183 news articles selected from a variety of sources, including
the Penn TreeBank and PropBank collections.

Each article in the TimeBank corpus has had the temporal expressions and event
mentions in them explicitly annotated in the TimeML annotation (Pustejovsky et al.,
2003a). In addition to temporal expressions and events, the TimeML annotation
provides temporal links between events and temporal expressions that specify the
nature of the relation between them. Consider the following sample sentence and
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A  before B
B after  A

A overlaps B
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A meets B
B meets' A

A equals B
(B equals A)

A starts B
B starts' A

A finishes B
B finishes' A

B

A during B
B during' A

A

Figure 18.25 The 13 temporal relations from Allen (1984).

<TIMEX3 tid="t57" type="DATE" value="1989-10-26" functionInDocument="CREATION_TIME">
10/26/89 </TIMEX3>

Delta Air Lines earnings <EVENT eid="e1" class="OCCURRENCE"> soared </EVENT> 33% to a
record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57"> the
fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="OCCURRENCE">bucking</EVENT>
the industry trend toward <EVENT eid="e4" class="OCCURRENCE">declining</EVENT>
profits.

Figure 18.26 Example from the TimeBank corpus.

its corresponding markup shown in Fig. 18.26, selected from one of the TimeBank
documents.

(18.18) Delta Air Lines earnings soared 33% to a record in the fiscal first quarter,
bucking the industry trend toward declining profits.

As annotated, this text includes three events and two temporal expressions. The
events are all in the occurrence class and are given unique identifiers for use in fur-
ther annotations. The temporal expressions include the creation time of the article,
which serves as the document time, and a single temporal expression within the text.

In addition to these annotations, TimeBank provides four links that capture the
temporal relations between the events and times in the text, using the Allen relations
from Fig. 18.25. The following are the within-sentence temporal relations annotated
for this example.
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• Soaringe1 is included in the fiscal first quartert58

• Soaringe1 is before 1989-10-26t57

• Soaringe1 is simultaneous with the buckinge3

• Declininge4 includes soaringe1

18.5 Template Filling

Many texts contain reports of events, and possibly sequences of events, that often
correspond to fairly common, stereotypical situations in the world. These abstract
situations or stories, related to what have been called scripts (Schank and Abel-scripts

son, 1977), consist of prototypical sequences of sub-events, participants, and their
roles. The strong expectations provided by these scripts can facilitate the proper
classification of entities, the assignment of entities into roles and relations, and most
critically, the drawing of inferences that fill in things that have been left unsaid. In
their simplest form, such scripts can be represented as templates consisting of fixedtemplates

sets of slots that take as values slot-fillers belonging to particular classes. The task
of template filling is to find documents that invoke particular scripts and then fill thetemplate filling

slots in the associated templates with fillers extracted from the text. These slot-fillers
may consist of text segments extracted directly from the text, or they may consist of
concepts that have been inferred from text elements through some additional pro-
cessing.

A filled template from our original airline story might look like the following.

FARE-RAISE ATTEMPT:



LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES




This template has four slots (LEAD AIRLINE, AMOUNT, EFFECTIVE DATE, FOL-
LOWER). The next section describes a standard sequence-labeling approach to filling
slots. Section 18.5.2 then describes an older system based on the use of cascades of
finite-state transducers and designed to address a more complex template-filling task
that current learning-based systems don’t yet address.

18.5.1 Machine Learning Approaches to Template Filling
In the standard paradigm for template filling, we are given training documents with
text spans annotated with pre-defined templates and their slot fillers. Our goal is to
create one template for each event in the input, filling in the slots with text spans.

The task is generally modeled by training two separate supervised systems. The
first system decides whether the template is present in a particular sentence. This
task is called template recognition or sometimes, in a perhaps confusing bit oftemplate

recognition
terminology, event recognition. Template recognition can be treated as a text classi-
fication task, with features extracted from every sequence of words that was labeled
in training documents as filling any slot from the template being detected. The usual
set of features can be used: tokens, embeddings, word shapes, part-of-speech tags,
syntactic chunk tags, and named entity tags.

The second system has the job of role-filler extraction. A separate classifier isrole-filler
extraction

trained to detect each role (LEAD-AIRLINE, AMOUNT, and so on). This can be a
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binary classifier that is run on every noun-phrase in the parsed input sentence, or a
sequence model run over sequences of words. Each role classifier is trained on the
labeled data in the training set. Again, the usual set of features can be used, but now
trained only on an individual noun phrase or the fillers of a single slot.

Multiple non-identical text segments might be labeled with the same slot la-
bel. For example in our sample text, the strings United or United Airlines might be
labeled as the LEAD AIRLINE. These are not incompatible choices and the corefer-
ence resolution techniques introduced in Chapter 22 can provide a path to a solution.

A variety of annotated collections have been used to evaluate this style of ap-
proach to template filling, including sets of job announcements, conference calls for
papers, restaurant guides, and biological texts. Recent work focuses on extracting
templates in cases where there is no training data or even predefined templates, by
inducing templates as sets of linked events (Chambers and Jurafsky, 2011).

18.5.2 Earlier Finite-State Template-Filling Systems
The templates above are relatively simple. But consider the task of producing a
template that contained all the information in a text like this one (Grishman and
Sundheim, 1995):

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan
with a local concern and a Japanese trading house to produce golf clubs to be
shipped to Japan. The joint venture, Bridgestone Sports Taiwan Co., capital-
ized at 20 million new Taiwan dollars, will start production in January 1990
with production of 20,000 iron and “metal wood” clubs a month.

The MUC-5 ‘joint venture’ task (the Message Understanding Conferences were
a series of U.S. government-organized information-extraction evaluations) was to
produce hierarchically linked templates describing joint ventures. Figure 18.27
shows a structure produced by the FASTUS system (Hobbs et al., 1997). Note how
the filler of the ACTIVITY slot of the TIE-UP template is itself a template with slots.

Tie-up-1 Activity-1:
RELATIONSHIP tie-up COMPANY Bridgestone Sports Taiwan Co.
ENTITIES Bridgestone Sports Co. PRODUCT iron and “metal wood” clubs

a local concern START DATE DURING: January 1990
a Japanese trading house

JOINT VENTURE Bridgestone Sports Taiwan Co.
ACTIVITY Activity-1
AMOUNT NT$20000000

Figure 18.27 The templates produced by FASTUS given the input text on page 350.

Early systems for dealing with these complex templates were based on cascades
of transducers based on handwritten rules, as sketched in Fig. 18.28.

The first four stages use handwritten regular expression and grammar rules to
do basic tokenization, chunking, and parsing. Stage 5 then recognizes entities and
events with a FST-based recognizer and inserts the recognized objects into the ap-
propriate slots in templates. This FST recognizer is based on hand-built regular
expressions like the following (NG indicates Noun-Group and VG Verb-Group),
which matches the first sentence of the news story above.

NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies)

VG(Produce) NG(Product)
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No. Step Description
1 Tokens Tokenize input stream of characters
2 Complex Words Multiword phrases, numbers, and proper names.
3 Basic phrases Segment sentences into noun and verb groups
4 Complex phrases Identify complex noun groups and verb groups
5 Semantic Patterns Identify entities and events, insert into templates.
6 Merging Merge references to the same entity or event

Figure 18.28 Levels of processing in FASTUS (Hobbs et al., 1997). Each level extracts a
specific type of information which is then passed on to the next higher level.

The result of processing these two sentences is the five draft templates (Fig. 18.29)
that must then be merged into the single hierarchical structure shown in Fig. 18.27.
The merging algorithm, after performing coreference resolution, merges two activi-
ties that are likely to be describing the same events.

# Template/Slot Value
1 RELATIONSHIP: TIE-UP

ENTITIES: Bridgestone Co., a local concern, a Japanese trading house
2 ACTIVITY: PRODUCTION

PRODUCT: “golf clubs”
3 RELATIONSHIP: TIE-UP

JOINT VENTURE: “Bridgestone Sports Taiwan Co.”
AMOUNT: NT$20000000

4 ACTIVITY: PRODUCTION
COMPANY: “Bridgestone Sports Taiwan Co.”
STARTDATE: DURING: January 1990

5 ACTIVITY: PRODUCTION
PRODUCT: “iron and “metal wood” clubs”

Figure 18.29 The five partial templates produced by stage 5 of FASTUS. These templates
are merged in stage 6 to produce the final template shown in Fig. 18.27 on page 350.

18.6 Summary

This chapter has explored techniques for extracting limited forms of semantic con-
tent from texts.

• Named entities can be recognized and classified by featured-based or neural
sequence labeling techniques.

• Relations among entities can be extracted by pattern-based approaches, su-
pervised learning methods when annotated training data is available, lightly
supervised bootstrapping methods when small numbers of seed tuples or
seed patterns are available, distant supervision when a database of relations
is available, and unsupervised or Open IE methods.

• Reasoning about time can be facilitated by detection and normalization of
temporal expressions through a combination of statistical learning and rule-
based methods.

• Events can be detected and ordered in time using sequence models and classi-
fiers trained on temporally- and event-labeled data like the TimeBank corpus.



352 CHAPTER 18 • INFORMATION EXTRACTION

• Template-filling applications can recognize stereotypical situations in texts
and assign elements from the text to roles represented as fixed sets of slots.

Bibliographical and Historical Notes
The earliest work on information extraction addressed the template-filling task in the
context of the Frump system (DeJong, 1982). Later work was stimulated by the U.S.
government-sponsored MUC conferences (Sundheim 1991, Sundheim 1992, Sund-
heim 1993, Sundheim 1995). Early MUC systems like CIRCUS system (Lehnert
et al., 1991) and SCISOR (Jacobs and Rau, 1990) were quite influential and inspired
later systems like FASTUS (Hobbs et al., 1997). Chinchor et al. (1993) describe the
MUC evaluation techniques.

Due to the difficulty of porting systems from one domain to another, attention
shifted to machine learning approaches.

Early supervised learning approaches to IE ( Cardie 1993, Cardie 1994, Riloff 1993,
Soderland et al. 1995, Huffman 1996) focused on automating the knowledge acqui-
sition process, mainly for finite-state rule-based systems. Their success, and the
earlier success of HMM-based speech recognition, led to the use of sequence la-
beling (HMMs: Bikel et al. 1997; MEMMs McCallum et al. 2000; CRFs: Laf-
ferty et al. 2001), and a wide exploration of features (Zhou et al., 2005). Neural
approaches to NER mainly follow from the pioneering results of Collobert et al.
(2011), who applied a CRF on top of a convolutional net. BiLSTMs with word and
character-based embeddings as input followed shortly and became a standard neural
algorithm for NER (Huang et al. 2015, Ma and Hovy 2016, Lample et al. 2016b).

Neural algorithms for relation extraction often explore architectures that can
handle entities far apart in the sentence: recursive networks (Socher et al., 2012),
convolutional nets (dos Santos et al., 2015), or chain or tree LSTMS (Miwa and
Bansal 2016, Peng et al. 2017).

Progress in this area continues to be stimulated by formal evaluations with shared
benchmark datasets, including the Automatic Content Extraction (ACE) evaluations
of 2000-2007 on named entity recognition, relation extraction, and temporal ex-
pressions3, the KBP (Knowledge Base Population) evaluations (Ji et al. 2010, Sur-KBP

deanu 2013) of relation extraction tasks like slot filling (extracting attributes (‘slots’)slot filling

like age, birthplace, and spouse for a given entity) and a series of SemEval work-
shops (Hendrickx et al., 2009).

Semisupervised relation extraction was first proposed by Hearst (1992b), and
extended by systems like AutoSlog-TS (Riloff, 1996), DIPRE (Brin, 1998), SNOW-
BALL (Agichtein and Gravano, 2000), and (Jones et al., 1999). The distant super-
vision algorithm we describe was drawn from Mintz et al. (2009), who coined the
term ‘distant supervision’, but similar ideas occurred in earlier systems like Craven
and Kumlien (1999) and Morgan et al. (2004) under the name weakly labeled data,
as well as in Snow et al. (2005) and Wu and Weld (2007). Among the many exten-
sions are Wu and Weld (2010), Riedel et al. (2010), and Ritter et al. (2013). Open
IE systems include KNOWITALL Etzioni et al. (2005), TextRunner (Banko et al.,
2007), and REVERB (Fader et al., 2011). See Riedel et al. (2013) for a universal
schema that combines the advantages of distant supervision and Open IE.

3 www.nist.gov/speech/tests/ace/
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HeidelTime (Strötgen and Gertz, 2013) and SUTime (Chang and Manning, 2012)
are downloadable temporal extraction and normalization systems. The 2013 TempE-
val challenge is described in UzZaman et al. (2013); Chambers (2013) and Bethard
(2013) give typical approaches.

Exercises
18.1 Develop a set of regular expressions to recognize the character shape features

described on page 329.

18.2 The IOB labeling scheme given in this chapter isn’t the only possible one. For
example, an E tag might be added to mark the end of entities, or the B tag
can be reserved only for those situations where an ambiguity exists between
adjacent entities. Propose a new set of IOB tags for use with your NER system.
Experiment with it and compare its performance with the scheme presented
in this chapter.

18.3 Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a
list of names of works of art from a particular category from a Web-based
source (e.g., gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list
and give examples of ways that the names in it are likely to be problematic for
the techniques described in this chapter.

18.4 Develop an NER system specific to the category of names that you collected in
the last exercise. Evaluate your system on a collection of text likely to contain
instances of these named entities.

18.5 Acronym expansion, the process of associating a phrase with an acronym, can
be accomplished by a simple form of relational analysis. Develop a system
based on the relation analysis approaches described in this chapter to populate
a database of acronym expansions. If you focus on English Three Letter
Acronyms (TLAs) you can evaluate your system’s performance by comparing
it to Wikipedia’s TLA page.

18.6 A useful functionality in newer email and calendar applications is the ability
to associate temporal expressions connected with events in email (doctor’s
appointments, meeting planning, party invitations, etc.) with specific calendar
entries. Collect a corpus of email containing temporal expressions related to
event planning. How do these expressions compare to the kinds of expressions
commonly found in news text that we’ve been discussing in this chapter?

18.7 Acquire the CMU seminar corpus and develop a template-filling system by
using any of the techniques mentioned in Section 18.5. Analyze how well
your system performs as compared with state-of-the-art results on this corpus.
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CHAPTER

19 Word Senses and WordNet

To get a single right meaning is better than a ship-load of pearls,
To resolve a single doubt is like the bottom falling off the bucket.

Yuen Mei袁枚(1785) (translation by Arthur Waley)

Words are ambiguous: the same word can be used to mean different things. Forambiguous

example in Chapter 6 we saw that the word “mouse” has (at least) two meanings:
(1) a small rodent, or (2) a hand-operated device to control a cursor. Or the word
“bank” can mean: (1) a financial institution or (2) a sloping mound.

We say that the words ‘mouse’ or ‘bank’ are polysemous (from Greek ‘having
many senses’, poly- ‘many’ + sema, ‘sign, mark’).1 A sense (or word sense) isword sense

a discrete representation of one aspect of the meaning of a word. In this chapter
we discuss word senses in more detail and introduce WordNet, a large online the-WordNet

saurus —a database that represents word senses—with versions in many languages.
WordNet also represents relations between senses. For example, there is an IS-A
relation between dog and mammal (a dog is a kind of mammal) and a part-whole
relation between engine and car (an engine is a part of a car).

Knowing the relation between two senses can play an important role in language
understanding. Consider the antonymy relation. Two words are antonyms if they
have opposite meanings, like long and short, or up and down. Distinguishing these is
quite important for language understanding (if a user asks a dialogue agent to turn up
the music, it would be unfortunate to instead turn it down). But in fact in embedding
models like word2vec, antonyms are easily confused with each other, because often
one of the closest words in embedding space to a word (e.g., up) is its antonym (e.g.,
down). Thesauruses that represent this relationship can help!

We also introduce word sense disambiguation (WSD), the task of determiningword sense
disambiguation

which sense of a word is being used in a particular context. We’ll give supervised
and unsupervised algorithms for deciding which sense was intended in a particular
context. This task has a very long history in computational linguistics and many ap-
plications. In question answering, we can be more helpful to a user who asks about
“bat care” if we know which sense of bat is relevant. (Is the user is a vampire? or
just wants to play baseball.) And the different senses of a word often have different
translations; in Spanish the animal bat is a murciélago while the baseball bat is a
bate, and indeed word sense algorithms may help improve MT (Pu et al., 2018).
Finally, WSD has long been used as a tool for evaluating natural language under-
standing models, and understanding how models represent different word senses is
an important analytic direction.

1 You may also see the word polysemy used in a different way, to refer only to cases where a word’s
senses have some sort of semantic relation, and use the word homonymy for cases with no relation
between the senses.
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19.1 Word Senses

A sense (or word sense) is a discrete representation of one aspect of the meaning ofword sense

a word. Loosely following lexicographic tradition, we represent each sense with a
superscript: bank1 and bank2, mouse1 and mouse2. In context, it’s easy to see the
different meanings:
mouse1 : .... a mouse controlling a computer system in 1968.
mouse2 : .... a quiet animal like a mouse
bank1 : ...a bank can hold the investments in a custodial account ...
bank2 : ...as agriculture burgeons on the east bank, the river ...

19.1.1 Defining Word Senses
How can we define the meaning of a word sense? We introduced in Chapter 6 the
standard computational approach of representing a word as an embedding, a point
in semantic space. The intuition of embedding models like word2vec or GloVe is
that the meaning of a word can be defined by its co-occurrences, the counts of words
that often occur nearby. But that doesn’t tell us how to define the meaning of a
word sense. Contextual embeddings like ELMo or BERT go further by offering an
embedding that represents the meaning of a word in its textual context, and we’ll
see that contextual embeddings lie at the heart of modern algorithms for word sense
disambiguation.

But first, we need to consider the alternative ways that dictionaries and the-
sauruses offer for defining senses. One is based on the fact that dictionaries or the-
sauruses give textual definitions for each sense called glosses. Here are the glossesgloss

for two senses of bank:
1. financial institution that accepts deposits and channels

the money into lending activities

2. sloping land (especially the slope beside a body of water)

Glosses are not a formal meaning representation; they are just written for people.
Consider the following fragments from the definitions of right, left, red, and blood
from the American Heritage Dictionary (Morris, 1985).

right adj. located nearer the right hand esp. being on the right when
facing the same direction as the observer.

left adj. located nearer to this side of the body than the right.
red n. the color of blood or a ruby.

blood n. the red liquid that circulates in the heart, arteries and veins of
animals.

Note the circularity in these definitions. The definition of right makes two direct
references to itself, and the entry for left contains an implicit self-reference in the
phrase this side of the body, which presumably means the left side. The entries for
red and blood reference each other in their definitions. For humans, such entries are
useful since the user of the dictionary has sufficient grasp of these other terms.

Yet despite their circularity and lack of formal representation, glosses can still
be useful for computational modeling of senses. This is because a gloss is just a sen-
tence, and from sentences we can compute sentence embeddings that tell us some-
thing about the meaning of the sense. Dictionaries often give example sentences
along with glosses, and these can again be used to help build a sense representation.
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The second way that thesauruses offer for defining a sense is—like the dictionary
definitions—defining a sense through its relationship with other senses. For exam-
ple, the above definitions make it clear that right and left are similar kinds of lemmas
that stand in some kind of alternation, or opposition, to one another. Similarly, we
can glean that red is a color and that blood is a liquid. Sense relations of this sort
(IS-A, or antonymy) are explicitly listed in on-line databases like WordNet. Given
a sufficiently large database of such relations, many applications are quite capable
of performing sophisticated semantic tasks about word senses (even if they do not
really know their right from their left).

19.1.2 How many senses do words have?

Dictionaries and thesauruses give discrete lists of senses. By contrast, embeddings
(whether static or contextual) offer a continuous high-dimensional model of meaning
that doesn’t divide up into discrete senses.

Therefore creating a thesaurus depends on criteria for deciding when the differ-
ing uses of a word should be represented with discrete senses. We might consider
two senses discrete if they have independent truth conditions, different syntactic be-
havior, and independent sense relations, or if they exhibit antagonistic meanings.

Consider the following uses of the verb serve from the WSJ corpus:

(19.1) They rarely serve red meat, preferring to prepare seafood.

(19.2) He served as U.S. ambassador to Norway in 1976 and 1977.

(19.3) He might have served his time, come out and led an upstanding life.

The serve of serving red meat and that of serving time clearly have different truth
conditions and presuppositions; the serve of serve as ambassador has the distinct
subcategorization structure serve as NP. These heuristics suggest that these are prob-
ably three distinct senses of serve. One practical technique for determining if two
senses are distinct is to conjoin two uses of a word in a single sentence; this kind
of conjunction of antagonistic readings is called zeugma. Consider the followingzeugma

examples:

(19.4) Which of those flights serve breakfast?

(19.5) Does Air France serve Philadelphia?

(19.6) ?Does Air France serve breakfast and Philadelphia?

We use (?) to mark those examples that are semantically ill-formed. The oddness of
the invented third example (a case of zeugma) indicates there is no sensible way to
make a single sense of serve work for both breakfast and Philadelphia. We can use
this as evidence that serve has two different senses in this case.

Dictionaries tend to use many fine-grained senses so as to capture subtle meaning
differences, a reasonable approach given that the traditional role of dictionaries is
aiding word learners. For computational purposes, we often don’t need these fine
distinctions, so we often group or cluster the senses; we have already done this for
some of the examples in this chapter. Indeed, clustering examples into senses, or
senses into broader-grained categories, is an important computational task that we’ll
discuss in Section 19.7.
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19.2 Relations Between Senses

This section explores the relations between word senses, especially those that have
received significant computational investigation like synonymy, antonymy, and hy-
pernymy.

Synonymy

We introduced in Chapter 6 the idea that when two senses of two different words
(lemmas) are identical, or nearly identical, we say the two senses are synonyms.synonym

Synonyms include such pairs as

couch/sofa vomit/throw up filbert/hazelnut car/automobile

And we mentioned that in practice, the word synonym is commonly used to
describe a relationship of approximate or rough synonymy. But furthermore, syn-
onymy is actually a relationship between senses rather than words. Considering the
words big and large. These may seem to be synonyms in the following sentences,
since we could swap big and large in either sentence and retain the same meaning:

(19.7) How big is that plane?
(19.8) Would I be flying on a large or small plane?

But note the following sentence in which we cannot substitute large for big:

(19.9) Miss Nelson, for instance, became a kind of big sister to Benjamin.
(19.10) ?Miss Nelson, for instance, became a kind of large sister to Benjamin.

This is because the word big has a sense that means being older or grown up, while
large lacks this sense. Thus, we say that some senses of big and large are (nearly)
synonymous while other ones are not.

Antonymy

Whereas synonyms are words with identical or similar meanings, antonyms areantonym

words with an opposite meaning, like:

long/short big/little fast/slow cold/hot dark/light
rise/fall up/down in/out

Two senses can be antonyms if they define a binary opposition or are at opposite
ends of some scale. This is the case for long/short, fast/slow, or big/little, which are
at opposite ends of the length or size scale. Another group of antonyms, reversives,reversives

describe change or movement in opposite directions, such as rise/fall or up/down.
Antonyms thus differ completely with respect to one aspect of their meaning—

their position on a scale or their direction—but are otherwise very similar, sharing
almost all other aspects of meaning. Thus, automatically distinguishing synonyms
from antonyms can be difficult.

Taxonomic Relations

Another way word senses can be related is taxonomically. A word (or sense) is a
hyponym of another word or sense if the first is more specific, denoting a subclasshyponym

of the other. For example, car is a hyponym of vehicle, dog is a hyponym of animal,
and mango is a hyponym of fruit. Conversely, we say that vehicle is a hypernym ofhypernym

car, and animal is a hypernym of dog. It is unfortunate that the two words (hypernym



358 CHAPTER 19 • WORD SENSES AND WORDNET

and hyponym) are very similar and hence easily confused; for this reason, the word
superordinate is often used instead of hypernym.superordinate

Superordinate vehicle fruit furniture mammal
Subordinate car mango chair dog

We can define hypernymy more formally by saying that the class denoted by the
superordinate extensionally includes the class denoted by the hyponym. Thus, the
class of animals includes as members all dogs, and the class of moving actions in-
cludes all walking actions. Hypernymy can also be defined in terms of entailment.
Under this definition, a sense A is a hyponym of a sense B if everything that is A is
also B, and hence being an A entails being a B, or ∀x A(x)⇒ B(x). Hyponymy/hy-
pernymy is usually a transitive relation; if A is a hyponym of B and B is a hyponym
of C, then A is a hyponym of C. Another name for the hypernym/hyponym structure
is the IS-A hierarchy, in which we say A IS-A B, or B subsumes A.IS-A

Hypernymy is useful for tasks like textual entailment or question answering;
knowing that leukemia is a type of cancer, for example, would certainly be useful in
answering questions about leukemia.

Meronymy

Another common relation is meronymy, the part-whole relation. A leg is part of apart-whole

chair; a wheel is part of a car. We say that wheel is a meronym of car, and car is a
holonym of wheel.

Structured Polysemy

The senses of a word can also be related semantically, in which case we call the
relationship between them structured polysemy.Consider this sense bank:structured

polysemy

(19.11) The bank is on the corner of Nassau and Witherspoon.

This sense, perhaps bank4, means something like “the building belonging to
a financial institution”. These two kinds of senses (an organization and the build-
ing associated with an organization ) occur together for many other words as well
(school, university, hospital, etc.). Thus, there is a systematic relationship between
senses that we might represent as

BUILDING↔ ORGANIZATION

This particular subtype of polysemy relation is called metonymy. Metonymy ismetonymy

the use of one aspect of a concept or entity to refer to other aspects of the entity or
to the entity itself. We are performing metonymy when we use the phrase the White
House to refer to the administration whose office is in the White House. Other
common examples of metonymy include the relation between the following pairings
of senses:

AUTHOR ↔ WORKS OF AUTHOR
(Jane Austen wrote Emma) (I really love Jane Austen)

FRUITTREE ↔ FRUIT
(Plums have beautiful blossoms) (I ate a preserved plum yesterday)
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19.3 WordNet: A Database of Lexical Relations

The most commonly used resource for sense relations in English and many other
languages is the WordNet lexical database (Fellbaum, 1998). English WordNetWordNet

consists of three separate databases, one each for nouns and verbs and a third for
adjectives and adverbs; closed class words are not included. Each database contains
a set of lemmas, each one annotated with a set of senses. The WordNet 3.0 release
has 117,798 nouns, 11,529 verbs, 22,479 adjectives, and 4,481 adverbs. The aver-
age noun has 1.23 senses, and the average verb has 2.16 senses. WordNet can be
accessed on the Web or downloaded locally. Figure 19.1 shows the lemma entry for
the noun and adjective bass.

The noun “bass” has 8 senses in WordNet.
1. bass1 - (the lowest part of the musical range)
2. bass2, bass part1 - (the lowest part in polyphonic music)
3. bass3, basso1 - (an adult male singer with the lowest voice)
4. sea bass1, bass4 - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass1, bass5 - (any of various North American freshwater fish with

lean flesh (especially of the genus Micropterus))
6. bass6, bass voice1, basso2 - (the lowest adult male singing voice)
7. bass7 - (the member with the lowest range of a family of musical instruments)
8. bass8 - (nontechnical name for any of numerous edible marine and

freshwater spiny-finned fishes)

Figure 19.1 A portion of the WordNet 3.0 entry for the noun bass.

Note that there are eight senses for the noun and one for the adjective, each of
which has a gloss (a dictionary-style definition), a list of synonyms for the sense, andgloss

sometimes also usage examples (shown for the adjective sense). WordNet doesn’t
represent pronunciation, so doesn’t distinguish the pronunciation [b ae s] in bass4,
bass5, and bass8 from the other senses pronounced [b ey s].

The set of near-synonyms for a WordNet sense is called a synset (for synonymsynset

set); synsets are an important primitive in WordNet. The entry for bass includes
synsets like {bass1, deep6}, or {bass6, bass voice1, basso2}. We can think of a
synset as representing a concept of the type we discussed in Chapter 16. Thus,
instead of representing concepts in logical terms, WordNet represents them as lists
of the word senses that can be used to express the concept. Here’s another synset
example:

{chump1, fool2, gull1, mark9, patsy1, fall guy1,

sucker1, soft touch1, mug2}
The gloss of this synset describes it as:

Gloss: a person who is gullible and easy to take advantage of.

Glosses are properties of a synset, so that each sense included in the synset has the
same gloss and can express this concept. Because they share glosses, synsets like
this one are the fundamental unit associated with WordNet entries, and hence it is
synsets, not wordforms, lemmas, or individual senses, that participate in most of the
lexical sense relations in WordNet.

WordNet also labels each synset with a lexicographic category drawn from a
semantic field for example the 26 categories for nouns shown in Fig. 19.2, as well
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as 15 for verbs (plus 2 for adjectives and 1 for adverbs). These categories are often
called supersenses, because they act as coarse semantic categories or groupings ofsupersense

senses which can be useful when word senses are too fine-grained (Ciaramita and
Johnson 2003, Ciaramita and Altun 2006). Supersenses have also been defined for
adjectives (Tsvetkov et al., 2014) and prepositions (Schneider et al., 2018).

Category Example Category Example Category Example
ACT service GROUP place PLANT tree
ANIMAL dog LOCATION area POSSESSION price
ARTIFACT car MOTIVE reason PROCESS process
ATTRIBUTE quality NATURAL EVENT experience QUANTITY amount
BODY hair NATURAL OBJECT flower RELATION portion
COGNITION way OTHER stuff SHAPE square
COMMUNICATION review PERSON people STATE pain
FEELING discomfort PHENOMENON result SUBSTANCE oil
FOOD food TIME day

Figure 19.2 Supersenses: 26 lexicographic categories for nouns in WordNet.

19.3.1 Sense Relations in WordNet
WordNet represents all the kinds of sense relations discussed in the previous section,
as illustrated in Fig. 19.3 and Fig. 19.4.

Relation Also Called Definition Example
Hypernym Superordinate From concepts to superordinates breakfast1 → meal1

Hyponym Subordinate From concepts to subtypes meal1 → lunch1

Instance Hypernym Instance From instances to their concepts Austen1 → author1

Instance Hyponym Has-Instance From concepts to their instances composer1 → Bach1

Part Meronym Has-Part From wholes to parts table2 → leg3

Part Holonym Part-Of From parts to wholes course7 → meal1

Antonym Semantic opposition between lemmas leader1 ⇐⇒ follower1

Derivation Lemmas w/same morphological root destruction1 ⇐⇒ destroy1

Figure 19.3 Some of the noun relations in WordNet.

Relation Definition Example
Hypernym From events to superordinate events fly9 → travel5

Troponym From events to subordinate event walk1 → stroll1
Entails From verbs (events) to the verbs (events) they entail snore1 → sleep1

Antonym Semantic opposition between lemmas increase1 ⇐⇒ decrease1

Figure 19.4 Some verb relations in WordNet.

For example WordNet represents hyponymy (page 357) by relating each synset
to its immediately more general and more specific synsets through direct hypernym
and hyponym relations. These relations can be followed to produce longer chains
of more general or more specific synsets. Figure 19.5 shows hypernym chains for
bass3 and bass7; more general synsets are shown on successively indented lines.

WordNet has two kinds of taxonomic entities: classes and instances. An instance
is an individual, a proper noun that is a unique entity. San Francisco is an instance
of city, for example. But city is a class, a hyponym of municipality and eventually
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bass3, basso (an adult male singer with the lowest voice)

=> singer, vocalist, vocalizer, vocaliser

=> musician, instrumentalist, player

=> performer, performing artist

=> entertainer

=> person, individual, someone...

=> organism, being

=> living thing, animate thing,

=> whole, unit

=> object, physical object

=> physical entity

=> entity

bass7 (member with the lowest range of a family of instruments)

=> musical instrument, instrument

=> device

=> instrumentality, instrumentation

=> artifact, artefact

=> whole, unit

=> object, physical object

=> physical entity

=> entity

Figure 19.5 Hyponymy chains for two separate senses of the lemma bass. Note that the
chains are completely distinct, only converging at the very abstract level whole, unit.

of location. Fig. 19.6 shows a subgraph of WordNet demonstrating many of the
relations.

Figure 19.6 WordNet viewed as a graph. Figure from Navigli (2016).
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19.4 Word Sense Disambiguation

The task of selecting the correct sense for a word is called word sense disambigua-
tion, or WSD. WSD algorithms take as input a word in context and a fixed inventoryword sense

disambiguation
WSD of potential word senses and outputs the correct word sense in context.

19.4.1 WSD: The Task and Datasets
In this section we introduce the task setup for WSD, and then turn to algorithms.
The inventory of sense tags depends on the task. For sense tagging in the context
of translation from English to Spanish, the sense tag inventory for an English word
might be the set of different Spanish translations. For automatic indexing of med-
ical articles, the sense-tag inventory might be the set of MeSH (Medical Subject
Headings) thesaurus entries. Or we can use the set of senses from a resource like
WordNet, or supersenses if we want a coarser-grain set. Figure 19.4.1 shows some
such examples for the word bass.

WordNet Spanish WordNet
Sense Translation Supersense Target Word in Context
bass4 lubina FOOD . . . fish as Pacific salmon and striped bass and. . .
bass7 bajo ARTIFACT . . . play bass because he doesn’t have to solo. . .

Figure 19.7 Some possibile sense tag inventories for bass.

In some situations, we just need to disambiguate a small number of words. In
such lexical sample tasks, we have a small pre-selected set of target words and anlexical sample

inventory of senses for each word from some lexicon. Since the set of words and the
set of senses are small, simple supervised classification approaches work very well.

More commonly, however, we have a harder problem in which we have to dis-
ambiguate all the words in some text. In this all-words task, the system is given anall-words

entire texts and a lexicon with an inventory of senses for each entry and we have to
disambiguate every word in the text (or sometimes just every content word). The
all-words task is similar to part-of-speech tagging, except with a much larger set of
tags since each lemma has its own set. A consequence of this larger set of tags is
data sparseness.

Supervised all-word disambiguation tasks are generally trained from a semantic
concordance, a corpus in which each open-class word in each sentence is labeledsemantic

concordance
with its word sense from a specific dictionary or thesaurus, most often WordNet.
The SemCor corpus is a subset of the Brown Corpus consisting of over 226,036
words that were manually tagged with WordNet senses (Miller et al. 1993, Landes
et al. 1998). Other sense-tagged corpora have been built for the SENSEVAL and Se-
mEval WSD tasks, such as the SENSEVAL-3 Task 1 English all-words test data with
2282 annotations (Snyder and Palmer, 2004) or the SemEval-13 Task 12 datasets.
Large semantic concordances are also available in other languages including Dutch
(Vossen et al., 2011) and German (Henrich et al., 2012).

Here’s an example from the SemCor corpus showing the WordNet sense num-
bers of the tagged words; we’ve used the standard WSD notation in which a subscript
marks the part of speech (Navigli, 2009):

(19.12) You will find9
v that avocado1

n is1
v unlike1

j other1
j fruit1n you have ever1

r tasted2
v

Given each noun, verb, adjective, or adverb word in the hand-labeled test set (say
fruit), the SemCor-based WSD task is to choose the correct sense from the possible
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senses in WordNet. For fruit this would mean choosing between the correct answer
fruit1n (the ripened reproductive body of a seed plant), and the other two senses fruit2n
(yield; an amount of a product) and fruit3n (the consequence of some effort or action).
Fig. 19.8 sketches the task.

an electric guitar and bass player stand off to one side

electric1: 
using 

electricity
electric2:  

tense
electric3: 
thrilling guitar1 

bass1: 
low range

…
bass4: 
sea fish

… 
bass7: 

instrument
…

player1: 
in game
player2: 
musician 
player3: 

actor
…

stand1: 
upright

…
stand5: 

bear
… 

stand10: 
put 

upright
…

side1: 
relative 
region
…

side3: 
of body

… 
side11: 
slope
…

x1

y1

x2

y2

x3

y3
y4

y5 y6

x4 x5 x6

Figure 19.8 The all-words WSD task, mapping from input words (x) to WordNet senses
(y). Only nouns, verbs, adjectives, and adverbs are mapped, and note that some words (like
guitar in the example) only have one sense in WordNet. Figure inspired by Chaplot and
Salakhutdinov (2018).

WSD systems are typically evaluated intrinsically, by computing F1 against
hand-labeled sense tags in a held-out set, such as the SemCor corpus or SemEval
corpora discussed above.

A surprisingly strong baseline is simply to choose the most frequent sense formost frequent
sense

each word from the senses in a labeled corpus (Gale et al., 1992a). For WordNet, this
corresponds to the first sense, since senses in WordNet are generally ordered from
most frequent to least frequent based on their counts in the SemCor sense-tagged
corpus. The most frequent sense baseline can be quite accurate, and is therefore
often used as a default, to supply a word sense when a supervised algorithm has
insufficient training data.

A second heuristic, called one sense per discourse is based on the work ofone sense per
discourse

Gale et al. (1992b), who noticed that a word appearing multiple times in a text or
discourse often appears with the same sense. This heuristic seems to hold better for
coarse-grained senses and particularly for cases of homonymy rather than polysemy,
so isn’t generally used as a baseline. Nonetheless various kinds of disambiguation
tasks often include some such bias toward resolving an ambiguity the same way
inside a discourse segment.

19.4.2 The WSD Algorithm: Contextual Embeddings

The best-performing WSD algorithm is a simple 1-nearest-neighbor algorithm using
contextual word embeddings, due to Melamud et al. (2016) and Peters et al. (2018).
At training time we pass each sentence in the SemCore labeled dataset through any
contextual embedding (ELMo or BERT) resulting in a contextual embedding for
each labeled token in SemCore. For each token ci of each sense c of each word, we
average the contextual representations to produce a contextual sense embedding vs
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for c:

vs =
1
n

∑

i

ci (19.13)

At test time we similarly compute a contextual embedding t for the target word, and
choose its nearest neighbor sense (the sense with the highest cosine with t) from the
training set. Fig. 19.9 illustrates the model.

I  found  the  jar  empty

Neural Language Model

cI cfound

find1v

cthe cjar cempty

find9v

find5vfind4v

Figure 19.9 The nearest-neighbor algorithm for WSD. In green are the contextual embed-
dings precomputed for each sense of each word; here we just show a few of the senses for
find. A contextual embedding is computed for the target word found, and the and then the
nearest neighbor sense (in this case find9

n) would be chosen. Figure inspired by Loureiro and
Jorge (2019).

What do we do for words we haven’t seen in the sense-labeled training data?
After all, the number of senses that appear in SemCor is only a small fraction of the
words in WordNet. The simplest algorithm is to fall back to the Most Frequent Sense
baseline, i.e. taking the first sense in WordNet. But that’s not very satisfactory.

A more powerful approach, due to Loureiro and Jorge (2019), is to impute the
missing sense embeddings, bottom-up, by using the WordNet taxonomy and super-
senses. We get a sense embedding for any higher-level node in the WordNet taxon-
omy by averaging the embeddings of its children, thus computing the embedding for
each synset as the average of its sense embeddings, the embedding for a hypernym
as the average of its synset embeddings, and the lexicographic category (supersense)
embedding as the average of the large set of synset embeddings with that category.
More formally, for each missing sense in WordNet ŝ ∈W , let the sense embeddings
for the other members of its synset be Sŝ, the hypernym-specific synset embeddings
be Hŝ, and the lexicographic (supersense-specific) synset embeddings be Lŝ. We can
then compute the sense embedding for ŝ as follows:

if |Sŝ|> 0, vŝ =
1
|Sŝ|

∑
vs,∀vs ∈ Sŝ (19.14)

else if |Hŝ|> 0, vŝ =
1
|Hŝ|

∑
vsyn,∀vsyn ∈ Hŝ (19.15)

else if |Lŝ|> 0, vŝ =
1
|Lŝ|

∑
vsyn,∀vsyn ∈ Lŝ (19.16)

Since all of the supersenses have some labeled data in SemCor, the algorithm is
guaranteed to have some representation for all possible senses by the time the al-
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gorithm backs off to the most general (supersense) information, although of course
with a very coarse model.

19.5 Alternate WSD algorithms and Tasks

19.5.1 Feature-Based WSD
Feature-based algorithms for WSD are extremely simple and function almost as
well as contextual language model algorithms. The best-performing IMS algorithm
(Zhong and Ng, 2010), augmented by embeddings (Iacobacci et al. 2016, Raganato
et al. 2017b), uses an SVM classifier to choose the sense for each input word with
the following simple features of the surrounding words:

• part-of-speech tags (for a window of 3 words on each side, stopping at sen-
tence boundaries)

• collocation features of words or n-grams of lengths 1, 2, 3) at a particularcollocation

location in a window of 3 word on each side (i.e., exactly one word to the
right, or the two words starting 3 words to the left, and so on).

• weighted average of embeddings (of all words in a window of 10 words on
each side, weighted exponentially by distance)

Consider the ambiguous word bass in the following WSJ sentence:

(19.17) An electric guitar and bass player stand off to one side,

If we used a small 2-word window, a standard feature vector might include parts-of-
speech, unigram and bigram collocation features, and a weighted sum g of embed-
dings, that is:

[wi−2,POSi−2,wi−1,POSi−1,wi+1,POSi+1,wi+2,POSi+2,wi−1
i−2,

wi+2
i+1,g(E(wi−2),E(wi−1),E(wi+1),E(wi+2)] (19.18)

would yield the following vector:

[guitar, NN, and, CC, player, NN, stand, VB, and guitar,

player stand, g(E(guitar),E(and),E(player),E(stand))]

19.5.2 The Lesk Algorithm as WSD Baseline
Generating sense labeled corpora like SemCor is quite difficult and expensive. An
alternative class of WSD algorithms, knowledge-based algorithms, rely solely onknowledge-

based
WordNet or other such resources and don’t require labeled data. While supervised
algorithms generally work better, knowledge-based methods can be used in lan-
guages or domains where thesauruses or dictionaries but not sense labeled corpora
are available.

The Lesk algorithm is the oldest and most powerful knowledge-based WSDLesk algorithm

method, and is a useful baseline. Lesk is really a family of algorithms that choose
the sense whose dictionary gloss or definition shares the most words with the target
word’s neighborhood. Figure 19.10 shows the simplest version of the algorithm,
often called the Simplified Lesk algorithm (Kilgarriff and Rosenzweig, 2000).Simplified Lesk

As an example of the Lesk algorithm at work, consider disambiguating the word
bank in the following context:
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function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense←most frequent sense for word
max-overlap←0
context←set of words in sentence
for each sense in senses of word do
signature←set of words in the gloss and examples of sense
overlap←COMPUTEOVERLAP(signature, context)
if overlap > max-overlap then

max-overlap←overlap
best-sense←sense

end
return(best-sense)

Figure 19.10 The Simplified Lesk algorithm. The COMPUTEOVERLAP function returns
the number of words in common between two sets, ignoring function words or other words
on a stop list. The original Lesk algorithm defines the context in a more complex way.

(19.19) The bank can guarantee deposits will eventually cover future tuition costs
because it invests in adjustable-rate mortgage securities.

given the following two WordNet senses:

bank1 Gloss: a financial institution that accepts deposits and channels the
money into lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgage
on my home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”

Sense bank1 has two non-stopwords overlapping with the context in (19.19):
deposits and mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk, such as weighing the
overlapping words by IDF (inverse document frequency) Chapter 6 to downweight
frequent words like function words; best performing is to use word embedding co-
sine instead of word overlap to compute the similarity between the definition and the
context (Basile et al., 2014). Modern neural extensions of Lesk use the definitions
to compute sense embeddings that can be directly used instead of SemCor-training
embeddings (Kumar et al. 2019, Luo et al. 2018a, Luo et al. 2018b).

19.5.3 Word-in-Context Evaluation
Word Sense Disambiguation is a much more fine-grained evaluation of word mean-
ing than the context-free word similarity tasks we described in Chapter 6. Recall that
tasks like LexSim-999 require systems to match human judgments on the context-
free similarity between two words (how similar is cup to mug?). We can think of
WSD as a kind of contextualized similarity task, since our goal is to be able to dis-
tinguish the meaning of a word lke bass in one context (playing music) from another
context (fishing).

Somewhere in between lies the word-in-context task. Here the system is givenword-in-context
two sentences, each with the same target word but in a different sentential context.
The system must decide whether the target words are used in the same sense in the
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two sentences or in a different sense. Fig. 19.11 shows sample pairs from the WiCWiC

dataset of Pilehvar and Camacho-Collados (2019).

F There’s a lot of trash on the bed of the river —
I keep a glass of water next to my bed when I sleep

F Justify the margins — The end justifies the means
T Air pollution — Open a window and let in some air
T The expanded window will give us time to catch the thieves —

You have a two-hour window of clear weather to finish working on the lawn
Figure 19.11 Positive (T) and negative (F) pairs from the WiC dataset (Pilehvar and
Camacho-Collados, 2019).

The WiC sentences are mainly taken from the example usages for senses in
WordNet. But WordNet senses are very fine-grained. For this reason tasks like
word-in-context first cluster the word senses into coarser clusters, so that the two
sentential contexts for the target word are marked as T if the two senses are in the
same cluster. WiC clusters all pairs of senses if they are first degree connections in
the WordNet semantic graph, including sister senses, or if they belong to the same
supersense; we point to other sense clustering algorithms at the end of the chapter.

The baseline algorithm to solve the WIC task uses contextual embeddings like
BERT with a simple thesholded cosine. We first compute the contextual embed-
dings for the target word in each of the two sentences, and then compute the cosine
between them. If it’s above a threshold tuned on a devset we respond true (the two
senses are the same) else we respond false.

19.5.4 Wikipedia as a source of training data
Datasets other than SemCor have been used for all-words WSD. One important di-
rection is to use Wikipedia as a source of sense-labeled data. When a concept is
mentioned in a Wikipedia article, the article text may contain an explicit link to the
concept’s Wikipedia page, which is named by a unique identifier. This link can be
used as a sense annotation. For example, the ambiguous word bar is linked to a
different Wikipedia article depending on its meaning in context, including the page
BAR (LAW), the page BAR (MUSIC), and so on, as in the following Wikipedia
examples (Mihalcea, 2007).

In 1834, Sumner was admitted to the [[bar (law)|bar]] at the age of
twenty-three, and entered private practice in Boston.

It is danced in 3/4 time (like most waltzes), with the couple turning
approx. 180 degrees every [[bar (music)|bar]].

Jenga is a popular beer in the [[bar (establishment)|bar]]s of Thailand.

These sentences can then be added to the training data for a supervised system.
In order to use Wikipedia in this way, however, it is necessary to map from Wikipedia
concepts to whatever inventory of senses is relevant for the WSD application. Auto-
matic algorithms that map from Wikipedia to WordNet, for example, involve finding
the WordNet sense that has the greatest lexical overlap with the Wikipedia sense, by
comparing the vector of words in the WordNet synset, gloss, and related senses with
the vector of words in the Wikipedia page title, outgoing links, and page category
(Ponzetto and Navigli, 2010). The resulting mapping has been used to create Babel-
Net, a large sense-annotated resource (Navigli and Ponzetto, 2012).
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19.6 Using Thesauruses to Improve Embeddings

Thesauruses have also been used to improve both static and contextual word em-
beddings. For example, static word embeddings have a problem with antonyms.
A word like expensive is often very similar in embedding cosine to its antonym
like cheap. Antonymy information from thesauruses can help solve this problem;
Fig. 19.12 shows nearest neighbors to some target words in GloVe, and the improve-
ment after one such method.

Before counterfitting After counterfitting
east west north south eastward eastern easterly
expensive pricey cheaper costly costly pricy overpriced
British American Australian Britain Brits London BBC

Figure 19.12 The nearest neighbors in GloVe to east, expensive, and British include
antonyms like west. The right side showing the improvement in GloVe nearest neighbors
after the counterfitting method (Mrkšić et al., 2016).

There are two families of solutions. The first requires retraining: we modify the
embedding training to incorporate thesaurus relations like synonymy, antonym, or
supersenses. This can be done by modifying the static embedding loss function for
word2vec (Yu and Dredze 2014, Nguyen et al. 2016) or by modifying contextual
embedding training (Levine et al. 2019, Lauscher et al. 2019).

The second, for static embeddings, is more light-weight; after the embeddings
have been trained we learn a second mapping based on a thesaurus that shifts the
embeddings of words in such a way that synonyms (according to the thesaurus) are
pushed closer and antonyms further apart. Such methods are called retrofittingretrofitting

(Faruqui et al. 2015, Lengerich et al. 2018) or counterfitting (Mrkšić et al., 2016).

19.7 Word Sense Induction

It is expensive and difficult to build large corpora in which each word is labeled for
its word sense. For this reason, an unsupervised approach to sense disambiguation,
often called word sense induction or WSI, is an important direction. In unsu-word sense

induction
pervised approaches, we don’t use human-defined word senses. Instead, the set of
“senses” of each word is created automatically from the instances of each word in
the training set.

Most algorithms for word sense induction follow the early work of Schütze
(Schütze 1992b, Schütze 1998) in using some sort of clustering over word embed-
dings. In training, we use three steps:

1. For each token wi of word w in a corpus, compute a context vector c.
2. Use a clustering algorithm to cluster these word-token context vectors c into

a predefined number of groups or clusters. Each cluster defines a sense of w.
3. Compute the vector centroid of each cluster. Each vector centroid sj is a

sense vector representing that sense of w.

Since this is an unsupervised algorithm, we don’t have names for each of these
“senses” of w; we just refer to the jth sense of w.

To disambiguate a particular token t of w we again have three steps:
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1. Compute a context vector c for t.
2. Retrieve all sense vectors s j for w.
3. Assign t to the sense represented by the sense vector s j that is closest to t.

All we need is a clustering algorithm and a distance metric between vectors.
Clustering is a well-studied problem with a wide number of standard algorithms that
can be applied to inputs structured as vectors of numerical values (Duda and Hart,
1973). A frequently used technique in language applications is known as agglom-
erative clustering. In this technique, each of the N training instances is initiallyagglomerative

clustering
assigned to its own cluster. New clusters are then formed in a bottom-up fashion by
the successive merging of the two clusters that are most similar. This process con-
tinues until either a specified number of clusters is reached, or some global goodness
measure among the clusters is achieved. In cases in which the number of training
instances makes this method too expensive, random sampling can be used on the
original training set to achieve similar results.

How can we evaluate unsupervised sense disambiguation approaches? As usual,
the best way is to do extrinsic evaluation embedded in some end-to-end system; one
example used in a SemEval bakeoff is to improve search result clustering and di-
versification (Navigli and Vannella, 2013). Intrinsic evaluation requires a way to
map the automatically derived sense classes into a hand-labeled gold-standard set so
that we can compare a hand-labeled test set with a set labeled by our unsupervised
classifier. Various such metrics have been tested, for example in the SemEval tasks
(Manandhar et al. 2010, Navigli and Vannella 2013, Jurgens and Klapaftis 2013),
including cluster overlap metrics, or methods that map each sense cluster to a pre-
defined sense by choosing the sense that (in some training set) has the most overlap
with the cluster. However it is fair to say that no evaluation metric for this task has
yet become standard.

19.8 Summary

This chapter has covered a wide range of issues concerning the meanings associated
with lexical items. The following are among the highlights:

• A word sense is the locus of word meaning; definitions and meaning relations
are defined at the level of the word sense rather than wordforms.

• Many words are polysemous, having many senses.
• Relations between senses include synonymy, antonymy, meronymy, and

taxonomic relations hyponymy and hypernymy.
• WordNet is a large database of lexical relations for English, and WordNets

exist for a variety of languages.
• Word-sense disambiguation (WSD) is the task of determining the correct

sense of a word in context. Supervised approaches make use of a corpus
of sentences in which individual words (lexical sample task) or all words
(all-words task) are hand-labeled with senses from a resource like WordNet.
SemCor is the largest corpus with WordNet-labeled senses.

• The standard supervised algorithm for WSD is nearest neighbors with contex-
tual embeddings.

• Feature-based algorithms using parts of speech and embeddings of words in
the context of the target word also work well.
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• An important baseline for WSD is the most frequent sense, equivalent, in
WordNet, to take the first sense.

• Another baseline is a knowledge-based WSD algorithm called the Lesk al-
gorithm which chooses the sense whose dictionary definition shares the most
words with the target word’s neighborhood.

• Word sense induction is the task of learning word senses unsupervised.

Bibliographical and Historical Notes
Word sense disambiguation traces its roots to some of the earliest applications of
digital computers. The insight that underlies modern algorithms for word sense
disambiguation was first articulated by Weaver (1955) in the context of machine
translation:

If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible
to determine, one at a time, the meaning of the words. [. . . ] But if
one lengthens the slit in the opaque mask, until one can see not only
the central word in question but also say N words on either side, then
if N is large enough one can unambiguously decide the meaning of the
central word. [. . . ] The practical question is : “What minimum value of
N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?”

Other notions first proposed in this early period include the use of a thesaurus for dis-
ambiguation (Masterman, 1957), supervised training of Bayesian models for disam-
biguation (Madhu and Lytel, 1965), and the use of clustering in word sense analysis
(Sparck Jones, 1986).

An enormous amount of work on disambiguation was conducted within the con-
text of early AI-oriented natural language processing systems. Quillian (1968) and
Quillian (1969) proposed a graph-based approach to language understanding, in
which the dictionary definition of words was represented by a network of word nodes
connected by syntactic and semantic relations. He then proposed to do sense disam-
biguation by finding the shortest path between senses in the conceptual graph. Sim-
mons (1973) is another influential early semantic network approach. Wilks proposed
one of the earliest non-discrete models with his Preference Semantics (Wilks 1975c,
Wilks 1975b, Wilks 1975a), and Small and Rieger (1982) and Riesbeck (1975) pro-
posed understanding systems based on modeling rich procedural information for
each word. Hirst’s ABSITY system (Hirst and Charniak 1982, Hirst 1987, Hirst 1988),
which used a technique called marker passing based on semantic networks, repre-
sents the most advanced system of this type. As with these largely symbolic ap-
proaches, early neural network (at the time called ‘connectionist’) approaches to
word sense disambiguation relied on small lexicons with hand-coded representa-
tions (Cottrell 1985, Kawamoto 1988).

The earliest implementation of a robust empirical approach to sense disambigua-
tion is due to Kelly and Stone (1975), who directed a team that hand-crafted a set of
disambiguation rules for 1790 ambiguous English words. Lesk (1986) was the first
to use a machine-readable dictionary for word sense disambiguation. A collection
of work concerning WordNet can be found in Fellbaum (1998). Early work using
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dictionaries as lexical resources include Amsler’s (1981) use of the Merriam Web-
ster dictionary and Longman’s Dictionary of Contemporary English (Boguraev and
Briscoe, 1989).

Supervised approaches to disambiguation began with the use of decision trees
by Black (1988). In addition to the IMS and contextual-embedding based methods
for supervised WSD, recent supervised algorithms includes encoder-decoder models
(Raganato et al., 2017a).

The need for large amounts of annotated text in supervised methods led early
on to investigations into the use of bootstrapping methods (Hearst 1991, Yarow-
sky 1995). For example Diab and Resnik (2002) give a semi-supervised algorithm
for sense disambiguation based on aligned parallel corpora in two languages. For
example, the fact that the French word catastrophe might be translated as English
disaster in one instance and tragedy in another instance can be used to disambiguate
the senses of the two English words (i.e., to choose senses of disaster and tragedy
that are similar).

The earliest use of clustering in the study of word senses was by Sparck Jones
(1986); Pedersen and Bruce (1997), Schütze (1997b), and Schütze (1998) applied
distributional methods. Clustering word senses into coarse senses has also beencoarse senses

used to address the problem of dictionary senses being too fine-grained (Section 19.5.3)
(Dolan 1994, Chen and Chang 1998, Mihalcea and Moldovan 2001, Agirre and
de Lacalle 2003, Palmer et al. 2004, Navigli 2006, Snow et al. 2007, Pilehvar
et al. 2013). Corpora with clustered word senses for training supervised clustering
algorithms include Palmer et al. (2006) and OntoNotes (Hovy et al., 2006).OntoNotes

Historical overviews of WSD include Agirre and Edmonds (2006) and Navigli
(2009).

See Pustejovsky (1995), Pustejovsky and Boguraev (1996), Martin (1986), and
Copestake and Briscoe (1995), inter alia, for computational approaches to the rep-
resentation of polysemy. Pustejovsky’s theory of the generative lexicon, and ingenerative

lexicon
particular his theory of the qualia structure of words, is a way of accounting for thequalia

structure
dynamic systematic polysemy of words in context.

Exercises
19.1 Collect a small corpus of example sentences of varying lengths from any

newspaper or magazine. Using WordNet or any standard dictionary, deter-
mine how many senses there are for each of the open-class words in each sen-
tence. How many distinct combinations of senses are there for each sentence?
How does this number seem to vary with sentence length?

19.2 Using WordNet or a standard reference dictionary, tag each open-class word
in your corpus with its correct tag. Was choosing the correct sense always a
straightforward task? Report on any difficulties you encountered.

19.3 Using your favorite dictionary, simulate the original Lesk word overlap dis-
ambiguation algorithm described on page 366 on the phrase Time flies like an
arrow. Assume that the words are to be disambiguated one at a time, from
left to right, and that the results from earlier decisions are used later in the
process.
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19.4 Build an implementation of your solution to the previous exercise. Using
WordNet, implement the original Lesk word overlap disambiguation algo-
rithm described on page ?? on the phrase Time flies like an arrow.



CHAPTER

20 Semantic Role Labeling

Sometime between the 7th and 4th centuries BCE, the Indian grammarian Pān. ini1

wrote a famous treatise on Sanskrit grammar, the As.t.ādhyāyı̄ (‘8 books’), a treatise
that has been called “one of the greatest monuments of
human intelligence” (Bloomfield, 1933, 11). The work
describes the linguistics of the Sanskrit language in the
form of 3959 sutras, each very efficiently (since it had to
be memorized!) expressing part of a formal rule system
that brilliantly prefigured modern mechanisms of formal
language theory (Penn and Kiparsky, 2012). One set of
rules, relevant to our discussion in this chapter, describes
the kārakas, semantic relationships between a verb and
noun arguments, roles like agent, instrument, or destina-
tion. Pān. ini’s work was the earliest we know of that tried
to understand the linguistic realization of events and their participants. This task
of understanding how participants relate to events—being able to answer the ques-
tion “Who did what to whom” (and perhaps also “when and where”)—is a central
question of natural language understanding.

Let’s move forward 2.5 millennia to the present and consider the very mundane
goal of understanding text about a purchase of stock by XYZ Corporation. This
purchasing event and its participants can be described by a wide variety of surface
forms. The event can be described by a verb (sold, bought) or a noun (purchase),
and XYZ Corp can be the syntactic subject (of bought), the indirect object (of sold),
or in a genitive or noun compound relation (with the noun purchase) despite having
notionally the same role in all of them:

• XYZ corporation bought the stock.
• They sold the stock to XYZ corporation.
• The stock was bought by XYZ corporation.
• The purchase of the stock by XYZ corporation...
• The stock purchase by XYZ corporation...

In this chapter we introduce a level of representation that captures the common-
ality between these sentences: there was a purchase event, the participants were
XYZ Corp and some stock, and XYZ Corp was the buyer. These shallow semantic
representations , semantic roles, express the role that arguments of a predicate take
in the event, codified in databases like PropBank and FrameNet. We’ll introduce
semantic role labeling, the task of assigning roles to spans in sentences, and selec-
tional restrictions, the preferences that predicates express about their arguments,
such as the fact that the theme of eat is generally something edible.

1 Figure shows a birch bark manuscript from Kashmir of the Rupavatra, a grammatical textbook based
on the Sanskrit grammar of Panini. Image from the Wellcome Collection.
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20.1 Semantic Roles

Consider how in Chapter 16 we represented the meaning of arguments for sentences
like these:

(20.1) Sasha broke the window.
(20.2) Pat opened the door.

A neo-Davidsonian event representation of these two sentences would be

∃e,x,y Breaking(e)∧Breaker(e,Sasha)
∧BrokenT hing(e,y)∧Window(y)

∃e,x,y Opening(e)∧Opener(e,Pat)
∧OpenedT hing(e,y)∧Door(y)

In this representation, the roles of the subjects of the verbs break and open are
Breaker and Opener respectively. These deep roles are specific to each event; Break-deep roles

ing events have Breakers, Opening events have Openers, and so on.
If we are going to be able to answer questions, perform inferences, or do any

further kinds of natural language understanding of these events, we’ll need to know
a little more about the semantics of these arguments. Breakers and Openers have
something in common. They are both volitional actors, often animate, and they have
direct causal responsibility for their events.

Thematic roles are a way to capture this semantic commonality between Break-thematic roles

ers and Eaters. We say that the subjects of both these verbs are agents. Thus, AGENTagents

is the thematic role that represents an abstract idea such as volitional causation. Sim-
ilarly, the direct objects of both these verbs, the BrokenThing and OpenedThing, are
both prototypically inanimate objects that are affected in some way by the action.
The semantic role for these participants is theme.theme

Thematic Role Definition
AGENT The volitional causer of an event
EXPERIENCER The experiencer of an event
FORCE The non-volitional causer of the event
THEME The participant most directly affected by an event
RESULT The end product of an event
CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event
BENEFICIARY The beneficiary of an event
SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event
Figure 20.1 Some commonly used thematic roles with their definitions.

Although thematic roles are one of the oldest linguistic models, as we saw above,
their modern formulation is due to Fillmore (1968) and Gruber (1965). Although
there is no universally agreed-upon set of roles, Figs. 20.1 and 20.2 list some the-
matic roles that have been used in various computational papers, together with rough
definitions and examples. Most thematic role sets have about a dozen roles, but we’ll
see sets with smaller numbers of roles with even more abstract meanings, and sets
with very large numbers of roles that are specific to situations. We’ll use the general
term semantic roles for all sets of roles, whether small or large.semantic roles
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Thematic Role Example
AGENT The waiter spilled the soup.
EXPERIENCER John has a headache.
FORCE The wind blows debris from the mall into our yards.
THEME Only after Benjamin Franklin broke the ice...
RESULT The city built a regulation-size baseball diamond...
CONTENT Mona asked “You met Mary Ann at a supermarket?”
INSTRUMENT He poached catfish, stunning them with a shocking device...
BENEFICIARY Whenever Ann Callahan makes hotel reservations for her boss...
SOURCE I flew in from Boston.
GOAL I drove to Portland.
Figure 20.2 Some prototypical examples of various thematic roles.

20.2 Diathesis Alternations

The main reason computational systems use semantic roles is to act as a shallow
meaning representation that can let us make simple inferences that aren’t possible
from the pure surface string of words, or even from the parse tree. To extend the
earlier examples, if a document says that Company A acquired Company B, we’d
like to know that this answers the query Was Company B acquired? despite the fact
that the two sentences have very different surface syntax. Similarly, this shallow
semantics might act as a useful intermediate language in machine translation.

Semantic roles thus help generalize over different surface realizations of pred-
icate arguments. For example, while the AGENT is often realized as the subject of
the sentence, in other cases the THEME can be the subject. Consider these possible
realizations of the thematic arguments of the verb break:

(20.3) John
AGENT

broke the window.
THEME

(20.4) John
AGENT

broke the window
THEME

with a rock.
INSTRUMENT

(20.5) The rock
INSTRUMENT

broke the window.
THEME

(20.6) The window
THEME

broke.

(20.7) The window
THEME

was broken by John.
AGENT

These examples suggest that break has (at least) the possible arguments AGENT,
THEME, and INSTRUMENT. The set of thematic role arguments taken by a verb is
often called the thematic grid, θ -grid, or case frame. We can see that there arethematic grid

case frame (among others) the following possibilities for the realization of these arguments of
break:

AGENT/Subject, THEME/Object
AGENT/Subject, THEME/Object, INSTRUMENT/PPwith
INSTRUMENT/Subject, THEME/Object
THEME/Subject

It turns out that many verbs allow their thematic roles to be realized in various
syntactic positions. For example, verbs like give can realize the THEME and GOAL
arguments in two different ways:
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(20.8) a. Doris
AGENT

gave the book
THEME

to Cary.
GOAL

b. Doris
AGENT

gave Cary
GOAL

the book.
THEME

These multiple argument structure realizations (the fact that break can take AGENT,
INSTRUMENT, or THEME as subject, and give can realize its THEME and GOAL in
either order) are called verb alternations or diathesis alternations. The alternationverb

alternation
we showed above for give, the dative alternation, seems to occur with particular se-dative

alternation
mantic classes of verbs, including “verbs of future having” (advance, allocate, offer,
owe), “send verbs” (forward, hand, mail), “verbs of throwing” (kick, pass, throw),
and so on. Levin (1993) lists for 3100 English verbs the semantic classes to which
they belong (47 high-level classes, divided into 193 more specific classes) and the
various alternations in which they participate. These lists of verb classes have been
incorporated into the online resource VerbNet (Kipper et al., 2000), which links each
verb to both WordNet and FrameNet entries.

20.3 Semantic Roles: Problems with Thematic Roles

Representing meaning at the thematic role level seems like it should be useful in
dealing with complications like diathesis alternations. Yet it has proved quite diffi-
cult to come up with a standard set of roles, and equally difficult to produce a formal
definition of roles like AGENT, THEME, or INSTRUMENT.

For example, researchers attempting to define role sets often find they need to
fragment a role like AGENT or THEME into many specific roles. Levin and Rappa-
port Hovav (2005) summarize a number of such cases, such as the fact there seem
to be at least two kinds of INSTRUMENTS, intermediary instruments that can appear
as subjects and enabling instruments that cannot:

(20.9) a. The cook opened the jar with the new gadget.
b. The new gadget opened the jar.

(20.10) a. Shelly ate the sliced banana with a fork.
b. *The fork ate the sliced banana.

In addition to the fragmentation problem, there are cases in which we’d like to
reason about and generalize across semantic roles, but the finite discrete lists of roles
don’t let us do this.

Finally, it has proved difficult to formally define the thematic roles. Consider the
AGENT role; most cases of AGENTS are animate, volitional, sentient, causal, but any
individual noun phrase might not exhibit all of these properties.

These problems have led to alternative semantic role models that use eithersemantic role

many fewer or many more roles.
The first of these options is to define generalized semantic roles that abstract

over the specific thematic roles. For example, PROTO-AGENT and PROTO-PATIENTproto-agent

proto-patient are generalized roles that express roughly agent-like and roughly patient-like mean-
ings. These roles are defined, not by necessary and sufficient conditions, but rather
by a set of heuristic features that accompany more agent-like or more patient-like
meanings. Thus, the more an argument displays agent-like properties (being voli-
tionally involved in the event, causing an event or a change of state in another par-
ticipant, being sentient or intentionally involved, moving) the greater the likelihood
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that the argument can be labeled a PROTO-AGENT. The more patient-like the proper-
ties (undergoing change of state, causally affected by another participant, stationary
relative to other participants, etc.), the greater the likelihood that the argument can
be labeled a PROTO-PATIENT.

The second direction is instead to define semantic roles that are specific to a
particular verb or a particular group of semantically related verbs or nouns.

In the next two sections we describe two commonly used lexical resources that
make use of these alternative versions of semantic roles. PropBank uses both proto-
roles and verb-specific semantic roles. FrameNet uses semantic roles that are spe-
cific to a general semantic idea called a frame.

20.4 The Proposition Bank

The Proposition Bank, generally referred to as PropBank, is a resource of sen-PropBank

tences annotated with semantic roles. The English PropBank labels all the sentences
in the Penn TreeBank; the Chinese PropBank labels sentences in the Penn Chinese
TreeBank. Because of the difficulty of defining a universal set of thematic roles,
the semantic roles in PropBank are defined with respect to an individual verb sense.
Each sense of each verb thus has a specific set of roles, which are given only numbers
rather than names: Arg0, Arg1, Arg2, and so on. In general, Arg0 represents the
PROTO-AGENT, and Arg1, the PROTO-PATIENT. The semantics of the other roles
are less consistent, often being defined specifically for each verb. Nonetheless there
are some generalization; the Arg2 is often the benefactive, instrument, attribute, or
end state, the Arg3 the start point, benefactive, instrument, or attribute, and the Arg4
the end point.

Here are some slightly simplified PropBank entries for one sense each of the
verbs agree and fall. Such PropBank entries are called frame files; note that the
definitions in the frame file for each role (“Other entity agreeing”, “Extent, amount
fallen”) are informal glosses intended to be read by humans, rather than being formal
definitions.

(20.11) agree.01
Arg0: Agreer
Arg1: Proposition
Arg2: Other entity agreeing

Ex1: [Arg0 The group] agreed [Arg1 it wouldn’t make an offer].
Ex2: [ArgM-TMP Usually] [Arg0 John] agrees [Arg2 with Mary]

[Arg1 on everything].

(20.12) fall.01
Arg1: Logical subject, patient, thing falling
Arg2: Extent, amount fallen
Arg3: start point
Arg4: end point, end state of arg1
Ex1: [Arg1 Sales] fell [Arg4 to $25 million] [Arg3 from $27 million].
Ex2: [Arg1 The average junk bond] fell [Arg2 by 4.2%].

Note that there is no Arg0 role for fall, because the normal subject of fall is a
PROTO-PATIENT.
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The PropBank semantic roles can be useful in recovering shallow semantic in-
formation about verbal arguments. Consider the verb increase:

(20.13) increase.01 “go up incrementally”
Arg0: causer of increase
Arg1: thing increasing
Arg2: amount increased by, EXT, or MNR
Arg3: start point
Arg4: end point

A PropBank semantic role labeling would allow us to infer the commonality in
the event structures of the following three examples, that is, that in each case Big
Fruit Co. is the AGENT and the price of bananas is the THEME, despite the differing
surface forms.

(20.14) [Arg0 Big Fruit Co. ] increased [Arg1 the price of bananas].
(20.15) [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co. ]
(20.16) [Arg1 The price of bananas] increased [Arg2 5%].

PropBank also has a number of non-numbered arguments called ArgMs, (ArgM-
TMP, ArgM-LOC, etc.) which represent modification or adjunct meanings. These
are relatively stable across predicates, so aren’t listed with each frame file. Data
labeled with these modifiers can be helpful in training systems to detect temporal,
location, or directional modification across predicates. Some of the ArgM’s include:

TMP when? yesterday evening, now
LOC where? at the museum, in San Francisco
DIR where to/from? down, to Bangkok
MNR how? clearly, with much enthusiasm
PRP/CAU why? because ... , in response to the ruling
REC themselves, each other
ADV miscellaneous
PRD secondary predication ...ate the meat raw

While PropBank focuses on verbs, a related project, NomBank (Meyers et al.,NomBank

2004) adds annotations to noun predicates. For example the noun agreement in
Apple’s agreement with IBM would be labeled with Apple as the Arg0 and IBM as
the Arg2. This allows semantic role labelers to assign labels to arguments of both
verbal and nominal predicates.

20.5 FrameNet

While making inferences about the semantic commonalities across different sen-
tences with increase is useful, it would be even more useful if we could make such
inferences in many more situations, across different verbs, and also between verbs
and nouns. For example, we’d like to extract the similarity among these three sen-
tences:

(20.17) [Arg1 The price of bananas] increased [Arg2 5%].
(20.18) [Arg1 The price of bananas] rose [Arg2 5%].
(20.19) There has been a [Arg2 5%] rise [Arg1 in the price of bananas].

Note that the second example uses the different verb rise, and the third example
uses the noun rather than the verb rise. We’d like a system to recognize that the
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price of bananas is what went up, and that 5% is the amount it went up, no matter
whether the 5% appears as the object of the verb increased or as a nominal modifier
of the noun rise.

The FrameNet project is another semantic-role-labeling project that attemptsFrameNet

to address just these kinds of problems (Baker et al. 1998, Fillmore et al. 2003,
Fillmore and Baker 2009, Ruppenhofer et al. 2016). Whereas roles in the PropBank
project are specific to an individual verb, roles in the FrameNet project are specific
to a frame.

What is a frame? Consider the following set of words:

reservation, flight, travel, buy, price, cost, fare, rates, meal, plane

There are many individual lexical relations of hyponymy, synonymy, and so on
between many of the words in this list. The resulting set of relations does not,
however, add up to a complete account of how these words are related. They are
clearly all defined with respect to a coherent chunk of common-sense background
information concerning air travel.

We call the holistic background knowledge that unites these words a frame (Fill-frame

more, 1985). The idea that groups of words are defined with respect to some back-
ground information is widespread in artificial intelligence and cognitive science,
where besides frame we see related works like a model (Johnson-Laird, 1983), ormodel

even script (Schank and Abelson, 1977).script

A frame in FrameNet is a background knowledge structure that defines a set of
frame-specific semantic roles, called frame elements, and includes a set of predi-frame elements

cates that use these roles. Each word evokes a frame and profiles some aspect of the
frame and its elements. The FrameNet dataset includes a set of frames and frame
elements, the lexical units associated with each frame, and a set of labeled exam-
ple sentences. For example, the change position on a scale frame is defined as
follows:

This frame consists of words that indicate the change of an Item’s posi-
tion on a scale (the Attribute) from a starting point (Initial value) to an
end point (Final value).

Some of the semantic roles (frame elements) in the frame are defined as in
Fig. 20.3. Note that these are separated into core roles, which are frame specific, andcore roles

non-core roles, which are more like the Arg-M arguments in PropBank, expressingnon-core roles

more general properties of time, location, and so on.
Here are some example sentences:

(20.20) [ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].

(20.21) [ITEM It] has increased [FINAL STATE to having them 1 day a month].

(20.22) [ITEM Microsoft shares] fell [FINAL VALUE to 7 5/8].

(20.23) [ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among
men].

(20.24) a steady increase [INITIAL VALUE from 9.5] [FINAL VALUE to 14.3] [ITEM
in dividends]

(20.25) a [DIFFERENCE 5%] [ITEM dividend] increase...

Note from these example sentences that the frame includes target words like rise,
fall, and increase. In fact, the complete frame consists of the following words:
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Core Roles
ATTRIBUTE The ATTRIBUTE is a scalar property that the ITEM possesses.
DIFFERENCE The distance by which an ITEM changes its position on the scale.
FINAL STATE A description that presents the ITEM’s state after the change in the ATTRIBUTE’s

value as an independent predication.
FINAL VALUE The position on the scale where the ITEM ends up.
INITIAL STATE A description that presents the ITEM’s state before the change in the AT-

TRIBUTE’s value as an independent predication.
INITIAL VALUE The initial position on the scale from which the ITEM moves away.
ITEM The entity that has a position on the scale.
VALUE RANGE A portion of the scale, typically identified by its end points, along which the

values of the ATTRIBUTE fluctuate.
Some Non-Core Roles

DURATION The length of time over which the change takes place.
SPEED The rate of change of the VALUE.
GROUP The GROUP in which an ITEM changes the value of an

ATTRIBUTE in a specified way.
Figure 20.3 The frame elements in the change position on a scale frame from the FrameNet Labelers
Guide (Ruppenhofer et al., 2016).

VERBS: dwindle move soar escalation shift
advance edge mushroom swell explosion tumble
climb explode plummet swing fall
decline fall reach triple fluctuation ADVERBS:
decrease fluctuate rise tumble gain increasingly
diminish gain rocket growth
dip grow shift NOUNS: hike
double increase skyrocket decline increase
drop jump slide decrease rise

FrameNet also codes relationships between frames, allowing frames to inherit
from each other, or representing relations between frames like causation (and gen-
eralizations among frame elements in different frames can be representing by inher-
itance as well). Thus, there is a Cause change of position on a scale frame that is
linked to the Change of position on a scale frame by the cause relation, but that
adds an AGENT role and is used for causative examples such as the following:

(20.26) [AGENT They] raised [ITEM the price of their soda] [DIFFERENCE by 2%].

Together, these two frames would allow an understanding system to extract the
common event semantics of all the verbal and nominal causative and non-causative
usages.

FrameNets have also been developed for many other languages including Span-
ish, German, Japanese, Portuguese, Italian, and Chinese.

20.6 Semantic Role Labeling

Semantic role labeling (sometimes shortened as SRL) is the task of automaticallysemantic role
labeling

finding the semantic roles of each argument of each predicate in a sentence. Cur-
rent approaches to semantic role labeling are based on supervised machine learning,
often using the FrameNet and PropBank resources to specify what counts as a pred-
icate, define the set of roles used in the task, and provide training and test sets.
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Recall that the difference between these two models of semantic roles is that
FrameNet (20.27) employs many frame-specific frame elements as roles, while Prop-
Bank (20.28) uses a smaller number of numbered argument labels that can be inter-
preted as verb-specific labels, along with the more general ARGM labels. Some
examples:

(20.27)
[You] can’t [blame] [the program] [for being unable to identify it]
COGNIZER TARGET EVALUEE REASON

(20.28)
[The San Francisco Examiner] issued [a special edition] [yesterday]
ARG0 TARGET ARG1 ARGM-TMP

20.6.1 A Feature-based Algorithm for Semantic Role Labeling
A simplified feature-based semantic role labeling algorithm is sketched in Fig. 20.4.
Feature-based algorithms—from the very earliest systems like (Simmons, 1973)—
begin by parsing, using broad-coverage parsers to assign a parse to the input string.
Figure 20.5 shows a parse of (20.28) above. The parse is then traversed to find all
words that are predicates.

For each of these predicates, the algorithm examines each node in the parse
tree and uses supervised classification to decide the semantic role (if any) it plays
for this predicate. Given a labeled training set such as PropBank or FrameNet, a
feature vector is extracted for each node, using feature templates described in the
next subsection. A 1-of-N classifier is then trained to predict a semantic role for
each constituent given these features, where N is the number of potential semantic
roles plus an extra NONE role for non-role constituents. Any standard classification
algorithms can be used. Finally, for each test sentence to be labeled, the classifier is
run on each relevant constituent.

function SEMANTICROLELABEL(words) returns labeled tree

parse←PARSE(words)
for each predicate in parse do

for each node in parse do
featurevector←EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 20.4 A generic semantic-role-labeling algorithm. CLASSIFYNODE is a 1-of-N clas-
sifier that assigns a semantic role (or NONE for non-role constituents), trained on labeled data
such as FrameNet or PropBank.

Instead of training a single-stage classifier as in Fig. 20.5, the node-level classi-
fication task can be broken down into multiple steps:

1. Pruning: Since only a small number of the constituents in a sentence are
arguments of any given predicate, many systems use simple heuristics to prune
unlikely constituents.

2. Identification: a binary classification of each node as an argument to be la-
beled or a NONE.

3. Classification: a 1-of-N classification of all the constituents that were labeled
as arguments by the previous stage

The separation of identification and classification may lead to better use of fea-
tures (different features may be useful for the two tasks) or to computational effi-
ciency.
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S

NP-SBJ = ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP = ARG1 PP-TMP = ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 20.5 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows the path feature NP↑S↓VP↓VBD for ARG0, the NP-SBJ constituent The San Francisco Examiner.

Global Optimization

The classification algorithm of Fig. 20.5 classifies each argument separately (‘lo-
cally’), making the simplifying assumption that each argument of a predicate can be
labeled independently. This assumption is false; there are interactions between argu-
ments that require a more ‘global’ assignment of labels to constituents. For example,
constituents in FrameNet and PropBank are required to be non-overlapping. More
significantly, the semantic roles of constituents are not independent. For example
PropBank does not allow multiple identical arguments; two constituents of the same
verb cannot both be labeled ARG0 .

Role labeling systems thus often add a fourth step to deal with global consistency
across the labels in a sentence. For example, the local classifiers can return a list of
possible labels associated with probabilities for each constituent, and a second-pass
Viterbi decoding or re-ranking approach can be used to choose the best consensus
label. Integer linear programming (ILP) is another common way to choose a solution
that conforms best to multiple constraints.

Features for Semantic Role Labeling

Most systems use some generalization of the core set of features introduced by
Gildea and Jurafsky (2000). Common basic features templates (demonstrated on
the NP-SBJ constituent The San Francisco Examiner in Fig. 20.5) include:

• The governing predicate, in this case the verb issued. The predicate is a cru-
cial feature since labels are defined only with respect to a particular predicate.

• The phrase type of the constituent, in this case, NP (or NP-SBJ). Some se-
mantic roles tend to appear as NPs, others as S or PP, and so on.

• The headword of the constituent, Examiner. The headword of a constituent
can be computed with standard head rules, such as those given in Chapter 12
in Fig. 12.12. Certain headwords (e.g., pronouns) place strong constraints on
the possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 20.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP↑S↓VP↓VBD. ↑ and
↓ represent upward and downward movement in the tree, respectively. The
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path is very useful as a compact representation of many kinds of grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP→ VBD
NP PP for the predicate in Fig. 20.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.

The following feature vector thus represents the first NP in our example (recall
that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP↑S↓VP↓VBD, active, before, VP → NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
constituent, or more complex versions of the path features (the upward or downward
halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the
basis of features, for example using dependency parse paths instead of constituency
paths.

20.6.2 A Neural Algorithm for Semantic Role Labeling
The standard neural algorithm for semantic role labeling is based on the bi-LSTM
IOB tagger introduced in Chapter 9, which we’ve seen applied to part-of-speech
tagging and named entity tagging, among other tasks. Recall that with IOB tagging,
we have a begin and end tag for each possible role (B-ARG0, I-ARG0; B-ARG1,
I-ARG1, and so on), plus an outside tag O.

As with all the taggers, the goal is to compute the highest probability tag se-
quence ŷ, given the input sequence of words w:

ŷ = argmax
y∈T

P(y|w)

In algorithms like He et al. (2017), each input word is mapped to pre-trained em-
beddings, and also associated with an embedding for a flag (0/1) variable indicating
whether that input word is the predicate. These concatenated embeddings are passed
through multiple layers of bi-directional LSTM. State-of-the-art algorithms tend to
be deeper than for POS or NER tagging, using 3 to 4 layers (6 to 8 total LSTMs).
Highway layers can be used to connect these layers as well.

Output from the last bi-LSTM can then be turned into an IOB sequence as for
POS or NER tagging. Tags can be locally optimized by taking the bi-LSTM output,
passing it through a single layer into a softmax for each word that creates a proba-
bility distribution over all SRL tags and the most likely tag for word xi is chosen as
ti, computing for each word essentially:

ŷi = argmax
t∈tags

P(t|wi)
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The cats love hats

Embeddings

LSTM1 LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2 LSTM2

Concatenation

Right-to-left LSTM

Left-to-right LSTM

Softmax

P(B-ARG0) P(I-ARG0) P(B-PRED) P(B-ARG1)

0 0 1 0word + is-predicate

Figure 20.6 A bi-LSTM approach to semantic role labeling. Most actual networks are
much deeper than shown in this figure; 3 to 4 bi-LSTM layers (6 to 8 total LSTMs) are
common. The input is a concatenation of an embedding for the input word and an embedding
of a binary variable which is 1 for the predicate to 0 for all other words. After He et al. (2017).

However, just as feature-based SRL tagging, this local approach to decoding doesn’t
exploit the global constraints between tags; a tag I-ARG0, for example, must follow
another I-ARG0 or B-ARG0.

As we saw for POS and NER tagging, there are many ways to take advantage of
these global constraints. A CRF layer can be used instead of a softmax layer on top
of the bi-LSTM output, and the Viterbi decoding algorithm can be used to decode
from the CRF.

An even simpler Viterbi decoding algorithm that may perform equally well and
doesn’t require adding CRF complexity to the training process is to start with the
simple softmax. The softmax output (the entire probability distribution over tags)
for each word is then treated as a lattice and we can do Viterbi decoding through the
lattice. The hard IOB constraints can act as the transition probabilities in the Viterbi
decoding (thus the transition from state I-ARG0 to I-ARG1 would have probabil-
ity 0). Alternatively, the training data can be used to learn bigram or trigram tag
transition probabilities as if doing HMM decoding. Fig. 20.6 shows a sketch of the
algorithm.

20.6.3 Evaluation of Semantic Role Labeling
The standard evaluation for semantic role labeling is to require that each argument
label must be assigned to the exactly correct word sequence or parse constituent, and
then compute precision, recall, and F-measure. Identification and classification can
also be evaluated separately. Two common datasets used for evaluation are CoNLL-
2005 (Carreras and Màrquez, 2005) and CoNLL-2012 (Pradhan et al., 2013).

20.7 Selectional Restrictions

We turn in this section to another way to represent facts about the relationship be-
tween predicates and arguments. A selectional restriction is a semantic type con-selectional

restriction
straint that a verb imposes on the kind of concepts that are allowed to fill its argument
roles. Consider the two meanings associated with the following example:
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(20.29) I want to eat someplace nearby.

There are two possible parses and semantic interpretations for this sentence. In
the sensible interpretation, eat is intransitive and the phrase someplace nearby is
an adjunct that gives the location of the eating event. In the nonsensical speaker-as-
Godzilla interpretation, eat is transitive and the phrase someplace nearby is the direct
object and the THEME of the eating, like the NP Malaysian food in the following
sentences:

(20.30) I want to eat Malaysian food.

How do we know that someplace nearby isn’t the direct object in this sentence?
One useful cue is the semantic fact that the THEME of EATING events tends to be
something that is edible. This restriction placed by the verb eat on the filler of its
THEME argument is a selectional restriction.

Selectional restrictions are associated with senses, not entire lexemes. We can
see this in the following examples of the lexeme serve:

(20.31) The restaurant serves green-lipped mussels.
(20.32) Which airlines serve Denver?

Example (20.31) illustrates the offering-food sense of serve, which ordinarily re-
stricts its THEME to be some kind of food Example (20.32) illustrates the provides a
commercial service to sense of serve, which constrains its THEME to be some type
of appropriate location.

Selectional restrictions vary widely in their specificity. The verb imagine, for
example, imposes strict requirements on its AGENT role (restricting it to humans
and other animate entities) but places very few semantic requirements on its THEME
role. A verb like diagonalize, on the other hand, places a very specific constraint
on the filler of its THEME role: it has to be a matrix, while the arguments of the
adjectives odorless are restricted to concepts that could possess an odor:

(20.33) In rehearsal, I often ask the musicians to imagine a tennis game.
(20.34) Radon is an odorless gas that can’t be detected by human senses.

(20.35) To diagonalize a matrix is to find its eigenvalues.

These examples illustrate that the set of concepts we need to represent selectional
restrictions (being a matrix, being able to possess an odor, etc) is quite open ended.
This distinguishes selectional restrictions from other features for representing lexical
knowledge, like parts-of-speech, which are quite limited in number.

20.7.1 Representing Selectional Restrictions
One way to capture the semantics of selectional restrictions is to use and extend the
event representation of Chapter 16. Recall that the neo-Davidsonian representation
of an event consists of a single variable that stands for the event, a predicate denoting
the kind of event, and variables and relations for the event roles. Ignoring the issue of
the λ -structures and using thematic roles rather than deep event roles, the semantic
contribution of a verb like eat might look like the following:

∃e,x,y Eating(e)∧Agent(e,x)∧T heme(e,y)

With this representation, all we know about y, the filler of the THEME role, is that
it is associated with an Eating event through the Theme relation. To stipulate the
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Sense 1

hamburger, beefburger --

(a fried cake of minced beef served on a bun)

=> sandwich

=> snack food

=> dish

=> nutriment, nourishment, nutrition...

=> food, nutrient

=> substance

=> matter

=> physical entity

=> entity

Figure 20.7 Evidence from WordNet that hamburgers are edible.

selectional restriction that y must be something edible, we simply add a new term to
that effect:

∃e,x,y Eating(e)∧Agent(e,x)∧T heme(e,y)∧EdibleT hing(y)

When a phrase like ate a hamburger is encountered, a semantic analyzer can
form the following kind of representation:

∃e,x,y Eating(e)∧Eater(e,x)∧T heme(e,y)∧EdibleT hing(y)∧Hamburger(y)

This representation is perfectly reasonable since the membership of y in the category
Hamburger is consistent with its membership in the category EdibleThing, assuming
a reasonable set of facts in the knowledge base. Correspondingly, the representation
for a phrase such as ate a takeoff would be ill-formed because membership in an
event-like category such as Takeoff would be inconsistent with membership in the
category EdibleThing.

While this approach adequately captures the semantics of selectional restrictions,
there are two problems with its direct use. First, using FOL to perform the simple
task of enforcing selectional restrictions is overkill. Other, far simpler, formalisms
can do the job with far less computational cost. The second problem is that this
approach presupposes a large, logical knowledge base of facts about the concepts
that make up selectional restrictions. Unfortunately, although such common-sense
knowledge bases are being developed, none currently have the kind of coverage
necessary to the task.

A more practical approach is to state selectional restrictions in terms of WordNet
synsets rather than as logical concepts. Each predicate simply specifies a WordNet
synset as the selectional restriction on each of its arguments. A meaning representa-
tion is well-formed if the role filler word is a hyponym (subordinate) of this synset.

For our ate a hamburger example, for instance, we could set the selectional
restriction on the THEME role of the verb eat to the synset {food, nutrient}, glossed
as any substance that can be metabolized by an animal to give energy and build
tissue. Luckily, the chain of hypernyms for hamburger shown in Fig. 20.7 reveals
that hamburgers are indeed food. Again, the filler of a role need not match the
restriction synset exactly; it just needs to have the synset as one of its superordinates.

We can apply this approach to the THEME roles of the verbs imagine, lift, and di-
agonalize, discussed earlier. Let us restrict imagine’s THEME to the synset {entity},
lift’s THEME to {physical entity}, and diagonalize to {matrix}. This arrangement
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correctly permits imagine a hamburger and lift a hamburger, while also correctly
ruling out diagonalize a hamburger.

20.7.2 Selectional Preferences
In the earliest implementations, selectional restrictions were considered strict con-
straints on the kind of arguments a predicate could take (Katz and Fodor 1963,
Hirst 1987). For example, the verb eat might require that its THEME argument be
[+FOOD]. Early word sense disambiguation systems used this idea to rule out senses
that violated the selectional restrictions of their governing predicates.

Very quickly, however, it became clear that these selectional restrictions were
better represented as preferences rather than strict constraints (Wilks 1975c, Wilks 1975b).
For example, selectional restriction violations (like inedible arguments of eat) often
occur in well-formed sentences, for example because they are negated (20.36), or
because selectional restrictions are overstated (20.37):

(20.36) But it fell apart in 1931, perhaps because people realized you can’t eat
gold for lunch if you’re hungry.

(20.37) In his two championship trials, Mr. Kulkarni ate glass on an empty
stomach, accompanied only by water and tea.

Modern systems for selectional preferences therefore specify the relation be-
tween a predicate and its possible arguments with soft constraints of some kind.

Selectional Association

One of the most influential has been the selectional association model of Resnik
(1993). Resnik defines the idea of selectional preference strength as the general

selectional
preference

strength
amount of information that a predicate tells us about the semantic class of its argu-
ments. For example, the verb eat tells us a lot about the semantic class of its direct
objects, since they tend to be edible. The verb be, by contrast, tells us less about
its direct objects. The selectional preference strength can be defined by the differ-
ence in information between two distributions: the distribution of expected semantic
classes P(c) (how likely is it that a direct object will fall into class c) and the dis-
tribution of expected semantic classes for the particular verb P(c|v) (how likely is
it that the direct object of the specific verb v will fall into semantic class c). The
greater the difference between these distributions, the more information the verb
is giving us about possible objects. The difference between these two distributions
can be quantified by relative entropy, or the Kullback-Leibler divergence (Kullbackrelative entropy

and Leibler, 1951). The Kullback-Leibler or KL divergence D(P||Q) expresses theKL divergence

difference between two probability distributions P and Q

D(P||Q) =
∑

x

P(x) log
P(x)
Q(x)

(20.38)

The selectional preference SR(v) uses the KL divergence to express how much in-
formation, in bits, the verb v expresses about the possible semantic class of its argu-
ment.

SR(v) = D(P(c|v)||P(c))

=
∑

c

P(c|v) log
P(c|v)
P(c)

(20.39)
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Resnik then defines the selectional association of a particular class and verb as theselectional
association

relative contribution of that class to the general selectional preference of the verb:

AR(v,c) =
1

SR(v)
P(c|v) log

P(c|v)
P(c)

(20.40)

The selectional association is thus a probabilistic measure of the strength of asso-
ciation between a predicate and a class dominating the argument to the predicate.
Resnik estimates the probabilities for these associations by parsing a corpus, count-
ing all the times each predicate occurs with each argument word, and assuming
that each word is a partial observation of all the WordNet concepts containing the
word. The following table from Resnik (1996) shows some sample high and low
selectional associations for verbs and some WordNet semantic classes of their direct
objects.

Direct Object Direct Object
Verb Semantic Class Assoc Semantic Class Assoc
read WRITING 6.80 ACTIVITY -.20
write WRITING 7.26 COMMERCE 0
see ENTITY 5.79 METHOD -0.01

Selectional Preference via Conditional Probability

An alternative to using selectional association between a verb and the WordNet class
of its arguments is to use the conditional probability of an argument word given a
predicate verb, directly modeling the strength of association of one verb (predicate)
with one noun (argument).

The conditional probability model can be computed by parsing a very large cor-
pus (billions of words), and computing co-occurrence counts: how often a given
verb occurs with a given noun in a given relation. The conditional probability of an
argument noun given a verb for a particular relation P(n|v,r) can then be used as a
selectional preference metric for that pair of words (Brockmann and Lapata 2003,
Keller and Lapata 2003):

P(n|v,r) =
{

C(n,v,r)
C(v,r) if C(n,v,r)> 0

0 otherwise

The inverse probability P(v|n,r) was found to have better performance in some cases
(Brockmann and Lapata, 2003):

P(v|n,r) =
{

C(n,v,r)
C(n,r) if C(n,v,r)> 0

0 otherwise

An even simpler approach is to use the simple log co-occurrence frequency of
the predicate with the argument logcount(v,n,r) instead of conditional probability;
this seems to do better for extracting preferences for syntactic subjects rather than
objects (Brockmann and Lapata, 2003).

Evaluating Selectional Preferences

One way to evaluate models of selectional preferences is to use pseudowords (Galepseudowords

et al. 1992c, Schütze 1992a). A pseudoword is an artificial word created by concate-
nating a test word in some context (say banana) with a confounder word (say door)
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to create banana-door). The task of the system is to identify which of the two words
is the original word. To evaluate a selectional preference model (for example on the
relationship between a verb and a direct object) we take a test corpus and select all
verb tokens. For each verb token (say drive) we select the direct object (e.g., car),
concatenated with a confounder word that is its nearest neighbor, the noun with the
frequency closest to the original (say house), to make car/house). We then use the
selectional preference model to choose which of car and house are more preferred
objects of drive, and compute how often the model chooses the correct original ob-
ject (e.g., car) (Chambers and Jurafsky, 2010).

Another evaluation metric is to get human preferences for a test set of verb-
argument pairs, and have them rate their degree of plausibility. This is usually done
by using magnitude estimation, a technique from psychophysics, in which subjects
rate the plausibility of an argument proportional to a modulus item. A selectional
preference model can then be evaluated by its correlation with the human prefer-
ences (Keller and Lapata, 2003).

20.8 Primitive Decomposition of Predicates

One way of thinking about the semantic roles we have discussed through the chapter
is that they help us define the roles that arguments play in a decompositional way,
based on finite lists of thematic roles (agent, patient, instrument, proto-agent, proto-
patient, etc.). This idea of decomposing meaning into sets of primitive semantics
elements or features, called primitive decomposition or componential analysis,componential

analysis
has been taken even further, and focused particularly on predicates.

Consider these examples of the verb kill:

(20.41) Jim killed his philodendron.

(20.42) Jim did something to cause his philodendron to become not alive.

There is a truth-conditional (‘propositional semantics’) perspective from which these
two sentences have the same meaning. Assuming this equivalence, we could repre-
sent the meaning of kill as:

(20.43) KILL(x,y)⇔ CAUSE(x, BECOME(NOT(ALIVE(y))))

thus using semantic primitives like do, cause, become not, and alive.
Indeed, one such set of potential semantic primitives has been used to account for

some of the verbal alternations discussed in Section 20.2 (Lakoff 1965, Dowty 1979).
Consider the following examples.

(20.44) John opened the door. ⇒ CAUSE(John, BECOME(OPEN(door)))
(20.45) The door opened. ⇒ BECOME(OPEN(door))
(20.46) The door is open. ⇒ OPEN(door)

The decompositional approach asserts that a single state-like predicate associ-
ated with open underlies all of these examples. The differences among the meanings
of these examples arises from the combination of this single predicate with the prim-
itives CAUSE and BECOME.

While this approach to primitive decomposition can explain the similarity be-
tween states and actions or causative and non-causative predicates, it still relies on
having a large number of predicates like open. More radical approaches choose to
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break down these predicates as well. One such approach to verbal predicate de-
composition that played a role in early natural language understanding systems is
conceptual dependency (CD), a set of ten primitive predicates, shown in Fig. 20.8.conceptual

dependency

Primitive Definition
ATRANS The abstract transfer of possession or control from one entity to

another
PTRANS The physical transfer of an object from one location to another
MTRANS The transfer of mental concepts between entities or within an

entity
MBUILD The creation of new information within an entity
PROPEL The application of physical force to move an object
MOVE The integral movement of a body part by an animal
INGEST The taking in of a substance by an animal
EXPEL The expulsion of something from an animal
SPEAK The action of producing a sound
ATTEND The action of focusing a sense organ

Figure 20.8 A set of conceptual dependency primitives.

Below is an example sentence along with its CD representation. The verb brought
is translated into the two primitives ATRANS and PTRANS to indicate that the waiter
both physically conveyed the check to Mary and passed control of it to her. Note
that CD also associates a fixed set of thematic roles with each primitive to represent
the various participants in the action.

(20.47) The waiter brought Mary the check.

∃x,y Atrans(x)∧Actor(x,Waiter)∧Ob ject(x,Check)∧To(x,Mary)
∧Ptrans(y)∧Actor(y,Waiter)∧Ob ject(y,Check)∧To(y,Mary)

20.9 Summary

• Semantic roles are abstract models of the role an argument plays in the event
described by the predicate.

• Thematic roles are a model of semantic roles based on a single finite list of
roles. Other semantic role models include per-verb semantic role lists and
proto-agent/proto-patient, both of which are implemented in PropBank,
and per-frame role lists, implemented in FrameNet.

• Semantic role labeling is the task of assigning semantic role labels to the
constituents of a sentence. The task is generally treated as a supervised ma-
chine learning task, with models trained on PropBank or FrameNet. Algo-
rithms generally start by parsing a sentence and then automatically tag each
parse tree node with a semantic role. Neural models map straight from words
end-to-end.

• Semantic selectional restrictions allow words (particularly predicates) to post
constraints on the semantic properties of their argument words. Selectional
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preference models (like selectional association or simple conditional proba-
bility) allow a weight or probability to be assigned to the association between
a predicate and an argument word or class.

Bibliographical and Historical Notes
Although the idea of semantic roles dates back to Pān. ini, they were re-introduced
into modern linguistics by Gruber (1965), Fillmore (1966) and Fillmore (1968).
Fillmore, interestingly, had become interested in argument structure by studying
Lucien Tesnière’s groundbreaking Éléments de Syntaxe Structurale (Tesnière, 1959)
in which the term ‘dependency’ was introduced and the foundations were laid for
dependency grammar. Following Tesnière’s terminology, Fillmore first referred to
argument roles as actants (Fillmore, 1966) but quickly switched to the term case,
(see Fillmore (2003)) and proposed a universal list of semantic roles or cases (Agent,
Patient, Instrument, etc.), that could be taken on by the arguments of predicates.
Verbs would be listed in the lexicon with their case frame, the list of obligatory (or
optional) case arguments.

The idea that semantic roles could provide an intermediate level of semantic
representation that could help map from syntactic parse structures to deeper, more
fully-specified representations of meaning was quickly adopted in natural language
processing, and systems for extracting case frames were created for machine trans-
lation (Wilks, 1973), question-answering (Hendrix et al., 1973), spoken-language
understanding (Nash-Webber, 1975), and dialogue systems (Bobrow et al., 1977).
General-purpose semantic role labelers were developed. The earliest ones (Sim-
mons, 1973) first parsed a sentence by means of an ATN (Augmented Transition
Network) parser. Each verb then had a set of rules specifying how the parse should
be mapped to semantic roles. These rules mainly made reference to grammatical
functions (subject, object, complement of specific prepositions) but also checked
constituent internal features such as the animacy of head nouns. Later systems as-
signed roles from pre-built parse trees, again by using dictionaries with verb-specific
case frames (Levin 1977, Marcus 1980).

By 1977 case representation was widely used and taught in AI and NLP courses,
and was described as a standard of natural language understanding in the first edition
of Winston’s (1977) textbook Artificial Intelligence.

In the 1980s Fillmore proposed his model of frame semantics, later describing
the intuition as follows:

“The idea behind frame semantics is that speakers are aware of possi-
bly quite complex situation types, packages of connected expectations,
that go by various names—frames, schemas, scenarios, scripts, cultural
narratives, memes—and the words in our language are understood with
such frames as their presupposed background.” (Fillmore, 2012, p. 712)

The word frame seemed to be in the air for a suite of related notions proposed at
about the same time by Minsky (1974), Hymes (1974), and Goffman (1974), as
well as related notions with other names like scripts (Schank and Abelson, 1975)
and schemata (Bobrow and Norman, 1975) (see Tannen (1979) for a comparison).
Fillmore was also influenced by the semantic field theorists and by a visit to the Yale
AI lab where he took notice of the lists of slots and fillers used by early information
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extraction systems like DeJong (1982) and Schank and Abelson (1977). In the 1990s
Fillmore drew on these insights to begin the FrameNet corpus annotation project.

At the same time, Beth Levin drew on her early case frame dictionaries (Levin,
1977) to develop her book which summarized sets of verb classes defined by shared
argument realizations (Levin, 1993). The VerbNet project built on this work (Kipper
et al., 2000), leading soon afterwards to the PropBank semantic-role-labeled corpus
created by Martha Palmer and colleagues (Palmer et al., 2005).

The combination of rich linguistic annotation and corpus-based approach in-
stantiated in FrameNet and PropBank led to a revival of automatic approaches to
semantic role labeling, first on FrameNet (Gildea and Jurafsky, 2000) and then on
PropBank data (Gildea and Palmer, 2002, inter alia). The problem first addressed in
the 1970s by handwritten rules was thus now generally recast as one of supervised
machine learning enabled by large and consistent databases. Many popular features
used for role labeling are defined in Gildea and Jurafsky (2002), Surdeanu et al.
(2003), Xue and Palmer (2004), Pradhan et al. (2005), Che et al. (2009), and Zhao
et al. (2009). The use of dependency rather than constituency parses was introduced
in the CoNLL-2008 shared task (Surdeanu et al., 2008b). For surveys see Palmer
et al. (2010) and Màrquez et al. (2008).

The use of neural approaches to semantic role labeling was pioneered by Col-
lobert et al. (2011), who applied a CRF on top of a convolutional net. Early work
like Foland, Jr. and Martin (2015) focused on using dependency features. Later
work eschewed syntactic features altogether; (Zhou and Xu, 2015b) introduced the
use of a stacked (6-8 layer) bi-LSTM architecture, and (He et al., 2017) showed
how to augment the bi-LSTM architecture with highway networks and also replace
the CRF with A* decoding that make it possible to apply a wide variety of global
constraints in SRL decoding.

Most semantic role labeling schemes only work within a single sentence, fo-
cusing on the object of the verbal (or nominal, in the case of NomBank) predicate.
However, in many cases, a verbal or nominal predicate may have an implicit argu-
ment: one that appears only in a contextual sentence, or perhaps not at all and mustimplicit

argument
be inferred. In the two sentences This house has a new owner. The sale was finalized
10 days ago. the sale in the second sentence has no ARG1, but a reasonable reader
would infer that the Arg1 should be the house mentioned in the prior sentence. Find-
ing these arguments, implicit argument detection (sometimes shortened as iSRL)iSRL

was introduced by Gerber and Chai (2010) and Ruppenhofer et al. (2010). See Do
et al. (2017) for more recent neural models.

To avoid the need for huge labeled training sets, unsupervised approaches for
semantic role labeling attempt to induce the set of semantic roles by clustering over
arguments. The task was pioneered by Riloff and Schmelzenbach (1998) and Swier
and Stevenson (2004); see Grenager and Manning (2006), Titov and Klementiev
(2012), Lang and Lapata (2014), Woodsend and Lapata (2015), and Titov and Khod-
dam (2014).

Recent innovations in frame labeling include connotation frames, which mark
richer information about the argument of predicates. Connotation frames mark the
sentiment of the writer or reader toward the arguments (for example using the verb
survive in he survived a bombing expresses the writer’s sympathy toward the subject
he and negative sentiment toward the bombing. Connotation frames also mark effect
(something bad happened to x), value: (x is valuable), and mental state: (x is dis-
tressed by the event) (Rashkin et al. 2016, Rashkin et al. 2017). Connotation frames
can also mark the power differential between the arguments (using the verb implore
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means that the theme argument has greater power than the agent), and the agency
of each argument (waited is low agency). Fig. 20.9 shows a visualization from Sap
et al. (2017).

AGENT THEME

power(AG < TH)

VERB
implore

He implored the tribunal to show mercy.

The princess waited for her prince.

AGENT THEME

agency(AG) = -

VERB
wait

Figure 2: The formal notation of the connotation
frames of power and agency. The first example
shows the relative power differential implied by
the verb “implored”, i.e., the agent (“he”) is in
a position of less power than the theme (“the tri-
bunal”). In contrast, “He demanded the tribunal
show mercy” implies that the agent has authority
over the theme. The second example shows the
low level of agency implied by the verb “waited”.

interactive demo website of our findings (see Fig-
ure 5 in the appendix for a screenshot).2 Further-
more, as will be seen in Section 4.1, connotation
frames offer new insights that complement and de-
viate from the well-known Bechdel test (Bechdel,
1986). In particular, we find that high-agency
women through the lens of connotation frames are
rare in modern films. It is, in part, because some
movies (e.g., Snow White) accidentally pass the
Bechdel test and also because even movies with
strong female characters are not entirely free from
the deeply ingrained biases in social norms.

2 Connotation Frames of Power and
Agency

We create two new connotation relations, power
and agency (examples in Figure 3), as an expan-
sion of the existing connotation frame lexicons.3

Three AMT crowdworkers annotated the verbs
with placeholders to avoid gender bias in the con-
text (e.g., X rescued Y; an example task is shown
in the appendix in Figure 7). We define the anno-
tated constructs as follows:

Power Differentials Many verbs imply the au-
thority levels of the agent and theme relative to

2http://homes.cs.washington.edu/˜msap/
movie-bias/.

3The lexicons and a demo are available at http://
homes.cs.washington.edu/˜msap/movie-bias/.

power(AG<TH) power(AG>TH)

agency(AG)=� agency(AG)=+

Figure 3: Sample verbs in the connotation frames
with high annotator agreement. Size is indicative
of verb frequency in our corpus (bigger = more
frequent), color differences are only for legibility.

one another. For example, if the agent “dom-
inates” the theme (denoted as power(AG>TH)),
then the agent is implied to have a level of control
over the theme. Alternatively, if the agent “hon-
ors” the theme (denoted as power(AG<TH)), the
writer implies that the theme is more important or
authoritative. We used AMT crowdsourcing to la-
bel 1700 transitive verbs for power differentials.
With three annotators per verb, the inter-annotator
agreement is 0.34 (Krippendorff’s ↵).

Agency The agency attributed to the agent of the
verb denotes whether the action being described
implies that the agent is powerful, decisive, and
capable of pushing forward their own storyline.
For example, a person who is described as “ex-
periencing” things does not seem as active and de-
cisive as someone who is described as “determin-
ing” things. AMT workers labeled 2000 transi-
tive verbs for implying high/moderate/low agency
(inter-annotator agreement of 0.27). We denote
high agency as agency(AG)=+, and low agency
as agency(AG)=�.

Pairwise agreements on a hard constraint are
56% and 51% for power and agency, respec-
tively. Despite this, agreements reach 96% and
94% when moderate labels are counted as agree-
ing with either high or low labels, showing that an-
notators rarely strongly disagree with one another.
Some contributing factors in the lower KA scores
include the subtlety of choosing between neutral

Figure 20.9 The connotation frames of Sap et al. (2017), showing that the verb implore
implies the agent has lower power than the theme (in contrast, say, with a verb like demanded),
and showing the low level of agency of the subject of waited. Figure from Sap et al. (2017).

Selectional preference has been widely studied beyond the selectional associa-
tion models of Resnik (1993) and Resnik (1996). Methods have included cluster-
ing (Rooth et al., 1999), discriminative learning (Bergsma et al., 2008a), and topic
models (Séaghdha 2010, Ritter et al. 2010), and constraints can be expressed at the
level of words or classes (Agirre and Martinez, 2001). Selectional preferences have
also been successfully integrated into semantic role labeling (Erk 2007, Zapirain
et al. 2013, Do et al. 2017).

Exercises
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CHAPTER

21 Lexicons for Sentiment, Affect,
and Connotation

“[W]e write, not with the fingers, but with the whole person. The nerve which
controls the pen winds itself about every fibre of our being, threads the heart,
pierces the liver.”

Virginia Woolf, Orlando

“She runs the gamut of emotions from A to B.”
Dorothy Parker, reviewing Hepburn’s performance in Little Women

“Festering’s always bad. There’s no good kind of festering.”
Adventure Time, Season 5

In this chapter we turn to tools for interpreting affective meaning, extending ouraffective

study of sentiment analysis in Chapter 4. We use the word ‘affective’, following
the tradition in affective computing (Picard, 1995) to mean emotion, sentiment, per-
sonality, mood, and attitudes. Affective meaning is closely related to subjectivity,subjectivity

the study of a speaker or writer’s evaluations, opinions, emotions, and speculations
(Wiebe et al., 1999).

How should affective meaning be defined? One influential typology of affec-
tive states comes from Scherer (2000), who defines each class of affective states by
factors like its cognitive realization and time course:

We can design extractors for each of these kinds of affective states. Chapter 4
already introduced sentiment analysis, the task of extracting the positive or negative
orientation that a writer expresses in a text. This corresponds in Scherer’s typology
to the extraction of attitudes: figuring out what people like or dislike, from affect-
rich texts like consumer reviews of books or movies, newspaper editorials, or public
sentiment in blogs or tweets.

Detecting emotion and moods is useful for detecting whether a student is con-
fused, engaged, or certain when interacting with a tutorial system, whether a caller
to a help line is frustrated, whether someone’s blog posts or tweets indicated depres-
sion. Detecting emotions like fear in novels, for example, could help us trace what
groups or situations are feared and how that changes over time.

Detecting different interpersonal stances can be useful when extracting infor-
mation from human-human conversations. The goal here is to detect stances like
friendliness or awkwardness in interviews or friendly conversations, for example for
summarizing meetings or finding parts of a conversation where people are especially
excited or engaged, conversational hot spots that can help in meeting summariza-
tion. Detecting the personality of a user—such as whether the user is an extrovert
or the extent to which they are open to experience— can help improve conversa-
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Emotion: Relatively brief episode of response to the evaluation of an external
or internal event as being of major significance.
(angry, sad, joyful, fearful, ashamed, proud, elated, desperate)

Mood: Diffuse affect state, most pronounced as change in subjective feeling, of
low intensity but relatively long duration, often without apparent cause.
(cheerful, gloomy, irritable, listless, depressed, buoyant)

Interpersonal stance: Affective stance taken toward another person in a spe-
cific interaction, coloring the interpersonal exchange in that situation.
(distant, cold, warm, supportive, contemptuous, friendly)

Attitude: Relatively enduring, affectively colored beliefs, preferences, and pre-
dispositions towards objects or persons.
(liking, loving, hating, valuing, desiring)

Personality traits: Emotionally laden, stable personality dispositions and be-
havior tendencies, typical for a person.
(nervous, anxious, reckless, morose, hostile, jealous)

Figure 21.1 The Scherer typology of affective states (Scherer, 2000).

tional agents, which seem to work better if they match users’ personality expecta-
tions (Mairesse and Walker, 2008). And affect is important for generation as well
as recognition; synthesizing affect is important for conversational agents in various
domains, including literacy tutors such as children’s storybooks, or computer games.

In Chapter 4 we introduced the use of naive Bayes classification to classify a
document’s sentiment. Various classifiers have been successfully applied to many of
these tasks, using all the words in the training set as input to a classifier which then
determines the affect status of the text.

In this chapter we focus on an alternative model, in which instead of using every
word as a feature, we focus only on certain words, ones that carry particularly strong
cues to affect or sentiment. We call these lists of words affective lexicons or senti-
ment lexicons. These lexicons presuppose a fact about semantics: that words have
affective meanings or connotations. The word connotation has different meaningsconnotations

in different fields, but here we use it to mean the aspects of a word’s meaning that
are related to a writer or reader’s emotions, sentiment, opinions, or evaluations. In
addition to their ability to help determine the affective status of a text, connotation
lexicons can be useful features for other kinds of affective tasks, and for computa-
tional social science analysis.

In the next sections we introduce basic theories of emotion, show how sentiment
lexicons are a special case of emotion lexicons, and mention some useful lexicons.
We then survey three ways for building lexicons: human labeling, semi-supervised,
and supervised. Finally, we turn to other kinds of affective meaning like personality,
stance, and entity-centric affect, and introduce connotation frames.

21.1 Defining Emotion

One of the most important affective classes is emotion, which Scherer (2000) definesemotion

as a “relatively brief episode of response to the evaluation of an external or internal
event as being of major significance”.

Detecting emotion has the potential to improve a number of language processing
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tasks. Automatically detecting emotions in reviews or customer responses (anger,
dissatisfaction, trust) could help businesses recognize specific problem areas or ones
that are going well. Emotion recognition could help dialog systems like tutoring
systems detect that a student was unhappy, bored, hesitant, confident, and so on.
Emotion can play a role in medical informatics tasks like detecting depression or
suicidal intent. Detecting emotions expressed toward characters in novels might
play a role in understanding how different social groups were viewed by society at
different times.

There are two widely-held families of theories of emotion. In one family, emo-
tions are viewed as fixed atomic units, limited in number, and from which others
are generated, often called basic emotions (Tomkins 1962, Plutchik 1962). Perhapsbasic emotions

most well-known of this family of theories are the 6 emotions proposed by Ekman
(see for example Ekman 1999) as a set of emotions that is likely to be universally
present in all cultures: surprise, happiness, anger, fear, disgust, sadness. Another
atomic theory is the Plutchik (1980) wheel of emotion, consisting of 8 basic emo-
tions in four opposing pairs: joy–sadness, anger–fear, trust–disgust, and anticipa-
tion–surprise, together with the emotions derived from them, shown in Fig. 21.2.

Figure 21.2 Plutchik wheel of emotion.

The second class of emotion theories views emotion as a space in 2 or 3 di-
mensions (Russell, 1980). Most models include the two dimensions valence and
arousal, and many add a third, dominance. These can be defined as:

valence: the pleasantness of the stimulus
arousal: the intensity of emotion provoked by the stimulus
dominance: the degree of control exerted by the stimulus

In the next sections we’ll see lexicons for both kinds of theories of emotion.
Sentiment can be viewed as a special case of this second view of emotions as

points in space. In particular, the valence dimension, measuring how pleasant or
unpleasant a word is, is often used directly as a measure of sentiment.
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21.2 Available Sentiment and Affect Lexicons

A wide variety of affect lexicons have been created and released. The most basic
lexicons label words along one dimension of semantic variability, generally called
“sentiment” or “valence”.

In the simplest lexicons this dimension is represented in a binary fashion, with
a wordlist for positive words and a wordlist for negative words. The oldest is the
General Inquirer (Stone et al., 1966), which drew on content analysis and on earlyGeneral

Inquirer
work in the cognitive psychology of word meaning (Osgood et al., 1957). The Gen-
eral Inquirer has a lexicon of 1915 positive words and a lexicon of 2291 negative
words (as well as other lexicons discussed below). The MPQA Subjectivity lexicon
(Wilson et al., 2005) has 2718 positive and 4912 negative words drawn from prior
lexicons plus a bootstrapped list of subjective words and phrases (Riloff and Wiebe,
2003) Each entry in the lexicon is hand-labeled for sentiment and also labeled for
reliability (strongly subjective or weakly subjective). The polarity lexicon of Hu
and Liu (2004b) gives 2006 positive and 4783 negative words, drawn from product
reviews, labeled using a bootstrapping method from WordNet.

Positive admire, amazing, assure, celebration, charm, eager, enthusiastic, excellent, fancy, fan-
tastic, frolic, graceful, happy, joy, luck, majesty, mercy, nice, patience, perfect, proud,
rejoice, relief, respect, satisfactorily, sensational, super, terrific, thank, vivid, wise, won-
derful, zest

Negative abominable, anger, anxious, bad, catastrophe, cheap, complaint, condescending, deceit,
defective, disappointment, embarrass, fake, fear, filthy, fool, guilt, hate, idiot, inflict, lazy,
miserable, mourn, nervous, objection, pest, plot, reject, scream, silly, terrible, unfriendly,
vile, wicked

Figure 21.3 Some samples of words with consistent sentiment across three sentiment lexicons: the General
Inquirer (Stone et al., 1966), the MPQA Subjectivity lexicon (Wilson et al., 2005), and the polarity lexicon of
Hu and Liu (2004b).

Slightly more general than these sentiment lexicons are lexicons that assign each
word a value on all three affective dimensions. The NRC Valence, Arousal, and
Dominance (VAD) lexicon (Mohammad, 2018a) assigns valence, arousal, and dom-
inance scores to 20,000 words. Some examples are shown in Fig. 21.4.

Valence Arousal Dominance
vacation .840 enraged .962 powerful .991
delightful .918 party .840 authority .935
whistle .653 organized .337 saxophone .482
consolation .408 effortless .120 discouraged .0090
torture .115 napping .046 weak .045
Figure 21.4 Samples of the values of selected words on the three emotional dimensions
from Mohammad (2018a).

The NRC Word-Emotion Association Lexicon, also called EmoLex (Moham-EmoLex

mad and Turney, 2013), uses the Plutchik (1980) 8 basic emotions defined above.
The lexicon includes around 14,000 words including words from prior lexicons as
well as frequent nouns, verbs, adverbs and adjectives. Values from the lexicon for
some sample words:
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reward 0 1 0 0 1 0 1 1 1 0
worry 0 1 0 1 0 1 0 0 0 1
tenderness 0 0 0 0 1 0 0 0 1 0
sweetheart 0 1 0 0 1 1 0 1 1 0
suddenly 0 0 0 0 0 0 1 0 0 0
thirst 0 1 0 0 0 1 1 0 0 0
garbage 0 0 1 0 0 0 0 0 0 1

For a smaller set of 5,814 words, the NRC Emotion/Affect Intensity Lexicon
(Mohammad, 2018b) contains real-valued scores of association for anger, fear, joy,
and sadness; Fig. 21.5 shows examples.

Anger Fear Joy Sadness
outraged 0.964 horror 0.923 superb 0.864 sad 0.844
violence 0.742 anguish 0.703 cheered 0.773 guilt 0.750
coup 0.578 pestilence 0.625 rainbow 0.531 unkind 0.547
oust 0.484 stressed 0.531 gesture 0.387 difficulties 0.421
suspicious 0.484 failing 0.531 warms 0.391 beggar 0.422
nurture 0.059 confident 0.094 hardship .031 sing 0.017
Figure 21.5 Sample emotional intensities for words for anger, fear, joy, and sadness from
Mohammad (2018b).

LIWC, Linguistic Inquiry and Word Count, is a widely used set of 73 lex-LIWC

icons containing over 2300 words (Pennebaker et al., 2007), designed to capture
aspects of lexical meaning relevant for social psychological tasks. In addition to
sentiment-related lexicons like ones for negative emotion (bad, weird, hate, prob-
lem, tough) and positive emotion (love, nice, sweet), LIWC includes lexicons for
categories like anger, sadness, cognitive mechanisms, perception, tentative, and in-
hibition, shown in Fig. 21.6.

There are various other hand-built affective lexicons. The General Inquirer in-
cludes additional lexicons for dimensions like strong vs. weak, active vs. passive,
overstated vs. understated, as well as lexicons for categories like pleasure, pain,
virtue, vice, motivation, and cognitive orientation.

Another useful feature for various tasks is the distinction between concreteconcrete

words like banana or bathrobe and abstract words like belief and although. Theabstract

lexicon in Brysbaert et al. (2014) used crowdsourcing to assign a rating from 1 to 5
of the concreteness of 40,000 words, thus assigning banana, bathrobe, and bagel 5,
belief 1.19, although 1.07, and in between words like brisk a 2.5.

21.3 Creating Affect Lexicons by Human Labeling

The earliest method used to build affect lexicons, and still in common use, is to have
humans label each word. This is now most commonly done via crowdsourcing:crowdsourcing

breaking the task into small pieces and distributing them to a large number of anno-
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Positive Negative
Emotion Emotion Insight Inhibition Family Negate
appreciat* anger* aware* avoid* brother* aren’t
comfort* bore* believe careful* cousin* cannot
great cry decid* hesitat* daughter* didn’t
happy despair* feel limit* family neither
interest fail* figur* oppos* father* never
joy* fear know prevent* grandf* no
perfect* griev* knew reluctan* grandm* nobod*
please* hate* means safe* husband none
safe* panic* notice* stop mom nor
terrific suffers recogni* stubborn* mother nothing
value terrify sense wait niece* nowhere
wow* violent* think wary wife without
Figure 21.6 Samples from 5 of the 73 lexical categories in LIWC (Pennebaker et al., 2007).
The * means the previous letters are a word prefix and all words with that prefix are included
in the category.

tators. Let’s take a look at some of the methodological choices for two crowdsourced
emotion lexicons.

The NRC Emotion Lexicon (EmoLex) (Mohammad and Turney, 2013), labeled
emotions in two steps. To ensure that the annotators were judging the correct sense
of the word, they first answered a multiple-choice synonym question that primed
the correct sense of the word (without requiring the annotator to read a potentially
confusing sense definition). These were created automatically using the headwords
associated with the thesaurus category of the sense in question in the Macquarie
dictionary and the headwords of 3 random distractor categories. An example:

Which word is closest in meaning (most related) to startle?

• automobile
• shake
• honesty
• entertain

For each word (e.g. startle), the annotator was then asked to rate how associated
that word is with each of the 8 emotions (joy, fear, anger, etc.). The associations
were rated on a scale of not, weakly, moderately, and strongly associated. Outlier
ratings were removed, and then each term was assigned the class chosen by the ma-
jority of the annotators, with ties broken by choosing the stronger intensity, and then
the 4 levels were mapped into a binary label for each word (no and weak mapped to
0, moderate and strong mapped to 1).

The NRC VAD Lexicon (Mohammad, 2018a) was built by selecting words and
emoticons from prior lexicons and annotating them with crowd-sourcing using best-
worst scaling (Louviere et al. 2015, Kiritchenko and Mohammad 2017). In best-best-worst

scaling
worst scaling, annotators are given N items (usually 4) and are asked which item is
the best (highest) and which is the worst (lowest) in terms of some property. The
set of words used to decribe the ends of the scales are taken from prior literature.
For valence, for example, the raters were asked:

Q1. Which of the four words below is associated with the MOST happi-
ness / pleasure / positiveness / satisfaction / contentedness / hopefulness
OR LEAST unhappiness / annoyance / negativeness / dissatisfaction /
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melancholy / despair? (Four words listed as options.)
Q2. Which of the four words below is associated with the LEAST hap-
piness / pleasure / positiveness / satisfaction / contentedness / hopeful-
ness OR MOST unhappiness / annoyance / negativeness / dissatisfaction
/ melancholy / despair? (Four words listed as options.)

The score for each word in the lexicon is the proportion of times the item was chosen
as the best (highest V/A/D) minus the proportion of times the item was chosen as the
worst (lowest V/A/D). The agreement between annotations are evaluated by split-
half reliability: split the corpus in half and compute the correlations between thesplit-half

reliability
annotations in the two halves.

21.4 Semi-supervised Induction of Affect Lexicons

Another common way to learn sentiment lexicons is to start from a set of seed words
that define two poles of a semantic axis (words like good or bad), and then find ways
to label each word w by its similarity to the two seed sets. Here we summarize two
families of seed-based semi-supervised lexicon induction algorithms, axis-based and
graph-based.

21.4.1 Semantic Axis Methods
One of the most well-known lexicon induction methods, the Turney and Littman
(2003) algorithm, is given seed words like good or bad, and then for each word w to
be labeled, measures both how similar it is to good and how different it is from bad.
Here we describe a slight extension of the algorithm due to An et al. (2018), which
is based on computing a semantic axis.

In the first step, we choose seed words by hand. There are two methods for
dealing with the fact that the affect of a word is different in different contexts: (1)
start with a single large seed lexicon and rely on the induction algorithm to fine-tune
it to the domain, or (2) choose different seed words for different genres. Hellrich
et al. (2019) suggests that for modeling affect across different historical time periods,
starting with a large modern affect dictionary is better than small seedsets tuned to be
stable across time. As an example of the second approach, Hamilton et al. (2016a)
define one set of seed words for general sentiment analysis, a different set for Twitter,
and yet another set for sentiment in financial text:

Domain Positive seeds Negative seeds

General good, lovely, excellent, fortunate, pleas-
ant, delightful, perfect, loved, love,
happy

bad, horrible, poor, unfortunate, un-
pleasant, disgusting, evil, hated, hate,
unhappy

Twitter love, loved, loves, awesome, nice,
amazing, best, fantastic, correct, happy

hate, hated, hates, terrible, nasty, awful,
worst, horrible, wrong, sad

Finance successful, excellent, profit, beneficial,
improving, improved, success, gains,
positive

negligent, loss, volatile, wrong, losses,
damages, bad, litigation, failure, down,
negative

In the second step, we compute embeddings for each of the pole words. These
embeddings can be off-the-shelf word2vec embeddings, or can be computed directly
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on a specific corpus (for example using a financial corpus if a finance lexicon is the
goal), or we can fine-tune off-the-shelf embeddings to a corpus. Fine-tuning is espe-
cially important if we have a very specific genre of text but don’t have enough data
to train good embeddings. In fine-tuning, we begin with off-the-shelf embeddings
like word2vec, and continue training them on the small target corpus.

Once we have embeddings for each pole word, we create an embedding that
represents each pole by taking the centroid of the embeddings of each of the seed
words; recall that the centroid is the multidimensional version of the mean. Given
a set of embeddings for the positive seed words S+ = {E(w+

1 ),E(w
+
2 ), ...,E(w

+
n )},

and embeddings for the negative seed words S− = {E(w−1 ),E(w−2 ), ...,E(w−m)}, the
pole centroids are:

V+ =
1
n

n∑

1

E(w+
i )

V− =
1
m

m∑

1

E(w−i ) (21.1)

The semantic axis defined by the poles is computed just by subtracting the two vec-
tors:

Vaxis = V+−V− (21.2)

Vaxis, the semantic axis, is a vector in the direction of sentiment. Finally, we compute
how close each word w is to this sentiment axis, by taking the cosine between w’s
embedding and the axis vector. A higher cosine means that w is more aligned with
S+ than S−.

score(w) =
(
cos(E(w),Vaxis

)

=
E(w) ·Vaxis
‖E(w)‖‖Vaxis‖

(21.3)

If a dictionary of words with sentiment scores is sufficient, we’re done! Or if we
need to group words into a positive and a negative lexicon, we can use a threshold
or other method to give us discrete lexicons.

21.4.2 Label Propagation
An alternative family of methods defines lexicons by propagating sentiment labels
on graphs, an idea suggested in early work by Hatzivassiloglou and McKeown
(1997). We’ll describe the simple SentProp (Sentiment Propagation) algorithm of
Hamilton et al. (2016a), which has four steps:

1. Define a graph: Given word embeddings, build a weighted lexical graph
by connecting each word with its k nearest neighbors (according to cosine-
similarity). The weights of the edge between words wi and w j are set as:

Ei, j = arccos
(
− wi

>wj

‖wi‖‖wj‖

)
. (21.4)

2. Define a seed set: Choose positive and negative seed words.
3. Propagate polarities from the seed set: Now we perform a random walk on

this graph, starting at the seed set. In a random walk, we start at a node and
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then choose a node to move to with probability proportional to the edge prob-
ability. A word’s polarity score for a seed set is proportional to the probability
of a random walk from the seed set landing on that word, (Fig. 21.7).

4. Create word scores: We walk from both positive and negative seed sets,
resulting in positive (score+(wi)) and negative (score−(wi)) label scores. We
then combine these values into a positive-polarity score as:

score+(wi) =
score+(wi)

score+(wi)+ score−(wi)
(21.5)

It’s often helpful to standardize the scores to have zero mean and unit variance
within a corpus.

5. Assign confidence to each score: Because sentiment scores are influenced by
the seed set, we’d like to know how much the score of a word would change if
a different seed set is used. We can use bootstrap-sampling to get confidence
regions, by computing the propagation B times over random subsets of the
positive and negative seed sets (for example using B = 50 and choosing 7 of
the 10 seed words each time). The standard deviation of the bootstrap-sampled
polarity scores gives a confidence measure.
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Figure 21.7 Intuition of the SENTPROP algorithm. (a) Run random walks from the seed words. (b) Assign
polarity scores (shown here as colors green or red) based on the frequency of random walk visits.

21.4.3 Other Methods
The core of semisupervised algorithms is the metric for measuring similarity with
the seed words. The Turney and Littman (2003) and Hamilton et al. (2016a) ap-
proaches above used embedding cosine as the distance metric: words were labeled
as positive basically if their embeddings had high cosines with positive seeds and
low cosines with negative seeds. Other methods have chosen other kinds of distance
metrics besides embedding cosine.

For example the Hatzivassiloglou and McKeown (1997) algorithm uses syntactic
cues; two adjectives are considered similar if they were frequently conjoined by and
and rarely conjoined by but. This is based on the intuition that adjectives conjoined
by the words and tend to have the same polarity; positive adjectives are generally
coordinated with positive, negative with negative:

fair and legitimate, corrupt and brutal

but less often positive adjectives coordinated with negative:

*fair and brutal, *corrupt and legitimate

By contrast, adjectives conjoined by but are likely to be of opposite polarity:
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fair but brutal

Another cue to opposite polarity comes from morphological negation (un-, im-,
-less). Adjectives with the same root but differing in a morphological negative (ad-
equate/inadequate, thoughtful/thoughtless) tend to be of opposite polarity.

Yet another method for finding words that have a similar polarity to seed words is
to make use of a thesaurus like WordNet (Kim and Hovy 2004, Hu and Liu 2004b).
A word’s synonyms presumably share its polarity while a word’s antonyms probably
have the opposite polarity. After a seed lexicon is built, each lexicon is updated as
follows, possibly iterated.

Lex+: Add synonyms of positive words (well) and antonyms (like fine) of negative
words

Lex−: Add synonyms of negative words (awful) and antonyms (like evil) of positive
words

An extension of this algorithm assigns polarity to WordNet senses, called Senti-
WordNet (Baccianella et al., 2010). Fig. 21.8 shows some examples.SentiWordNet

Synset Pos Neg Obj
good#6 ‘agreeable or pleasing’ 1 0 0
respectable#2 honorable#4 good#4 estimable#2 ‘deserving of esteem’ 0.75 0 0.25
estimable#3 computable#1 ‘may be computed or estimated’ 0 0 1
sting#1 burn#4 bite#2 ‘cause a sharp or stinging pain’ 0 0.875 .125
acute#6 ‘of critical importance and consequence’ 0.625 0.125 .250
acute#4 ‘of an angle; less than 90 degrees’ 0 0 1
acute#1 ‘having or experiencing a rapid onset and short but severe course’ 0 0.5 0.5
Figure 21.8 Examples from SentiWordNet 3.0 (Baccianella et al., 2010). Note the differences between senses
of homonymous words: estimable#3 is purely objective, while estimable#2 is positive; acute can be positive
(acute#6), negative (acute#1), or neutral (acute #4).

In this algorithm, polarity is assigned to entire synsets rather than words. A
positive lexicon is built from all the synsets associated with 7 positive words, and a
negative lexicon from synsets associated with 7 negative words. A classifier is then
trained from this data to take a WordNet gloss and decide if the sense being defined
is positive, negative or neutral. A further step (involving a random-walk algorithm)
assigns a score to each WordNet synset for its degree of positivity, negativity, and
neutrality.

In summary, semisupervised algorithms use a human-defined set of seed words
for the two poles of a dimension, and use similarity metrics like embedding cosine,
coordination, morphology, or thesaurus structure to score words by how similar they
are to the positive seeds and how dissimilar to the negative seeds.

21.5 Supervised Learning of Word Sentiment

Semi-supervised methods require only minimal human supervision (in the form of
seed sets). But sometimes a supervision signal exists in the world and can be made
use of. One such signal is the scores associated with online reviews.

The web contains an enormous number of online reviews for restaurants, movies,
books, or other products, each of which have the text of the review along with an
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Movie review excerpts (IMDb)
10 A great movie. This film is just a wonderful experience. It’s surreal, zany, witty and slapstick

all at the same time. And terrific performances too.
1 This was probably the worst movie I have ever seen. The story went nowhere even though they

could have done some interesting stuff with it.
Restaurant review excerpts (Yelp)

5 The service was impeccable. The food was cooked and seasoned perfectly... The watermelon
was perfectly square ... The grilled octopus was ... mouthwatering...

2 ...it took a while to get our waters, we got our entree before our starter, and we never received
silverware or napkins until we requested them...

Book review excerpts (GoodReads)
1 I am going to try and stop being deceived by eye-catching titles. I so wanted to like this book

and was so disappointed by it.
5 This book is hilarious. I would recommend it to anyone looking for a satirical read with a

romantic twist and a narrator that keeps butting in
Product review excerpts (Amazon)

5 The lid on this blender though is probably what I like the best about it... enables you to pour
into something without even taking the lid off! ... the perfect pitcher! ... works fantastic.

1 I hate this blender... It is nearly impossible to get frozen fruit and ice to turn into a smoothie...
You have to add a TON of liquid. I also wish it had a spout ...

Figure 21.9 Excerpts from some reviews from various review websites, all on a scale of 1 to 5 stars except
IMDb, which is on a scale of 1 to 10 stars.

associated review score: a value that may range from 1 star to 5 stars, or scoring 1
to 10. Fig. 21.9 shows samples extracted from restaurant, book, and movie reviews.

We can use this review score as supervision: positive words are more likely to
appear in 5-star reviews; negative words in 1-star reviews. And instead of just a
binary polarity, this kind of supervision allows us to assign a word a more complex
representation of its polarity: its distribution over stars (or other scores).

Thus in a ten-star system we could represent the sentiment of each word as a
10-tuple, each number a score representing the word’s association with that polarity
level. This association can be a raw count, or a likelihood P(w|c), or some other
function of the count, for each class c from 1 to 10.

For example, we could compute the IMDb likelihood of a word like disap-
point(ed/ing) occurring in a 1 star review by dividing the number of times disap-
point(ed/ing) occurs in 1-star reviews in the IMDb dataset (8,557) by the total num-
ber of words occurring in 1-star reviews (25,395,214), so the IMDb estimate of
P(disappointing|1) is .0003.

A slight modification of this weighting, the normalized likelihood, can be used
as an illuminating visualization (Potts, 2011)1:

P(w|c) =
count(w,c)∑

w∈C count(w,c)

PottsScore(w) =
P(w|c)∑
c P(w|c) (21.6)

Dividing the IMDb estimate P(disappointing|1) of .0003 by the sum of the likeli-
hood P(w|c) over all categories gives a Potts score of 0.10. The word disappointing

1 Potts shows that the normalized likelihood is an estimate of the posterior P(c|w) if we make the
incorrect but simplifying assumption that all categories c have equal probability.
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thus is associated with the vector [.10, .12, .14, .14, .13, .11, .08, .06, .06, .05]. The
Potts diagram (Potts, 2011) is a visualization of these word scores, representing thePotts diagram

prior sentiment of a word as a distribution over the rating categories.
Fig. 21.10 shows the Potts diagrams for 3 positive and 3 negative scalar adjec-

tives. Note that the curve for strongly positive scalars have the shape of the letter
J, while strongly negative scalars look like a reverse J. By contrast, weakly posi-
tive and negative scalars have a hump-shape, with the maximum either below the
mean (weakly negative words like disappointing) or above the mean (weakly pos-
itive words like good). These shapes offer an illuminating typology of affective
meaning.
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Figure 21.10 Potts diagrams (Potts, 2011) for positive and negative scalar adjectives, show-
ing the J-shape and reverse J-shape for strongly positive and negative adjectives, and the
hump-shape for more weakly polarized adjectives.

Fig. 21.11 shows the Potts diagrams for emphasizing and attenuating adverbs.
Note that emphatics tend to have a J-shape (most likely to occur in the most posi-
tive reviews) or a U-shape (most likely to occur in the strongly positive and nega-
tive). Attenuators all have the hump-shape, emphasizing the middle of the scale and
downplaying both extremes. The diagrams can be used both as a typology of lexical
sentiment, and also play a role in modeling sentiment compositionality.

In addition to functions like posterior P(c|w), likelihood P(w|c), or normalized
likelihood (Eq. 21.6) many other functions of the count of a word occurring with a
sentiment label have been used. We’ll introduce some of these on page 410, includ-
ing ideas like normalizing the counts per writer in Eq. 21.14.

21.5.1 Log Odds Ratio Informative Dirichlet Prior
One thing we often want to do with word polarity is to distinguish between words
that are more likely to be used in one category of texts than in another. We may, for
example, want to know the words most associated with 1 star reviews versus those
associated with 5 star reviews. These differences may not be just related to senti-
ment. We might want to find words used more often by Democratic than Republican
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Figure 21.11 Potts diagrams (Potts, 2011) for emphatic and attenuating adverbs.

members of Congress, or words used more often in menus of expensive restaurants
than cheap restaurants.

Given two classes of documents, to find words more associated with one cate-
gory than another, we might choose to just compute the difference in frequencies
(is a word w more frequent in class A or class B?). Or instead of the difference in
frequencies we might want to compute the ratio of frequencies, or the log odds ratio
(the log of the ratio between the odds of the two words). Then we can sort words
by whichever of these associations with the category we use, (sorting from words
overrepresented in category A to words overrepresented in category B).

The problem with simple log-likelihood or log odds methods is that they don’t
work well for very rare words or very frequent words; for words that are very fre-
quent, all differences seem large, and for words that are very rare, no differences
seem large.

In this section we walk through the details of one solution to this problem: the
“log odds ratio informative Dirichlet prior” method of Monroe et al. (2008) that is a
particularly useful method for finding words that are statistically overrepresented in
one particular category of texts compared to another. It’s based on the idea of using
another large corpus to get a prior estimate of what we expect the frequency of each
word to be.

Let’s start with the goal: assume we want to know whether the word horrible
occurs more in corpus i or corpus j. We could compute the log likelihood ratio,log likelihood

ratio
using f i(w) to mean the frequency of word w in corpus i, and ni to mean the total
number of words in corpus i:

llr(horrible) = log
Pi(horrible)
P j(horrible)

= logPi(horrible)− logP j(horrible)

= log
fi(horrible)

ni − log
f j(horrible)

n j (21.7)

Instead, let’s compute the log odds ratio: does horrible have higher odds in i or inlog odds ratio
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j:
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)
− log

(
P j(horrible)
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)

= log




fi(horrible)
ni

1− fi(horrible)
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− log




f j(horrible)
n j

1− f j(horrible)
n j




= log
(

fi(horrible)
ni− fi(horrible)

)
− log

(
f j(horrible)

n j− f j(horrible)

)
(21.8)

The Dirichlet intuition is to use a large background corpus to get a prior estimate of
what we expect the frequency of each word w to be. We’ll do this very simply by
adding the counts from that corpus to the numerator and denominator, so that we’re
essentially shrinking the counts toward that prior. It’s like asking how large are the
differences between i and j given what we would expect given their frequencies in
a well-estimated large background corpus.

The method estimates the difference between the frequency of word w in two
corpora i and j via the prior-modified log odds ratio for w, δ

(i− j)
w , which is estimated

as:

δ
(i− j)
w = log

(
f i
w +αw

ni +α0− ( f i
w +αw)

)
− log

(
f j
w +αw

n j +α0− ( f j
w +αw)

)
(21.9)

(where ni is the size of corpus i, n j is the size of corpus j, f i
w is the count of word w

in corpus i, f j
w is the count of word w in corpus j, α0 is the size of the background

corpus, and αw is the count of word w in the background corpus.)
In addition, Monroe et al. (2008) make use of an estimate for the variance of the

log–odds–ratio:

σ
2
(

δ̂
(i− j)
w

)
≈ 1

f i
w +αw

+
1

f j
w +αw

(21.10)

The final statistic for a word is then the z–score of its log–odds–ratio:

δ̂
(i− j)
w√

σ2
(

δ̂
(i− j)
w

) (21.11)

The Monroe et al. (2008) method thus modifies the commonly used log odds ratio
in two ways: it uses the z-scores of the log odds ratio, which controls for the amount
of variance in a word’s frequency, and it uses counts from a background corpus to
provide a prior count for words.

Fig. 21.12 shows the method applied to a dataset of restaurant reviews from
Yelp, comparing the words used in 1-star reviews to the words used in 5-star reviews
(Jurafsky et al., 2014). The largest difference is in obvious sentiment words, with the
1-star reviews using negative sentiment words like worse, bad, awful and the 5-star
reviews using positive sentiment words like great, best, amazing. But there are other
illuminating differences. 1-star reviews use logical negation (no, not), while 5-star
reviews use emphatics and emphasize universality (very, highly, every, always). 1-
star reviews use first person plurals (we, us, our) while 5 star reviews use the second
person. 1-star reviews talk about people (manager, waiter, customer) while 5-star
reviews talk about dessert and properties of expensive restaurants like courses and
atmosphere. See Jurafsky et al. (2014) for more details.
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Class Words in 1-star reviews Class Words in 5-star reviews
Negative worst, rude, terrible, horrible, bad,

awful, disgusting, bland, tasteless,
gross, mediocre, overpriced, worse,
poor

Positive great, best, love(d), delicious, amazing,
favorite, perfect, excellent, awesome,
friendly, fantastic, fresh, wonderful, in-
credible, sweet, yum(my)

Negation no, not Emphatics/
universals

very, highly, perfectly, definitely, abso-
lutely, everything, every, always

1Pl pro we, us, our 2 pro you
3 pro she, he, her, him Articles a, the
Past verb was, were, asked, told, said, did,

charged, waited, left, took
Advice try, recommend

Sequencers after, then Conjunct also, as, well, with, and
Nouns manager, waitress, waiter, customer,

customers, attitude, waste, poisoning,
money, bill, minutes

Nouns atmosphere, dessert, chocolate, wine,
course, menu

Irrealis
modals

would, should Auxiliaries is/’s, can, ’ve, are

Comp to, that Prep, other in, of, die, city, mouth
Figure 21.12 The top 50 words associated with one–star and five-star restaurant reviews in a Yelp dataset of
900,000 reviews, using the Monroe et al. (2008) method (Jurafsky et al., 2014).

21.6 Using Lexicons for Sentiment Recognition

In Chapter 4 we introduced the naive Bayes algorithm for sentiment analysis. The
lexicons we have focused on throughout the chapter so far can be used in a number
of ways to improve sentiment detection.

In the simplest case, lexicons can be used when we don’t have sufficient training
data to build a supervised sentiment analyzer; it can often be expensive to have a
human assign sentiment to each document to train the supervised classifier.

In such situations, lexicons can be used in a rule-based algorithm for classifica-
tion. The simplest version is just to use the ratio of positive to negative words: if a
document has more positive than negative words (using the lexicon to decide the po-
larity of each word in the document), it is classified as positive. Often a threshold λ

is used, in which a document is classified as positive only if the ratio is greater than
λ . If the sentiment lexicon includes positive and negative weights for each word,
θ+

w and θ−w , these can be used as well. Here’s a simple such sentiment algorithm:

f+ =
∑

w s.t. w∈positivelexicon

θ
+
w count(w)

f− =
∑

w s.t. w∈negativelexicon

θ
−
w count(w)

sentiment =





+ if f+

f− > λ

− if f−
f+ > λ

0 otherwise.

(21.12)

If supervised training data is available, these counts computed from sentiment lex-
icons, sometimes weighted or normalized in various ways, can also be used as fea-
tures in a classifier along with other lexical or non-lexical features. We return to
such algorithms in Section 21.8.
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21.7 Other tasks: Personality

Many other kinds of affective meaning can be extracted from text and speech. For
example detecting a person’s personality from their language can be useful for di-personality

alog systems (users tend to prefer agents that match their personality), and can play
a useful role in computational social science questions like understanding how per-
sonality is related to other kinds of behavior.

Many theories of human personality are based around a small number of dimen-
sions, such as various versions of the “Big Five” dimensions (Digman, 1990):

Extroversion vs. Introversion: sociable, assertive, playful vs. aloof, reserved,
shy

Emotional stability vs. Neuroticism: calm, unemotional vs. insecure, anxious
Agreeableness vs. Disagreeableness: friendly, cooperative vs. antagonistic, fault-

finding
Conscientiousness vs. Unconscientiousness: self-disciplined, organized vs. in-

efficient, careless
Openness to experience: intellectual, insightful vs. shallow, unimaginative

A few corpora of text and speech have been labeled for the personality of their
author by having the authors take a standard personality test. The essay corpus of
Pennebaker and King (1999) consists of 2,479 essays (1.9 million words) from psy-
chology students who were asked to “write whatever comes into your mind” for 20
minutes. The EAR (Electronically Activated Recorder) corpus of Mehl et al. (2006)
was created by having volunteers wear a recorder throughout the day, which ran-
domly recorded short snippets of conversation throughout the day, which were then
transcribed. The Facebook corpus of (Schwartz et al., 2013) includes 309 million
words of Facebook posts from 75,000 volunteers.

For example, here are samples from Pennebaker and King (1999) from an essay
written by someone on the neurotic end of the neurotic/emotionally stable scale,

One of my friends just barged in, and I jumped in my seat. This is crazy.
I should tell him not to do that again. I’m not that fastidious actually.
But certain things annoy me. The things that would annoy me would
actually annoy any normal human being, so I know I’m not a freak.

and someone on the emotionally stable end of the scale:

I should excel in this sport because I know how to push my body harder
than anyone I know, no matter what the test I always push my body
harder than everyone else. I want to be the best no matter what the sport
or event. I should also be good at this because I love to ride my bike.

Another kind of affective meaning is what Scherer (2000) calls interpersonal
stance, the ‘affective stance taken toward another person in a specific interactioninterpersonal

stance
coloring the interpersonal exchange’. Extracting this kind of meaning means au-
tomatically labeling participants for whether they are friendly, supportive, distant.
For example Ranganath et al. (2013) studied a corpus of speed-dates, in which par-
ticipants went on a series of 4-minute romantic dates, wearing microphones. Each
participant labeled each other for how flirtatious, friendly, awkward, or assertive
they were. Ranganath et al. (2013) then used a combination of lexicons and other
features to detect these interpersonal stances from text.
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21.8 Affect Recognition

Detection of emotion, personality, interactional stance, and the other kinds of af-
fective meaning described by Scherer (2000) can be done by generalizing the algo-
rithms described above for detecting sentiment.

The most common algorithms involve supervised classification: a training set is
labeled for the affective meaning to be detected, and a classifier is built using features
extracted from the training set. As with sentiment analysis, if the training set is large
enough, and the test set is sufficiently similar to the training set, simply using all
the words or all the bigrams as features in a powerful classifier like SVM or logistic
regression, as described in Fig. 4.2 in Chapter 4, is an excellent algorithm whose
performance is hard to beat. Thus we can treat affective meaning classification of a
text sample as simple document classification.

Some modifications are nonetheless often necessary for very large datasets. For
example, the Schwartz et al. (2013) study of personality, gender, and age using 700
million words of Facebook posts used only a subset of the n-grams of lengths 1-
3. Only words and phrases used by at least 1% of the subjects were included as
features, and 2-grams and 3-grams were only kept if they had sufficiently high PMI
(PMI greater than 2∗ length, where length is the number of words):

pmi(phrase) = log
p(phrase)∏

w∈phrase
p(w)

(21.13)

Various weights can be used for the features, including the raw count in the training
set, or some normalized probability or log probability. Schwartz et al. (2013), for
example, turn feature counts into phrase likelihoods by normalizing them by each
subject’s total word use.

p(phrase|subject) =
freq(phrase,subject)∑

phrase′∈vocab(subject)

freq(phrase′,subject)
(21.14)

If the training data is sparser, or not as similar to the test set, any of the lexicons
we’ve discussed can play a helpful role, either alone or in combination with all the
words and n-grams.

Many possible values can be used for lexicon features. The simplest is just an
indicator function, in which the value of a feature fL takes the value 1 if a particular
text has any word from the relevant lexicon L. Using the notation of Chapter 4, in
which a feature value is defined for a particular output class c and document x.

fL(c,x) =

{
1 if ∃w : w ∈ L & w ∈ x & class = c
0 otherwise

Alternatively the value of a feature fL for a particular lexicon L can be the total
number of word tokens in the document that occur in L:

fL =
∑

w∈L

count(w)

For lexica in which each word is associated with a score or weight, the count can be
multiplied by a weight θ L

w :

fL =
∑

w∈L

θ
L
wcount(w)
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Counts can alternatively be logged or normalized per writer as in Eq. 21.14.
However they are defined, these lexicon features are then used in a supervised

classifier to predict the desired affective category for the text or document. Once
a classifier is trained, we can examine which lexicon features are associated with
which classes. For a classifier like logistic regression the feature weight gives an
indication of how associated the feature is with the class.

Thus, for example, Mairesse and Walker (2008) found that for classifying per-
sonality, for the dimension Agreeable, the LIWC lexicons Family and Home were
positively associated while the LIWC lexicons anger and swear were negatively
associated. By contrast, Extroversion was positively associated with the Friend,
Religion and Self lexicons, and Emotional Stability was positively associated with
Sports and negatively associated with Negative Emotion.

Figure 6. Words, phrases, and topics most distinguishing extraversion from introversion and neuroticism from emotional stability. A.
Language of extraversion (left, e.g., ‘party’) and introversion (right, e.g., ‘computer’); N~72,709. B. Language distinguishing neuroticism (left, e.g.
‘hate’) from emotional stability (right, e.g., ‘blessed’); N~71,968 (adjusted for age and gender, Bonferroni-corrected pv0:001). Figure S8 contains
results for openness, conscientiousness, and agreeableness.
doi:10.1371/journal.pone.0073791.g006
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Figure 21.13 Word clouds from Schwartz et al. (2013), showing words highly associated
with introversion (left) or extroversion (right). The size of the word represents the association
strength (the regression coefficient), while the color (ranging from cold to hot) represents the
relative frequency of the word/phrase (from low to high).

In the situation in which we use all the words and phrases in the document as
potential features, we can use the resulting weights from the learned regression clas-
sifier as the basis of an affective lexicon. In the Extroversion/Introversion classifier
of Schwartz et al. (2013), ordinary least-squares regression is used to predict the
value of a personality dimension from all the words and phrases. The resulting re-
gression coefficient for each word or phrase can be used as an association value with
the predicted dimension. The word clouds in Fig. 21.13 show an example of words
associated with introversion (a) and extroversion (b).

21.9 Lexicon-based methods for Entity-Centric Affect

What if we want to get an affect score not for an entire document, but for a particular
entity in the text? The entity-centric method of Field and Tsvetkov (2019) combines
affect lexicons with contextual embeddings to assign an affect score to an entity in
text. In the context of affect about people, they relabel the Valence/Arousal/Domi-
nance dimension as Sentiment/Agency/Power. The algorithm first trains classifiers
to map embeddings to scores:

1. For each word w in the training corpus:

(a) Use off-the-shelf pre-trained language models (ELMo or BERT) to ex-
tract a contextual embedding e for each instance of the word. No addi-
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tional fine-tuning is done.
(b) Average over the e embeddings of each instance of w to obtain a single

embedding vector for one training point w.
(c) Use the NRC VAD Lexicon to get S, A, and P scores for w.

2. Train (three) regression models on all words w to predict V, A, D scores from
a word’s average embedding.

Now given an entity mention m in a text, we assign affect scores as follows:

1. Use the same pre-trained LM to get contextual embeddings for m in context.
2. Feed this embeddings through the 3 regression models to get S, A, P scores

for the entity.

This results in a (S,A,P) tuple for a given entity mention; it get scores for the resp-
resentation of an entity in a complete document, we can run coref and average the
(S,A,P) scores for all the mentions. They find ELMo works much better than BERT.
Fig. 21.14 shows the scores from their algorithm for characters from the movie The
Dark Knight when run on Wikpedia plot summary texts with gold coreference.

2555

Power Score

weakly Rachel Dent Gordan Batman Joker powerfully

Sentiment Score

negative Joker Dent Gordan Rachel Batman positive

Agency Score

dull Dent Gordan Rachel Batman Joker scary

Figure 1: Power, sentiment, and agency scores for char-
acters in The Dark Night as learned through the regres-
sion model with ELMo embeddings. Scores generally
align with character archetypes, i.e. the antagonist has
the lowest sentiment score.

ment have resulted in his effective removal from
the industry. While articles about the #MeToo
movement portray men like Weinstein as unpow-
erful, we can speculate that the corpora used to
train ELMo and BERT portray them as powerful.

Thus, in a corpus where traditional power roles
have been inverted, the embeddings extracted
from ELMo and BERT perform worse than ran-
dom, as they are biased towards the power struc-
tures in the data they are trained on. Further ev-
idence of this exists in the performance of the
BERT-masked embeddings - whereas these em-
beddings generally capture power poorly as com-
pared to the unmasked embeddings (Table 2),
they outperform the unmasked embeddings on this
task, and even outperform the frequency baseline
in one setting. Nevertheless, they do not outper-
form Field et al. (2019), likely because they do not
capture affect information as well as the unmasked
embeddings (Table 2).

4.3 Qualitative Document-level Analysis

Finally, we qualitatively analyze how well our
method captures affect dimensions by analyzing
single documents in detail. We conduct this anal-
ysis in a domain where we expect entities to fulfill
traditional power roles and where entity portray-
als are known. Following Bamman et al. (2013),
we analyze the Wikipedia plot summary of the
movie The Dark Knight,7 focusing on Batman
(protagonist),8 the Joker (antagonist), Jim Gordan
(law enforcement officer, ally to Batman), Har-

7http://bit.ly/2XmhRDR
8We consider Batman/Bruce Wayne to be the same entity.

Power Score

weakly Rachel Joker Dent Gordan Batmanpowerfully

Sentiment Score

negative Joker Gordan Batman Dent Rachel positive

Agency Score

dull Rachel Dent GordanBatman Joker scary

Figure 2: Power, sentiment, and agency scores for char-
acters in The Dark Night as learned through ASP with
ELMo embeddings. These scores reflect the same pat-
terns as the regression model with greater separation
between characters.

vey Dent (ally to Batman who turns evil) and
Rachel Dawes (primary love interest). To facil-
itate extracting example sentences, we score each
instance of these entities in the narrative separately
and average across instances to obtain an entity
score for the document.9 To maximize our data
by capturing every mention of an entity, we per-
form co-reference resolution by hand. Addition-
ally, based on our results from Table 3 as well as
the use of Wikipedia data in training the ELMo
model (Peters et al., 2018), we use ELMo embed-
dings for our analysis.

Figures 1 and 2 show results. For refer-
ence, we show the entity scores as compared to
one polar opposite pair identified by ASP. Both
the regression model and ASP show similar pat-
terns. Batman has high power, while Rachel has
low power. Additionally, the Joker is associated
with the most negative sentiment, but the high-
est agency. Throughout the plot summary, the
movie progresses by the Joker taking an aggres-
sive action and the other characters responding.
We can see this dynamic reflected in the Joker’s
profile score, as a high-powered, high-agency,
low-sentiment character, who is the primary plot-
driver. In general, ASP shows a greater separation
between characters than the regression model. We
hypothesize that this occurs because ASP isolates
the dimensions of interest, while the regression ap-
proach captures other confounds, such as that hu-

9When we used this averaging metric in other evaluations,
we found no significant change in results. Thus, in other sce-
narios, we compute scores over averaged embeddings, rather
than averaging scores separately computed for each embed-
ding to reduce computationally complexity.

Figure 21.14 Power (dominance), sentiment (valence) and agency (arousal) for characters
in the movie The Dark Knight computed from ELMo embeddings trained on the NRC VAD
Lexicon. Note the protagonst (Batman) and the antagonist (the Joker) have high power and
agency scores but differ in sentiment, while the love interest Rachel has low power and agency
but high sentiment.

21.10 Connotation Frames

The lexicons we’ve described so far define a word as a point in affective space. A
connotation frame, by contrast, is a lexicon that incorporates a richer kind of gram-connotation

frame
matical structure, by combining affective lexicons with the frame semantic lexicons
of Chapter 20. The basic insight of connotation frame lexicons is that a predicate
like a verb expresses connotations about the verb’s arguments (Rashkin et al. 2016,
Rashkin et al. 2017).

Consider sentences like:

(21.15) Country A violated the sovereignty of Country B
(21.16) the teenager ... survived the Boston Marathon bombing”
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By using the verb violate in (21.15), the author is expressing their sympathies with
Country B, portraying Country B as a victim, and expressing antagonism toward
the agent Country A. By contrast, in using the verb survive, the author of (21.16) is
expressing that the bombing is a negative experience, and the subject of the sentence,
the teenager, is a sympathetic character. These aspects of connotation are inherent
in the meaning of the verbs violate and survive, as shown in Fig. 21.15.

Writer

Role1 Role2
Role1 is a

sympathetic 
victim

There is
some type
of hardship

Reader

+ _

+ _

_

S(
writ

er→
ro

le1
) S(writer→

role2)

Connotation Frame for “Role1 survives Role2” 

S(role1→role2)

Writer

Role1 Role2
Role1 is the
 antagonist

Role2 is a
sympathetic

 victim

Reader

+_

+_

_

S(
writ

er→
ro

le1
) S(writer→

role2)

Connotation Frame for “Role1 violates Role2” 

S(role1→role2)

(a) (b)

Figure 21.15 Connotation frames for survive and violate. (a) For survive, the writer and reader have positive
sentiment toward Role1, the subject, and negative sentiment toward Role2, the direct object. (b) For violate, the
writer and reader have positive sentiment instead toward Role2, the direct object.

The connotation frame lexicons of Rashkin et al. (2016) and Rashkin et al.
(2017) also express other connotative aspects of the predicate toward each argument,
including the effect (something bad happened to x) value: (x is valuable), and mental
state: (x is distressed by the event). Connotation frames can also mark aspects of
power and agency; see Chapter 20 (Sap et al., 2017).

Connotation frames can be built by hand (Sap et al., 2017), or they can be learned
by supervised learning (Rashkin et al., 2016), for example using hand-labeled train-
ing data to supervise classifiers for each of the individual relations, e.g., whether
S(writer → Role1) is + or -, and then improving accuracy via global constraints
across all relations.

21.11 Summary

• Many kinds of affective states can be distinguished, including emotions, moods,
attitudes (which include sentiment), interpersonal stance, and personality.

• Emotion can be represented by fixed atomic units often called basic emo-
tions, or as points in space defined by dimensions like valence and arousal.

• Words have connotational aspects related to these affective states, and this
connotational aspect of word meaning can be represented in lexicons.

• Affective lexicons can be built by hand, using crowd sourcing to label the
affective content of each word.

• Lexicons can be built with semi-supervised, bootstrapping from seed words
using similarity metrics like embedding cosine.

• Lexicons can be learned in a fully supervised manner, when a convenient
training signal can be found in the world, such as ratings assigned by users on
a review site.
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• Words can be assigned weights in a lexicon by using various functions of word
counts in training texts, and ratio metrics like log odds ratio informative
Dirichlet prior.

• Personality is often represented as a point in 5-dimensional space.
• Affect can be detected, just like sentiment, by using standard supervised text

classification techniques, using all the words or bigrams in a text as features.
Additional features can be drawn from counts of words in lexicons.

• Lexicons can also be used to detect affect in a rule-based classifier by picking
the simple majority sentiment based on counts of words in each lexicon.

• Connotation frames express richer relations of affective meaning that a pred-
icate encodes about its arguments.

Bibliographical and Historical Notes
The idea of formally representing the subjective meaning of words began with Os-
good et al. (1957), the same pioneering study that first proposed the vector space
model of meaning described in Chapter 6. Osgood et al. (1957) had participants rate
words on various scales, and ran factor analysis on the ratings. The most significant
factor they uncovered was the evaluative dimension, which distinguished between
pairs like good/bad, valuable/worthless, pleasant/unpleasant. This work influenced
the development of early dictionaries of sentiment and affective meaning in the field
of content analysis (Stone et al., 1966).

Wiebe (1994) began an influential line of work on detecting subjectivity in text,subjectivity

beginning with the task of identifying subjective sentences and the subjective char-
acters who are described in the text as holding private states, beliefs or attitudes.
Learned sentiment lexicons such as the polarity lexicons of Hatzivassiloglou and
McKeown (1997) were shown to be a useful feature in subjectivity detection (Hatzi-
vassiloglou and Wiebe 2000, Wiebe 2000).

The term sentiment seems to have been introduced in 2001 by Das and Chen
(2001), to describe the task of measuring market sentiment by looking at the words in
stock trading message boards. In the same paper Das and Chen (2001) also proposed
the use of a sentiment lexicon. The list of words in the lexicon was created by
hand, but each word was assigned weights according to how much it discriminated
a particular class (say buy versus sell) by maximizing across-class variation and
minimizing within-class variation. The term sentiment, and the use of lexicons,
caught on quite quickly (e.g., inter alia, Turney 2002). Pang et al. (2002) first showed
the power of using all the words without a sentiment lexicon; see also Wang and
Manning (2012).

Most of the semi-supervised methods we describe for extending sentiment dic-
tionaries drew on the early idea that synonyms and antonyms tend to co-occur in the
same sentence. (Miller and Charles 1991, Justeson and Katz 1991, Riloff and Shep-
herd 1997). Other semi-supervised methods for learning cues to affective mean-
ing rely on information extraction techniques, like the AutoSlog pattern extractors
(Riloff and Wiebe, 2003). Graph based algorithms for sentiment were first sug-
gested by Hatzivassiloglou and McKeown (1997), and graph propagation became
a standard method (Zhu and Ghahramani 2002, Zhu et al. 2003, Zhou et al. 2004,
Velikovich et al. 2010). Crowdsourcing can also be used to improve precision by
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filtering the result of semi-supervised lexicon learning (Riloff and Shepherd 1997,
Fast et al. 2016).

Much recent work focuses on ways to learn embeddings that directly encode sen-
timent or other properties, such as the DENSIFIER algorithm of Rothe et al. (2016)
that learns to transform the embedding space to focus on sentiment (or other) infor-
mation.
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CHAPTER

22 Coreference Resolution

and even Stigand, the patriotic archbishop of Canterbury, found it advisable–”’

‘Found WHAT?’ said the Duck.

‘Found IT,’ the Mouse replied rather crossly: ‘of course you know what “it”means.’

‘I know what “it”means well enough, when I find a thing,’ said the Duck: ‘it’s gener-
ally a frog or a worm. The question is, what did the archbishop find?’

Lewis Carroll, Alice in Wonderland

An important component of language understanding is knowing who is being talked
about in a text. Consider the following passage:

(22.1) Victoria Chen, CFO of Megabucks Banking, saw her pay jump to $2.3
million, as the 38-year-old became the company’s president. It is widely
known that she came to Megabucks from rival Lotsabucks.

Each of the underlined phrases in this passage is used by the writer to refer to
a person named Victoria Chen. We call linguistic expressions like her or Victoria
Chen mentions or referring expressions, and the discourse entity that is referredmention

to (Victoria Chen) the referent. (To distinguish between referring expressions andreferent

their referents, we italicize the former.)1 Two or more referring expressions that are
used to refer to the same discourse entity are said to corefer; thus, Victoria Chencorefer

and she corefer in (22.1).
Coreference is an important component of natural language understanding. A

dialogue system that has just told the user “There is a 2pm flight on United and a
4pm one on Cathay Pacific” must know which flight the user means by “I’ll take the
Cathay Pacific flight”. A question answering system that uses Wikipedia to answer a
question about where Marie Curie was born must know who she was in the sentence
“She was born in Warsaw”. And a machine translation system translating from a
language like Spanish, in which pronouns can be dropped, must use coreference
from the previous sentence to decide whether the Spanish sentence ‘“Me incanta el
conocimiento”, dice.’ should be translated as ‘“I love knowledge”, he said’, or ‘“I
love knowledge”, she said’. Indeed, this example comes from an actual news article
about a female professor and was mistranslated as “he” by Google Translate because
of inaccurate coreference resolution (Schiebinger, 2019).

Natural language understanding systems (and humans) interpret linguistic ex-
pressions with respect to a discourse model (Karttunen, 1969) shown in Fig. 22.1.discourse

model
A discourse model is a mental model that the system (or a human hearer) builds in-
crementally as it interprets a text, containing representations of the entities referred
to in the text, as well as properties of the entities and relations among them. When a
referent is first mentioned in a discourse, we say that a representation for it is evokedevoked

into the model. Upon subsequent mention, this representation is accessed from theaccessed

1 As a convenient shorthand, we sometimes speak of a referring expression referring to a referent, e.g.,
saying that she refers to Victoria Chen. However, the reader should keep in mind that what we really
mean is that the speaker is performing the act of referring to Victoria Chen by uttering she.
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V

Discourse Model
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Figure 22.1 How mentions evoke and access discourse entities in a discourse model.

model.
Reference in a text to an entity that has been previously introduced into the

discourse is called anaphora, and the referring expression used is said to be ananaphora

anaphor, or anaphoric.2 In passage (22.1), the pronouns she and her and the defi-anaphor

nite NP the 38-year-old are therefore anaphoric. The anaphor corefers with a prior
mention (in this case Victoria Chen) that is called the antecedent. Not every refer-antecedent

ring expression is an antecedent. An entity that has only a single mention in a text
(like Lotsabucks in (22.1)) is called a singleton.singleton

In this chapter we focus on the task of of coreference resolution. Coreferencecoreference
resolution

resolution is the task of determining whether two mentions corefer, by which we
mean they refer to the same entity in the discourse model (the same discourse entity).
The set of corefering expressions is often called a coreference chain or a cluster.coreference

chain
cluster For example, in processing (22.1), a coreference resolution algorithm would need

to find at least four coreference chains, corresponding to the four entities in the
discourse model in Fig. 22.1.

1. {Victoria Chen, her, the 38-year-old, She}
2. {Megabucks Banking, the company, Megabucks}
3. {her pay}
4. {Lotsabucks}
Note that mentions can be nested; for example the mention her is syntactically

part of another mention, her pay, referring to a completely different discourse entity.
Coreference resolution thus comprises two tasks (although they are often per-

formed jointly): (1) identifying the mentions, and (2) clustering them into corefer-
ence chains/discourse entities.

We said that two mentions corefered if they are associated with the same dis-
course entity. But often we’d like to go further, deciding which real world entity is
associated with this discourse entity. For example, the mention Washington might
refer to the US state, or the capital city, or the person George Washington; the in-
terpretation of the sentence will of course be very different for these completely
different named entity types (Chapter 18). The task of entity linking (Ji and Gr-entity linking

ishman, 2011) or entity resolution is the task of mapping a discourse entity to some
real-world individual.3 We usually operationalize entity linking or resolution by

2 We will follow the common NLP usage of anaphor to mean any mention that has an antecedent, rather
than the more narrow usage to mean only mentions (like pronouns) whose interpretation depends on the
antecedent (under the narrower interpretation, repeated names are not anaphors).
3 Computational linguistics/NLP thus differs in its use of the term reference from the field of formal
semantics, which uses the words reference and coreference to describe the relation between a mention
and a real-world entity. By contrast, we follow the functional linguistics tradition in which a mention
refers to a discourse entity (Webber, 1978) and the relation between a discourse entity and the real world
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mapping to an ontology: a list of entities in the world, like a gazeteer (Chapter 16).
Perhaps the most common ontology used for this task is Wikipedia; each Wikipedia
page acts as the unique id for a particular entity. Thus the entity linking task of wiki-
fication (Mihalcea and Csomai, 2007) is the task of deciding which Wikipedia page
corresponding to an individual is being referred to by a mention. But entity linking
can be done with any ontology; for example if we have an ontology of genes, we
can link mentions of genes in text to the disambiguated gene name in the ontology.

In the next sections we introduce the task of coreference resolution in more de-
tail, and offer a variety of architectures for resolution, from simple deterministic
baseline algorithms to state-of-the-art neural models.

Before turning to algorithms, however, we mention some important tasks we
will only touch on briefly at the end of this chapter. First are the famous Winograd
Schema problems (so-called because they were first pointed out by Terry Winograd
in his dissertation). These entity coreference resolution problems are designed to
be too difficult to be solved by the resolution methods we describe in this chapter,
and the kind of real-world knowledge they require has made them a kind of chal-
lenge task for natural language understanding. For example, consider the task of
determining the correct antecedent of the pronoun they in the following example:

(22.2) The city council denied the demonstrators a permit because
a. they feared violence.
b. they advocated violence.

Determining the correct antecedent for the pronoun they requires understanding
that the second clause is intended as an explanation of the first clause, and also
that city councils are perhaps more likely than demonstrators to fear violence and
that demonstrators might be more likely to advocate violence. Solving Winograd
Schema problems requires finding way to represent or discover the necessary real
world knowledge.

A problem we won’t discuss in this chapter is the related task of event corefer-
ence, deciding whether two event mentions (such as the buy and the acquisition inevent

coreference
these two sentences from the ECB+ corpus) refer to the same event:

(22.3) AMD agreed to [buy] Markham, Ontario-based ATI for around $5.4 billion
in cash and stock, the companies announced Monday.

(22.4) The [acquisition] would turn AMD into one of the world’s largest providers
of graphics chips.

Event mentions are much harder to detect than entity mentions, since they can be ver-
bal as well as nominal. Once detected, the same mention-pair and mention-ranking
models used for entities are often applied to events.

An even more complex kind of coreference is discourse deixis (Webber, 1988),discourse deixis

in which an anaphor refers back to a discourse segment, which can be quite hard to
delimit or categorize, like the examples in (22.5) adapted from Webber (1991):

(22.5) According to Soleil, Beau just opened a restaurant
a. But that turned out to be a lie.
b. But that was false.
c. That struck me as a funny way to describe the situation.

The referent of that is a speech act (see Chapter 26) in (22.5a), a proposition in
(22.5b), and a manner of description in (22.5c). The field awaits the development of
robust methods for interpreting most of these types of reference.

individual requires an additional step of linking.
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22.1 Coreference Phenomena: Linguistic Background

We now offer some linguistic background on reference phenomena. We introduce
the four types of referring expressions (definite and indefinite NPs, pronouns, and
names), describe how these are used to evoke and access entities in the discourse
model, and talk about linguistic features of the anaphor/antecedent relation (like
number/gender agreement, or properties of verb semantics).

22.1.1 Types of Referring Expressions
Indefinite Noun Phrases: The most common form of indefinite reference in En-
glish is marked with the determiner a (or an), but it can also be marked by a quan-
tifier such as some or even the determiner this. Indefinite reference generally intro-
duces into the discourse context entities that are new to the hearer.

(22.6) a. Mrs. Martin was so very kind as to send Mrs. Goddard a beautiful goose.
b. He had gone round one day to bring her some walnuts.
c. I saw this beautiful cauliflower today.

Definite Noun Phrases: Definite reference, such as via NPs that use the English
article the, refers to an entity that is identifiable to the hearer. An entity can be
identifiable to the hearer because it has been mentioned previously in the text and
thus is already represented in the discourse model:

(22.7) It concerns a white stallion which I have sold to an officer. But the pedigree
of the white stallion was not fully established.

Alternatively, an entity can be identifiable because it is contained in the hearer’s
set of beliefs about the world, or the uniqueness of the object is implied by the
description itself, in which case it evokes a representation of the referent into the
discourse model, as in (22.9):

(22.8) I read about it in the New York Times.
(22.9) Have you seen the car keys?

These last uses are quite common; more than half of definite NPs in newswire
texts are non-anaphoric, often because they are the first time an entity is mentioned
(Poesio and Vieira 1998, Bean and Riloff 1999).

Pronouns: Another form of definite reference is pronominalization, used for enti-
ties that are extremely salient in the discourse, (as we discuss below):

(22.10) Emma smiled and chatted as cheerfully as she could,

Pronouns can also participate in cataphora, in which they are mentioned beforecataphora

their referents are, as in (22.11).

(22.11) Even before she saw it, Dorothy had been thinking about the Emerald City
every day.

Here, the pronouns she and it both occur before their referents are introduced.
Pronouns also appear in quantified contexts in which they are considered to be

bound, as in (22.12).bound

(22.12) Every dancer brought her left arm forward.

Under the relevant reading, her does not refer to some woman in context, but instead
behaves like a variable bound to the quantified expression every dancer. We are not
concerned with the bound interpretation of pronouns in this chapter.



420 CHAPTER 22 • COREFERENCE RESOLUTION

In some languages, pronouns can appear as clitics attached to a word, like lo
(‘it’) in this Spanish example from AnCora (Recasens and Martı́, 2010):

(22.13) La intención es reconocer el gran prestigio que tiene la maratón y unirlo
con esta gran carrera.
‘The aim is to recognize the great prestige that the Marathon has and join|it
with this great race.”

Demonstrative Pronouns: Demonstrative pronouns this and that can appear ei-
ther alone or as determiners, for instance, this ingredient, that spice:

(22.14) I just bought a copy of Thoreau’s Walden. I had bought one five years ago.
That one had been very tattered; this one was in much better condition.

Note that this NP is ambiguous; in colloquial spoken English, it can be indefinite,
as in (22.6), or definite, as in (22.14).

Zero Anaphora: Instead of using a pronoun, in some languages (including Chi-
nese, Japanese, and Italian) it is possible to have an anaphor that has no lexical
realization at all, called a zero anaphor or zero pronoun, as in the following Italianzero anaphor

and Japanese examples from Poesio et al. (2016):

(22.15) EN [John]i went to visit some friends. On the way [he]i bought some
wine.

IT [Giovanni]i andò a far visita a degli amici. Per via φi comprò del vino.
JA [John]i-wa yujin-o houmon-sita. Tochu-de φi wain-o ka-tta.

or this Chinese example:

(22.16) [我]前一会精神上太紧张。[0]现在比较平静了
[I] was too nervous a while ago. ... [0] am now calmer.

Zero anaphors complicate the task of mention detection in these languages.

Names: Names (such as of people, locations, or organizations) can be used to refer
to both new and old entities in the discourse:

(22.17) a. Miss Woodhouse certainly had not done him justice.
b. International Business Machines sought patent compensation

from Amazon; IBM had previously sued other companies.

22.1.2 Information Status
The way referring expressions are used to evoke new referents into the discourse
(introducing new information), or access old entities from the model (old informa-
tion), is called their information status or information structure. Entities can beinformation

status
discourse-new or discourse-old, and indeed it is common to distinguish at leastdiscourse-new

discourse-old three kinds of entities informationally (Prince, 1981a):

new NPs:
brand new NPs: these introduce entities that are discourse-new and hearer-

new like a fruit or some walnuts.
unused NPs: these introduce entities that are discourse-new but hearer-old

(like Hong Kong, Marie Curie, or the New York Times.

old NPs: also called evoked NPs, these introduce entities that already in the dis-
course model, hence are both discourse-old and hearer-old, like it in “I went
to a new restaurant. It was...”.
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inferrables: these introduce entities that are neither hearer-old nor discourse-old,
but the hearer can infer their existence by reasoning based on other entities
that are in the discourse. Consider the following examples:

(22.18) I went to a superb restaurant yesterday. The chef had just opened it.
(22.19) Mix flour, butter and water. Knead the dough until shiny.

Neither the chef nor the dough were in the discourse model based on the first
sentence of either example, but the reader can make a bridging inferencebridging

inference
that these entities should be added to the discourse model and associated with
the restaurant and the ingredients, based on world knowledge that restaurants
have chefs and dough is the result of mixing flour and liquid (Haviland and
Clark 1974, Webber and Baldwin 1992, Nissim et al. 2004, Hou et al. 2018).

The form of an NP gives strong clues to its information status. We often talk
about an entity’s position on the given-new dimension, the extent to which the refer-given-new

ent is given (salient in the discourse, easier for the hearer to call to mind, predictable
by the hearer), versus new (non-salient in the discourse, unpredictable) (Chafe 1976,
Prince 1981b, Gundel et al. 1993). A referent that is very accessible (Ariel, 2001)accessible

i.e., very salient in the hearer’s mind or easy to call to mind, can be referred to with
less linguistic material. For example pronouns are used only when the referent has
a high degree of activation or salience in the discourse model.4 By contrast, lesssalience

salient entities, like a new referent being introduced to the discourse, will need to be
introduced with a longer and more explicit referring expression to help the hearer
recover the referent.

Thus when an entity is first introduced into a discourse its mentions are likely
to have full names, titles or roles, or appositive or restrictive relative clauses, as in
the introduction of our protagonist in (22.1): Victoria Chen, CFO of Megabucks
Banking. As an entity is discussed over a discourse, it becomes more salient to the
hearer and its mentions on average typically becomes shorter and less informative,
for example with a shortened name (for example Ms. Chen), a definite description
(the 38-year-old), or a pronoun (she or her) (Hawkins 1978). However, this change
in length is not monotonic, and is sensitive to discourse structure (Grosz 1977b,
Reichman 1985, Fox 1993).

22.1.3 Complications: Non-Referring Expressions
Many noun phrases or other nominals are not referring expressions, although they
may bear a confusing superficial resemblance. For example in some of the earliest
computational work on reference resolution, Karttunen (1969) pointed out that the
NP a car in the following example does not create a discourse referent:

(22.20) Janet doesn’t have a car.

and cannot be referred back to by anaphoric it or the car:

(22.21) *It is a Toyota.

(22.22) *The car is red.

We summarize here four common types of structures that are not counted as men-
tions in coreference tasks and hence complicate the task of mention-detection:

4 Pronouns also usually (but not always) refer to entities that were introduced no further than one or two
sentences back in the ongoing discourse, whereas definite noun phrases can often refer further back.



422 CHAPTER 22 • COREFERENCE RESOLUTION

Appositives: An appositional structure is a noun phrase that appears next to a
head noun phrase, describing the head. In English they often appear in commas, like
“a unit of UAL” appearing in apposition to the NP United, or CFO of Megabucks
Banking in apposition to Victoria Chen.

(22.23) Victoria Chen, CFO of Megabucks Banking, saw ...
(22.24) United, a unit of UAL, matched the fares.

Appositional NPs are not referring expressions, instead functioning as a kind of
supplementary parenthetical description of the head NP. Nonetheless, sometimes it
is useful to link these phrases to an entity they describe, and so some datasets like
ntoNotes mark appositional relationships.

Predicative and Prenominal NPs: Predicative or attributive NPs describe prop-
erties of the head noun. In United is a unit of UAL, the NP a unit of UAL describes
a property of United, rather than referring to a distinct entity. Thus they are not
marked as mentions in coreference tasks; in our example the NPs $2.3 million and
the company’s president, are attributive, describing properties of her pay and the
38-year-old; Example (22.27) shows a Chinese example in which the predicate NP
(中国最大的城市; China’s biggest city) is not a mention.

(22.25) her pay jumped to $2.3 million
(22.26) the 38-year-old became the company’s president
(22.27) 上海是[中国最大的城市] [Shanghai is China’s biggest city]

Expletives: Many uses of pronouns like it in English and corresponding pronouns
in other languages are not referential. Such expletive or pleonastic cases includeexpletive

it is raining, in idioms like hit it off, or in particular syntactic situations like cleftsclefts

(22.28a) or extraposition (22.28b):

(22.28) a. It was Emma Goldman who founded Mother Earth
b. It surprised me that there was a herring hanging on her wall.

Generics: Another kind of expression that does not refer back to an entity explic-
itly evoked in the text is generic reference. Consider (22.29).

(22.29) I love mangos. They are very tasty.

Here, they refers, not to a particular mango or set of mangos, but instead to the class
of mangos in general. The pronoun you can also be used generically:

(22.30) In July in San Francisco you have to wear a jacket.

22.1.4 Linguistic Properties of the Coreference Relation
Now that we have seen the linguistic properties of individual referring expressions
we turn to properties of the antecedent/anaphor pair. Understanding these properties
is helpful both in designing novel features and performing error analyses.

Number Agreement: Referring expressions and their referents must generally
agree in number; English she/her/he/him/his/it are singular, we/us/they/them are plu-
ral, and you is unspecified for number. So a plural antecedent like the chefs cannot
generally corefer with a singular anaphor like she. However, algorithms cannot
enforce number agreement too strictly. First, semantically plural entities can be re-
ferred to by either it or they:

(22.31) IBM announced a new machine translation product yesterday. They have
been working on it for 20 years.
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Second, singular they has become much more common, in which they is used tosingular they

describe singular individuals, often useful because they is gender neutral. Although
recently increasing, singular they is quite old, part of English for many centuries.5

Person Agreement: English distinguishes between first, second, and third person,
and a pronoun’s antecedent must agree with the pronoun in person. Thus a third
person pronoun (he, she, they, him, her, them, his, her, their) must have a third person
antecedent (one of the above or any other noun phrase). However, phenomena like
quotation can cause exceptions; in this example I, my, and she are coreferent:

(22.32) “I voted for Nader because he was most aligned with my values,” she said.

Gender or Noun Class Agreement: In many languages, all nouns have grammat-
ical gender or noun class6 and pronouns generally agree with the grammatical gender
of their antecedent. In English this occurs only with third-person singular pronouns,
which distinguish between male (he, him, his), female (she, her), and nonpersonal
(it) grammatical genders. Non-binary pronouns like ze or hir may also occur in more
recent texts. Knowing which gender to associate with a name in text can be complex,
and may require world knowledge about the individual. Some examples:

(22.33) Maryam has a theorem. She is exciting. (she=Maryam, not the theorem)
(22.34) Maryam has a theorem. It is exciting. (it=the theorem, not Maryam)

Binding Theory Constraints: The binding theory is a name for syntactic con-
straints on the relations between a mention and an antecedent in the same sentence
(Chomsky, 1981). Oversimplifying a bit, reflexive pronouns like himself and herselfreflexive

corefer with the subject of the most immediate clause that contains them (22.35),
whereas nonreflexives cannot corefer with this subject (22.36).

(22.35) Janet bought herself a bottle of fish sauce. [herself=Janet]
(22.36) Janet bought her a bottle of fish sauce. [her6=Janet]

Recency: Entities introduced in recent utterances tend to be more salient than
those introduced from utterances further back. Thus, in (22.37), the pronoun it is
more likely to refer to Jim’s map than the doctor’s map.

(22.37) The doctor found an old map in the captain’s chest. Jim found an even
older map hidden on the shelf. It described an island.

Grammatical Role: Entities mentioned in subject position are more salient than
those in object position, which are in turn more salient than those mentioned in
oblique positions. Thus although the first sentence in (22.38) and (22.39) expresses
roughly the same propositional content, the preferred referent for the pronoun he
varies with the subject—John in (22.38) and Bill in (22.39).

(22.38) Billy Bones went to the bar with Jim Hawkins. He called for a glass of
rum. [ he = Billy ]

(22.39) Jim Hawkins went to the bar with Billy Bones. He called for a glass of
rum. [ he = Jim ]

5 Here’s a bound pronoun example from Shakespeare’s Comedy of Errors: There’s not a man I meet
but doth salute me As if I were their well-acquainted friend
6 The word “gender” is generally only used for languages with 2 or 3 noun classes, like most Indo-
European languages; many languages, like the Bantu languages or Chinese, have a much larger number
of noun classes.
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Verb Semantics: Some verbs semantically emphasize one of their arguments, bi-
asing the interpretation of subsequent pronouns. Compare (22.40) and (22.41).

(22.40) John telephoned Bill. He lost the laptop.
(22.41) John criticized Bill. He lost the laptop.

These examples differ only in the verb used in the first sentence, yet “he” in (22.40)
is typically resolved to John, whereas “he” in (22.41) is resolved to Bill. This may
be due to the link between implicit causality and saliency: the implicit cause of a
“criticizing” event is its object, whereas the implicit cause of a “telephoning” event
is its subject. In such verbs, the entity which is the implicit cause is more salient.

Selectional Restrictions: Many other kinds of semantic knowledge can play a role
in referent preference. For example, the selectional restrictions that a verb places on
its arguments (Chapter 20) can help eliminate referents, as in (22.42).

(22.42) I ate the soup in my new bowl after cooking it for hours

There are two possible referents for it, the soup and the bowl. The verb eat, however,
requires that its direct object denote something edible, and this constraint can rule
out bowl as a possible referent.

22.2 Coreference Tasks and Datasets

We can formulate the task of coreference resolution as follows: Given a text T , find
all entities and the coreference links between them. We evaluate our task by com-
paring the links our system creates with those in human-created gold coreference
annotations on T .

Let’s return to our coreference example, now using superscript numbers for each
coreference chain (cluster), and subscript letters for individual mentions in the clus-
ter:

(22.43) [Victoria Chen]1
a, CFO of [Megabucks Banking]2

a, saw [[her]1
b pay]3

a jump
to $2.3 million, as [the 38-year-old]1

c also became [[the company]2
b’s

president. It is widely known that [she]1
d came to [Megabucks]2

c from rival
[Lotsabucks]4

a.

Assuming example (22.43) was the entirety of the article, the chains for her pay and
Lotsabucks are singleton mentions:

1. {Victoria Chen, her, the 38-year-old, She}
2. {Megabucks Banking, the company, Megabucks}
3. { her pay}
4. { Lotsabucks}
For most coreference evaluation campaigns, the input to the system is the raw

text of articles, and systems must detect mentions and then link them into clusters.
Solving this task requires dealing with pronominal anaphora (figuring out that her
refers to Victoria Chen), filtering out non-referential pronouns like the pleonastic It
in It has been ten years), dealing with definite noun phrases to figure out that the
38-year-old is coreferent with Victoria Chen, and that the company is the same as
Megabucks. And we need to deal with names, to realize that Megabucks is the same
as Megabucks Banking.
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Exactly what counts as a mention and what links are annotated differs from task
to task and dataset to dataset. For example some coreference datasets do not label
singletons, making the task much simpler. Resolvers can achieve much higher scores
on corpora without singletons, since singletons constitute the majority of mentions in
running text, and they are often hard to distinguish from non-referential NPs. Some
tasks use gold mention-detection (i.e. the system is given human-labeled mention
boundaries and the task is just to cluster these gold mentions), which eliminates the
need to detect and segment mentions from running text.

Coreference is usually evaluated by the CoNLL F1 score, which combines three
metrics: MUC, B3, and CEAFe; Section 22.7 gives the details.

Let’s mention a few characteristics of one popular coreference dataset, OntoNotes
(Pradhan et al. 2007, Pradhan et al. 2007a), and the CoNLL 2012 Shared Task
based on it (Pradhan et al., 2012a). OntoNotes contains hand-annotated Chinese
and English coreference datasets of roughly one million words each, consisting of
newswire, magazine articles, broadcast news, broadcast conversations, web data and
conversational speech data, as well as about 300,000 words of annotated Arabic
newswire. The most important distinguishing characteristic of OntoNotes is that
it does not label singletons, simplifying the coreference task, since singletons rep-
resent 60%-70% of all entities. In other ways, it is similar to other coreference
datasets. Referring expression NPs that are coreferent are marked as mentions, but
generics and pleonastic pronouns are not marked. Appositive clauses are not marked
as separate mentions, but they are included in the mention. Thus in the NP, “Richard
Godown, president of the Industrial Biotechnology Association” the mention is the
entire phrase. Prenominal modifiers are annotated as separate entities only if they
are proper nouns. Thus wheat is not an entity in wheat fields, but UN is an entity in
UN policy (but not adjectives like American in American policy).

A number of corpora mark richer discourse phenomena. The ISNotes corpus
annotates a portion of OntoNotes for information status, include bridging examples
(Hou et al., 2018). The AnCora-CO coreference corpus (Recasens and Martı́, 2010)
contains 400,000 words each of Spanish (AnCora-CO-Es) and Catalan (AnCora-
CO-Ca) news data, and includes labels for complex phenomena like discourse deixis
in both languages. The ARRAU corpus (Uryupina et al., 2019) contains 350,000
words of English marking all NPs, which means singleton clusters are available.
ARRAU includes diverse genres like dialog (the TRAINS data) and fiction (the Pear
Stories), and has labels for bridging references, discourse deixis, generics, and am-
biguous anaphoric relations.

22.3 Mention Detection

The first stage of coreference is mention detection: finding the spans of text thatmention
detection

constitute each mention. Mention detection algorithms are usually very liberal in
proposing candidate mentions (i.e., emphasizing recall), and only filtering later. For
example many systems run parsers and named entity taggers on the text and extract
every span that is either an NP, a possessive pronoun, or a named entity.

Doing so from our sample text repeated in (22.44):

(22.44) Victoria Chen, CFO of Megabucks Banking, saw her pay jump to $2.3
million, as the 38-year-old also became the company’s president. It is
widely known that she came to Megabucks from rival Lotsabucks.
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might result in the following list of 13 potential mentions:

Victoria Chen the company
CFO of Megabucks Banking the company’s president
Megabucks Banking It
her she
her pay Megabucks
$2.3 million Lotsabucks
the 38-year-old

More recent mention detection systems are even more generous; the span-based
algorithm we will describe in Section 22.6 first extracts literally all N-gram spans of
words up to N=10. Of course recall from Section 22.1.3 that many NPs—and the
overwhelming majority of random N-gram spans—are not referring expressions.
Therefore all such mention detection systems need to eventually filter out pleonas-
tic/expletive pronouns like It above, appositives like CFO of Megabucks Banking
Inc, or predicate nominals like the company’s president or $2.3 million.

Some of this filtering can be done by rules. Early rule-based systems designed
regular expressions to deal with pleonastic it, like the following rules from Lappin
and Leass (1994) that use dictionaries of cognitive verbs (e.g., believe, know, antic-
ipate) to capture pleonastic it in “It is thought that ketchup...”, or modal adjectives
(e.g., necessary, possible, certain, important), for, e.g., “It is likely that I...”. Such
rules are sometimes used as part of modern systems:

It is Modaladjective that S

It is Modaladjective (for NP) to VP

It is Cogv-ed that S

It seems/appears/means/follows (that) S

Mention-detection rules are sometimes designed specifically for particular eval-
uation campaigns. For OntoNotes, for example, mentions are not embedded within
larger mentions, and while numeric quantities are annotated, they are rarely coref-
erential. Thus for OntoNotes tasks like CoNLL 2012 (Pradhan et al., 2012a), a
common first pass rule-based mention detection algorithm (Lee et al., 2013) is:

1. Take all NPs, possessive pronouns, and named entities.
2. Remove numeric quantities (100 dollars, 8%), mentions embedded in

larger mentions, adjectival forms of nations, and stop words (like there).
3. Remove pleonastic it based on regular expression patterns.

Rule-based systems, however, are generally insufficient to deal with mention-
detection, and so modern systems incorporate some sort of learned mention detec-
tion component, such as a referentiality classifier, an anaphoricity classifier—
detecting whether an NP is an anaphor—or a discourse-new classifier— detecting
whether a mention is discourse-new and a potential antecedent for a future anaphor.

An anaphoricity detector, for example, can draw its positive training examplesanaphoricity
detector

from any span that is labeled as an anaphoric referring expression in hand-labeled
datasets like OntoNotes, ARRAU, or AnCora. Any other NP or named entity can be
marked as a negative training example. Anaphoricity classifiers use features of the
candidate mention such as its head word, surrounding words, definiteness, animacy,
length, position in the sentence/discourse, many of which were first proposed in
early work by Ng and Cardie (2002a); see Section 22.5 for more on features.
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Referentiality or anaphoricity detectors can be run as filters, in which only men-
tions that are classified as anaphoric or referential are passed on to the coreference
system. The end result of such a filtering mention detection system on our example
above might be the following filtered set of 9 potential mentions:

Victoria Chen her pay she
Megabucks Bank the 38-year-old Megabucks
her the company Lotsabucks

It turns out, however, that hard filtering of mentions based on an anaphoricity
or referentiality classifier leads to poor performance. If the anaphoricity classifier
threshold is set too high, too many mentions are filtered out and recall suffers. If the
classifier threshold is set too low, too many pleonastic or non-referential mentions
are included and precision suffers.

The modern approach is instead to perform mention detection, anaphoricity, and
coreference jointly in a single end-to-end model (Ng 2005b, Denis and Baldridge 2007,
Rahman and Ng 2009). For example mention detection in the Lee et al. (2017b),(2018)
system is based on a single end-to-end neural network that computes a score for each
mention being referential, a score for two mentions being coreference, and combines
them to make a decision, training all these scores with a single end-to-end loss. We’ll
describe this method in detail in Section 22.6. 7

Despite these advances, correctly detecting referential mentions seems to still be
an unsolved problem, since systems incorrectly marking pleonastic pronouns like
it and other non-referential NPs as coreferent is a large source of errors of mod-
ern coreference resolution systems (Kummerfeld and Klein 2013, Martschat and
Strube 2014, Martschat and Strube 2015, Wiseman et al. 2015, Lee et al. 2017a).

Mention, referentiality, or anaphoricity detection is thus an important open area
of investigation. Other sources of knowledge may turn out to be helpful, especially
in combination with unsupervised and semisupervised algorithms, which also mit-
igate the expense of labeled datasets. In early work, for example Bean and Riloff
(1999) learned patterns for characterizing anaphoric or non-anaphoric NPs; (by ex-
tracting and generalizing over the first NPs in a text, which are guaranteed to be
non-anaphoric). Chang et al. (2012) look for head nouns that appear frequently in
the training data but never appear as gold mentions to help find non-referential NPs.
Bergsma et al. (2008b) use web counts as a semisupervised way to augment standard
features for anaphoricity detection for English it, an important task because it is both
common and ambiguous; between a quarter and half it examples are non-anaphoric.
Consider the following two examples:

(22.45) You can make [it] in advance. [anaphoric]
(22.46) You can make [it] in Hollywood. [non-anaphoric]

The it in make it is non-anaphoric, part of the idiom make it. Bergsma et al. (2008b)
turn the context around each example into patterns, like “make * in advance” from
(22.45), and “make * in Hollywood” from (22.46). They then use Google N-grams
to enumerate all the words that can replace it in the patterns. Non-anaphoric contexts
tend to only have it in the wildcard positions, while anaphoric contexts occur with
many other NPs (for example make them in advance is just as frequent in their data

7 Some systems try to avoid mention detection or anaphoricity detection altogether. For datasets like
OntoNotes which don’t label singletons, an alternative to filtering out non-referential mentions is to run
coreference resolution, and then simply delete any candidate mentions which were not corefered with
another mention. This likely doesn’t work as well as explicitly modeling referentiality, and cannot solve
the problem of detecting singletons, which is important for tasks like entity linking.
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as make it in advance, but make them in Hollywood did not occur at all). These
N-gram contexts can be used as features in a supervised anaphoricity classifier.

22.4 Architectures for Coreference Algorithms

Modern systems for coreference are based on supervised neural machine learning,
supervised from hand-labeled datasets like OntoNotes. In this section we overview
the various architecture of modern systems, using the categorization of Ng (2010),
which distinguishes algorithms based on whether they make each coreference deci-
sion in a way that is entity-based—representing each entity in the discourse model—
or only mention-based—considering each mention independently, and whether they
use ranking models to directly compare potential antecedents. Afterwards, we go
into more detail on one state-of-the-art algorithm in Section 22.6.

22.4.1 The Mention-Pair Architecture
We begin with the mention-pair architecture, the simplest and most influentialmention-pair

coreference architecture, which introduces many of the features of more complex
algorithms, even though other architectures perform better. The mention-pair ar-mention-pair

chitecture is based around a classifier that— as its name suggests—is given a pair
of mentions, a candidate anaphor and a candidate antecedent, and makes a binary
classification decision: corefering or not.

Let’s consider the task of this classifier for the pronoun she in our example, and
assume the slightly simplified set of potential antecedents in Fig. 22.2.

Victoria Chen Megabucks Banking her her pay the 37-year-old she

p(coref|”Victoria Chen”,”she”)

p(coref|”Megabucks Banking”,”she”)

Figure 22.2 For each pair of a mention (like she), and a potential antecedent mention (like
Victoria Chen or her), the mention-pair classifier assigns a probability of a coreference link.

For each prior mention (Victoria Chen, Megabucks Banking, her, etc.), the binary
classifier computes a probability: whether or not the mention is the antecedent of
she. We want this probability to be high for actual antecedents (Victoria Chen, her,
the 38-year-old) and low for non-antecedents (Megabucks Banking, her pay).

Early classifiers used hand-built features (Section 22.5); more recent classifiers
use neural representation learning (Section 22.6)

For training, we need a heuristic for selecting training samples; since most pairs
of mentions in a document are not coreferent, selecting every pair would lead to
a massive overabundance of negative samples. The most common heuristic, from
(Soon et al., 2001), is to choose the closest antecedent as a positive example, and all
pairs in between as the negative examples. More formally, for each anaphor mention
mi we create

• one positive instance (mi,m j) where m j is the closest antecedent to mi, and
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• a negative instance (mi,mk) for each mk between m j and mi

Thus for the anaphor she, we would choose (she, her) as the positive example
and no negative examples. Similarly, for the anaphor the company we would choose
(the company, Megabucks) as the positive example and (the company, she) (the com-
pany, the 38-year-old) (the company, her pay) and (the company, her) as negative
examples.

Once the classifier is trained, it is applied to each test sentence in a clustering
step. For each mention i in a document, the classifier considers each of the prior i−1
mentions. In closest-first clustering (Soon et al., 2001), the classifier is run right to
left (from mention i−1 down to mention 1) and the first antecedent with probability
> .5 is linked to i. If no antecedent has probably > 0.5, no antecedent is selected for
i. In best-first clustering, the classifier is run on all i− 1 antecedents and the most
probable preceding mention is chosen as the antecedent for i. The transitive closure
of the pairwise relation is taken as the cluster.

While the mention-pair model has the advantage of simplicity, it has two main
problems. First, the classifier doesn’t directly compare candidate antecedents to
each other, so it’s not trained to decide, between two likely antecedents, which one
is in fact better. Second, it ignores the discourse model, looking only at mentions,
not entities. Each classifier decision is made completely locally to the pair, without
being able to take into account other mentions of the same entity. The next two
models each address one of these two flaws.

22.4.2 The Mention-Rank Architecture
The mention ranking model directly compares candidate antecedents to each other,
choosing the highest-scoring antecedent for each anaphor.

In early formulations, for mention i, the classifier decide which of the {1, ..., i−
1} prior mentions is the antecedent (Denis and Baldridge, 2008). But suppose i is
in fact not anaphoric, and none of the antecedents should be chosen? Such a model
would need to run a separate anaphoricity classifier on i. Instead, it turns out to be
better to jointly learn anaphoricity detection and coreference together with a single
loss (Rahman and Ng, 2009).

So in modern mention-ranking systems, for the ith mention (anaphor), we have
an associated random variable yi ranging over the values Y (i) = {1, ..., i−1, ε}. The
value ε is a special dummy mention meaning that i does not have an antecedent (i.e.,
is either discourse-new and starts a new coref chain, or is non-anaphoric).

Victoria Chen Megabucks Banking her her pay the 37-year-old she

p(”Victoria Chen”|”she”)

p(ϵ|”she”)

ϵ

One or more 
of these

should be high

All of these
should be low

}
p(”her pay”|she”)

p(”her”|she”) p(”the 37-year-old”|she”)

p(”Megabucks Banking”|she”) }
Figure 22.3 For each candidate anaphoric mention (like she), the mention-ranking system assigns a proba-
bility distribution over all previous mentions plus the special dummy mention ε.

At test time, for a given mention i the model computes one softmax over all the
antecedents (plus ε) giving a probability for each candidate antecedent (or none).
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Fig. 22.3 shows an example of the computation for the single candidate anaphor
she.

Once the antecedent is classified for each anaphor, transitive closure can be run
over the pairwise decisions to get a complete clustering.

Training is trickier in the mention-ranking model than the mention-pair model,
because for each anaphor we don’t know which of all the possible gold antecedents
to use for training. Instead, the best antecedent for each mention is latent; that
is, for each mention we have a whole cluster of legal gold antecedents to choose
from. Early work used heuristics to choose an antecedent, for example choosing the
closest antecedent as the gold antecedent and all non-antecedents in a window of
two sentences as the negative examples (Denis and Baldridge, 2008). Various kinds
of ways to model latent antecedents exist (Fernandes et al. 2012, Chang et al. 2013,
Durrett and Klein 2013). The simplest way is to give credit to any legal antecedent
by summing over all of them, with a loss function that optimizes the likelihood of
all correct antecedents from the gold clustering (Lee et al., 2017b). We’ll see the
details in Section 22.6.

Mention-ranking models can be implemented with hand-build features or with
neural representation learning (which might also incorporate some hand-built fea-
tures). we’ll explore both directions in Section 22.5 and Section 22.6.

22.4.3 Entity-based Models
Both the mention-pair and mention-ranking models make their decisions about men-
tions. By contrast, entity-based models link each mention not to a previous mention
but to a previous discourse entity (cluster of mentions).

A mention-ranking model can be turned into an entity-ranking model simply
by having the classifier make its decisions over clusters of mentions rather than
individual mentions (Rahman and Ng, 2009).

For traditional feature-based models, this can be done by extracting features over
clusters. The size of a cluster is a useful features, as is its ‘shape’, which is the
list of types of the mentions in the cluster i.e., sequences of the tokens (P)roper,
(D)efinite, (I)ndefinite, (Pr)onoun, so that a cluster composed of {Victoria, her, the
38-year-old}would have the shape P-Pr-D (Björkelund and Kuhn, 2014). An entity-
based model that includes a mention-pair classifier can use as features aggregates of
mention-pair probabilities, for example computing the average probability of coref-
erence over all mention-pairs in the two clusters (Clark and Manning 2015).

Neural models can learn representations of clusters automatically, for example
by using an RNN over the sequence of cluster mentions to encode a state correspond-
ing to a cluster representation (Wiseman et al., 2016), or by learning distributed rep-
resentations for pairs of clusters by pooling over learned representations of mention
pairs (Clark and Manning, 2016b).

However, although entity-based models are more expressive, the use of cluster-
level information in practice has not led to large gains in performance, so mention-
ranking models are still more commonly used.

22.5 Classifiers using hand-built features

Hand-designed features play an important role in coreference, whether as the sole
input to classification in pre-neural classifiers, or as augmentations to the automatic



22.6 • A NEURAL MENTION-RANKING ALGORITHM 431

representation learning used in state-of-the-art neural systems like the one we’ll de-
scribe in Section 22.6.

In this section we describe features commonly used in logistic regression, SVM,
or random forest classifiers for coreference resolution.

Given an anaphor mention and a potential antecedent mention, most feature
based classifiers make use of three types of features: (i) features of the anaphor, (ii)
features of the candidate antecedent, and (iii) features of the relationship between
the pair. Entity-based models can make additional use of two additional classes: (iv)
feature of all mentions from the antecedent’s entity cluster, and (v) features of the
relation between the anaphor and the mentions in the antecedent entity cluster.

Figure 22.4 shows a selection of commonly used features, and shows the value
that would be computed for the potential anaphor ”she” and potential antecedent
”Victoria Chen” in our example sentence, repeated below:

(22.47) Victoria Chen, CFO of Megabucks Banking, saw her pay jump to $2.3
million, as the 38-year-old also became the company’s president. It is
widely known that she came to Megabucks from rival Lotsabucks.

Features that prior work has found to be particularly useful are exact string
match, entity headword agreement, mention distance, as well as (for pronouns) exact
attribute match and i-within-i, and (for nominals and proper names) word inclusion
and cosine. For lexical features (like head words) it is common to only use words that
appear enough times (perhaps more than 20 times), backing off to parts of speech
for rare words.

It is crucial in feature-based systems to use conjunctions of features; one exper-
iment suggested that moving from individual features in a classifier to conjunctions
of multiple features increased F1 by 4 points (Lee et al., 2017a). Specific conjunc-
tions can be designed by hand (Durrett and Klein, 2013), all pairs of features can be
conjoined (Bengtson and Roth, 2008), or feature conjunctions can be learned auto-
matically, either by using classifiers like decision trees or random forests ((Ng and
Cardie, 2002a), Lee et al. 2017a) or by using neural models to take raw, unconjoined
features as input, and automatically learn intermediate representations (Wiseman
et al., 2015).

Finally, some of these features can also be used in neural models as well. Neural
systems of the kind we describe in the next section make use of contextual word
embeddings, so they don’t benefit from adding shallow features like string or head
match, grammatical role, or mention types. However features like mention length,
distance between mentions, or genre can complement contextual word embedding
models nicely.

22.6 A neural mention-ranking algorithm

In this section we describe the neural mention-ranking system of Lee et al. (2017b).
This end-to-end system doesn’t exactly have a separate mention-detection step. In-
stead, it considers every possible span of text up to a set length (i.e. all n-grams of
length 1,2,3...N) as a possible mention.8

8 But because this number of potential mentions makes the algorithm very slow and unwieldy (the
model’s size is O(t4) in document length) in practice various versions of the algorithm find ways to prune
the possible mentions, essentially using a mention score as something of a mention-detector.
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Features of the Anaphor or Antecedent Mention
First (last) word Victoria/she First or last word (or embedding) of antecedent/anaphor
Head word Victoria/she Head word (or head embedding) of antecedent/anaphor
Attributes Sg-F-A-3-

PER/Sg-F-A-
3-PER

The number, gender, animacy, person, named entity type
attributes of (antecedent/anaphor)

Length 2/1 length in words of (antecedent/anaphor)
Grammatical role Sub/Sub The grammatical role—subject, direct object, indirect

object/PP—of (antecedent/anaphor)
Mention type P/Pr Type: (P)roper, (D)efinite, (I)ndefinite, (Pr)onoun) of an-

tecedent/anaphor
Features of the Antecedent Entity

Entity shape P-Pr-D The ‘shape’ or list of types of the mentions in the
antecedent entity (cluster), i.e., sequences of (P)roper,
(D)efinite, (I)ndefinite, (Pr)onoun.

Entity attributes Sg-F-A-3-
PER

The number, gender, animacy, person, named entity type
attributes of the antecedent entity

Antecedent cluster
size

3 Number of mentions in the antecedent cluster

Features of the Pair of Mentions
Longer anaphor F True of anaphor is longer than antecedent
Pairs of any features Victoria/she,

2/1, Sub/Sub,
P/Pr, etc .

For each individual feature, pair of type of antecedent+
type of anaphor

Sentence distance 1 The number of sentences between antecedent and anaphor
Mention distance 4 The number of mentions between antecedent and anaphor
i-within-i F Anaphor has i-within-i relation with antecedent
Cosine Cosine between antecedent and anaphor embeddings
Appositive F True if the anaphor is in the syntactic apposition relation

to the antecedent. This can be useful even if appositives
are not mentions (to know to attach the appositive to a
preceding head)

Features of the Pair of Entities
Exact String Match F True if the strings of any two mentions from the antecedent

and anaphor clusters are identical.
Head Word Match F True if any mentions from antecedent cluster has same

headword as any mention in anaphor cluster
Word Inclusion F Words in antecedent cluster includes all words in anaphor

cluster
Features of the Document

Genre/source N The document genre— (D)ialog, (N)ews, etc,
Figure 22.4 Some common features for feature-based coreference algorithms, with values for the anaphor
“she” and potential antecedent “Victoria Chen”.

Given a document D with T words, the model considers all of the N = T (T−1)
2

text spans up to some length (in the version of Lee et al. (2018), that length is 10).
Each span i starts at word START(i) and ends at word END(i).

The task is to assign to each span i an antecedent yi, a random variable ranging
over the values Y (i) = {1, ..., i− 1, ε}; each previous span and a special dummy
token ε. Choosing the dummy token means that i does not have an antecedent, either
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because i is discourse-new and starts a new coreference chain, or because i is non-
anaphoric.

For each pair of spans i and j, the system assigns a score s(i, j) for the corefer-
ence link between span i and span j, The system then learns a distribution P(yi) over
the antecedents for span i:

P(yi) =
exp(s(i,yi))∑

y′∈Y (i) exp(s(i,yi))
(22.48)

This score s(i, j) includes three factors: m(i); whether span i is a mention; m( j);
whether span j is a mention; and c( j); whether j is the antecedent of i:

s(i, j) = m(i)+m( j)+ c(i, j) (22.49)

For the dummy antecedent ε, the score s(i, ε) is fixed to 0. This way if any non-
dummy scores are positive, the model predicts the highest-scoring antecedent, but if
all the scores are negative it abstains.

The scoring functions m(i) and c(i, j) are based on a vector gi that represents
span i:

m(i) = wm ·FFNNm(gi) (22.50)

c(i, j) = wc ·FFNNc([gi,g j,gi ◦g j,φ(i, j)]) (22.51)

The antecedent score c(i, j) takes as input a representation of the spans i and j, but
also the element-wise similarity of the two spans to each other gi ◦ g j (here ◦ is
element-wise multiplication). The antecedent score c also considers a feature vec-
tor φ(i, j) that encodes useful features like mention distances, and also information
about the speaker and genre.

The span representations gi themselves consist of two parts: a contextual repre-
sentation of the first and last word in the span, and a representation of the headword
of the span. The contextual representations of the first and last words of each span.
are computed by a standard biLSTM. The biLSTM takes as input a representation
wt for each word, based on contextual word embeddings like ELMo. (Using BERT
instead of ELMo results in even higher performance (Joshi et al., 2019)). The output
of the biLSTM for each word wt of the input is ht :

−→
h t = LSTMforward(

−→
h t−1,wt)

←−
h t = LSTMforward(

←−
h t+1,wt)

ht = [
−→
h t ,
←−
h t ] (22.52)

The system uses independent LSTMs for each sentence.
The system uses attention (Chapter 10) over the words in the span to represent

the span’s head. As is usual with attention, the system learns a weight vector wα ,
and computes its dot product with the hidden state ht transformed by a FFNN:

αt =wα · FFNNα(ht) (22.53)

The attention score is normalized into a distribution via a softmax:

ai,t =
exp(αt)∑END(i)

k=START(i) exp(αk)
(22.54)
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And then the attention distribution is used to create a vector hATT(i) which is an
attention-weighted sum of words in span i:

hATT(i) =

END(i)∑

t=START(i)

ai,t ·wt (22.55)

Each span i is then represented by a vector gi, a concatenation of the hidden rep-
resentations of the start and end tokens of the span, the head, and a feature vector
containing only one feature: the length of span i.

gi = [hSTART(i),hEND(i),hATT(i),φ(i)] (22.56)

Fig. 22.5 from Lee et al. (2017b) shows the computation of the span representation
and the mention score.

General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-
sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a
manageable number of spans is considered for coreference decisions. In general, the model considers all
possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, ϵ) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent
scores are computed from pairs of span represen-
tations. The final coreference score of a pair of
spans is computed by summing the mention scores
of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ϵ
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi ◦ gj and a feature vector φ(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every

Mention score (m)

Span representation (g)

Span head (hatt)

Bidirectional LSTM (h)

Input word embeddings  
(ELMo)

Figure 22.5 Computation of the span representation and the mention score in the end-to-
end coreference model of Lee et al. (2017b). The model considers all spans up to a maximum
width; the figure shows a small subset of these. Figure after Lee et al. (2017b).

Fig. 22.6 shows the computation of the score s for the three possible antecedents
of the company in the example sentence from Fig. 22.5.
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Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-
sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a
manageable number of spans is considered for coreference decisions. In general, the model considers all
possible spans up to a maximum width, but we depict here only a small subset.
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scores are computed from pairs of span represen-
tations. The final coreference score of a pair of
spans is computed by summing the mention scores
of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent ϵ
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi ◦ gj ,φ(i, j)])

where · denotes the dot product, ◦ denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi ◦ gj and a feature vector φ(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every

(m)

(c)

Figure 22.6 The computation of the score s for the three possible antecedents of the com-
pany in the example sentence from Fig. 22.5. Figure after Lee et al. (2017b).

At inference time, some method is generally used to prune the mentions (for
example using the mention score m as a filter to keep only the best few mentions
as a function like 0.4T of the sentence length T ). Then the joint distribution of
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antecedents for each document is computed in a forward pass. Finally, we can then
do transitive closure on the antecedents to create a final clustering for the document.

For training, we don’t have a single gold antecedent for each mention; instead
the coreference labeling only gives us each entire cluster of coreferent mentions, and
a mention has a latent antecedent. We therefor use a loss function that maximizes
the sum of the coreference probability of any of the legal antecedents. For a given
mention i with possible antecedents Y (i), let GOLD(i) be the set of mentions in the
gold cluster containing i. Since the set of mentions occurring before i is Y (i), the
set of mentions in that gold cluster that also occur before i is Y (i)∩ GOLD(i). We
therefore want to maximize:

∑

ŷ∈Y (i)∩GOLD(i)

P(ŷ) (22.57)

If a mention i is not in a gold cluster GOLD(i) = ε.
To turn this probability into a loss function, we’ll use the cross-entropy loss

function we defined in Eq. 5.10 in Chapter 5, by taking the − log of the probability.
If we then sum over all mentions, we get the final loss function for training:

L =

N∑

i=2

− log
∑

ŷ∈Y (i)∩GOLD(i)

P(ŷ) (22.58)

Fig. 22.7 shows example predictions from the model, showing the attention weights,
which Lee et al. (2017b) find correlate with traditional semantic heads. Note that
the model gets the second example wrong, presumably because attendants and pilot
likely have nearby word embeddings.1

(A fire in a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee (the blaze) in the four-story building.

A fire in (a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee the blaze in (the four-story building).

2

We are looking for (a region of central Italy bordering the Adriatic Sea). (The area) is mostly
mountainous and includes Mt. Corno, the highest peak of the Apennines. (It) also includes a lot of
sheep, good clean-living, healthy sheep, and an Italian entrepreneur has an idea about how to make a
little money of them.

3
(The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots’) union and ground
crew did so yesterday.

4

(Prince Charles and his new wife Camilla) have jumped across the pond and are touring the United
States making (their) first stop today in New York. It’s Charles’ first opportunity to showcase his new
wife, but few Americans seem to care. Here’s Jeanie Mowth. What a difference two decades make.
(Charles and Diana) visited a JC Penney’s on the prince’s last official US tour. Twenty years later
here’s the prince with his new wife.

5
Also such location devices, (some ships) have smoke floats (they) can toss out so the man overboard
will be able to use smoke signals as a way of trying to, let the rescuer locate (them).

Table 4: Examples predictions from the development data. Each row depicts a single coreference cluster
predicted by our model. Bold, parenthesized spans indicate mentions in the predicted cluster. The
redness of each word indicates the weight of the head-finding attention mechanism (ai,t in Section 4).
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Figure 4: Indirect measure of mention precision
using agreement with gold syntax. Constituency
precision: % of unpruned spans matching syn-
tactic constituents. Head word precision: % of
unpruned constituents whose syntactic head word
matches the most attended word. Frequency: % of
gold spans with each width.

high, since no explicit supervision of syntactic
heads is provided. The model simply learns from
the clustering data that these head words are useful
for making coreference decisions.

9.4 Qualitative Analysis

Our qualitative analysis in Table 4 highlights the
strengths and weaknesses of our model. Each row
is a visualization of a single coreference cluster
predicted by the model. Bolded spans in paren-
theses belong to the predicted cluster, and the red-
ness of a word indicates its weight from the head-
finding attention mechanism (ai,t in Section 4).

Strengths The effectiveness of the attention
mechanism for making coreference decisions can
be seen in Example 1. The model pays attention
to fire in the span A fire in a Bangladeshi gar-
ment factory, allowing it to successfully predict
the coreference link with the blaze. For a sub-
span of that mention, a Bangladeshi garment fac-
tory, the model pays most attention instead to fac-
tory, allowing it successfully predict the corefer-
ence link with the four-story building.

The task-specific nature of the attention mecha-
nism is also illustrated in Example 4. The model
generally pays attention to coordinators more than
the content of the coordination, since coordinators,
such as and, provide strong cues for plurality.

The model is capable of detecting relatively
long and complex noun phrases, such as a re-
gion of central Italy bordering the Adriatic Sea
in Example 2. It also appropriately pays atten-

Figure 22.7 Sample predictions from the Lee et al. (2017b) model, with one cluster per
example, showing one correct example and one mistake. Bold, parenthesized spans are men-
tions in the predicted cluster. The amount of red color on a word indicates the head-finding
attention weight ai,t in (22.54). Figure adapted from Lee et al. (2017b).

22.7 Evaluation of Coreference Resolution

We evaluate coreference algorithms model-theoretically, comparing a set of hypoth-
esis chains or clusters H produced by the system against a set of gold or reference
chains or clusters R from a human labeling, and reporting precision and recall.

However, there are a wide variety of methods for doing this comparison. In fact,
there are 5 common metrics used to evaluate coreference algorithms: the link based
MUC (Vilain et al., 1995) and BLANC (Recasens and Hovy 2011, Luo et al. 2014)
metrics, the mention based B3 metric (Bagga and Baldwin, 1998), the entity based
CEAF metric (Luo, 2005), and the link based entity aware LEA metric (Moosavi and
Strube, 2016).
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Let’s just explore two of the metrics. The MUC F-measure (Vilain et al., 1995)MUC
F-measure

is based on the number of coreference links (pairs of mentions) common to H and
R. Precision is the number of common links divided by the number of links in H.
Recall is the number of common links divided by the number of links in R; This
makes MUC biased toward systems that produce large chains (and fewer entities),
and it ignores singletons, since they don’t involve links.

B3 is mention-based rather than link-based. For each mention in the referenceB3

chain, we compute a precision and recall, and then we take a weighted sum over all
N mentions in the document to compute a precision and recall for the entire task. For
a given mention i, let R be the reference chain that includes i, and H the hypothesis
chain that has i. The set of correct mentions in H is H ∩R. Precision for mention i
is thus |H∩R

|H| , and recall for mention i thus |H∩R
|R| . The total precision is the weighted

sum of the precision for mention i, weighted by a weight wi. The total recall is the
weighted sum of the recall for mention i, weighted by a weight wi. Equivalently:

Precision =

N∑

i=1

wi
# of correct mentions in hypothesis chain containing entityi

# of mentions in hypothesis chain containing entityi

Recall =

N∑

i=1

wi
# of correct mentions in hypothesis chain containing entityi

# of mentions in reference chain containing entityi

The weight wi for each entity can be set to different values to produce different
versions of the algorithm.

Following a proposal from Denis and Baldridge (2009), the CoNLL coreference
competitions were scored based on the average of MUC, CEAF-e, and B3 (Pradhan
et al. 2011, Pradhan et al. 2012b), and so it is common in many evaluation campaigns
to report an average of these 3 metrics. See Luo and Pradhan (2016) for a detailed
description of the entire set of metrics; reference implementations of these should
be used rather than attempting to reimplement from scratch (Pradhan et al., 2014).

Alternative metrics have been proposed that deal with particular coreference do-
mains or tasks. For example, consider the task of resolving mentions to named
entities (persons, organizations, geopolitical entities), which might be useful for in-
formation extraction or knowledge base completion. A hypothesis chain that cor-
rectly contains all the pronouns referring to an entity, but has no version of the name
itself, or is linked with a wrong name, is not useful for this task. We might instead
want a metric that weights each mention by how informative it is (with names being
most informative) (Chen and Ng, 2013) or a metric that considers a hypothesis to
match a gold chain only if it contains at least one variant of a name (the NEC F1
metric of Agarwal et al. (2019)).

22.8 Entity Linking

The task of entity linking (Ji and Grishman, 2011), closely related to coreference,entity linking

is to associate a mention in text with the representation of some real-world entity
in an ontology, a list of entities in the world, like a gazeteer (Chapter 16). Perhaps
the most common ontology used for this task is Wikipedia, in which each Wikipedia
page acts as the unique id for a particular entity. Thus the entity linking task of
wikification (Mihalcea and Csomai, 2007) is the task of deciding which Wikipediawikification

page corresponding to an individual is being referred to by a mention. We’ll consider
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that task for the rest of this section, but see Ling et al. (2015b) on different linking
tasks and datasets.

Since the earliest systems (Mihalcea and Csomai 2007, Cucerzan 2007, Milne
and Witten 2008), entity linking is done in two stages: mention detection and
mention disambiguation. A very useful feature for mention detection is what Mi-
halcea and Csomai (2007) called a key phrase: the mapping between Wikipedia
anchor texts (the hyperlinked span of text associated with a URL, like Stanfordanchor texts

University, Stanford, or Governor Stanford) and the Wikipedia page title it links
to (Stanford University, or Leland Stanford). Prebuilt dictionaries of these
anchor text/title page links are available (Spitkovsky and Chang, 2012). Mention
detection steps also often include various kinds of query expansion, for example by
doing coreference resolution on the current document. Mention disambiguation is
often done by supervised learning

Coreference can help entity linking, by giving more possible surface forms to
help link to the right Wikipedia page. But entity linking can also be used in the other
direction, to improve coreference resolution. Consider this example from Hajishirzi
et al. (2013):

(22.59) [Michael Eisner]1 and [Donald Tsang]2 announced the grand opening of
[[Hong Kong]3 Disneyland]4 yesterday. [Eisner]1 thanked [the President]2
and welcomed [fans]5 to [the park]4.

Integrating entity linking into coreference can help draw encyclopedic knowl-
edge (like the fact that Donald Tsang is a president) to help disambiguate the men-
tion the President. Ponzetto and Strube (2006) (2007) and Ratinov and Roth (2012)
showed that such attributes extracted from Wikipedia pages could be used to build
richer models of entity mentions in coreference. More recent research shows how to
do linking and coreference jointly (Hajishirzi et al. 2013, Zheng et al. 2013) or even
jointly with named entity tagging as well (Durrett and Klein 2014).

22.9 Winograd Schema problems

From early on in the field, researchers have noted that some cases of coreference
are quite difficult, seeming to require world knowledge or sophisticated reasoning
to solve. The problem was most famously pointed out by Winograd (1972) with the
following example:

(22.60) The city council denied the demonstrators a permit because

a. they feared violence.
b. they advocated violence.

Winograd noticed that the antecedent that most readers preferred for the pro-
noun they in continuation (a) was the city council, but in (b) was the demonstrators.
He suggested that this requires understanding that the second clause is intended
as an explanation of the first clause, and also that our cultural frames suggest that
city councils are perhaps more likely than demonstrators to fear violence and that
demonstrators might be more likely to advocate violence.

In an attempt to get the field of NLP to focus more on methods involving world
knowledge and common sense reasoning, Levesque (2011) proposed a challenge
task called the Winograd Schema Challenge.9 The problems in the challenge taskWinograd

schema
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are coreference problems designed to be easily disambiguated by the human reader,
but hopefully not solvable by simple techniques such as selectional restrictions, or
other basic word association methods.

The problems are framed as a pair of statements that differ in a single word or
phrase, and a coreference question:

(22.61) The trophy didn’t fit into the suitcase because it was too large.
Question: What was too large? Answer: The trophy

(22.62) The trophy didn’t fit into the suitcase because it was too small.
Question: What was too small? Answer: The suitcase

The problems have the following characteristics:

1. The problems each have two parties
2. A pronoun preferentially refers to one of the parties, but could grammatically

also refer to the other
3. A question asks which party the pronoun refers to
4. If one word in the question is changed, the human-preferred answer changes

to the other party

The kind of world knowledge that might be needed to solve the problems can
vary. In the trophy/suitcase example, it is knowledge about the physical world; that
a bigger object cannot fit into a smaller object. In the original Winograd sentence,
it is stereotypes about social actors like politicians and protesters. In examples like
the following, it is knowledge about human actions like turn-taking or thanking.

(22.63) Bill passed the gameboy to John because his turn was [over/next]. Whose
turn was [over/next]? Answers: Bill/John

(22.64) Joan made sure to thank Susan for all the help she had [given/received].
Who had [given/received] help? Answers: Susan/Joan.

Although the Winograd Schema was designed to require common-sense rea-
soning, a large percentage of the original set of problem can be solved by pre-
trained language models, fine-tuned on Winograd Schema sentences (Kocijan et al.,
2019). Large pre-trained language models encode an enormous amount of world or
common-sense knowledge! The current trend is therefore to propose new datasets
with increasingly difficult Winograd-like coreference resolution problems like KNOWREF
(Emami et al., 2019), with examples like:

(22.65) Marcus is undoubtedly faster than Jarrett right now but in [his] prime the
gap wasn’t all that big.

In the end, it seems likely that some combination of language modeling and knowl-
edge will prove fruitful; indeed, it seems that knowledge-based models overfit less
to lexical idiosyncracies in Winograd Schema training sets (Trichelair et al., 2018),

22.10 Gender Bias in Coreference

As with other aspects of language processing, coreference models exhibit gender
and other biases (Zhao et al. 2018a, Rudinger et al. 2018, Webster et al. 2018).

9 Levesque’s call was quickly followed up by Levesque et al. (2012) and Rahman and Ng (2012), a
competition at the IJCAI conference (Davis et al., 2017), and a natural language inference version of the
problem called WNLI (Wang et al., 2018).
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For example the WinoBias dataset (Zhao et al., 2018a) uses a variant of the Wino-
grad Schema paradigm to test the extent to which coreference algorithms are biased
toward linking gendered pronouns with antecedents consistent with cultural stereo-
types. As we summarized in Chapter 6, embeddings replicate societal biases in their
training test, such as associating men with historically sterotypical male occupa-
tions like doctors, and women with stereotypical female occupations like secretaries
(Caliskan et al. 2017, Garg et al. 2018).

A WinoBias sentence contain two mentions corresponding to stereotypically-
male and stereotypically-female occupations and a gendered pronoun that must be
linked to one of them. The sentence cannot be disambiguated by the gender of the
pronoun, but a biased model might be distracted by this cue. Here is an example
sentence:

(22.66) The secretary called the physiciani and told himi about a new patient
[pro-stereotypical]

(22.67) The secretary called the physiciani and told heri about a new patient
[anti-stereotypical]

Zhao et al. (2018a) consider a coreference system to be biased if it is more accu-
rate at linking pronouns consistent with gender stereotypical occupations (e.g., him
with physician in (22.66)) than linking pronouns inconsistent with gender-stereotypical
occupations (e.g., her with physician in (22.67)). They show that coreference sys-
tems of all architectures (rule-based, feature-based machine learned, and end-to-
end-neural) all show significant bias, performing on average 21 F1 points worse in
the anti-stereotypical cases.

One possible source of this bias is that female entities are significantly un-
derrepresented in the OntoNotes dataset, used to train most coreference systems.
Zhao et al. (2018a) propose a way to overcome this bias: they generate a second
gender-swapped dataset in which all male entities in OntoNotes are replaced with
female ones and vice versa, and retrain coreference systems on the combined orig-
inal and swapped OntoNotes data, also using debiased GloVE embeddings (Boluk-
basi et al., 2016). The resulting coreference systems no longer exhibit bias on the
WinoBias dataset, without significantly impacting OntoNotes coreference accuracy.
In a follow-up paper, Zhao et al. (2019) show that the same biases exist in ELMo
contextualized word vector representations and coref systems that use them. They
showed that retraining ELMo with data augmentation again reduces or removes bias
in coreference systems on WinoBias.

Webster et al. (2018) introduces another dataset, GAP, and the task of Gendered
Pronoun Resolution as a tool for developing improved coreference algorithms for
gendered pronouns. GAP is a gender-balanced labeled corpus of 4,454 sentences
with gendered ambiguous pronouns (by contrast, only 20% of the gendered pro-
nouns in the English OntoNotes training data are feminine). The examples were
created by drawing on naturally occurring sentences from Wikipedia pages to create
hard to resolve cases with two named entities of the same gender and an ambiguous
pronoun that may refer to either person (or neither), like the following:

(22.68) In May, Fujisawa joined Mari Motohashi’s rink as the team’s skip, moving
back from Karuizawa to Kitami where she had spent her junior days.

Webster et al. (2018) show that modern coreference algorithms perform signif-
icantly worse on resolving feminine pronouns than masculine pronouns in GAP.
Kurita et al. (2019) shows that a system based on BERT contextualized word repre-
sentations shows similar bias.
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22.11 Summary

This chapter introduced the task of coreference resolution.

• This is the task of linking together mentions in text which corefer, i.e. refer
to the same discourse entity in the discourse model, resulting in a set of
coreference chains (also called clusters or entities).

• Mentions can be definite NPs or indefinite NPs, pronouns (including zero
pronouns) or names.

• The surface form of an entity mention is linked to its information status
(new, old, or inferrable), and how accessible or salient the entity is.

• Some NPs are not referring expressions, such as pleonastic it in It is raining.
• Many corpora have human-labeled coreference annotations that can be used

for supervised learning, including OntoNotes for English, Chinese, and Ara-
bic, ARRAU for English, and AnCora for Spanish and Catalan.

• Mention detection can start with all nouns and named entities and then use
anaphoricity classifiers or referentiality classifiers to filter out non-mentions.

• Three common architectures for coreference are mention-pair, mention-rank,
and entity-based, each of which can make use of feature-based or neural clas-
sifiers.

• Modern coreference systems tend to be end-to-end, performing mention de-
tection and coreference in a single end-to-end architecture.

• Algorithms learn representations for text spans and heads, and learn to com-
pare anaphor spans with candidate antecedent spans.

• Coreference systems are evaluated by comparing with gold entity labels using
precision/recall metrics like MUC, B3, CEAF, BLANC, or LEA.

• The Winograd Schema Challenge problems are difficult coreference prob-
lems that seem to require world knowledge or sophisticated reasoning to solve.

• Coreference systems exhibit gender bias which can be evaluated using datasets
like Winobias and GAP.

Bibliographical and Historical Notes
Coreference has been part of natural language understanding since the 1970s (Woods
et al. 1972, Winograd 1972). The discourse model and the entity-centric foundation
of coreference was formulated by Karttunen (1969) (at the 3rd COLING confer-
ence), playing a role also in linguistic semantics (Heim 1982, Kamp 1981). But it
was Bonnie Webber’s (1978) dissertation and following work (Webber 1983) that
explored the model’s computational aspects, providing fundamental insights into
how entities are represented in the discourse model and the ways in which they can
license subsequent reference. Many of the examples she provided continue to chal-
lenge theories of reference to this day.

The Hobbs algorithm10 is a tree-search algorithm that was the first in a longHobbs
algorithm

series of syntax-based methods for identifying reference robustly in naturally occur-
ring text. The input to the Hobbs algorithm is a pronoun to be resolved, together

10 The simpler of two algorithms presented originally in Hobbs (1978).
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with a syntactic (constituency) parse of the sentences up to and including the cur-
rent sentence. The details of the algorithm depend on the grammar used, but can be
understand from a a simplified version due to Kehler et al. (2004) that just searches
through the list of NPs in the current and prior sentences. This simplified Hobbs
algorithm searches NPs in the following order: “(i) in the current sentence from
right-to-left, starting with the first NP to the left of the pronoun, (ii) in the previous
sentence from left-to-right, (iii) in two sentences prior from left-to-right, and (iv) in
the current sentence from left-to-right, starting with the first noun group to the right
of the pronoun (for cataphora). The first noun group that agrees with the pronoun
with respect to number, gender, and person is chosen as the antecedent” (Kehler
et al., 2004).

Lappin and Leass (1994) was an influential entity-based system that used weights
to combine syntactic and other features, extended soon after by Kennedy and Bogu-
raev (1996) whose system avoids the need for full syntactic parses.

Approximately contemporaneously centering (Grosz et al., 1995) was applied to
pronominal anaphora resolution by Brennan et al. (1987), and a wide variety of work
followed focused on centering’s use in coreference (Kameyama 1986, Di Euge-
nio 1990, Walker et al. 1994, Di Eugenio 1996, Strube and Hahn 1996, Kehler 1997a,
Tetreault 2001, Iida et al. 2003). Kehler and Rohde (2013) show how centering can
be integrated with coherence-driven theories of pronoun interpretation. See Chap-
ter 23 for the use of centering in measuring discourse coherence.

Coreference competitions as part of the US DARPA-sponsored MUC confer-
ences provided early labeled coreference datasets (the 1995 MUC-6 and 1998 MUC-
7 corpora), and set the tone for much later work, choosing to focus exclusively
on the simplest cases of identity coreference (ignoring difficult cases like bridging,
metonymy, and part-whole) and drawing the community toward supervised machine
learning and metrics like the MUC metric (Vilain et al., 1995). The later ACE eval-
uations produced labeled coreference corpora in English, Chinese, and Arabic that
were widely used for model training and evaluation.

This DARPA work influenced the community toward supervised learning be-
ginning in the mid-90s (Connolly et al. 1994, Aone and Bennett 1995, McCarthy
and Lehnert 1995). Soon et al. (2001) laid out a set of basic features, extended
by Ng and Cardie (2002b), and a series of machine learning models followed over
the next 15 years. These often focused separately on pronominal anaphora resolu-
tion (Kehler et al. 2004, Bergsma and Lin 2006), full NP coreference (Cardie and
Wagstaff 1999, Ng and Cardie 2002b, Ng 2005a) and definite NP reference (Poesio
and Vieira 1998, Vieira and Poesio 2000), as well as separate anaphoricity detection
(Bean and Riloff 1999, Bean and Riloff 2004, Ng and Cardie 2002a, Ng 2004), or
singleton detection (de Marneffe et al., 2015).

The move from mention-pair to mention-ranking approaches was pioneered by
Yang et al. (2003) and Iida et al. (2003) who proposed pairwise ranking methods,
then extended by Denis and Baldridge (2008) who proposed to do ranking via a soft-
max over all prior mentions. The idea of doing mention detection, anaphoricity, and
coreference jointly in a single end-to-end model grew out of the early proposal of Ng
(2005b) to use a dummy antecedent for mention-ranking, allowing ‘non-referential’
to be a choice for coreference classifiers, Denis and Baldridge’s (2007) joint sys-
tem combining anaphoricity classifier probabilities with coreference probabilities,
the Denis and Baldridge (2008) ranking model, and the Rahman and Ng (2009)
proposal to train the two models jointly with a single objective.

Simple rule-based systems for coreference returned to prominence in the 2010s,
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partly because of their ability to encode entity-based features in a high-precision
way (Zhou et al. 2004, Haghighi and Klein 2009, Raghunathan et al. 2010, Lee
et al. 2011, Lee et al. 2013, Hajishirzi et al. 2013) but in the end they suffered
from an inability to deal with the semantics necessary to correctly handle cases of
common noun coreference.

A return to supervised learning led to a number of advances in mention-ranking
models which were also extended into neural architectures, for example using re-
inforcement learning to directly optimize coreference evaluation models Clark and
Manning (2016a), doing end-to-end coreference all the way from span extraction
(Lee et al. 2017b, Zhang et al. 2018). Neural models also were designed to take
advantage of global entity-level information (Clark and Manning 2016b, Wiseman
et al. 2016, Lee et al. 2018).

The coreference task as we introduced it involves a simplifying assumption that
the relationship between an anaphor and its antecedent is one of identity: the two
corefering mentions refer to the identical discourse referent. In real texts, the rela-
tionship can be more complex, where different aspects of a discourse referent can
be neutralized or refocused. For example (22.69) (Recasens et al., 2011) shows an
example of metonymy, in which the capital city Washington is used metonymicallymetonymy

to refer to the US. (22.70-22.71) show other examples (Recasens et al., 2011):

(22.69) a strict interpretation of a policy requires The U.S. to notify foreign
dictators of certain coup plots ... Washington rejected the bid ...

(22.70) I once crossed that border into Ashgh-Abad on Nowruz, the Persian New
Year. In the South, everyone was celebrating New Year; to the North, it
was a regular day.

(22.71) In France, the president is elected for a term of seven years, while in the
United States he is elected for a term of four years.

For further linguistic discussions of these complications of coreference see Puste-
jovsky (1991), van Deemter and Kibble (2000), Poesio et al. (2006), Fauconnier and
Turner (2008), Versley (2008), and Barker (2010).

Ng (2017) offers a useful compact history of machine learning models in coref-
erence resolution. There are three excellent book-length surveys of anaphora/coref-
erence resolution, covering different time periods: Hirst (1981) (early work until
about 1981), Mitkov (2002) (1986-2001), and Poesio et al. (2016) (2001-2015).

Exercises
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23 Discourse Coherence

And even in our wildest and most wandering reveries, nay in our very dreams,
we shall find, if we reflect, that the imagination ran not altogether at adven-
tures, but that there was still a connection upheld among the different ideas,
which succeeded each other. Were the loosest and freest conversation to be
transcribed, there would immediately be transcribed, there would immediately
be observed something which connected it in all its transitions.

David Hume, An enquiry concerning human understanding, 1748

Orson Welles’ movie Citizen Kane was groundbreaking in many ways, perhaps most
notably in its structure. The story of the life of fictional media magnate Charles
Foster Kane, the movie does not proceed in chronological order through Kane’s
life. Instead, the film begins with Kane’s death (famously murmuring “Rosebud”)
and is structured around flashbacks to his life inserted among scenes of a reporter
investigating his death. The novel idea that the structure of a movie does not have
to linearly follow the structure of the real timeline made apparent for 20th century
cinematography the infinite possibilities and impact of different kinds of coherent
narrative structures.

But coherent structure is not just a fact about movies or works of art. Like
movies, language does not normally consist of isolated, unrelated sentences, but
instead of collocated, structured, coherent groups of sentences. We refer to such
a coherent structured group of sentences as a discourse, and we use the word co-discourse

herence to refer to the relationship between sentences that makes real discoursescoherence

different than just random assemblages of sentences. The chapter you are now read-
ing is an example of a discourse, as is a news article, a conversation, a thread on
social media, a Wikipedia page, and your favorite novel.

What makes a discourse coherent? If you created a text by taking a random
sentences each from many different sources and pasted them together, would that
be a coherent discourse? Almost certainly not. Real discourses exhibit both locallocal

coherence and global coherence. Let’s consider three ways in which real discoursesglobal

are locally coherent;
First, sentences or clauses in real discourses are related to nearby sentences in

systematic ways. Consider this example from Hobbs (1979):

(23.1) John took a train from Paris to Istanbul. He likes spinach.

This sequence is incoherent because it is unclear to a reader why the second
sentence follows the first; what does liking spinach have to do with train trips? In
fact, a reader might go to some effort to try to figure out how the discourse could be
coherent; perhaps there is a French spinach shortage? The very fact that hearers try
to identify such connections suggests that human discourse comprehension involves
the need to establish this kind of coherence.

By contrast, in the following coherent example:

(23.2) Jane took a train from Paris to Istanbul. She had to attend a conference.
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the second sentence gives a REASON for Jane’s action in the first sentence. Struc-
tured relationships like REASON that hold between text units are called coherence
relations, and coherent discourses are structured by many such coherence relations.coherence

relations
Coherence relations are introduced in Section 23.1.

A second way a discourse can be locally coherent is by virtue of being “about”
someone or something. In a coherent discourse some entities are salient, and the
discourse focuses on them and doesn’t go back and forth between multiple entities.
This is called entity-based coherence. Consider the following incoherent passage,
in which the salient entity seems to wildly swing from John to Jenny to the piano
store to the living room, back to Jenny, then the piano again:

(23.3) John wanted to buy a piano for his living room.
Jenny also wanted to buy a piano.
He went to the piano store.
It was nearby.
The living room was on the second floor.
She didn’t find anything she liked.
The piano he bought was hard to get up to that floor.

Entity-based coherence models measure this kind of coherence by tracking salient
entities across a discourse. For example Centering Theory (Grosz et al., 1995), theCentering

Theory
most influential theory of entity-based coherence, keeps track of which entities in
the discourse model are salient at any point (salient entities are more likely to be
pronominalized or to appear in prominent syntactic positions like subject or object).
In Centering Theory, transitions between sentences that maintain the same salient
entity are considered more coherent than ones that repeatedly shift between entities.
The entity grid model of coherence (Barzilay and Lapata, 2008) is a commonly-entity grid

used model that realizes some of the intuitions of the Centering Theory framework.
Entity-based coherence is introduced in Section 23.3.

Finally, discourses can be locally coherent by being topically coherent: nearbytopically
coherent

sentences are generally about the same topic and use the same or similar vocab-
ulary to discuss these topics. Because topically coherent discourses draw from a
single semantic field or topic, they tend to exhibit the surface property known as
lexical cohesion (Halliday and Hasan, 1976): the sharing of identical or semanti-lexical cohesion

cally related words in nearby sentences. For example, the fact that the words house,
chimney, garret, closet, and window— all of which belong to the same semantic
field— appear in the two sentences in (23.4), or that they share the identical word
shingled, is a cue that the two are tied together as a discourse:

(23.4) Before winter I built a chimney, and shingled the sides of my house...
I have thus a tight shingled and plastered house... with a garret and a

closet, a large window on each side....

In addition to the local coherence between adjacent or nearby sentences, dis-
courses also exhibit global coherence. Many genres of text are associated with
particular conventional discourse structures. Academic articles might have sections
describing the Methodology or Results. Stories might follow conventional plotlines
or motifs. Persuasive essays have a particular claim they are trying to argue for,
and an essay might express this claim together with a structured set of premises that
support the argument and demolish potential counterarguments. We’ll introduce
versions of each of these kinds of global coherence.

Why do we care about the local or global coherence of a discourse? Since co-
herence is a property of a well-written text, coherence detection plays a part in any
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task that requires measuring the quality of a text. For example coherence can help
in pedagogical tasks like essay grading or essay quality measurement that are try-
ing to grade how well-written a human essay is (Somasundaran et al., 2014; Feng
et al., 2014; Lai and Tetreault, 2018). Coherence can also help for summarization;
knowing the coherence relationship between sentences can help know how to select
information from them. Finally, detecting incoherent text may even play a role in
mental health tasks like measuring symptoms of schizophrenia or other kinds of dis-
ordered language (Ditman and Kuperberg, 2010; Elvevåg et al., 2007; Bedi et al.,
2015).

23.1 Coherence Relations

Recall from the introduction the difference between passages (23.5) and (23.6).

(23.5) Jane took a train from Paris to Istanbul. She likes spinach.
(23.6) Jane took a train from Paris to Istanbul. She had to attend a conference.

The reason (23.6) is more coherent is that the reader can form a connection be-
tween the two sentences, in which the second sentence provides a potential REASON
for the first sentences. This link is harder to form for (23.5). These connections
between text spans in a discourse can be specified as a set of coherence relations.coherence

relation
The next two sections describe two commonly used models of coherence relations
and associated corpora: Rhetorical Structure Theory (RST), and the Penn Discourse
TreeBank (PDTB).

23.1.1 Rhetorical Structure Theory
The most commonly used model of discourse organization is Rhetorical Structure
Theory (RST) (Mann and Thompson, 1987). In RST relations are defined betweenRST

two spans of text, generally a nucleus and a satellite. The nucleus is the unit thatnucleus

satellite is more central to the writer’s purpose and that is interpretable independently; the
satellite is less central and generally is only interpretable with respect to the nucleus.
Some symmetric relations, however, hold between two nuclei.

Below are a few examples of RST coherence relations, with definitions adapted
from the RST Treebank Manual (Carlson and Marcu, 2001).

Reason: The nucleus is an action carried out by an animate agent and the satellite
is the reason for the nucleus.

(23.7) [NUC Jane took a train from Paris to Istanbul.] [SAT She had to attend a
conference.]

Elaboration: The satellite gives additional information or detail about the situation
presented in the nucleus.

(23.8) [NUC Dorothy was from Kansas.] [SAT She lived in the midst of the great
Kansas prairies.]

Evidence: The satellite gives additional information or detail about the situation
presented in the nucleus. The information is presented with the goal of convince the
reader to accept the information presented in the nucleus.

(23.9) [NUC Kevin must be here.] [SAT His car is parked outside.]
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Attribution: The satellite gives the source of attribution for an instance of reported
speech in the nucleus.

(23.10) [SAT Analysts estimated] [NUC that sales at U.S. stores declined in the
quarter, too]

List: In this multinuclear relation, a series of nuclei is given, without contrast or
explicit comparison:

(23.11) [NUC Billy Bones was the mate; ] [NUC Long John, he was quartermaster]

RST relations are traditionally represented graphically; the asymmetric Nucleus-
Satellite relation is represented with an arrow from the satellite to the nucleus:

Kevin must be here. His car is parked outside

evidence

We can also talk about the coherence of a larger text by considering the hierar-
chical structure between coherence relations. Figure 23.1 shows the rhetorical struc-
ture of a paragraph from Marcu (2000a) for the text in (23.12) from the Scientific
American magazine.

(23.12) With its distant orbit–50 percent farther from the sun than Earth–and slim
atmospheric blanket, Mars experiences frigid weather conditions. Surface
temperatures typically average about -60 degrees Celsius (-76 degrees
Fahrenheit) at the equator and can dip to -123 degrees C near the poles. Only
the midday sun at tropical latitudes is warm enough to thaw ice on occasion,
but any liquid water formed in this way would evaporate almost instantly
because of the low atmospheric pressure.

Title
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2-9
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2-3
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WIth its 

distant orbit  
<p> -- 50
 percent 

farther from 
the sun than 
Earth -- </p> 

and slim 
atmospheric 

blanket,

(3)
Mars

experiences
frigid weather

conditions.

4-9

elaboration-additional

(4)
Surface 

temperatures
 typically average 

about -60 
degrees Celsius

 <p> (-76 degrees
Fahrenheit)</p>
 at the equator

4-5

List

(5)
and can dip

to -123
degrees C
near the
poles.

6-9

Contrast

6-7

(6)
Only the

midday sun at
tropical latitudes
is warm enough

(7)
to thaw ice

on occasion,

purpose

8-9

explanation-argumentative

(8)
but any liquid water
formed in this way 
would evaporate 
almost instantly
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Figure 23.1 A discourse tree for the Scientific American text in (23.12), from Marcu (2000a). Note that
asymmetric relations are represented with a curved arrow from the satellite to the nucleus.

The leaves in the Fig. 23.1 tree correspond to text spans of a sentence, clause or
phrase that are called elementary discourse units or EDUs in RST; these units canEDU

also be referred to as discourse segments. Because these units may correspond to
arbitrary spans of text, determining the boundaries of an EDU is an important task
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for extracting coherence relations. Roughly speaking, one can think of discourse
segments as being analogous to constituents in sentence syntax, and indeed as we’ll
see in Section 23.2 we generally draw on parsing algorithms to infer discourse struc-
ture.

There are corpora for many discourse coherence models; the RST Discourse
TreeBank (Carlson et al., 2001) is the largest available discourse corpus. It con-
sists of 385 English language documents selected from the Penn Treebank, with full
RST parses for each one, using a large set of 78 distinct relations, grouped into 16
classes. RST treebanks exist also for Spanish, German, Basque, Dutch and Brazilian
Portuguese (Braud et al., 2017).

Now that we’ve seen examples of coherence, we can see more clearly how a
coherence relation can play a role in summarization or information extraction. For
example, the nuclei of a text presumably express more important information than
the satellites, which might be dropped in a summary.

23.1.2 Penn Discourse TreeBank (PDTB)
The Penn Discourse TreeBank (PDTB) is a second commonly used dataset thatPDTB

embodies another model of coherence relations (Miltsakaki et al., 2004; Prasad et al.,
2008, 2014). PDTB labeling is lexically grounded. Instead of asking annotators
to directly tag the coherence relation between text spans, they were given a list of
discourse connectives, words that signal discourse relations, like because, although,discourse

connectives
when, since, or as a result. In a part of a text where these words marked a coherence
relation between two text spans, the connective and the spans were then annotated,
as in Fig. 23.13, where the phrase as a result signals a causal relationship between
what PDTB calls Arg1 (the first two sentences, here in italics) and Arg2 (the third
sentence, here in bold).

(23.13) Jewelry displays in department stores were often cluttered and uninspired.
And the merchandise was, well, fake. As a result, marketers of faux gems
steadily lost space in department stores to more fashionable
rivals—cosmetics makers.

(23.14) In July, the Environmental Protection Agency imposed a gradual ban on
virtually all uses of asbestos. (implicit=as a result) By 1997, almost all
remaining uses of cancer-causing asbestos will be outlawed.

Not all coherence relations are marked by an explicit discourse connective, and
so the PDTB also annotates pairs of neighboring sentences with no explicit signal,
like (23.14). The annotator first chooses the word or phrase that could have been
its signal (in this case as a result), and then labels its sense. For example for the
ambiguous discourse connective since annotators marked whether it is using a a
CAUSAL or a TEMPORAL sense.

The final dataset contains roughly 18,000 explicit relations and 16,000 implicit
relations. Fig. 23.2 shows examples from each of the 4 major semantic classes, while
Fig. 23.3 shows the full tagset.

Unlike the RST Discourse Treebank, which integrates these pairwise coherence
relations into a global tree structure spanning an entire discourse, the PDTB does not
annotate anything above the span-pair level, making no commitment with respect to
higher-level discourse structure.

There are also treebanks using similar methods for other languages; (23.15)
shows an example from the Chinese Discourse TreeBank (Zhou and Xue, 2015).
Because Chinese has a smaller percentage of explicit discourse connectives than
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Class Type Example
TEMPORAL SYNCHRONOUS The parishioners of St. Michael and All Angels stop to chat at

the church door, as members here always have. (Implicit while)
In the tower, five men and women pull rhythmically on ropes
attached to the same five bells that first sounded here in 1614.

CONTINGENCY REASON Also unlike Mr. Ruder, Mr. Breeden appears to be in a position
to get somewhere with his agenda. (implicit=because) As a for-
mer White House aide who worked closely with Congress,
he is savvy in the ways of Washington.

COMPARISON CONTRAST The U.S. wants the removal of what it perceives as barriers to
investment; Japan denies there are real barriers.

EXPANSION CONJUNCTION Not only do the actors stand outside their characters and make
it clear they are at odds with them, but they often literally stand
on their heads.

Figure 23.2 The four high-level semantic distinctions in the PDTB sense hierarchy

Temporal Comparison
• Asynchronous • Contrast (Juxtaposition, Opposition)
• Synchronous (Precedence, Succession) •Pragmatic Contrast (Juxtaposition, Opposition)

• Concession (Expectation, Contra-expectation)
• Pragmatic Concession

Contingency Expansion
• Cause (Reason, Result) • Exception
• Pragmatic Cause (Justification) • Instantiation
• Condition (Hypothetical, General, Unreal

Present/Past, Factual Present/Past)
• Restatement (Specification, Equivalence, Generalization)

• Pragmatic Condition (Relevance, Implicit As-
sertion)

• Alternative (Conjunction, Disjunction, Chosen Alterna-
tive)
• List

Figure 23.3 The PDTB sense hierarchy. There are four top-level c
¯
lasses, 16 types, and 23 subtypes (not all

types have subtypes). 11 of the 16 types are commonly used for implicit argument classification; the 5 types in
italics are too rare in implicit labeling to be used.

English (only 22% of all discourse relations are marked with explicit connectives,
compared to 47% in English), annotators labeled this corpus by directly mapping
pairs of sentences to 11 sense tags, without starting with a lexical discourse connec-
tor.

(23.15) [Conn为] [Arg2推动图们江地区开发]，[Arg1韩国捐款一百万美元
设立了图们江发展基金]
“[In order to] [Arg2 promote the development of the Tumen River region],
[Arg1 South Korea donated one million dollars to establish the Tumen
River Development Fund].”

These discourse treebanks have been used for shared tasks on multilingual dis-
course parsing (Xue et al., 2016).

23.2 Discourse Structure Parsing

Given a sequence of sentences, how can we automatically determine the coherence
relations between them? This task is often called discourse parsing (even thoughdiscourse

parsing
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for PDTB we are only assigning labels to leaf spans and not building a full parse
tree as we do for RST).

23.2.1 EDU segmentation for RST parsing
RST parsing is generally done in two stages. The first stage, EDU segmentation,
extracts the start and end of each EDU. The output of this stage would be a labeling
like the following:

(23.16) [Mr. Rambo says]e1 [that a 3.2-acre property]e2 [overlooking the San
Fernando Valley]e3 [is priced at $4 million]e4 [because the late actor Erroll
Flynn once lived there.]e5

Since EDUs roughly correspond to clauses, early models of EDU segmentation
first ran a syntactic parser, and then post-processed the output. Modern systems
generally use neural sequence models supervised by the gold EDU segmentation in
the RST Discourse Treebank. Fig. 23.4 shows an example from Wang et al. (2018)
of a supervised architecture that uses the same biLSTM-CRF architecture we saw
for named entity tagging and semantic role labeling. Here the input sentence is
mapping to contextual word embeddings, and then passed through a biLSTM with
a CRF layer on top to produce a sequence of 0s and 1, where 1 indicates the start
of an EDU (except at the start of sentence). Muller et al. (2019) find using BERT
contextual embeddings plus convolutional character embeddings as the input to a
similar biLSTM architecture produces highly accurate segmentations.

Mr. Rambo says that

LSTM1 LSTM1 LSTM1 LSTM1

LSTM2 LSTM2 LSTM2 LSTM2

Concatenation

Right-to-left LSTM

Left-to-right LSTM

0 0 0 1CRF Layer

Contextual
Embedding

Contextual
Embedding

Contextual
Embedding

Contextual 
Embedding

GloVe GloVe GloVe GloVe

Word Representations

Figure 23.4 biLSTM-CRF for EDU segmentation. Word inputs can draw from any contex-
tual embeddings like ELMo or BERT. After Wang et al. (2018).

23.2.2 RST parsing
Tools for building RST coherence structure for a discourse have long been based on
syntactic parsing algorithms like shift-reduce parsing (Marcu, 1999). Many modern
RST parsers since Ji and Eisenstein (2014) draw on the neural syntactic parsers we
saw in Chapter 15 in Section 15.4, using representation learning to build represen-
tations for each span, and training a parser to choose the correct shift and reduce
actions based on the gold parses in the training set.

We’ll describe the shift-reduce parser of Yu et al. (2018). The parser state con-
sists of a stack and a queue, and produces this structure by taking a series of actions
on the states. Actions include:
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• shift: pushes the first EDU in the queue onto the stack creating a single-node
subtree.

• reduce(l,d): merges the top two subtrees on the stack, where l is the coherence
relation label, and d is the nuclearity direction, d ∈ {NN,NS,SN}.

As well as the pop root operation, to remove the final tree from the stack.

560

e1 e2 e3 e4

attr elab

elab e1: American Telephone & Telegraph Co. said it
e2: will lay off 75 to 85 technicians here , effective Nov. 1.
e3: The workers install , maintain and repair its private branch exchanges,
e4: which are large intracompany telephone networks.

Figure 1: An example of RST discourse tree, where {e1, e2, e3, e4} are EDUs, attr and elab are
discourse relation labels, and arrows indicate the nuclearities of discourse relations.

RST discourse parsing. Other studies still adopt discrete syntax features proposed by statistical models,
feeding them into neural network models (Braud et al., 2016; Braud et al., 2017).

The above approaches model syntax trees in an explicit way, requiring discrete syntax parsing outputs
as inputs for RST parsing. These approaches may suffer from the error propagation problem. Syntax trees
produced by a supervised syntax parsing model could have errors, which may propagate into discourse
parsing models. The problem could be extremely serious when inputs of discourse parsing have different
distributions with the training data of the supervised syntax parser. Recently, Zhang et al. (2017) suggest
an alternative method, which extracts syntax features from a Bi-Affine dependency parser (Dozat and
Manning, 2016), and the method gives competitive performances on relation extraction. It actually
represents syntax trees implicitly, thus it can reduce the error propagation problem.

In this work, we investigate the implicit syntax feature extraction approach for RST parsing. In ad-
dition, we propose a transition-based neural model for this task, which is able to incorporate various
features flexibly. We exploit hierarchical bi-directional LSTMs (Bi-LSTMs) to encode texts, and further
enhance the transition-based model with dynamic oracle. Based on the proposed model, we study the
effectiveness of our proposed implicit syntax features. We conduct experiments on a standard RST dis-
course TreeBank (Carlson et al., 2003). First, we evaluate the performance of our proposed transition-
based baseline, finding that the model is able to achieve strong performances after applying dynamic
oracle. Then we evaluate the effectiveness of implicit syntax features extracted from a Bi-Affine depen-
dency parser. Results show that the implicit syntax features are effective, giving better performances than
explicit Tree-LSTM (Li et al., 2015b). Our codes will be released for public under the Apache License
2.0 at https://github.com/yunan4nlp/NNDisParser.

In summary, we mainly make the following two contributions in this work: (1) we propose a transition-
based neural RST discourse parsing model with dynamic oracle, (2) we compare three different syntactic
integration approaches proposed by us. The rest of the paper is organized as follows. Section 2 describes
our proposed models including the transition-based neural model, the dynamic oracle strategy and the
implicit syntax feature extraction approach. Section 3 presents the experiments to evaluate our models.
Section 4 shows the related work. Finally, section 5 draws conclusions.

2 Transition-based Discourse Parsing

We follow Ji and Eisenstein (2014), exploiting a transition-based framework for RST discourse parsing.
The framework is conceptually simple and flexible to support arbitrary features, which has been widely
used in a number of NLP tasks (Zhu et al., 2013; Dyer et al., 2015; Zhang et al., 2016). In addition, a
transition-based model formalizes a certain task into predicting a sequence of actions, which is essential
similar to sequence-to-sequence models proposed recently (Bahdanau et al., 2014). In the following,
we first describe the transition system for RST discourse parsing, and then introduce our neural network
model by its encoder and decoder parts, respectively. Thirdly, we present our proposed dynamic oracle
strategy aiming to enhance the transition-based model. Then we introduce the integration method of
implicit syntax features. Finally we describe the training method of our neural network models.

2.1 The Transition-based System
The transition-based framework converts a structural learning problem into a sequence of action predic-
tions, whose key point is a transition system. A transition system consists of two parts: states and actions.
The states are used to store partially-parsed results and the actions are used to control state transitions.

Figure 23.5 Example RST discourse tree, showing four EDUs. Figure from Yu et al. (2018).

Fig. 23.6 shows the actions the parser takes to build the structure in Fig. 23.5.

561

Step Stack Queue Action Relation

1 ? e1, e2, e3, e4 SH ?
2 e1 e2, e3, e4 SH ?
3 e1, e2 e3, e4 RD(attr,SN) ?
4 e1:2 e3, e4 SH de1e2
5 e1:2 , e3 e4 SH de1e2
6 e1:2 , e3, e4 ? RD(elab,NS) de1e2
7 e1:2 , e3:4 ? RD(elab,SN) de1e2, de3e4

8 e1:4 ? PR de1e2, de3e4, \e1:2e3:4

Table 1: An example of the transition-based system for RST discourse parsing.

The initial state is an empty state, and the final state represents a full result. There are three kinds of
actions in our transition system:

• Shift (SH), which removes the first EDU in the queue onto the stack, forming a single-node subtree.

• Reduce (RD) (l,d), which merges the top two subtrees on the stack, where l is a discourse relation
label, and d 2 {NN,NS,SN} indicates the relation nuclearity (nuclear (N) or satellite (S)).

• Pop Root (PR), which pops out the top tree on the stack, marking the decoding being completed,
when the stack holds only one subtree and the queue is empty.

Given the RST tree as shown in Figure 1, it can be generated by the following action sequence: {SH,
SH, RD(attr,SN), SH, SH, RD(elab,NS), RD(elab,SN), PR}. Table 1 shows the decoding
process in detail. By this way, we naturally convert RST discourse parsing into predicting a sequence of
transition actions, where each line includes a state and next step action referring to the tree.

2.2 Encoder-Decoder
Previous transition-based RST discourse parsing studies exploit statistical models, using manually-
designed discrete features (Sagae, 2009; Heilman and Sagae, 2015; Wang et al., 2017). In this work, we
propose a transition-based neural model for RST discourse parsing, which follows an encoder-decoder
framework. Given an input sequence of EDUs {e1, e2, ..., en}, the encoder computes the input represen-
tations {he

1,h
e
2, ...,h

e
n}, and the decoder predicts next step actions conditioned on the encoder outputs.

2.2.1 Encoder
We follow Li et al. (2016), using hierarchical Bi-LSTMs to encode the source EDU inputs, where the
first-layer is used to represent sequencial words inside of EDUs, and the second layer is used to represent
sequencial EDUs. Given an input sentence {w1, w2, ..., wm}, first we represent each word by its form
(e.g., wi) and POS tag (e.g. ti), concatenating their neural embeddings. By this way, the input vectors
of the first-layer Bi-LSTM are {xw

1 ,xw
2 , ...,xw

m}, where xw
i = emb(wi) � emb(ti), and then we apply

Bi-LSTM directly, obtaining:

{hw
1 ,hw

2 , ...,hw
m} = Bi-LSTM({xw

1 ,xw
2 , ...,xw

m}) (1)

The second-layer Bi-LSTM is built over sequential EDUs. We should first obtain a suitable representa-
tion for each EDU, which is composed by a span of words inside a certain sentence. Assuming an EDU
with its words by {ws, ws+1, ..., wt}, after applying the first-layer Bi-LSTM, we obtain their representa-
tions by {hw

s ,hw
s+1...,h

w
t }, then we calculate the EDU representation by average pooling:

xe =
1

t� s + 1

tX

s

hw
k (2)

When the EDU representations are ready, we apply the second-layer Bi-LSTM directly, resulting:

{he
1,h

e
2, ...,h

e
n} = Bi-LSTM({xe

1,x
e
2, ...,x

e
n}) (3)

Figure 23.6 Parsing the example of Fig. 23.5 using a shift-reduce parser. Figure from Yu
et al. (2018).

The Yu et al. (2018) uses an encoder-decoder architecture, where the encoder
represents the input span of words and EDUs using a hierarchical biLSTM. The
first biLSTM layer represents the words inside an EDU, and the second represents
the EDU sequence. Given an input sentence w1,w2, ...,wm, the words can be repre-
sented as usual (by static embeddings, combinations with character embeddings or
tags, or contextual embeddings) resulting in an input word representation sequence
xw

1 ,x
w
2 , ...,x

w
m. The result of the word-level biLSTM is then a sequence of hw values:

hw
1 ,h

w
2 , ...,h

w
m = biLSTM(xw

1 ,x
w
2 , ...,x

w
m) (23.17)

An EDU of span ws,ws+1, ...,wt then has biLSTM output representation hw
s ,h

w
s+1, ...,h

w
t ,

and is represented by average pooling:

xe =
1

t− s+1

t∑

k=s

hw
k (23.18)

The second layer uses this input to compute a final representation of the sequence of
EDU representations he:

he
1,h

e
2, ...,h

e
n = biLSTM(xe

1,x
e
2, ...,x

e
n) (23.19)

The decoder is then a feedforward network W that outputs an action o based on a
concatenation of the top three subtrees on the stack (so,s1,s2) plus the first EDU in
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the queue (q0):

o = W(ht
s0,h

t
s0,h

t
s1,h

t
s2,h

e
q0) (23.20)

where the representation of the EDU on the queue he
q0 comes directly from the

encoder, and the three hidden vectors representing partial trees are computed by
average pooling over the encoder output for the EDUs in those trees:

ht
s =

1
j− i+1

j∑

k=i

he
k (23.21)

Training first maps each RST gold parse tree into a sequence of oracle actions, and
then uses the standard cross-entropy loss (with l2 regularization) to train the system
to take such actions. Give a state S and oracle action a, we first compute the decoder
output using Eq. 23.20, apply a softmax to get probabilities:

pa =
exp(oa)∑

a′∈A exp(oa′)
(23.22)

and then computing the cross-entropy loss:

L(Θ) = − log(pa)+
λ

2
||Θ||2 (23.23)

RST discourse parsers are evaluated on the test section of the RST Discourse Tree-
bank, either with gold EDUs or end-to-end, using the RST-Pareval metrics (Marcu,
2000b). It is standard to first transform the gold RST trees into right-branching bi-
nary trees, and to report four metrics: trees with no labels (S for Span), labeled
with nuclei (N), with relations (R), or both (F for Full), for each metric computing
micro-averaged F1 over all spans from all documents (Marcu, 2000b; Morey et al.,
2017).

23.2.3 PDTB discourse parsing
PDTB discourse parsing, the task of detecting PDTB coherence relations between
spans, is sometimes called shallow discourse parsing because the task just involves

shallow
discourse

parsing
flat relationships between text spans, rather than the full trees of RST parsing.

The set of four subtasks for PDTB discourse parsing was laid out by Lin et al.
(2014) in the first complete system, with separate tasks for explicit (tasks 1-3) and
implicit (task 4) connectives:

1. Find the discourse connectives (disambiguating them from non-discourse uses)
2. Find the two spans for each connective
3. Label the relationship between these spans
4. Assign a relation between every adjacent pair of sentences

Many systems have been proposed for Task 4: taking a pair of adjacent sentences
as input and assign a coherence relation sense label as output. The setup often fol-
lows Lin et al. (2009) in assuming gold sentence span boundaries and assigning each
adjacent span one of the 11 second-level PDTB tags or none (removing the 5 very
rare tags of the 16 shown in italics in Fig. 23.3).

A simple but very strong algorithm for Task 4 is to represent each of the two
spans by BERT contextual embeddings and take the last layer hidden state corre-
sponding to the position of the <CLS> token, pass this through a single layer tanh
feedforward network and then a softmax for sense classification (Nie et al., 2019).
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Each of the other tasks also have been addressed. Task 1 is to disambiguat-
ing discourse connectives from their non-discourse use. For example as Pitler and
Nenkova (2009) point out, the word and is a discourse connective linking the two
clauses by an elaboration/expansion relation in (23.24) while it’s a non-discourse
NP conjunction in (23.25):

(23.24) Selling picked up as previous buyers bailed out of their positions and
aggressive short sellers—anticipating further declines—moved in.

(23.25) My favorite colors are blue and green.

Similarly, once is a discourse connective indicating a temporal relation in (23.26),
but simply a non-discourse adverb meaning ‘formerly’ and modifying used in (23.27):

(23.26) The asbestos fiber, crocidolite, is unusually resilient once it enters the
lungs, with even brief exposures to it causing symptoms that show up
decades later, researchers said.

(23.27) A form of asbestos once used to make Kent cigarette filters has caused a
high percentage of cancer deaths among a group of workers exposed to it
more than 30 years ago, researchers reported.

Determining whether a word is a discourse connective is thus a special case
of word sense disambiguation. Early work on disambiguation showed that the 4
PDTB high-level sense classes could be disambiguated with high (94%) accuracy
used syntactic features from gold parse trees (Pitler and Nenkova, 2009). Recent
work performs the task end to end from word inputs using a biLSTM-CRF with
BIO outputs (B-CONN, I-CONN, O) (Yu et al., 2019).

For task 2, PDTB spans can be identified with the same sequence models used to
find RST EDUs: a biLSTM sequence model with pretrained contextual embedding
(BERT) inputs (Muller et al., 2019). Simple heuristics also do pretty well as a base-
line at finding spans, since 93% of relations are either completely within a single
sentence or span two adjacent sentences, with one argument in each sentence (Biran
and McKeown, 2015).

23.3 Centering and Entity-Based Coherence

A second way a discourse can be coherent is by virtue of being “about” some entity.
This idea that at each point in the discourse some entity is salient, and a discourse
is coherent by continuing to discuss the same entity, appears early in functional lin-
guistics and the psychology of discourse (Chafe, 1976; Kintsch and Van Dijk, 1978),
and soon made its way to computational models. In this section we introduce two
models of this kind of entity-based coherence: Centering Theory (Grosz et al.,entity-based

1995), and the entity grid model of Barzilay and Lapata (2008).

23.3.1 Centering
Centering Theory (Grosz et al., 1995) is a theory of both discourse salience andCentering

Theory
discourse coherence. As a model of discourse salience, Centering proposes that at
any given point in the discourse one of the entities in the discourse model is salient:
it is being “centered” on. As a model of discourse coherence, Centering proposes
that discourses in which adjacent sentences CONTINUE to maintain the same salient
entity are more coherent than those which SHIFT back and forth between multiple
entities (we will see that CONTINUE and SHIFT are technical terms in the theory).
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The following two texts from Grosz et al. (1995) which have exactly the same
propositional content but different saliences, can help in understanding the main
Centering intuition.

(23.28) a. John went to his favorite music store to buy a piano.
b. He had frequented the store for many years.
c. He was excited that he could finally buy a piano.
d. He arrived just as the store was closing for the day.

(23.29) a. John went to his favorite music store to buy a piano.
b. It was a store John had frequented for many years.
c. He was excited that he could finally buy a piano.
d. It was closing just as John arrived.

While these two texts differ only in how the two entities (John and the store) are
realized in the sentences, the discourse in (23.28) is intuitively more coherent than
the one in (23.29). As Grosz et al. (1995) point out, this is because the discourse
in (23.28) is clearly about one individual, John, describing his actions and feelings.
The discourse in (23.29), by contrast, focuses first on John, then the store, then back
to John, then to the store again. It lacks the “aboutness” of the first discourse.

Centering Theory realizes this intuition by maintaining two representations for
each utterance Un. The backward-looking center of Un, denoted as Cb(Un), rep-

backward-
looking

center resents the current salient entity, the one being focused on in the discourse after Un
is interpreted. The forward-looking centers of Un, denoted as C f (Un), are a setforward-looking

center
of potential future salient entities, the discourse entities evoked by Un any of which
could serve as Cb (the salient entity) of the following utterance, i.e. Cb(Un+1).

The set of forward-looking centers C f (Un) are ranked according to factors like
discourse salience and grammatical role (for example subjects are higher ranked
than objects, which are higher ranked than all other grammatical roles). We call the
highest-ranked forward-looking center Cp (for “preferred center”). Cp is a kind of
prediction about what entity will be talked about next. Sometimes the next utterance
indeed talks about this entity, but sometimes another entity becomes salient instead.

We’ll use here the algorithm for centering presented in Brennan et al. (1987),
which defines four intersentential relationships between a pair of utterances Un and
Un+1 that depend on the relationship between Cb(Un+1), Cb(Un), and Cp(Un+1);
these are shown in Fig. 23.7.

Cb(Un+1) =Cb(Un) Cb(Un+1) 6=Cb(Un)
or undefined Cb(Un)

Cb(Un+1) =Cp(Un+1) Continue Smooth-Shift
Cb(Un+1) 6=Cp(Un+1) Retain Rough-Shift

Figure 23.7 Centering Transitions for Rule 2 from Brennan et al. (1987).

The following rules are used by the algorithm:

Rule 1: If any element of C f (Un) is realized by a pronoun in utterance
Un+1, then Cb(Un+1) must be realized as a pronoun also.

Rule 2: Transition states are ordered. Continue is preferred to Retain is
preferred to Smooth-Shift is preferred to Rough-Shift.

Rule 1 captures the intuition that pronominalization (including zero-anaphora)
is a common way to mark discourse salience. If there are multiple pronouns in an
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utterance realizing entities from the previous utterance, one of these pronouns must
realize the backward center Cb; if there is only one pronoun, it must be Cb.

Rule 2 captures the intuition that discourses that continue to center the same en-
tity are more coherent than ones that repeatedly shift to other centers. The transition
table is based on two factors: whether the backward-looking center Cb is the same
from Un to Un+1 and whether this discourse entity is the one that was preferred (Cp)
from Un. If both of these hold, a CONTINUE relation, the speaker has been talking
about the same entity and is going to continue talking about that entity. In a RETAIN
relation, the speaker intends to SHIFT to a new entity in a future utterance and mean-
while places the current entity in a lower rank C f . In a SHIFT relation, the speaker is
shifting to a new salient entity.

Let’s walk though the start of (23.28) again, repeated as (23.30), showing the
representations after each utterance is processed.

(23.30) John went to his favorite music store to buy a piano. (U1)
He was excited that he could finally buy a piano. (U2)
He arrived just as the store was closing for the day. (U3)
It was closing just as John arrived (U4)

Using the grammatical role hierarchy to order the C f , for sentence U1 we get:

C f (U1): {John, music store, piano}
Cp(U1): John
Cb(U1): undefined

and then for sentence U2:

C f (U2): {John, piano}
Cp(U2): John
Cb(U2): John
Result: Continue (Cp(U2)=Cb(U2); Cb(U1) undefined)

The transition from U1 to U2 is thus a CONTINUE. Completing this example is left
as exercise (1) for the reader

23.3.2 Entity Grid model
Centering embodies a particular theory of how entity mentioning leads to coher-
ence: that salient entities appear in subject position or are pronominalized, and that
discourses are salient by means of continuing to mention the same entity in such
ways.

The entity grid model of Barzilay and Lapata (2008) is an alternative way toentity grid

capture entity-based coherence: instead of having a top-down theory, the entity-grid
model using machine learning to induce the patterns of entity mentioning that make
a discourse more coherent.

The model is based around an entity grid, a two-dimensional array that repre-
sents the distribution of entity mentions across sentences. The rows represent sen-
tences, and the columns represent discourse entities (most versions of the entity grid
model focus just on nominal mentions). Each cell represents the possible appearance
of an entity in a sentence, and the values represent whether the entity appears and its
grammatical role. Grammatical roles are subject (S), object (O), neither (X), or ab-
sent (–); in the implementation of Barzilay and Lapata (2008), subjects of passives
are represented with O, leading to a representation with some of the characteristics
of thematic roles.
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these patterns can be encoded as feature vectors appropriate for performing coherence-
related ranking and classification tasks.

3.1 The Entity-Grid Discourse Representation

Each text is represented by an entity grid, a two-dimensional array that captures
the distribution of discourse entities across text sentences. We follow Miltsakaki and
Kukich (2000) in assuming that our unit of analysis is the traditional sentence (i.e., a
main clause with accompanying subordinate and adjunct clauses). The rows of the
grid correspond to sentences, and the columns correspond to discourse entities. By
discourse entity we mean a class of coreferent noun phrases (we explain in Section 3.3
how coreferent entities are identified). For each occurrence of a discourse entity in the
text, the corresponding grid cell contains information about its presence or absence
in a sequence of sentences. In addition, for entities present in a given sentence, grid
cells contain information about their syntactic role. Such information can be expressed
in many ways (e.g., using constituent labels or thematic role information). Because
grammatical relations figure prominently in entity-based theories of local coherence (see
Section 2), they serve as a logical point of departure. Each grid cell thus corresponds to
a string from a set of categories reflecting whether the entity in question is a subject (S),
object (O), or neither (X). Entities absent from a sentence are signaled by gaps (–).
Grammatical role information can be extracted from the output of a broad-coverage
dependency parser (Lin 2001; Briscoe and Carroll 2002) or any state-of-the art statistical
parser (Collins 1997; Charniak 2000). We discuss how this information was computed
for our experiments in Section 3.3.

Table 1 illustrates a fragment of an entity grid constructed for the text in Table 2.
Because the text contains six sentences, the grid columns are of length six. Consider
for instance the grid column for the entity trial, [O – – – – X]. It records that trial is
present in sentences 1 and 6 (as O and X, respectively) but is absent from the rest of the
sentences. Also note that the grid in Table 1 takes coreference resolution into account.
Even though the same entity appears in different linguistic forms, for example, Microsoft
Corp., Microsoft, and the company , it is mapped to a single entry in the grid (see the
column introduced by Microsoft in Table 1).

Table 1
A fragment of the entity grid. Noun phrases are represented by their head nouns. Grid cells
correspond to grammatical roles: subjects (S), objects (O), or neither (X).
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Figure 23.8 Part of the entity grid for the text in Fig. 23.9. Entities are listed by their head
noun; each cell represents whether an entity appears as subject (S), object (O), neither (X), or
is absent (–). Figure from Barzilay and Lapata (2008).

Barzilay and Lapata Modeling Local Coherence

Table 2
Summary augmented with syntactic annotations for grid computation.

1 [The Justice Department]S is conducting an [anti-trust trial]O against [Microsoft Corp.]X

with [evidence]X that [the company]S is increasingly attempting to crush [competitors]O.
2 [Microsoft]O is accused of trying to forcefully buy into [markets]X where [its own

products]S are not competitive enough to unseat [established brands]O.
3 [The case]S revolves around [evidence]O of [Microsoft]S aggressively pressuring

[Netscape]O into merging [browser software]O.
4 [Microsoft]S claims [its tactics]S are commonplace and good economically.
5 [The government]S may file [a civil suit]O ruling that [conspiracy]S to curb [competition]O

through [collusion]X is [a violation of the Sherman Act]O.
6 [Microsoft]S continues to show [increased earnings]O despite [the trial]X.

When a noun is attested more than once with a different grammatical role in the
same sentence, we default to the role with the highest grammatical ranking: subjects are
ranked higher than objects, which in turn are ranked higher than the rest. For example,
the entity Microsoft is mentioned twice in Sentence 1 with the grammatical roles x (for
Microsoft Corp.) and s (for the company ), but is represented only by s in the grid (see
Tables 1 and 2).

3.2 Entity Grids as Feature Vectors

A fundamental assumption underlying our approach is that the distribution of entities
in coherent texts exhibits certain regularities reflected in grid topology. Some of these
regularities are formalized in Centering Theory as constraints on transitions of the
local focus in adjacent sentences. Grids of coherent texts are likely to have some dense
columns (i.e., columns with just a few gaps, such as Microsoft in Table 1) and many
sparse columns which will consist mostly of gaps (see markets and earnings in Table 1).
One would further expect that entities corresponding to dense columns are more often
subjects or objects. These characteristics will be less pronounced in low-coherence texts.

Inspired by Centering Theory, our analysis revolves around patterns of local entity
transitions. A local entity transition is a sequence {S, O, X, –}n that represents entity
occurrences and their syntactic roles in n adjacent sentences. Local transitions can be
easily obtained from a grid as continuous subsequences of each column. Each transition
will have a certain probability in a given grid. For instance, the probability of the
transition [S –] in the grid from Table 1 is 0.08 (computed as a ratio of its frequency
[i.e., six] divided by the total number of transitions of length two [i.e., 75]). Each text
can thus be viewed as a distribution defined over transition types.

We can now go one step further and represent each text by a fixed set of transition
sequences using a standard feature vector notation. Each grid rendering j of a document
di corresponds to a feature vector Φ(x ij) = (p1(x ij), p2(x ij), . . . , pm(x ij)), where m is the
number of all predefined entity transitions, and pt(x ij) the probability of transition t
in grid x ij. This feature vector representation is usefully amenable to machine learning
algorithms (see our experiments in Sections 4–6). Furthermore, it allows the consid-
eration of large numbers of transitions which could potentially uncover novel entity
distribution patterns relevant for coherence assessment or other coherence-related tasks.

Note that considerable latitude is available when specifying the transition types to
be included in a feature vector. These can be all transitions of a given length (e.g., two
or three) or the most frequent transitions within a document collection. An example of

7

Figure 23.9 A discourse with the entities marked and annotated with grammatical func-
tions. Figure from Barzilay and Lapata (2008).

Fig. 23.8 from Barzilay and Lapata (2008) shows a grid for the text shown in
Fig. 23.9. There is one row for each of the six sentences. The second column, for
the entity ‘trial’, is O – – – X, showing that the trial appears in the first sentence as
direct object, in the last sentence as an oblique, and does not appear in the middle
sentences. The third column, for the entity Microsoft, shows that it appears as sub-
ject in sentence 1 (it also appears as the object of the preposition against, but entities
that appear multiple times are recorded with their highest-ranked grammatical func-
tion). Computing the entity grids requires extracting entities and doing coreference
resolution to cluster them into discourse entities (Chapter 22) as well as parsing the
sentences to get grammatical roles.

In the resulting grid, columns that are dense (like the column for Microsoft) in-
dicate entities that are mentioned often in the texts; sparse columns (like the column
for earnings) indicate entities that are mentioned rarely.

In the entity grid model, coherence is measured by patterns of local entity tran-
sition. For example, Department is a subject in sentence 1, and then not men-
tioned in sentence 2; this is the transition [S –]. The transitions are thus sequences
{S,O X, –}n which can be extracted as continuous cells from each column. Each
transition has a probability; the probability of [S –] in the grid from Fig. 23.8 is 0.08
(it occurs 6 times out of the 75 total transitions of length two). Fig. 23.10 shows the
distribution over transitions of length 2 for the text of Fig. 23.9 (shown as the first
row d1), and 2 other documents.

The transitions and their probabilities can then be used as features for a machine
learning model. This model can be a text classifier trained to produce human-labeled
coherence scores (for example from humans labeling each text as coherent or inco-
herent). But such data is expensive to gather. Barzilay and Lapata (2005) introduced
a simplifying innovation: coherence models can be trained by self-supervision:
trained to distinguish the natural original order of sentences in a discourse from
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a feature space with transitions of length two is illustrated in Table 3. The second row
(introduced by d1) is the feature vector representation of the grid in Table 1.

3.3 Grid Construction: Linguistic Dimensions

One of the central research issues in developing entity-based models of coherence is
determining what sources of linguistic knowledge are essential for accurate prediction,
and how to encode them succinctly in a discourse representation. Previous approaches
tend to agree on the features of entity distribution related to local coherence—the
disagreement lies in the way these features are modeled.

Our study of alternative encodings is not a mere duplication of previous ef-
forts (Poesio et al. 2004) that focus on linguistic aspects of parameterization. Because we
are interested in an automatically constructed model, we have to take into account com-
putational and learning issues when considering alternative representations. Therefore,
our exploration of the parameter space is guided by three considerations: the linguistic
importance of a parameter, the accuracy of its automatic computation, and the size of the
resulting feature space. From the linguistic side, we focus on properties of entity distri-
bution that are tightly linked to local coherence, and at the same time allow for multiple
interpretations during the encoding process. Computational considerations prevent us
from considering discourse representations that cannot be computed reliably by exist-
ing tools. For instance, we could not experiment with the granularity of an utterance—
sentence versus clause—because available clause separators introduce substantial noise
into a grid construction. Finally, we exclude representations that will explode the size of
the feature space, thereby increasing the amount of data required for training the model.

Entity Ex traction. The accurate computation of entity classes is key to computing mean-
ingful entity grids. In previous implementations of entity-based models, classes of coref-
erent nouns have been extracted manually (Miltsakaki and Kukich 2000; Karamanis
et al. 2004; Poesio et al. 2004), but this is not an option for our model. An obvious
solution for identifying entity classes is to employ an automatic coreference resolution
tool that determines which noun phrases refer to the same entity in a document.

Current approaches recast coreference resolution as a classification task. A pair
of NPs is classified as coreferring or not based on constraints that are learned from
an annotated corpus. A separate clustering mechanism then coordinates the possibly
contradictory pairwise classifications and constructs a partition on the set of NPs. In
our experiments, we employ Ng and Cardie’s (2002) coreference resolution system.
The system decides whether two NPs are coreferent by exploiting a wealth of lexical,
grammatical, semantic, and positional features. It is trained on the MUC (6–7) data sets
and yields state-of-the-art performance (70.4 F-measure on MUC-6 and 63.4 on MUC-7).

Table 3
Example of a feature-vector document representation using all transitions of length two given
syntactic categories S, O, X, and –.

S S S O S X S – O S O O O X O – X S X O X X X – – S – O – X – –

d1 .01 .01 0 .08 .01 0 0 .09 0 0 0 .03 .05 .07 .03 .59
d2 .02 .01 .01 .02 0 .07 0 .02 .14 .14 .06 .04 .03 .07 0.1 .36
d3 .02 0 0 .03 .09 0 .09 .06 0 0 0 .05 .03 .07 .17 .39
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Figure 23.10 A feature vector for representing documents using all transitions of length 2.
Document d1 is the text in Fig. 23.9. Figure from Barzilay and Lapata (2008).

a modified order (such as a randomized order). We turn to these evaluations in the
next section.

23.3.3 Evaluating Neural and Entity-based coherence
Entity-based coherence models, as well as the neural models we introduce in the
next section, are generally evaluated in one of two ways.

First, we can have humans rate the coherence of a document and train a classifier
to predict these human ratings, which can be categorial (high/low, or high/mid/low)
or continuous. This is the best evaluation to use if we have some end task in mind,
like essay grading, where human raters are the correct definition of the final label.

Alternatively, since it’s very expensive to get human labels, and we might not
yet have an end-task in mind, we can use natural texts to do self-supervision. In
self-supervision we pair up a natural discourse with a pseudo-document created by
changing the ordering. Since naturally-ordered discourses are more coherent than
random permutation (Lin et al., 2011), a successful coherence algorithm should pre-
fer the original ordering.

Self-supervision has been implemented in 3 ways. In the sentence order dis-
crimination task (Barzilay and Lapata, 2005), we compare a document to a random
permutation of its sentence. A model is considered correct for an (original, per-
muted) test pair if it ranks the original document higher. Given k documents, we can
compute n permutations, resulting in kn pairs each with one original document and
one permutation, to use in training and testing.

In the sentence insertion task (Chen et al., 2007) we take a document, remove
one of the n sentences s, and create n−1 copies of the document with s inserted into
each position. The task is to decide which of the n documents is the one with the
original ordering, distinguishing the original position for s from all other positions.
Insertion is harder than discrimination since we are comparing documents that differ
by only one sentence.

Finally, in the sentence order reconstruction task (Lapata, 2003), we take a
document, randomize the sentences, and train the model to put them back in the
correct order. Again given k documents, we can compute n permutations, resulting
in kn pairs each with one original document and one permutation, to use in training
and testing. Reordering is of course a much harder task than simple classification.

23.4 Representation learning models for local coherence

The third kind of local coherence is topical or semantic field coherence. Discourses
cohere by talking about the same topics and subtopics, and drawing on the same
semantic fields in doing so.

The field was pioneered by a series of unsupervised models in the 1990s of this
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kind of coherence that made use of lexical cohesion (Halliday and Hasan, 1976):lexical cohesion

the sharing of identical or semantically related words in nearby sentences. Morris
and Hirst (1991) computed lexical chains of words (like pine, bush trees, trunk) that
occurred through a discourse and that were related in Roget’s Thesaurus (by being in
the same category, or linked categories). They showed that the number and density
of chain correlated with the topic structure. The TextTiling algorithm of HearstTextTiling

(1997) computed the cosine between neighboring text spans (the normalized dot
product of vectors of raw word counts), again showing that sentences or paragraph in
a subtopic have high cosine with each other, but not with sentences in a neighboring
subtopic.

A third early model, the LSA Coherence method of Foltz et al. (1998) was the
first to use embeddings, modeling the coherence between two sentences as the co-
sine between their LSA sentence embedding vectors1, computing embeddings for a
sentence s by summing the embeddings of its words w:

sim(s, t) = cos(s,t)

= cos(
∑

w∈s

w,
∑

w∈t

w) (23.31)

and defining the overall coherence of a text as the average similarity over all pairs of
adjacent sentences si and si+1:

coherence(T ) =
1

n−1

n−1∑

i=1

cos(si,si+1) (23.32)

Modern neural representation-learning coherence models, beginning with Li et al.
(2014), draw on the intuitions of these early unsupervised models for learning sen-
tence representations and measuring how they change between neighboring sen-
tences. But the new models also draw on the idea pioneered by Barzilay and Lapata
(2005) of self-supervision. That is, unlike say coherence relation models, which
train on hand-labeled representations for RST or PDTB, these models are trained to
distinguish natural discourses from unnatural discourses formed by scrambling the
order of sentences, thus using representation learning to discover the features that
matter for at least the ordering aspect of coherence.

Here we present one such model, the local coherence discriminator (LCD) (Xu
et al., 2019). Like early models, LCD computes the coherence of a text as the av-
erage of coherence scores between consecutive pairs of sentences. But unlike the
early unsupervised models, LCD is a self-supervised model trained to discriminate
consecutive sentence pairs (si,si+1) in the training documents (assumed to be coher-
ent) from (constructed) incoherent pairs (si,s′). All consecutive pairs are positive
examples, and the negative (incoherent) partner for a sentence si is another sentence
uniformly sampled from the same document as si.

Fig. 23.11 describes the architecture of the model fθ , which takes a sentence
pair and returns a score, higher scores for more coherent pairs. Given an input
sentence pair s and t, the model computes sentence embeddings s and t (using any
sentence embeddings algorithm), and then concatenates four features of the pair: (1)
the concatenation of the two vectors (2) their difference s− t; (3) the absolute value
of their difference |s− t|; (4) their element-wise product s� t. These are passed
through a one-layer feedforward network to output the coherence score.

1 See Chapter 6 for more on LSA embeddings; they are computed by applying SVD to the term-
document matrix (each cell weighted by log frequency and normalized by entropy), and then the first
300 dimensions are used as the embedding.
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Loss function: The role of the loss function is
to encourage f+ = f✓(si, si+1) to be high while
f� = f✓(si, s

0) to be low. Common losses such as
margin or log loss can all be used. Through exper-
imental validation, we found that margin loss to
be superior for this problem. Specifically, L takes
on the form: L(f+, f�) = max(0, ⌘ � f+ + f�)
where ⌘ is the margin hyperparameter.

Negative samples: Technically, we are free to
choose any sentence s0 to form a negative pair
with si. However, because of potential differ-
ences in genre, topic and writing style, such neg-
atives might cause the discriminative model to
learn cues unrelated to coherence. Therefore, we
only select sentences from the same document to
construct negative pairs. Specifically, suppose si

comes from document dk with length nk, then
p(s0|si) is a uniform distribution over the nk�1
sentences {sj}j 6= i from dk. For a document with
n sentences, there are n�1 positive pairs, and
(n�1)⇤(n�2)/2 negative pairs. It turns out that
the quadratic number of negatives provides a rich
enough learning signal, while at the same time, is
not too prohibitively large to be effectively cov-
ered by a sampling procedure. In practice, we
sample a new set of negatives each time we see
a document, hence after many epochs, we can ef-
fectively cover the space for even very long doc-
uments. Section 5.7 discusses further details on
sampling.

4.1 Model Architecture

The specific neural architecture that we use for f✓
is illustrated in Figure 1. We assume the use of
some pre-trained sentence encoder, which is dis-
cussed in the next section.

Given an input sentence pair, the sentence en-
coder maps the sentences to real-valued vectors S
and T . We then compute the concatenation of the
following features: (1) concatenation of the two
vectors (S, T ); (2) element-wise difference S�T ;
(3) element-wise product S ⇤T ; (4) absolute value
of element-wise difference |S � T |. The concate-
nated feature representation is then fed to a one-
layer MLP to output the coherence score.

In practice, we make our overall coherence
model bidirectional, by training a forward model
with input (S, T ) and a backward model with in-
put (T, S) with the same architecture but separate
parameters. The coherence score is then the aver-
age from the two models.

Figure 1: Generic architecture for our proposed model.

4.2 Pre-trained Generative Model as the
Sentence Encoder

Our model can work with any pre-trained sen-
tence encoder, ranging from the most simplistic
average GloVe (Pennington et al., 2014) embed-
dings to more sophisticated supervised or unsu-
pervised pre-trained sentence encoders (Conneau
et al., 2017). As mentioned in the introduction,
since generative models can often be turned into
sentence encoder, generative coherence model can
be leveraged by our model to benefit from the
advantages of both generative and discriminative
training, similar to (Kiros et al., 2015; Peters et al.,
2018). After initialization, we freeze the genera-
tive model parameters to avoid overfitting.

In Section 5, we will experimentally show that
while we do benefit from strong pre-trained en-
coders, the fact that our local discriminative model
improves over previous methods is independent of
the choice of sentence encoder.

5 Experiments

5.1 Evaluation Tasks

Following Nguyen and Joty (2017) and other pre-
vious work, we evaluate our models on the dis-
crimination and insertion tasks. Additionally, we
evaluate on the paragraph reconstruction task in
open-domain settings, in a similar manner to Li
and Jurafsky (2017).

In the discrimination task, a document is com-
pared to a random permutation of its sentences,
and the model is considered correct if it scores the
original document higher than the permuted one.
Twenty permutations are used in the test set in ac-
cordance with previous work.

Figure 23.11 The architecture of the LCD model of document coherence, showing the
computation of the score for a pair of sentences s and t. Figure from Xu et al. (2019).

The model is trained to make this coherence score higher for real pairs than for
negative pairs. More formally, the training objective for a corpus C of documents d,
each of which consists of a list of sentences si, is:

Lθ =
∑

d∈C

∑

si∈d

E
p(s′|si)

[L( fθ (si,si+1), fθ (si,s′))] (23.33)

Ep(s′|si) is the expectation with respect to the negative sampling distribution con-
ditioned on si: given a sentence si the algorithms samples a negative sentence s′

uniformly over the other sentences in the same document. L is a loss function that
takes two scores, one for a positive pair and one for a negative pair, with the goal of
encouraging f+ = fθ (si,si+1) to be high and f− = fθ (si,s′)) to be low. Fig. 23.11
use the margin loss l( f+, f−) = max(0,η− f++ f−) where η is the margin hyper-
parameter.

Xu et al. (2019) also give a useful baseline algorithm that itself has quite high
performance in measuring perplexity: train an RNN language model on the data,
and compute the log likelihood of sentence si in two ways, once given the preceding
context (conditional log likelihood) and once with no context (marginal log likeli-
hood). The difference between these values tells us how much the preceding context
improved the predictability of si, a predictability measure of coherence.

While the architecture and roots of these neural models lie in the cohesion-based
idea that coherent discourses share words, semantic fields, and topics, qualitative
analysis of these models (Li and Jurafsky, 2017) suggest that neural models may
also represent coherence due to relations (for example neural models find pairs of
sentences coherent when they have a causal or temporal relation) and entity coher-
ence (for example the models correctly assign discourse (23.28) a higher coherence
score than (23.29).

23.5 Global Coherence

A discourse must also cohere globally rather than just at the level of pairs of sen-
tences. Consider stories, for example. The narrative structure of stories is one of
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the oldest kinds of global coherence to be studied. In his influential Morphology of
the Folktale, Propp (1968) models the discourse structure of Russian folktales via
a kind of plot grammar. His model includes a set of character categories he called
dramatis personae, like Hero, Villain, Donor, or Helper, and a set of events he
called functions (like “Villain commits kidnapping”, “Donor tests Hero”, or “Hero
is pursued”) that have to occur in particular order, along with other components.
Propp shows that the plots of each of the fairy tales he studies can be represented as
a sequence of these functions, different tales choosing different subsets of functions,
but always in the same order. Indeed Lakoff (1972b) showed that Propp’s model
amounted to a discourse grammar of stories, and in recent computational work Fin-
layson (2016) demonstrates that some of these Proppian functions could be induced
from corpora of folktale texts by detecting events that have similar actions across
stories. Bamman et al. (2013) showed that generalizations over dramatis personae
could be induced from movie plot summaries on Wikipedia. Their model induced
latent personae from features like the actions the character takes (e.g., Villains stran-
gle), the actions done to them (e.g., Villains are foiled and arrested) or the descriptive
words used of them (Villains are evil).

In this section we introduce two kinds of such global discourse structure that
have been widely studied computationally. The first is the structure of arguments:
the way people attempt to convince each other in persuasive essays by offering
claims and supporting premises. The second is somewhat related: the structure of
scientific papers, and the way authors present their goals, results, and relationship to
prior work in their papers.

23.5.1 Argumentation Structure

The first type of global discourse structure is the structure of arguments. Analyzing
people’s argumentation computationally is often called argumentation mining.argumentation

mining
The study of arguments dates back to Aristotle, who in his Rhetorics described

three components of a good argument: pathos (appealing to the emotions of thepathos

listener), ethos (appealing to the speaker’s personal character), and logos (the logicalethos
logos structure of the argument).

Most of the discourse structure studies of argumentation have focused on logos,
particularly via building and training on annotated datasets of persuasive essays or
other arguments (Reed et al., 2008; Stab and Gurevych, 2014a; Peldszus and Stede,
2016; Habernal and Gurevych, 2017; Musi et al., 2018). Such corpora, for exam-
ple, often include annotations of argumentative components like claims (the centralclaims

component of the argument that is controversial and needs support) and premisespremises

(the reasons given by the author to persuade the reader by supporting or attacking
the claim or other premises), as well as the argumentative relations between themargumentative

relations
like SUPPORT and ATTACK.

Consider the following example of a persuasive essay from Stab and Gurevych
(2014b). The first sentence (1) presents a claim (in bold). (2) and (3) present two
premises supporting the claim. (4) gives a premise supporting premise (3).

“(1) Museums and art galleries provide a better understanding
about arts than Internet. (2) In most museums and art galleries, de-
tailed descriptions in terms of the background, history and author are
provided. (3) Seeing an artwork online is not the same as watching it
with our own eyes, as (4) the picture online does not show the texture
or three-dimensional structure of the art, which is important to study.”
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Thus this example has three argumentative relations: SUPPORT(2,1), SUPPORT(3,1)
and SUPPORT(4,3). Fig. 23.12 shows the structure of a much more complex argu-
ment.

Stab and Gurevych Parsing Argumentation Structures

cloning. This example illustrates that knowing argumentative relations is important for
separating several arguments in a paragraph. The example also shows that argument
components frequently exhibit preceding text units that are not relevant to the argument
but helpful for recognizing the argument component type. For example, preceding dis-
course connectors like “therefore”, “consequently”, or “thus” can signal a subsequent
claim. Discourse markers like “because”, “since”, or “furthermore” could indicate a
premise. Formally, these preceding tokens of an argument component starting at token
ti are defined as the tokens ti�m, ..., ti�1 that are not covered by another argument
component in the sentence s = t1, t2, ..., tn where 1  i  n and i�m � 1. The third body
paragraph illustrates a contra argument and argumentative attack relations:

Admittedly, [cloning could be misused for military purposes]Claim5. For example,
[
:
it

:::::
could

:::
be

:::::
used

::
to

::::::::::
manipulate

:::::::
human

::::::
genes

::
in

::::::
order

::
to

::::::
create

::::::::
obedient

:::::::
soldiers

::::
with

::::::::::::
extraordinary

:::::::
abilities]Premise9. However, because [

::::
moral

::::
and

:::::::
ethical

::::::
values

:::
are

::::::::::::
internationally

::::::
shared]Premise10, [

:
it
:::

is
::::
very

::::::::
unlikely

::::
that

:::::::
cloning

::::
will

::
be

::::::::
misused

:::
for

::::::
militant

:::::::::
objectives]Premise11.

The paragraph begins with Claim5, which attacks the stance of the author. It is supported
by Premise9 in the second sentence. The third sentence includes two premises, both of
which defend the stance of the author. Premise11 is an attack of Claim5, and Premise10
supports Premise11. The last paragraph (conclusion) restates the major claim and sum-
marizes the main aspects of the essay:

To sum up, although [permitting cloning might bear some risks like misuse for
military purposes]Claim6, I strongly believe that [this technology is beneficial to
humanity]MajorClaim2. It is likely that [this technology bears some important cures which
will significantly improve life conditions]Claim7.

The conclusion of the essay starts with an attacking claim followed by the restatement of
the major claim. The last sentence includes another claim that summarizes the most im-
portant points of the author’s argumentation. Figure 2 shows the entire argumentation
structure of the example essay.

Figure 2
Argumentation structure of the example essay. Arrows indicate argumentative relations.
Arrowheads denote argumentative support relations and circleheads attack relations. Dashed
lines indicate relations that are encoded in the stance attributes of claims. “P” denotes premises.

629

Figure 23.12 Argumentation structure of a persuasive essay. Arrows indicate argumentation relations, ei-
ther of SUPPORT (with arrowheads) or ATTACK (with circleheads); P denotes premises. Figure from Stab and
Gurevych (2017).

While argumentation mining is clearly related to rhetorical structure and other
kinds of coherence relations, arguments tend to be much less local; often a persua-
sive essay will have only a single main claim, with premises spread throughout the
text, without the local coherence we see in coherence relations.

Algorithms for detecting argumentation structure often include classifiers for
distinguishing claims, premises, or non-argumentation, together with relation clas-
sifiers for deciding if two spans have the SUPPORT, ATTACK, or neither relation
(Peldszus and Stede, 2013). While these are the main focus of much computational
work, there is also preliminary efforts on annotating and detecting richer semantic
relationships (Park and Cardie, 2014; Hidey et al., 2017) such as detecting argu-
mentation schemes, larger-scale structures for argument like argument from ex-argumentation

schemes
ample, or argument from cause to effect, or argument from consequences (Feng
and Hirst, 2011).

Another important line of research is studying how these argument structure (or
other features) are associated with the success or persuasiveness of an argument
(Habernal and Gurevych, 2016; Tan et al., 2016; Hidey et al., 2017). Indeed, while
it is Aristotle’s logos that is most related to discourse structure, Aristotle’s ethos and
pathos techniques are particularly relevant in the detection of mechanisms of this
sort of persuasion. For example scholars have investigated the linguistic realizationpersuasion

of features studied by social scientists like reciprocity (people return favors), social
proof (people follow others’ choices), authority (people are influenced by those
with power), and scarcity (people value things that are scarce), all of which can
be brought up in a persuasive argument (Cialdini, 1984). Rosenthal and McKeown
(2017) showed that these features could be combined with argumentation structure
to predict who influences whom on social media, Althoff et al. (2014) found that
linguistic models of reciprocity and authority predicted success in online requests,
while the semisupervised model of Yang et al. (2019) detected mentions of scarcity,
commitment, and social identity to predict the success of peer-to-peer lending plat-
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forms.
See Stede and Schneider (2018) for a comprehensive survey of argument mining.

23.5.2 The structure of scientific discourse
Scientific papers have a very specific global structure: somewhere in the course of
the paper the authors must indicate a scientific goal, develop a method for a solu-
tion, provide evidence for the solution, and compare to prior work. One popular
annotation scheme for modeling these rhetorical goals is the argumentative zoningargumentative

zoning
model of Teufel et al. (1999) and Teufel et al. (2009), which is informed by the idea
that each scientific paper tries to make a knowledge claim about a new piece of
knowledge being added to the repository of the field (Myers, 1992). Sentences in
a scientific paper can be assigned one of 15 tags; Fig. 23.13 shows 7 (shortened)
examples of labeled sentences.

Category Description Example
AIM Statement of specific research goal, or

hypothesis of current paper
“The aim of this process is to examine the role that
training plays in the tagging process”

OWN METHOD New Knowledge claim, own work:
methods

“In order for it to be useful for our purposes, the
following extensions must be made:”

OWN RESULTS Measurable/objective outcome of own
work

“All the curves have a generally upward trend but
always lie far below backoff (51% error rate)”

USE Other work is used in own work “We use the framework for the allocation and
transfer of control of Whittaker....”

GAP WEAK Lack of solution in field, problem with
other solutions

“Here, we will produce experimental evidence
suggesting that this simple model leads to serious
overestimates”

SUPPORT Other work supports current work or is
supported by current work

“Work similar to that described here has been car-
ried out by Merialdo (1994), with broadly similar
conclusions.”

ANTISUPPORT Clash with other’s results or theory; su-
periority of own work

“This result challenges the claims of...”

Figure 23.13 Examples for 7 of the 15 labels from the Argumentative Zoning labelset (Teufel et al., 2009).

Teufel et al. (1999) and Teufel et al. (2009) develop labeled corpora of scientific
articles from computational linguistics and chemistry, which can be used as supervi-
sion for training standard sentence-classification architecture to assign the 15 labels.

23.6 Summary

In this chapter we introduced local and global models for discourse coherence.

• Discourses are not arbitrary collections of sentences; they must be coherent.
Among the factors that make a discourse coherent are coherence relations
between the sentences, entity-based coherence, and topical coherence.

• Various sets of coherence relations and rhetorical relations have been pro-
posed. The relations in Rhetorical Structure Theory (RST) hold between
spans of text and are structured into a tree. Because of this, shift-reduce
and other parsing algorithms are generally used to assign these structures.
The Penn Discourse Treebank (PDTB) labels only relations between pairs of
spans, and the labels are generally assigned by sequence models.
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• Entity-based coherence captures the intuition that discourses are about an
entity, and continue mentioning the entity from sentence to sentence. Cen-
tering Theory is a family of models describing how salience is modeled for
discourse entities, and hence how coherence is achieved by virtue of keeping
the same discourse entities salient over the discourse. The entity grid model
gives a more bottom-up way to compute which entity realization transitions
lead to coherence.

• Many different genres have different types of global coherence. Persuasive
essays have claims and premises that are extracted in the field of argument
mining, scientific articles have structure related to aims, methods, results, and
comparisons.

Bibliographical and Historical Notes
Coherence relations arose from the independent development of a number of schol-
ars, including Hobbs (1979) idea that coherence relations play an inferential role for
the hearer, and the investigations by Mann and Thompson (1987) of the discourse
structure of large texts. Other approaches to coherence relations and their extrac-
tion include Segmented Discourse Representation Theory (SDRT) (Asher and Las-SDRT

carides 2003, Baldridge et al. 2007) and the Linguistic Discourse Model (Polanyi,
1988; Scha and Polanyi, 1988; Polanyi et al., 2004a, 2004b) Wolf and Gibson (2005)
argue that coherence structure includes crossed bracketings, which make it impossi-
ble to represent as a tree, and propose a graph representation instead. A compendium
of over 350 relations that have been proposed in the literature can be found in Hovy
(1990).

RST parsing was first proposed by Marcu (1997), and early work was rule-based,
focused on discourse markers (Marcu, 2000a). The creation of the RST Discourse
TreeBank (Carlson et al. 2001, Carlson and Marcu 2001) enabled a wide variety
of machine learning algorithms, beginning with the shift-reduce parser of Marcu
(1999) that used decision trees to choose actions, and continuing with a wide variety
of machine learned parsing methods (Soricut and Marcu 2003, Sagae 2009, Hernault
et al. 2010, Feng and Hirst 2014, Surdeanu et al. 2015, Joty et al. 2015) and chunkers
(Sporleder and Lapata, 2005). Subba and Di Eugenio (2009) integrated sophisticated
semantic information into RST parsing. Ji and Eisenstein (2014) first applied neural
models to RST parsing neural models, leading to the modern set of neural RST
models (Li et al. 2014, Li et al. 2016, Braud et al. 2017, Yu et al. 2018, inter alia) as
well as neural segmenters (Wang et al. 2018). and neural PDTB parsing models (Ji
and Eisenstein 2015, Qin et al. 2016, Qin et al. 2017).

Barzilay and Lapata (2005) pioneered the idea of self-supervision for coher-
ence: training a coherence model to distinguish true orderings of sentences from
random permutations. Li et al. (2014) first applied this paradigm to neural sentence-
representation, and a many neural self-supervised models followed (Li and Juraf-
sky 2017,Logeswaran et al. 2018, Lai and Tetreault 2018, Xu et al. 2019)

Another aspect of global coherence is the global topic structure of a text, the way
the topics shift over the course of the document. Barzilay and Lee (2004) introduced
an HMM model for capturing topics for coherence, and later work expanded this
intuition (Soricut and Marcu 2006, Elsner et al. 2007, Louis and Nenkova 2012, Li
and Jurafsky 2017).
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The relationship between explicit and implicit discourse connectives has been
a fruitful one for research. Marcu and Echihabi (2002) first proposed to use sen-
tences with explicit relations to help provide training data for implicit relations, by
removing the explicit relations and trying to re-predict them as a way of improv-
ing performance on implicit connectives; this idea was refined by Sporleder and
Lascarides (2005), (Pitler et al., 2009), and Rutherford and Xue (2015). This rela-
tionship can also be used as a way to create discourse-aware representations. The
DisSent algorithm (Nie et al., 2019) creates the task of predicting explicit discourse
markers between two sentences. They show that representations learned to be good
at this task also function as powerful sentence representations for other discourse
tasks.

The idea of entity-based coherence seems to have arisen in multiple fields in the
mid-1970s, in functional linguistics (Chafe, 1976), in the psychology of discourse
processing (Kintsch and Van Dijk, 1978), and in the roughly contemporaneous work
of Grosz, Sidner, Joshi, and their colleagues. Grosz (1977a) addressed the focus
of attention that conversational participants maintain as the discourse unfolds. She
defined two levels of focus; entities relevant to the entire discourse were said to
be in global focus, whereas entities that are locally in focus (i.e., most central to a
particular utterance) were said to be in immediate focus. Sidner (1979, 1983) de-
scribed a method for tracking (immediate) discourse foci and their use in resolving
pronouns and demonstrative noun phrases. She made a distinction between the cur-
rent discourse focus and potential foci, which are the predecessors to the backward-
and forward-looking centers of Centering theory, respectively. The name and further
roots of the centering approach lie in papers by Joshi and Kuhn (1979) and Joshi and
Weinstein (1981), who addressed the relationship between immediate focus and the
inferences required to integrate the current utterance into the discourse model. Grosz
et al. (1983) integrated this work with the prior work of Sidner and Grosz. This led
to a manuscript on centering which, while widely circulated since 1986, remained
unpublished until Grosz et al. (1995). A collection of centering papers appears in
Walker et al. (1998). See Karamanis et al. (2004) and Poesio et al. (2004) for a
deeper exploration of centering and its parameterizations, and the History section of
Chapter 22 for more on the use of centering on coreference.

The grid model of entity-based coherence was first proposed by Barzilay and
Lapata (2005) drawing on earlier work by Lapata (2003) and Barzilay, and then
extended by them Barzilay and Lapata (2008) and others with additional features
(Elsner and Charniak 2008, (2011), Feng et al. 2014, Lin et al. 2011) a model that
projects entities into a global graph for the discourse (Guinaudeau and Strube 2013,
Mesgar and Strube 2016), and a convolutional model to capture longer-range entity
dependencies (Nguyen and Joty, 2017).

Theories of discourse coherence have also been used in algorithms for interpret-
ing discourse-level linguistic phenomena, including verb phrase ellipsis and gapping
(Asher, 1993; Kehler, 1993), and tense interpretation (Lascarides and Asher 1993,
Kehler 1994, Kehler 2000). An extensive investigation into the relationship be-
tween coherence relations and discourse connectives can be found in Knott and Dale
(1994).

Useful surveys of discourse processing and structure include Stede (2011) and
Webber et al. (2012).
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Exercises
23.1 Finish the Centering Theory processing of the last two utterances of (23.30),

and show how (23.29) would be processed. Does the algorithm indeed mark
(23.29) as less coherent?

23.2 Select an editorial column from your favorite newspaper, and determine the
discourse structure for a 10–20 sentence portion. What problems did you
encounter? Were you helped by superficial cues the speaker included (e.g.,
discourse connectives) in any places?
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CHAPTER

25 Question Answering

The quest for knowledge is deeply human, and so it is not surprising that practi-
cally as soon as there were computers we were asking them questions. By the early
1960s, systems used the two major paradigms of question answering—information-
retrieval-based and knowledge-based—to answer questions about baseball statis-
tics or scientific facts. Even imaginary computers got into the act. Deep Thought,
the computer that Douglas Adams invented in The Hitchhiker’s Guide to the Galaxy,
managed to answer “the Ultimate Question Of Life, The Universe, and Everything”.1

In 2011, IBM’s Watson question-answering system won the TV game-show Jeop-
ardy! using a hybrid architecture that surpassed humans at answering questions like

WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPAL-
ITIES OF WALLACHIA AND MOLDOVIA” INSPIRED THIS AU-
THOR’S MOST FAMOUS NOVEL2

Most question answering systems focus on factoid questions, questions that can
be answered with simple facts expressed in short texts. The answers to the questions
below can be expressed by a personal name, temporal expression, or location:
(25.1) Who founded Virgin Airlines?
(25.2) What is the average age of the onset of autism?
(25.3) Where is Apple Computer based?

In this chapter we describe the two major paradigms for factoid question an-
swering. Information-retrieval or IR-based question answering relies on the vast
quantities of textual information on the web or in collections like PubMed. Given
a user question, information retrieval techniques first find relevant documents and
passages. Then systems (feature-based, neural, or both) use reading comprehen-
sion algorithms to read these retrieved documents or passages and draw an answer
directly from spans of text.

In the second paradigm, knowledge-based question answering, a system in-
stead builds a semantic representation of the query, mapping What states border
Texas? to the logical representation: λx.state(x)∧ borders(x, texas), or When was
Ada Lovelace born? to the gapped relation: birth-year (Ada Lovelace, ?x).
These meaning representations are then used to query databases of facts.

Finally, large industrial systems like the DeepQA system in IBM’s Watson are
often hybrids, using both text datasets and structured knowledge bases to answer
questions. DeepQA finds many candidate answers in both knowledge bases and in
textual sources, and then scores each candidate answer using knowledge sources like
geospatial databases, taxonomical classification, or other textual sources.

We describe IR-based approaches (including neural reading comprehension sys-
tems) in the next section, followed by sections on knowledge-based systems, on
Watson Deep QA, and a discussion of evaluation.

1 The answer was 42, but unfortunately the details of the question were never revealed.
2 The answer, of course, is ‘Who is Bram Stoker’, and the novel was Dracula.
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25.1 IR-based Factoid Question Answering

The goal of information retrieval based question answering is to answer a user’s
question by finding short text segments on the web or some other collection of doc-
uments. Figure 25.1 shows some sample factoid questions and their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What’s the abbreviation for limited partnership? L.P.
What are the names of Odin’s ravens? Huginn and Muninn
What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds
What instrument does Max Roach play? drums
What’s the official language of Algeria? Arabic
How many pounds are there in a stone? 14

Figure 25.1 Some sample factoid questions and their answers.

Figure 25.2 shows the three phases of an IR-based factoid question-answering
system: question processing, passage retrieval and ranking, and answer extraction.
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Figure 25.2 IR-based factoid question answering has three stages: question processing, passage retrieval, and
answer processing.

25.1.1 Question Processing
The main goal of the question-processing phase is to extract the query: the keywords
passed to the IR system to match potential documents. Some systems additionally
extract further information such as:
• answer type: the entity type (person, location, time, etc.) of the answer.
• focus: the string of words in the question that is likely to be replaced by the

answer in any answer string found.
• question type: is this a definition question, a math question, a list question?

For example, for the question Which US state capital has the largest population?
the query processing might produce:
query: “US state capital has the largest population”
answer type: city
focus: state capital

In the next two sections we summarize the two most commonly used tasks, query
formulation and answer type detection.
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25.1.2 Query Formulation
Query formulation is the task of creating a query—a list of tokens— to send to an
information retrieval system to retrieve documents that might contain answer strings.

For question answering from the web, we can simply pass the entire question
to the web search engine, at most perhaps leaving out the question word (where,
when, etc.). For question answering from smaller sets of documents like corporate
information pages or Wikipedia, we still use an IR engine to index and search our
documents, generally using standard tf-idf cosine matching, but we might need to do
more processing. For example, for searching Wikipedia, it helps to compute tf-idf
over bigrams rather than unigrams in the query and document (Chen et al., 2017).
Or we might need to do query expansion, since while on the web the answer to a
question might appear in many different forms, one of which will probably match
the question, in smaller document sets an answer might appear only once. Query
expansion methods can add query terms in hopes of matching the particular form of
the answer as it appears, like adding morphological variants of the content words in
the question, or synonyms from a thesaurus.

A query formulation approach that is sometimes used for questioning the web is
to apply query reformulation rules to the query. The rules rephrase the question toquery

reformulation
make it look like a substring of possible declarative answers. The question “when
was the laser invented?” might be reformulated as “the laser was invented”; the
question “where is the Valley of the Kings?” as “the Valley of the Kings is located
in”. Here are some sample handwritten reformulation rules from Lin (2007):

(25.4) wh-word did A verb B→ . . . A verb+ed B
(25.5) Where is A→ A is located in

25.1.3 Answer Types
Some systems make use of question classification, the task of finding the answerquestion

classification
type, the named-entity categorizing the answer. A question like “Who founded Vir-answer type

gin Airlines?” expects an answer of type PERSON. A question like “What Canadian
city has the largest population?” expects an answer of type CITY. If we know that
the answer type for a question is a person, we can avoid examining every sentence
in the document collection, instead focusing on sentences mentioning people.

While answer types might just be the named entities like PERSON, LOCATION,
and ORGANIZATION described in Chapter 18, we can also use a larger hierarchical
set of answer types called an answer type taxonomy. Such taxonomies can be builtanswer type

taxonomy
automatically, from resources like WordNet (Harabagiu et al. 2000, Pasca 2003), or
they can be designed by hand. Figure 25.4 shows one such hand-built ontology, the
Li and Roth (2005) tagset; a subset is also shown in Fig. 25.3. In this hierarchical
tagset, each question can be labeled with a coarse-grained tag like HUMAN or a fine-
grained tag like HUMAN:DESCRIPTION, HUMAN:GROUP, HUMAN:IND, and so on.
The HUMAN:DESCRIPTION type is often called a BIOGRAPHY question because the
answer is required to give a brief biography of the person rather than just a name.

Question classifiers can be built by hand-writing rules like the following rule
from (Hovy et al., 2002) for detecting the answer type BIOGRAPHY:

(25.6) who {is | was | are | were} PERSON

Most question classifiers, however, are based on supervised learning, trained on
databases of questions that have been hand-labeled with an answer type (Li and
Roth, 2002). Either feature-based or neural methods can be used. Feature based
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Figure 25.3 A subset of the Li and Roth (2005) answer types.

methods rely on words in the questions and their embeddings, the part-of-speech of
each word, and named entities in the questions. Often, a single word in the question
gives extra information about the answer type, and its identity is used as a feature.
This word is sometimes called the answer type word or question headword, and
may be defined as the headword of the first NP after the question’s wh-word; head-
words are indicated in boldface in the following examples:

(25.7) Which city in China has the largest number of foreign financial companies?
(25.8) What is the state flower of California?

In general, question classification accuracies are relatively high on easy ques-
tion types like PERSON, LOCATION, and TIME questions; detecting REASON and
DESCRIPTION questions can be much harder.

25.1.4 Document and Passage Retrieval
The IR query produced from the question processing stage is sent to an IR engine,
resulting in a set of documents ranked by their relevance to the query. Because
most answer-extraction methods are designed to apply to smaller regions such as
paragraphs, QA systems next divide the top n documents into smaller passages suchpassages

as sections, paragraphs, or sentences. These might be already segmented in the
source document or we might need to run a paragraph segmentation algorithm.

The simplest form of passage retrieval is then to simply pass along every pas-passage
retrieval

sage to the answer extraction stage. A more sophisticated variant is to filter the
passages by running a named entity or answer type classification on the retrieved
passages, discarding passages that don’t contain the answer type of the question. It’s
also possible to use supervised learning to fully rank the remaining passages, using
features like:

• The number of named entities of the right type in the passage
• The number of question keywords in the passage
• The longest exact sequence of question keywords that occurs in the passage
• The rank of the document from which the passage was extracted
• The proximity of the keywords from the original query to each other (Pasca 2003,

Monz 2004).
• The number of n-grams that overlap between the passage and the question

(Brill et al., 2002).

For question answering from the web we can instead take snippets from a Websnippets

search engine as the passages.
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Tag Example
ABBREVIATION

abb What’s the abbreviation for limited partnership?
exp What does the “c” stand for in the equation E=mc2?

DESCRIPTION
definition What are tannins?
description What are the words to the Canadian National anthem?
manner How can you get rust stains out of clothing?
reason What caused the Titanic to sink?

ENTITY
animal What are the names of Odin’s ravens?
body What part of your body contains the corpus callosum?
color What colors make up a rainbow?
creative In what book can I find the story of Aladdin?
currency What currency is used in China?
disease/medicine What does Salk vaccine prevent?
event What war involved the battle of Chapultepec?
food What kind of nuts are used in marzipan?
instrument What instrument does Max Roach play?
lang What’s the official language of Algeria?
letter What letter appears on the cold-water tap in Spain?
other What is the name of King Arthur’s sword?
plant What are some fragrant white climbing roses?
product What is the fastest computer?
religion What religion has the most members?
sport What was the name of the ball game played by the Mayans?
substance What fuel do airplanes use?
symbol What is the chemical symbol for nitrogen?
technique What is the best way to remove wallpaper?
term How do you say “ Grandma” in Irish?
vehicle What was the name of Captain Bligh’s ship?
word What’s the singular of dice?

HUMAN
description Who was Confucius?
group What are the major companies that are part of Dow Jones?
ind Who was the first Russian astronaut to do a spacewalk?
title What was Queen Victoria’s title regarding India?

LOCATION
city What’s the oldest capital city in the Americas?
country What country borders the most others?
mountain What is the highest peak in Africa?
other What river runs through Liverpool?
state What states do not have state income tax?

NUMERIC
code What is the telephone number for the University of Colorado?
count About how many soldiers died in World War II?
date What is the date of Boxing Day?
distance How long was Mao’s 1930s Long March?
money How much did a McDonald’s hamburger cost in 1963?
order Where does Shanghai rank among world cities in population?
other What is the population of Mexico?
period What was the average life expectancy during the Stone Age?
percent What fraction of a beaver’s life is spent swimming?
temp How hot should the oven be when making Peachy Oat Muffins?
speed How fast must a spacecraft travel to escape Earth’s gravity?
size What is the size of Argentina?
weight How many pounds are there in a stone?

Figure 25.4 Question typology from Li and Roth (2002), (2005). Example sentences are
from their corpus of 5500 labeled questions. A question can be labeled either with a coarse-
grained tag like HUMAN or NUMERIC or with a fine-grained tag like HUMAN:DESCRIPTION,
HUMAN:GROUP, HUMAN:IND, and so on.



25.1 • IR-BASED FACTOID QUESTION ANSWERING 471

25.1.5 Answer Extraction
The final stage of question answering is to extract a specific answer from the passage,
for example responding 29,029 feet to a question like “How tall is Mt. Everest?”.
This task is commonly modeled by span labeling: given a passage, identifying the
span of text which constitutes an answer.span

A simple baseline algorithm for answer extraction is to run a named entity tagger
on the candidate passage and return whatever span in the passage is the correct an-
swer type. Thus, in the following examples, the underlined named entities would be
extracted from the passages as the answer to the HUMAN and DISTANCE-QUANTITY
questions:

“Who is the prime minister of India?”
Manmohan Singh, Prime Minister of India, had told left leaders that the
deal would not be renegotiated.

“How tall is Mt. Everest?”
The official height of Mount Everest is 29029 feet

Unfortunately, the answers to many questions, such as DEFINITION questions,
don’t tend to be of a particular named entity type. For this reason modern work on
answer extraction uses more sophisticated algorithms, generally based on supervised
learning. The next section introduces a simple feature-based classifier, after which
we turn to modern neural algorithms.

25.1.6 Feature-based Answer Extraction
Supervised learning approaches to answer extraction train classifiers to decide if a
span or a sentence contains an answer. One obviously useful feature is the answer
type feature of the above baseline algorithm. Hand-written regular expression pat-
terns also play a role, such as the sample patterns for definition questions in Fig. 25.5.

Pattern Question Answer
<AP> such as <QP> What is autism? “, developmental disorders such as autism”
<QP>, a <AP> What is a caldera? “the Long Valley caldera, a volcanic crater 19

miles long”
Figure 25.5 Some answer-extraction patterns using the answer phrase (AP) and question
phrase (QP) for definition questions (Pasca, 2003).

Other features in such classifiers include:

Answer type match: True if the candidate answer contains a phrase with the cor-
rect answer type.

Pattern match: The identity of a pattern that matches the candidate answer.
Number of matched question keywords: How many question keywords are con-

tained in the candidate answer.
Keyword distance: The distance between the candidate answer and query key-

words.
Novelty factor: True if at least one word in the candidate answer is novel, that is,

not in the query.
Apposition features: True if the candidate answer is an appositive to a phrase con-

taining many question terms. Can be approximated by the number of question
terms separated from the candidate answer through at most three words and
one comma (Pasca, 2003).
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Punctuation location: True if the candidate answer is immediately followed by a
comma, period, quotation marks, semicolon, or exclamation mark.

Sequences of question terms: The length of the longest sequence of question
terms that occurs in the candidate answer.

25.1.7 N-gram tiling answer extraction
An alternative approach to answer extraction, used solely in Web search, is based
on n-gram tiling, an approach that relies on the redundancy of the web (Brilln-gram tiling

et al. 2002, Lin 2007). This simplified method begins with the snippets returned
from the Web search engine, produced by a reformulated query. In the first step,
n-gram mining, every unigram, bigram, and trigram occurring in the snippet is ex-
tracted and weighted. The weight is a function of the number of snippets in which
the n-gram occurred, and the weight of the query reformulation pattern that returned
it. In the n-gram filtering step, n-grams are scored by how well they match the
predicted answer type. These scores are computed by handwritten filters built for
each answer type. Finally, an n-gram tiling algorithm concatenates overlapping n-
gram fragments into longer answers. A standard greedy method is to start with the
highest-scoring candidate and try to tile each other candidate with this candidate.
The best-scoring concatenation is added to the set of candidates, the lower-scoring
candidate is removed, and the process continues until a single answer is built.

25.1.8 Neural Answer Extraction
Neural network approaches to answer extraction draw on the intuition that a question
and its answer are semantically similar in some appropriate way. As we’ll see, this
intuition can be fleshed out by computing an embedding for the question and an
embedding for each token of the passage, and then selecting passage spans whose
embeddings are closest to the question embedding.

Reading Comprehension

Neural answer extractors are often designed in the context of the reading compre-
hension task. It was Hirschman et al. (1999) who first proposed to take children’sreading

comprehension
reading comprehension tests—pedagogical instruments in which a child is given a
passage to read and must answer questions about it—and use them to evaluate ma-
chine text comprehension algorithm. They acquired a corpus of 120 passages with 5
questions each designed for 3rd-6th grade children, built an answer extraction sys-
tem, and measured how well the answers given by their system corresponded to the
answer key from the test’s publisher.

Since then reading comprehension has become both a task in itself, as a useful
way to measure natural language understanding performance, but also as (sometimes
called the reader component of question answerers).

Reading Comprehension Datasets. Modern reading comprehension systems tend
to use collections of questions that are designed specifically for NLP, and so are large
enough for training supervised learning systems. For example the Stanford Question
Answering Dataset (SQuAD) consists of passages from Wikipedia and associatedSQuAD

questions whose answers are spans from the passage, as well as some questions that
are designed to be unanswerable (Rajpurkar et al. 2016, Rajpurkar et al. 2018); a
total of just over 150,000 questions. Fig. 25.6 shows a (shortened) excerpt from a
SQUAD 2.0 passage together with three questions and their answer spans.
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Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter,
record producer and actress. Born and raised in Houston, Texas, she performed in various
singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer
of R&B girl-group Destiny’s Child. Managed by her father, Mathew Knowles, the group became
one of the world’s best-selling girl groups of all time. Their hiatus saw the release of Beyoncé’s
debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned
five Grammy Awards and featured the Billboard Hot 100 number-one singles “Crazy in Love” and
“Baby Boy”.
Q: “In what city and state did Beyoncé grow up?”
A: “Houston, Texas”
Q: “What areas did Beyoncé compete in when she was growing up?”
A: “singing and dancing”
Q: “When did Beyoncé release Dangerously in Love?”
A: “2003”

Figure 25.6 A (Wikipedia) passage from the SQuAD 2.0 dataset (Rajpurkar et al., 2018) with 3 sample
questions and the labeled answer spans.

SQuAD was built by having humans write questions for a given Wikipedia
passage and choose the answer span. Other datasets used similar techniques; the
NewsQA dataset consists of 100,000 question-answer pairs from CNN news arti-
cles. For other datasets like WikiQA the span is the entire sentence containing the
answer (Yang et al., 2015); the task of choosing a sentence rather than a smaller
answer span is sometimes called the sentence selection task.sentence

selection

25.1.9 A bi-LSTM-based Reading Comprehension Algorithm
Neural algorithms for reading comprehension are given a question q of l tokens
q1, ...,ql and a passage p of m tokens p1, ..., pm. Their goal is to compute, for each
token pi the probability pstart(i) that pi is the start of the answer span, and the
probability pend(i) that pi is the end of the answer span.

Fig. 25.7 shows the architecture of the Document Reader component of the
DrQA system of Chen et al. (2017). Like most such systems, DrQA builds an
embedding for the question, builds an embedding for each token in the passage,
computes a similarity function between the question and each passage word in con-
text, and then uses the question-passage similarity scores to decide where the answer
span starts and ends.

Let’s consider the algorithm in detail, following closely the description in Chen
et al. (2017). The question is represented by a single embedding q, which is a
weighted sum of representations for each question word qi. It is computed by
passing the series of embeddings PE(q1), ...,E(ql) of question words through an
RNN (such as a bi-LSTM shown in Fig. 25.7). The resulting hidden representations
{q1, ...,ql} are combined by a weighted sum

q=
∑

j

b jq j (25.9)

The weight b j is a measure of the relevance of each question word, and relies on a
learned weight vector w:

b j =
exp(w ·q j)∑
j′ exp(w ·q′j)

(25.10)
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Figure 25.7 The question answering system of Chen et al. (2017), considering part of the question When did
Beyoncé release Dangerously in Love? and the passage starting Beyoncé’s debut album, Dangerously in Love
(2003).

To compute the passage embedding {p1, ...,pm} we first form an input represen-
tation p̃ = {p̃1, ..., p̃m} by concatenating four components:
• An embedding for each word E(pi) such as from GLoVE (Pennington et al.,

2014).
• Token features like the part of speech of pi, or the named entity tag of pi, from

running POS or NER taggers.
• Exact match features representing whether the passage word pi occurred in

the question: 1(pi ∈ q). Separate exact match features might be used for
lemmatized or lower-cased versions of the tokens.

• Aligned question embedding: In addition to the exact match features, many
QA systems use an attention mechanism to give a more sophisticated model of
similarity between the passage and question words, such as similar but non-
identical words like release and singles. For example a weighted similarity∑

j ai, jE(q j) can be used, where the attention weight ai, j encodes the simi-
larity between pi and each question word q j. This attention weight can be
computed as the dot product between functions α of the word embeddings of
the question and passage:

qi, j =
exp(α(E(pi)) ·α(E(q j)))∑
j′ exp(α(E(pi)) ·α(E(q′j)))

(25.11)

α(·) can be a simple feed forward network.
We then pass p̃ through a biLSTM:

{p1, ...,pm}) = RNN({p̃1, ..., p̃m} (25.12)

The result of the previous two steps is a single question embedding q and a
representation for each word in the passage {p1, ...,pm}. In order to find the an-
swer span, we can train two separate classifiers, one to compute for each pi the
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probability pstart(i) that pi is the start of the answer span, and one to compute the
probability pend(i). While the classifiers could just take the dot product between
the passage and question embeddings as input, it turns out to work better to learn a
more sophisticated similarity function, like a bilinear attention layer W:

pstart(i) ∝ exp(piWsq)

pend(i) ∝ exp(piWeq) (25.13)

These neural answer extractors can be trained end-to-end by using datasets like
SQuAD.

25.1.10 BERT-based Question Answering
The power of contextual embeddings allow question answering models based on
BERT contextual embeddings and the transformer architecture to achieve even higher
accuracy (Fig. 25.8).

BERT

[CLS] Tok 1 Tok N… [SEP] Tok 1 Tok M…

Question Paragraph
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. .
PstartM
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Figure 25.8 The BERT model for span-based question answering from reading-
comprehension-based question answering tasks. Figure after Devlin et al. (2019).

Recall from Chapter 10 that BERT represents two input strings as a sequence of
wordpiece tokens separated with a [SEP] token. The pre-trained BERT model will
produce an output token embedding T ′i for every paragraph token i′. For span-based
question answering, we represent the question as the first sequence and, the para-
graph as the second sequence. We’ll also need to add some structure to the output
head that will be trained in the fine-tuning phase. We’ll add two new embeddings: a
span-start embedding S and a span-end embedding E. To get a span-start probability
for each output token T ′i , we compute the dot product between S and T ′i and then
normalize over all tokens T ′i in the paragraph:

Pstarti =
eS·Ti

∑
j eS·Tj

(25.14)

We do the analogous thing to compute a span-end probability:

Pendi =
eE·Ti

∑
j eE·Tj

(25.15)
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The score of a candidate span from position i to j is S ·Ti +E ·Tj, and the highest
scoring span in which j≥ i is chosen is the model prediction. The training objective
for fine-tuning is the sum of the log-likelihoods of the correct start and end positions
for each observation.

25.2 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text
on the web, information obviously also exists in more structured forms. We use
the term knowledge-based question answering for the idea of answering a natural
language question by mapping it to a query over a structured database. Like the text-
based paradigm for question answering, this approach dates back to the earliest days
of natural language processing, with systems like BASEBALL (Green et al., 1961)
that answered questions from a structured database of baseball games and stats.

Systems for mapping from a text string to any logical form are called seman-
tic parsers. Semantic parsers for question answering usually map either to some
version of predicate calculus or a query language like SQL or SPARQL, as in the
examples in Fig. 25.9.

Question Logical form
When was Ada Lovelace born? birth-year (Ada Lovelace, ?x)

What states border Texas? λ x.state(x) ∧ borders(x,texas)
What is the largest state argmax(λx.state(x),λx.size(x))
How many people survived the sinking of

the Titanic
(count (!fb:event.disaster.survivors

fb:en.sinking of the titanic))

Figure 25.9 Sample logical forms produced by a semantic parser for question answering. These range from
simple relations like birth-year, or relations normalized to databases like Freebase, to full predicate calculus.

The logical form of the question is thus either in the form of a query or can easily
be converted into one. The database can be a full relational database, or simpler
structured databases like sets of RDF triples. Recall from Chapter 18 that an RDF
triple is a 3-tuple, a predicate with two arguments, expressing some simple relation
or proposition. Popular ontologies like Freebase (Bollacker et al., 2008) or DBpedia
(Bizer et al., 2009) have large numbers of triples derived from Wikipedia infoboxes,
the structured tables associated with certain Wikipedia articles.

The simplest formation of the knowledge-based question answering task is to
answer factoid questions that ask about one of the missing arguments in a triple.
Consider an RDF triple like the following:

subject predicate object
Ada Lovelace birth-year 1815

This triple can be used to answer text questions like ‘When was Ada Lovelace
born?’ or ‘Who was born in 1815?’. Question answering in this paradigm requires
mapping from textual strings like ”When was ... born” to canonical relations in the
knowledge base like birth-year. We might sketch this task as:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

“What is the capital of England?” → capital-city(?x, England)
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25.2.1 Rule-based Methods
For relations that are very frequent, it may be worthwhile to write handwritten rules
to extract relations from the question, just as we saw in Section 18.2. For example,
to extract the birth-year relation, we could write patterns that search for the question
word When, a main verb like born, and then extract the named entity argument of
the verb.

25.2.2 Supervised Methods
In some cases we have supervised data, consisting of a set of questions paired with
their correct logical form like the examples in Fig. 25.9. The task is then to take
those pairs of training tuples and produce a system that maps from new questions to
their logical forms.

Most supervised algorithms for learning to answer these simple questions about
relations first parse the questions and then align the parse trees to the logical form.
Generally these systems bootstrap by having a small set of rules for building this
mapping, and an initial lexicon as well. For example, a system might have built-
in strings for each of the entities in the system (Texas, Ada Lovelace), and then
have simple default rules mapping fragments of the question parse tree to particular
relations:

Who V ENTITY → relation( ?x, entity)

nsubj dobj

When V ENTITY → relation( ?x, entity)

tmod nsubj

Then given these rules and the lexicon, a training tuple like the following:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

would first be parsed, resulting in the following mapping.

When was Ada Lovelace born → birth-year(Ada Lovelace, ?x)

tmod

nsubj

From many pairs like this, we could induce mappings between pieces of parse
fragment, such as the mapping between the parse fragment on the left and the rela-
tion on the right:

When was · born → birth-year( , ?x)

tmod

nsubj

A supervised system would thus parse each tuple in the training set and induce a
bigger set of such specific rules, allowing it to map unseen examples of “When was
X born?” questions to the birth-year relation. Rules can furthermore be associ-
ated with counts based on the number of times the rule is used to parse the training
data. Like rule counts for probabilistic grammars, these can be normalized into prob-
abilities. The probabilities can then be used to choose the highest probability parse
for sentences with multiple semantic interpretations.
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The supervised approach can be extended to deal with more complex questions
that are not just about single relations. Consider the question What is the biggest
state bordering Texas? —taken from the GeoQuery database of questions on U.S.
Geography (Zelle and Mooney, 1996)—with the semantic form: argmax(λx.state(x)∧
borders(x, texas),λx.size(x)) This question has much more complex structures than
the simple single-relation questions we considered above, such as the argmax func-
tion, the mapping of the word biggest to size and so on. Zettlemoyer and Collins
(2005) shows how more complex default rules (along with richer syntactic struc-
tures) can be used to learn to map from text sentences to more complex logical
forms. The rules take the training set’s pairings of sentence and meaning as above
and use the complex rules to break each training example down into smaller tuples
that can then be recombined to parse new sentences.

25.2.3 Dealing with Variation: Semi-Supervised Methods
Because it is difficult to create training sets with questions labeled with their mean-
ing representation, supervised datasets can’t cover the wide variety of forms that
even simple factoid questions can take. For this reason most techniques for mapping
factoid questions to the canonical relations or other structures in knowledge bases
find some way to make use of textual redundancy.

The most common source of redundancy, of course, is the web, which contains
vast numbers of textual variants expressing any relation. For this reason, most meth-
ods make some use of web text, either via semi-supervised methods like distant
supervision or unsupervised methods like open information extraction, both intro-
duced in Chapter 18. For example the REVERB open information extractor (Fader
et al., 2011) extracts billions of (subject, relation, object) triples of strings from the
web, such as (“Ada Lovelace”,“was born in”, “1815”). By aligning these strings
with a canonical knowledge source like Wikipedia, we create new relations that can
be queried while simultaneously learning to map between the words in question and
canonical relations.

To align a REVERB triple with a canonical knowledge source we first align
the arguments and then the predicate. Recall from Chapter 22 that linking a string
like “Ada Lovelace” with a Wikipedia page is called entity linking; we thus rep-
resent the concept ‘Ada Lovelace’ by a unique identifier of a Wikipedia page. If
this subject string is not associated with a unique page on Wikipedia, we can dis-
ambiguate which page is being sought, for example by using the cosine distance
between the triple string (‘Ada Lovelace was born in 1815’) and each candidate
Wikipedia page. Date strings like ‘1815’ can be turned into a normalized form using
standard tools for temporal normalization like SUTime (Chang and Manning, 2012).
Once we’ve aligned the arguments, we align the predicates. Given the Freebase
relation people.person.birthdate(ada lovelace,1815) and the string ‘Ada
Lovelace was born in 1815’, having linked Ada Lovelace and normalized 1815, we
learn the mapping between the string ‘was born in’ and the relation people.person.birthdate.
In the simplest case, this can be done by aligning the relation with the string of words
in between the arguments; more complex alignment algorithms like IBM Model 1
(Chapter 11) can be used. Then if a phrase aligns with a predicate across many
entities, it can be extracted into a lexicon for mapping questions to relations.

Here are some examples from such a resulting lexicon, produced by Berant
et al. (2013), giving many variants of phrases that align with the Freebase relation
country.capital between a country and its capital city:

Other useful sources of linguistic redundancy are paraphrase databases. For ex-
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capital of capital city of become capital of
capitol of national capital of official capital of
political capital of administrative capital of beautiful capital of
capitol city of remain capital of make capital of
political center of bustling capital of capital city in
cosmopolitan capital of move its capital to modern capital of
federal capital of beautiful capital city of administrative capital city of
Figure 25.10 Some phrases that align with the Freebase relation country.capital from
Berant et al. (2013).

ample the site wikianswers.com contains millions of pairs of questions that users
have tagged as having the same meaning, 18 million of which have been collected
in the PARALEX corpus (Fader et al., 2013). Here’s an example:

Q: What are the green blobs in plant cells?
Lemmatized synonyms from PARALEX:
what be the green blob in plant cell?
what be green part in plant cell?
what be the green part of a plant cell?
what be the green substance in plant cell?
what be the part of plant cell that give it green color?
what cell part do plant have that enable the plant to be give a green color?
what part of the plant cell turn it green?
part of the plant cell where the cell get it green color?
the green part in a plant be call?
the part of the plant cell that make the plant green be call?

The resulting millions of pairs of question paraphrases can be aligned to each
other using MT alignment approaches to create an MT-style phrase table for trans-
lating from question phrases to synonymous phrases. These can be used by question
answering algorithms to generate all paraphrases of a question as part of the process
of finding an answer (Fader et al. 2013, Berant and Liang 2014).

25.3 Using multiple information sources: IBM’s Watson

Of course there is no reason to limit ourselves to just text-based or knowledge-based
resources for question answering. The Watson system from IBM that won the Jeop-
ardy! challenge in 2011 is an example of a system that relies on a wide variety of
resources to answer questions.

Figure 25.11 shows the 4 stages of the DeepQA system that is the question an-
swering component of Watson.

The first stage is question processing. The DeepQA system runs parsing, named
entity tagging, and relation extraction on the question. Then, like the text-based
systems in Section 25.1, the DeepQA system extracts the focus, the answer type
(also called the lexical answer type or LAT), and performs question classification
and question sectioning.

Consider these Jeopardy! examples, with a category followed by a question:

Poets and Poetry: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907.
THEATRE: A new play based on this Sir Arthur Conan Doyle canine
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Figure 25.11 The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation,
(3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring.

classic opened on the London stage in 2007.

The questions are parsed, named entities are extracted (Sir Arthur Conan Doyle
identified as a PERSON, Yukon as a GEOPOLITICAL ENTITY, “Songs of a Sour-
dough” as a COMPOSITION), coreference is run (he is linked with clerk) and rela-
tions like the following are extracted:

authorof(focus,“Songs of a sourdough”)
publish (e1, he, “Songs of a sourdough”)
in (e2, e1, 1907)
temporallink(publish(...), 1907)

Next DeepQA extracts the question focus, shown in bold in both examples. Thefocus

focus is the part of the question that co-refers with the answer, used for example to
align with a supporting passage. The focus is extracted by handwritten rules—made
possible by the relatively stylized syntax of Jeopardy! questions—such as a rule
extracting any noun phrase with determiner “this” as in the Conan Doyle example,
and rules extracting pronouns like she, he, hers, him, as in the poet example.

The lexical answer type (shown in blue above) is a word or words which telllexical answer
type

us something about the semantic type of the answer. Because of the wide variety
of questions in Jeopardy!, Jeopardy! uses a far larger set of answer types than the
sets for standard factoid algorithms like the one shown in Fig. 25.4. Even a large
set of named entity tags is insufficient to define a set of answer types. The DeepQA
team investigated a set of 20,000 questions and found that a named entity tagger
with over 100 named entity types covered less than half the types in these questions.
Thus DeepQA extracts a wide variety of words to be answer types; roughly 5,000
lexical answer types occurred in the 20,000 questions they investigated, often with
multiple answer types in each question.

These lexical answer types are again extracted by rules: the default rule is to
choose the syntactic headword of the focus. Other rules improve this default choice.
For example additional lexical answer types can be words in the question that are
coreferent with or have a particular syntactic relation with the focus, such as head-
words of appositives or predicative nominatives of the focus. In some cases even the
Jeopardy! category can act as a lexical answer type, if it refers to a type of entity
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that is compatible with the other lexical answer types. Thus in the first case above,
he, poet, and clerk are all lexical answer types. In addition to using the rules directly
as a classifier, they can instead be used as features in a logistic regression classifier
that can return a probability as well as a lexical answer type.

Note that answer types function quite differently in DeepQA than the purely IR-
based factoid question answerers. In the algorithm described in Section 25.1, we
determine the answer type, and then use a strict filtering algorithm only considering
text strings that have exactly that type. In DeepQA, by contrast, we extract lots of
answers, unconstrained by answer type, and a set of answer types, and then in the
later ‘candidate answer scoring’ phase, we simply score how well each answer fits
the answer types as one of many sources of evidence.

Finally the question is classified by type (definition question, multiple-choice,
puzzle, fill-in-the-blank). This is generally done by writing pattern-matching regular
expressions over words or parse trees.

In the second candidate answer generation stage, we combine the processed
question with external documents and other knowledge sources to suggest many
candidate answers. These candidate answers can either be extracted from text docu-
ments or from structured knowledge bases.

For structured resources like DBpedia, IMDB, or the triples produced by Open
Information Extraction, we can just query these stores with the relation and the
known entity, just as we saw in Section 25.2. Thus if we have extracted the rela-
tion authorof(focus,"Songs of a sourdough"), we can query a triple store
with authorof(?x,"Songs of a sourdough") to return the correct author.

The method for extracting answers from text depends on the type of text docu-
ments. To extract answers from normal text documents we can do passage search
just as we did in Section 25.1. As we did in that section, we need to generate a query
from the question; for DeepQA this is generally done by eliminating stop words, and
then upweighting any terms which occur in any relation with the focus. For example
from this query:

MOVIE-“ING”: Robert Redford and Paul Newman starred in this depression-
era grifter flick. (Answer: “The Sting”)

the following weighted query might be extracted:

(2.0 Robert Redford) (2.0 Paul Newman) star depression era grifter (1.5 flick)

The query can now be passed to a standard IR system. DeepQA also makes
use of the convenient fact that the vast majority of Jeopardy! answers are the title
of a Wikipedia document. To find these titles, we can do a second text retrieval
pass specifically on Wikipedia documents. Then instead of extracting passages from
the retrieved Wikipedia document, we directly return the titles of the highly ranked
retrieved documents as the possible answers.

Once we have a set of passages, we need to extract candidate answers. If the
document happens to be a Wikipedia page, we can just take the title, but for other
texts, like news documents, we need other approaches. Two common approaches
are to extract all anchor texts in the document (anchor text is the text between <a>anchor texts

and </a> used to point to a URL in an HTML page), or to extract all noun phrases
in the passage that are Wikipedia document titles.

The third candidate answer scoring stage uses many sources of evidence to
score the candidates. One of the most important is the lexical answer type. DeepQA
includes a system that takes a candidate answer and a lexical answer type and returns
a score indicating whether the candidate answer can be interpreted as a subclass or
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instance of the answer type. Consider the candidate “difficulty swallowing” and
the lexical answer type “manifestation”. DeepQA first matches each of these words
with possible entities in ontologies like DBpedia and WordNet. Thus the candidate
“difficulty swallowing” is matched with the DBpedia entity “Dysphagia”, and then
that instance is mapped to the WordNet type “Symptom”. The answer type “man-
ifestation” is mapped to the WordNet type “Condition”. The system looks for a
link of hyponymy, instance-of or synonymy between these two types; in this case a
hyponymy relation is found between “Symptom” and “Condition”.

Other scorers are based on using time and space relations extracted from DBpe-
dia or other structured databases. For example, we can extract temporal properties
of the entity (when was a person born, when died) and then compare to time expres-
sions in the question. If a time expression in the question occurs chronologically
before a person was born, that would be evidence against this person being the an-
swer to the question.

Finally, we can use text retrieval to help retrieve evidence supporting a candidate
answer. We can retrieve passages with terms matching the question, then replace the
focus in the question with the candidate answer and measure the overlapping words
or ordering of the passage with the modified question.

The output of this stage is a set of candidate answers, each with a vector of
scoring features.

The final answer merging and scoring step first merges candidate answers that
are equivalent. Thus if we had extracted two candidate answers J.F.K. and John F.
Kennedy, this stage would merge the two into a single candidate. Synonym dictio-
naries are a useful resource that are created by listing all anchor text strings that point
to the same Wikipedia page; such dictionaries give large numbers of synonyms for
each Wikipedia title — e.g., JFK, John F. Kennedy, John Fitzgerald Kennedy, Sena-
tor John F. Kennedy, President Kennedy, Jack Kennedy, etc. (Spitkovsky and Chang,
2012). For common nouns, we can use morphological parsing to merge candidates
which are morphological variants.

We then merge the evidence for each variant, combining the scoring feature
vectors for the merged candidates into a single vector.

Now we have a set of candidates, each with a feature vector. A classifier takes
each feature vector and assigns a confidence value to this candidate answer. The
classifier is trained on thousands of candidate answers, each labeled for whether it
is correct or incorrect, together with their feature vectors, and learns to predict a
probability of being a correct answer. Since, in training, there are far more incorrect
answers than correct answers, we need to use one of the standard techniques for
dealing with very imbalanced data. DeepQA uses instance weighting, assigning an
instance weight of .5 for each incorrect answer example in training. The candidate
answers are then sorted by this confidence value, resulting in a single best answer.3

In summary, we’ve seen in the four stages of DeepQA that it draws on the intu-
itions of both the IR-based and knowledge-based paradigms. Indeed, Watson’s ar-
chitectural innovation is its reliance on proposing a very large number of candidate
answers from both text-based and knowledge-based sources and then developing
a wide variety of evidence features for scoring these candidates—again both text-
based and knowledge-based. See the papers mentioned at the end of the chapter for
more details.

3 The merging and ranking is actually run iteratively; first the candidates are ranked by the classifier,
giving a rough first value for each candidate answer, then that value is used to decide which of the variants
of a name to select as the merged answer, then the merged answers are re-ranked.
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25.4 Evaluation of Factoid Answers

A common evaluation metric for factoid question answering, introduced in the TREC
Q/A track in 1999, is mean reciprocal rank, or MRR. MRR assumes a test set ofmean

reciprocal rank
MRR questions that have been human-labeled with correct answers. MRR also assumes

that systems are returning a short ranked list of answers or passages containing an-
swers. Each question is then scored according to the reciprocal of the rank of the
first correct answer. For example if the system returned five answers but the first
three are wrong and hence the highest-ranked correct answer is ranked fourth, the
reciprocal rank score for that question would be 1

4 . Questions with return sets that
do not contain any correct answers are assigned a zero. The score of a system is
then the average of the score for each question in the set. More formally, for an
evaluation of a system returning a set of ranked answers for a test set consisting of
N questions, the MRR is defined as

MRR =
1
N

N∑

i=1 s.t. ranki 6=0

1
ranki

(25.16)

Reading comprehension systems on datasets like SQuAD are often evaluated
using two metrics, both ignoring punctuation and articles (a, an, the) (Rajpurkar
et al., 2016):

• Exact match: The percentage of predicted answers that match the gold answer
exactly.

• F1 score: The average overlap between predicted and gold answers. Treat the
prediction and gold as a bag of tokens, and compute F1, averaging the F1 over
all questions.

A number of test sets are available for question answering. Early systems used
the TREC QA dataset; questions and handwritten answers for TREC competitions
from 1999 to 2004 are publicly available. TriviaQA (Joshi et al., 2017) has 650K
question-answer evidence triples, from 95K hand-created question-answer pairs to-
gether with on average six supporting evidence documents collected retrospectively
from Wikipedia and the Web.

Another family of datasets starts from WEBQUESTIONS (Berant et al., 2013),
which contains 5,810 questions asked by web users, each beginning with a wh-
word and containing exactly one entity. Questions are paired with handwritten an-
swers drawn from the Freebase page of the question’s entity. WEBQUESTIONSSP
(Yih et al., 2016) augments WEBQUESTIONS with human-created semantic parses
(SPARQL queries) for those questions answerable using Freebase. COMPLEXWEB-
QUESTIONS augments the dataset with compositional and other kinds of complex
questions, resulting in 34,689 questions, along with answers, web snippets, and
SPARQL queries. (Talmor and Berant, 2018).

There are a wide variety of datasets for training and testing reading comprehen-
sion/answer extraction in addition to the SQuAD (Rajpurkar et al., 2016) and Wik-
iQA (Yang et al., 2015) datasets discussed on page 473. The NarrativeQA (Kočiský
et al., 2018) dataset, for example, has questions based on entire long documents like
books or movie scripts, while the Question Answering in Context (QuAC) dataset
(Choi et al., 2018) has 100K questions created by two crowd workers who are asking
and answering questions about a hidden Wikipedia text.
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Others take their structure from the fact that reading comprehension tasks de-
signed for children tend to be multiple choice, with the task being to choose among
the given answers. The MCTest dataset uses this structure, with 500 fictional short
stories created by crowd workers with questions and multiple choice answers (Richard-
son et al., 2013). The AI2 Reasoning Challenge (ARC) (Clark et al., 2018), has
questions that are designed to be hard to answer from simple lexical methods:

Which property of a mineral can be determined just by looking at it?
(A) luster [correct] (B) mass (C) weight (D) hardness

This ARC example is difficult because the correct answer luster is unlikely to cooc-
cur frequently on the web with phrases like looking at it, while the word mineral is
highly associated with the incorrect answer hardness.

Bibliographical and Historical Notes
Question answering was one of the earliest NLP tasks, and early versions of the text-
based and knowledge-based paradigms were developed by the very early 1960s. The
text-based algorithms generally relied on simple parsing of the question and of the
sentences in the document, and then looking for matches. This approach was used
very early on (Phillips, 1960) but perhaps the most complete early system, and one
that strikingly prefigures modern relation-based systems, was the Protosynthex sys-
tem of Simmons et al. (1964). Given a question, Protosynthex first formed a query
from the content words in the question, and then retrieved candidate answer sen-
tences in the document, ranked by their frequency-weighted term overlap with the
question. The query and each retrieved sentence were then parsed with dependency
parsers, and the sentence whose structure best matches the question structure se-
lected. Thus the question What do worms eat? would match worms eat grass: both
have the subject worms as a dependent of eat, in the version of dependency grammar
used at the time, while birds eat worms has birds as the subject:

What do worms eat Worms eat grass Birds eat worms

The alternative knowledge-based paradigm was implemented in the BASEBALL
system (Green et al., 1961). This system answered questions about baseball games
like “Where did the Red Sox play on July 7” by querying a structured database of
game information. The database was stored as a kind of attribute-value matrix with
values for attributes of each game:

Month = July

Place = Boston

Day = 7

Game Serial No. = 96

(Team = Red Sox, Score = 5)

(Team = Yankees, Score = 3)

Each question was constituency-parsed using the algorithm of Zellig Harris’s
TDAP project at the University of Pennsylvania, essentially a cascade of finite-
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state transducers (see the historical discussion in Joshi and Hopely 1999 and Kart-
tunen 1999). Then in a content analysis phase each word or phrase was associated
with a program that computed parts of its meaning. Thus the phrase ‘Where’ had
code to assign the semantics Place = ?, with the result that the question “Where
did the Red Sox play on July 7” was assigned the meaning

Place = ?

Team = Red Sox

Month = July

Day = 7

The question is then matched against the database to return the answer. Simmons
(1965) summarizes other early QA systems.

Another important progenitor of the knowledge-based paradigm for question-
answering is work that used predicate calculus as the meaning representation lan-
guage. The LUNAR system (Woods et al. 1972, Woods 1978) was designed to beLUNAR

a natural language interface to a database of chemical facts about lunar geology. It
could answer questions like Do any samples have greater than 13 percent aluminum
by parsing them into a logical form

(TEST (FOR SOME X16 / (SEQ SAMPLES) : T ; (CONTAIN’ X16
(NPR* X17 / (QUOTE AL203)) (GREATERTHAN 13 PCT))))

The rise of the web brought the information-retrieval paradigm for question an-
swering to the forefront with the TREC QA track beginning in 1999, leading to a
wide variety of factoid and non-factoid systems competing in annual evaluations.

At the same time, Hirschman et al. (1999) introduced the idea of using chil-
dren’s reading comprehension tests to evaluate machine text comprehension algo-
rithms. They acquired a corpus of 120 passages with 5 questions each designed for
3rd-6th grade children, built an answer extraction system, and measured how well
the answers given by their system corresponded to the answer key from the test’s
publisher. Their algorithm focused on word overlap as a feature; later algorithms
added named entity features and more complex similarity between the question and
the answer span (Riloff and Thelen 2000, Ng et al. 2000).

Neural reading comprehension systems drew on the insight of these early sys-
tems that answer finding should focus on question-passage similarity. Many of the
architectural outlines of modern systems were laid out in the AttentiveReader (Her-
mann et al., 2015). The idea of using passage-aligned question embeddings in the
passage computation was introduced by Lee et al. (2017). Seo et al. (2017) achieves
high performance by introducing bi-directional attention flow. Chen et al. (2017)
and Clark and Gardner (2018) show how to extract answers from entire documents.

The DeepQA component of the Watson system that won the Jeopardy! challenge
is described in a series of papers in volume 56 of the IBM Journal of Research and
Development; see for example Ferrucci (2012), Lally et al. (2012), Chu-Carroll et al.
(2012), Murdock et al. (2012b), Murdock et al. (2012a), Kalyanpur et al. (2012), and
Gondek et al. (2012).

Other question-answering tasks include Quiz Bowl, which has timing consid-
erations since the question can be interrupted (Boyd-Graber et al., 2018). Question
answering is also an important function of modern personal assistant dialog systems;
see Chapter 26 for more.
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Exercises



CHAPTER

26 Dialogue Systems and Chat-
bots

Les lois de la conversation sont en général de ne s’y appesantir sur aucun ob-
jet, mais de passer légèrement, sans effort et sans affectation, d’un sujet à un
autre ; de savoir y parler de choses frivoles comme de choses sérieuses

The rules of conversation are, in general, not to dwell on any one subject,
but to pass lightly from one to another without effort and without affectation;
to know how to speak about trivial topics as well as serious ones;

The 18th C. Encyclopedia of Diderot, start of the entry on conversation

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, there is something deeply moving about creating something and then
having a chat with it. Legend has it that after finishing his
sculpture Moses, Michelangelo thought it so lifelike that
he tapped it on the knee and commanded it to speak. Per-
haps this shouldn’t be surprising. Language is the mark
of humanity and sentience, and conversation or dialogueconversation

dialogue is the most fundamental and specially privileged arena
of language. It is the first kind of language we learn as
children, and for most of us, it is the kind of language
we most commonly indulge in, whether we are ordering
curry for lunch or buying spinach, participating in busi-
ness meetings or talking with our families, booking air-
line flights or complaining about the weather.

This chapter introduces the fundamental algorithms of conversational agents,conversational
agent

or dialogue systems. These programs communicate with users in natural languagedialogue system

(text, speech, or both), and fall into two classes. Task-oriented dialogue agents use
conversation with users to help complete tasks. Dialogue agents in digital assistants
(Siri, Alexa, Google Now/Home, Cortana, etc.), give directions, control appliances,
find restaurants, or make calls. Conversational agents can answer questions on cor-
porate websites, interface with robots, and even be used for social good: DoNotPay
is a “robot lawyer” that helps people challenge incorrect parking fines, apply for
emergency housing, or claim asylum if they are refugees. By contrast, chatbots
are systems designed for extended conversations, set up to mimic the unstructured
conversations or ‘chats’ characteristic of human-human interaction, mainly for en-
tertainment, but also for practical purposes like making task-oriented agents more
natural. In Section 26.2 we’ll discuss the three major chatbot architectures : rule-
based systems, information retrieval systems, and encoder-decoder models. In Sec-
tion 26.3 we turn to task-oriented agents, introducing the frame-based architecture
(the GUS architecture) that underlies most modern task-based systems.
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26.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 26.1.

C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight

115.
C7: OK.
A7: And you said returning on May 15th?
C8: Uh, yeah, at the end of the day.
A8: OK. There’s #two non-stops . . . #
C9: #Act. . . actually #, what day of the week is the 15th?
A9: It’s a Friday.
C10: Uh hmm. I would consider staying there an extra day til Sunday.
A10: OK. . . OK. On Sunday I have . . .
Figure 26.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A8 and C9 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (A1, B1, A2, and so on), each a single contributionturn

to the dialogue (as if in a game: I take a turn, then you take a turn, then me, and so
on). A turn can consist of a sentence (like C1), although it might be as short as a
single word (C7) or as long as multiple sentences (A5).

Turn structure has important implications for spoken dialogue. A system has to
know when to stop talking; the client interrupts (in A8 and C9), so the system must
know to stop talking (and that the user might be making a correction). A system also
has to know when to start talking. For example, most of the time in conversation,
speakers start their turns almost immediately after the other speaker finishes, without
a long pause, because people are able to (most of the time) detect when the other
person is about to finish talking. Spoken dialogue systems must also detect whether
a user is done speaking, so they can process the utterance and respond. This task—
called endpointing or endpoint detection— can be quite challenging because ofendpointing

noise and because people often pause in the middle of turns.
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Speech Acts

A key insight into conversation—due originally to the philosopher Wittgenstein
(1953) but worked out more fully by Austin (1962)—is that each utterance in a
dialogue is a kind of action being performed by the speaker. These actions are com-
monly called speech acts or dialog acts: here’s one taxonomy consisting of 4 majorspeech acts

classes (Bach and Harnish, 1979):

Constatives: committing the speaker to something’s being the case (answering, claiming,
confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, ask-
ing, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning,
vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regarding the hearer with respect to some so-
cial action (apologizing, greeting, thanking, accepting an acknowledgment)

A user asking a person or a dialogue system to do something (‘Turn up the
music’) is issuing a DIRECTIVE. Asking a question that requires an answer is also
a way of issuing a DIRECTIVE: in a sense when the system says (C2) “what day in
May did you want to travel?” it’s as if the system is (very politely) commanding
the system to answer. By contrast, a user stating a constraint (like C1 ‘I need to
travel in May’) is issuing a CONSTATIVE. A user thanking the system is issuing
an ACKNOWLEDGMENT. The speech act expresses an important component of the
intention of the speaker (or writer) in saying what they said.

Grounding

A dialogue is not just a series of independent speech acts, but rather a collective act
performed by the speaker and the hearer. Like all collective acts, it’s important for
the participants to establish what they both agree on, called the common groundcommon

ground
(Stalnaker, 1978). Speakers do this by grounding each other’s utterances. Ground-grounding

ing means acknowledging that the hearer has understood the speaker; like an ACK
used to confirm receipt in data communications (Clark, 1996). (People need ground-
ing for non-linguistic actions as well; the reason an elevator button lights up when
it’s pressed is to acknowledge that the elevator has indeed been called (Norman,
1988).)

Humans constantly ground each other’s utterances. We can ground by explicitly
saying “OK”, as the agent does in A8 or A10. Or we can ground by repeating what
the other person says; in utterance A1 the agent repeats “in May”, demonstrating her
understanding to the client. Or notice that when the client answers a question, the
agent begins the next question with “And”. The “And” implies that the new question
is ‘in addition’ to the old question, again indicating to the client that the agent has
successfully understood the answer to the last question.

Subdialogues and Dialogue Structure

Conversations have structure. Consider, for example, the local structure between
speech acts discussed in the field of conversational analysis (Sacks et al., 1974).conversational

analysis
QUESTIONS set up an expectation for an ANSWER. PROPOSALS are followed by
ACCEPTANCE (or REJECTION). COMPLIMENTS (“Nice jacket!”) often give rise to
DOWNPLAYERS (“Oh, this old thing?”). These pairs, called adjacency pairs areadjacency pair

composed of a first pair part and a second pair part (Schegloff, 1968), and these
expectations can help systems decide what actions to take.
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However, dialogue acts aren’t always followed immediately by their second pair
part. The two parts can be separated by a side sequence (Jefferson 1972) or sub-side sequence

dialogue. For example utterances C9 to A10 constitute a correction subdialoguesubdialogue

(Litman 1985, Litman and Allen 1987, Chu-Carroll and Carberry 1998):

C9: #Act. . . actually#, what day of the week is the 15th?
A9: It’s a Friday.
C10: Uh hmm. I would consider staying there an extra day til Sunday.
A10: OK. . . OK. On Sunday I have . . .

The question in C9 interrupts the prior discourse, in which the agent was looking
for a May 15 return flight. The agent must answer the question and also realize that
‘’I would consider staying...til Sunday” means that the client would probably like to
change their plan, and now go back to finding return flights, but for the 17th.

Another side sequence is the clarification question, which can form a subdia-
logue between a REQUEST and a RESPONSE. This is especially common in dialogue
systems where speech recognition errors causes the system to have to ask for clari-
fications or repetitions like the following:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Let’s see, going where on the 5th?
User: Going to Hong Kong.

System: OK, here are some flights...

In addition to side-sequences, questions often have presequences, like the fol-presequence

lowing example where a user starts with a question about the system’s capabilities
(“Can you make train reservations”) before making a request.

User: Can you make train reservations?
System: Yes I can.
User: Great, I’d like to reserve a seat on the 4pm train to New York.

Initiative

Sometimes a conversation is completely controlled by one participant. For example
a reporter interviewing a chef might ask questions, and the chef responds. We say
that the reporter in this case has the conversational initiative (Walker and Whittaker,initiative

1990). In normal human-human dialogue, however, it’s more common for initiative
to shift back and forth between the participants, as they sometimes answer questions,
sometimes ask them, sometimes take the conversations in new directions, sometimes
not. You may ask me a question, and then I respond asking you to clarify something
you said, which leads the conversation in all sorts of ways. We call such interactions
mixed initiative.

Mixed initiative, while the norm for human-human conversations, is very diffi-
cult for dialogue systems to achieve. It’s much easier to design dialogue systems to
be passive responders. In the question answering systems we saw in Chapter 25, or
in simple search engines, the initiative lies completely with the user. In such user-
initiative systems, the user specifies a query, and the systems responds. Then the
user can specify another query. Alternatively, you may have had the experience of
being stuck in a bad dialogue system that asks a question and gives you no opportu-
nity to do anything until you answer it. Such system-initiative architectures can be
very frustrating.
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Inference and Implicature

Inference is also important in dialogue understanding. Consider the client’s response
C2, repeated here:

A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the agent’s question. The client
merely mentions a meeting at a certain time. What is it that licenses the agent to
infer that the client is mentioning this meeting so as to inform the agent of the travel
dates?

The speaker seems to expect the hearer to draw certain inferences; in other
words, the speaker is communicating more information than seems to be present
in the uttered words. This kind of example was pointed out by Grice (1975, 1978)
as part of his theory of conversational implicature. Implicature means a particu-implicature

lar class of licensed inferences. Grice proposed that what enables hearers to draw
these inferences is that conversation is guided by a set of maxims, general heuristics
that play a guiding role in the interpretation of conversational utterances. One such
maxim is the maxim of relevance which says that speakers attempt to be relevant,relevance

they don’t just utter random speech acts. When the client mentions a meeting on the
12th, the agent reasons ‘There must be some relevance for mentioning this meeting.
What could it be?’. The agent knows that one precondition for having a meeting
(at least before Web conferencing) is being at the place where the meeting is held,
and therefore that maybe the meeting is a reason for the travel, and if so, then since
people like to arrive the day before a meeting, the agent should infer that the flight
should be on the 11th.

These subtle characteristics of human conversations (turns, speech acts, ground-
ing, dialogue structure, initiative, and implicature) are among the reasons it is dif-
ficult to build dialogue systems that can carry on natural conversations with humans.
Many of these challenges are active areas of dialogue systems research.

26.2 Chatbots

The simplest kinds of dialogue systems are chatbots, systems that can carry onchatbot

extended conversations with the goal of mimicking the unstructured conversations
or ‘chats’ characteristic of informal human-human interaction.

These systems often have an entertainment value, such as Cleverbot, a simple IR-
based chatbot capable of carrying on the kinds of conversations shown in Fig. 26.2,
or Microsoft’s XiaoIce system1 (Zhou et al., 2018), a more sophisticated commercial
system that chats with people on text messaging platforms (Fig. 26.3). Yet starting
from the very first system, ELIZA (Weizenbaum, 1966), chatbots have also been
used for practical purposes, such as testing theories of psychological counseling.

Like practically everything else in language processing, chatbot architectures
fall into two classes: rule-based systems and corpus-based systems. Rule-based
systems include the early influential ELIZA and PARRY systems. Corpus-based
systems mine large datasets of human-human conversations, which can be done by
using information retrieval (IR-based systems simply copy a human’s response from

1 XiaoIce is a somewhat confusing translation of the systems Chinese name小冰, ‘Xiao Bing’, which
means Little Bing or Little Ice.
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User: Do you like Doctor Who?
Cleverbot: Yes, so funny.
User: What’s your favorite show?
Cleverbot: I don’t have one.
User: What’s your name?
Cleverbot: Jason I already told you.
User: No your real name.
Cleverbot: Stephanie IS my real name.
User: I thought it was Jason?
Cleverbot: How did you come to that conclusion.
User: Because you said so.
Cleverbot: I have to do my homework.
Figure 26.2 Chatbots: A conversation between a user and Cleverbot, an IR-based chatbot
(Carpenter, 2017).

［人类］ 小冰你好 [Human] Hello, XiaoIce.
［小冰］ 你好呀，你头像好有趣，感觉

在哪见过
[XiaoIce] Hello, your profile pic is interesting.

Like I’ve seen it somewhere.
［人类］ 是吗 [Human] Really?
［小冰］ 提不是哪部动画里的呀 [XiaoIce] Is it a comic character?
［人类］ 你怎么知道的 [Human] How do you know that?
［小冰］ 你猜 [XiaoIce] Guess.
［人类］ 难道你是真人吗？ [Human] Are you human?
［小冰］ 这个，你和我多聊聊就知道了 [XiaoIce] Well, you’ll know it after chatting with

me more.
［人类］ 你不是人工智能机器人么 [Human] Aren’t you an Al chatbot?
［小冰］ 是又怎样，我不会冷冰冰的对

待你的
[XiaoIce] So what? I won’t be indifferent to you.

［人类］ 你都有什么功能啊 [Human] What functions do you have?
［小冰］ 我有200多个skills，来，说出

你的需求
[XiaoIce] I have over 200 skills. Just name one

you need.
Figure 26.3 A sample Chinese conversation from the XiaoIce chatbot, together with translation from Zhou
et al. (2018).

a previous conversation) or by using a machine translation paradigm such as neural
network sequence-to-sequence systems, to learn to map from a user utterance to a
system response.

26.2.1 Rule-based chatbots: ELIZA and PARRY
ELIZA (Weizenbaum, 1966) is the most important chatbot dialogue system in the
history of the field, and so we take some time here to describe its algorithm in de-
tail. ELIZA was designed to simulate a Rogerian psychologist, based on a branch
of clinical psychology whose methods involve drawing the patient out by reflecting
patient’s statements back at them. Rogerian psychology is the rare type of conver-
sation in which, as Weizenbaum points out, one can “assume the pose of knowing
almost nothing of the real world”. If a patient says “I went for a long boat ride” and
the psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what
a boat is, but rather assume she had some conversational goal. Most chatbots trying
to pass the Turing test choose a domain with similar properties.

Fig. 26.4 shows the most famous ELIZA conversation, in which ELIZA seems
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Men are all alike.
IN WHAT WAY
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
....
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

Figure 26.4 Sample ELIZA dialogue from Weizenbaum (1966).

to simulate giving very sophisticated therapeutic advice, excerpted (deleting some
material with ...) from a full interaction given in the original paper (Weizenbaum,
1966).

As we summarized briefly in Chapter 2, ELIZA worked by pattern/transform
rules like the following one:

(0 YOU 0 ME) [pattern]

->

(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer

You hate me

into:

WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence. The architecture is summarized in Fig. 26.5.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:
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function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response←Apply the transform in r to sentence
if w = ‘my’

future←Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response←Apply the transform for the NONE keyword to sentence
or

response←Pop the top response from the memory stack
return(response)

Figure 26.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm
comes from the particular transforms associated with each keyword.

I know everybody laughed at me

Because it has the word “I”, this sentence could match the following rule whose
keyword is I:

(I *) -> (You say you 2)

producing:

YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

But as Weizenbaum points out, “I” is a very general word and its keywords lead
to very general responses. Instead the keyword “everybody” is much more interest-
ing, since someone using universals like everybody or always is probably “referring
to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning ”everybody” rank 5 and ”I” rank 0 in the lexicon), whose rule thus
transforms the sentence to:

WHO IN PARTICULAR ARE YOU THINKING OF?

If no keyword matches, ELIZA chooses a non-commital response like “PLEASE
GO ON”, “THAT’S VERY INTERESTING”, or “I SEE”.

Finally, ELIZA has a clever memory trick that accounts for the very last sen-
tence of the conversation above. Whenever the word “my” is the highest ranked
keyword, ELIZA will randomly select a transform on the MEMORY list, apply it to
the sentence, and store it on the stack:

(MEMORY MY

(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

(0 MY 0 = EARLIER YOU SAID YOUR 3)

(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3

Later, if no keyword matches a sentence, ELIZA will return the top of the MEM-
ORY queue instead. 2

2 Fun fact: because of its structure as a queue, this MEMORY trick is the earliest known hierarchical
model of discourse in natural language processing.
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People became deeply emotionally involved with the program. Weizenbaum
tells the story of one of his staff who would ask Weizenbaum to leave the room
when she talked with ELIZA. When Weizenbaum suggested that he might want to
store all the ELIZA conversations for later analysis, people immediately pointed
out the privacy implications, which suggested that they were having quite private
conversations with ELIZA, despite knowing that it was just software.

ELIZA’s framework is still used today; modern chatbot system tools like ALICE
are based on updated versions of ELIZA’s pattern/action architecture.

A few years after ELIZA, another chatbot with a clinical psychology focus,
PARRY (Colby et al., 1971), was used to study schizophrenia. In addition to ELIZA-
like regular expressions, the PARRY system included a model of its own mental
state, with affect variables for the agent’s levels of fear and anger; certain topics of
conversation might lead PARRY to become more angry or mistrustful. If PARRY’s
anger variable is high, he will choose from a set of “hostile” outputs. If the input
mentions his delusion topic, he will increase the value of his fear variable and then
begin to express the sequence of statements related to his delusion. Parry was the
first known system to pass the Turing test (in 1972!); psychiatrists couldn’t distin-
guish text transcripts of interviews with PARRY from transcripts of interviews with
real paranoids (Colby et al., 1972).

26.2.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations, (or sometimes mine the human sides of human-machine
conversations).

These systems are enormously data-intensive; Serban et al. (2018) estimate that
training modern chatbots require hundreds of millions or even billions of words.
Many such corpora have been used, including large spoken conversational corpora
like the Switchboard corpus of American English telephone conversations (God-
frey et al., 1992) or the various CALLHOME and CALLFRIEND telephone con-
versational corpora in many languages. Many systems also train on movie dialogue,
which is available in great quantities in various corpora (Lison and Tiedemann, 2016,
inter alia), and which resembles natural conversation in many ways (Forchini, 2013).
Text from microblogging sites like Twitter (Ritter et al., 2010) or a Weibo (微博)
have also been used, or datasets of crowdworker conversations like Topical-Chat
(Gopalakrishnan et al., 2019). Many corpora also focus on specific topics, and can
be used for topical chatbots. See Serban et al. (2018) for a comprehensive summary
of available corpora. Another common technique is to extract possible responses
from non-dialogue corpora, so that a chatbot can tell stories or mention facts ac-
quired in that way.

Finally, once a chatbot has been put into practice, the turns that humans use to
respond to the chatbot can be used as additional conversational data for training.
The XiaoIce system collects and stores all human-machine conversations between
XiaoIce and its users, resulting in a a dataset of over 30 billion conversation pairs.
It’s crucial in these cases to remove personally identifiable information (PII); see
Section 26.6.1.

The two main architectures for corpus-based chatbots: information retrieval, and
machine learned sequence transduction. Like rule-based chatbots (but unlike frame-
based dialogue systems), most corpus-based chatbots do very little modeling of the
conversational context. Instead they tend to focus on generating a single response
turn that is appropriate given the user’s immediately previous utterance or two. For
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this reason they are often called response generation systems. Corpus-based chat-response
generation

bots thus have some similarity to question answering systems, which focus on single
responses while ignoring context or larger conversational goals.

IR-based chatbots

The principle behind information retrieval based chatbots is to respond to a user’s
turn X by repeating some appropriate turn Y from a corpus of natural (human) text
of the sort described in the prior section.

Given the corpus and the user’s sentence, IR-based systems can use any retrieval
algorithm to choose an appropriate response from the corpus. The two simplest
methods are the following:
1. Return the response to the most similar turn: Given user query q and a con-
versational corpus C, find the turn t in C that is most similar to q (for example has
the highest cosine with q) and return the following turn, i.e. the human response to t
in C:

r = response
(

argmax
t∈C

qT t
||q||t||

)
(26.1)

The idea is that we should look for a turn that most resembles the user’s turn, and re-
turn the human response to that turn (Jafarpour et al. 2009, Leuski and Traum 2011).
2. Return the most similar turn: Given user query q and a conversational corpus
C, return the turn t in C that is most similar to q (for example has the highest cosine
with q):

r = argmax
t∈C

qT t
||q||t|| (26.2)

The idea here is to directly match the users query q with turns from C, since a good
response will often share words or semantics with the prior turn.

In each case, any similarity function can be used, such as cosines computed
either over words (weighted by tf-idf) or more commonly now, cosines over any
kind of sentence embeddings.

Although returning the response to the most similar turn seems like a more in-
tuitive algorithm, returning the most similar turn seems to work better in practice,
perhaps because selecting the response adds another layer of indirection that can
allow for more noise (Ritter et al. 2011, Wang et al. 2013).

The IR-based approach can be extended by using more features than just the
words in the q. For example using the entire conversation with the user so far
can be quite helpful when the user’s query is short (like “Yes” or “OK”). Infor-
mation about the user or sentiment or other information can also play a role. The
IR-based approach can even draw responses from narrative (non-dialogue) text. The
COBOT chatbot (Isbell et al., 2000) pioneered this approach, generating responses
by selecting sentences from a corpus that combined the Unabomber Manifesto by
Theodore Kaczynski, articles on alien abduction, the scripts of “The Big Lebowski”
and “Planet of the Apes”. Chatbots that want to generate informative turns such as
answers to user questions can use texts like Wikipedia to draw on sentences that
might contain those answers (Yan et al., 2016). XiaoIce similarly collects sentences
from public lectures and news articles and searches them using IR based on query
expansion from the user’s turn to respond to turns like “Tell me something about
Beijing” (Zhou et al., 2018).

Encoder decoder chatbots
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“What ho!” I said.
“What ho!” said Motty.
“What ho! What ho!”
“What ho! What ho! What ho!”
After that it seemed rather difficult to go on with the conversation.”

Wodehouse My Man Jeeves

An alternate way to use a corpus to generate dialogue is to think of response
generation as a task of transducing from the user’s prior turn to the system’s turn.
This is basically the machine learning version of Eliza; the system learns from a
corpus to transduce a question to an answer.

This idea was first developed by using phrase-based machine translation (Ritter
et al., 2011) to translate a user turn to a system response. It quickly became clear,
however, that the task of response generation was too different from machine trans-
lation. In machine translation, words or phrases in the source and target sentences
tend to align well with each other, but in conversation, a user utterance may share no
words or phrases with a coherent response.

Instead, (roughly contemporaneously by Shang et al. 2015, Vinyals and Le 2015,
and Sordoni et al. 2015) transduction models for response generation were modeled
instead using encoder-decoder models (Chapter 11), as shown in Fig. 26.6.

How are you ?

I’m fine . EOS

Encoding Decoding

EOS I’m fine .

Figure 26.6 An encoder decoder model for neural response generation in dialogue.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder
models have a tendency to produce predictable but repetitive and therefore dull re-
sponses like “I’m OK” or “I don’t know” that shut down the conversation. This
can be addressed by changing the objective function for seq2seq model training to a
mutual information objective, or by modifying a beam decoder to keep more diverse
responses in the beam (Li et al., 2016).

Another problem with simple encoder-decoder response generation architecture
is its inability to model the longer prior context of the conversation. This can be
done by allowing the model to see prior turns, such as by using a hierarchical model
that summarizes information over multiple prior turns (Lowe et al., 2017b).

Finally, encoder-decoder response generators focus on generating single responses,
and so don’t tend to do a good job of continuously generating responses that cohere
across multiple turns. This can be addressed by using reinforcement learning, as
well as techniques like adversarial networks, to learn to choose responses that make
the overall conversation more natural (Li et al. 2016, Li et al. 2017).

Fig. 26.7 shows some sample responses generated by a vanilla SEQ2SEQ model,
and from a model trained by an adversarial algorithm to produce responses that are
harder to distinguish from human responses (Li et al., 2017).
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Input tell me ... how long have you had this falling sickness ?
Vanilla-SEQ2SEQ i’m not a doctor.
Adversarial a few months, i guess .

Input so i had the doctors test sammy ’s response to conditioning .
Vanilla-SEQ2SEQ sammy wrote the test sammy wrote the test .
Adversarial so he took the pills .

Input they didn ’t have much success with this problem commander .
Vanilla-SEQ2SEQ they ’re not the only ones who have been in the system .
Adversarial can we find someone else ?

Figure 26.7 Sample responses generated by a SEQ2SEQ model trained either with a vanilla
maximum likelihood objective, or adversarially trained to produce sentences that are hard for
an adversary to distinguish from human sentences (Li et al., 2017).

Evaluating Chatbots

Chatbots are generally evaluated by humans. The slot-filling evaluations used for
task-based dialogue (Section 26.5) aren’t appropriate for this task (Artstein et al.,
2009), and word-overlap metrics like BLEU for comparing a chatbot’s response to a
human response turn out to correlate very poorly with human judgments (Liu et al.,
2016). BLEU performs poorly because there are so many possible responses to any
given turn; word-overlap metrics work best when the space of responses is small and
lexically overlapping, as is the case in machine translation.

While human evaluation is therefore required for evaluating chatbots, there are
beginning to be models for automatic evaluation. The ADEM (Lowe et al., 2017a)
classifier is trained on a set of responses labeled by humans with how appropriate
they are, and learns to predict this label from the dialogue context and the words in
the system response.

Another paradigm is adversarial evaluation (Bowman et al. 2016, Kannan andadversarial
evaluation

Vinyals 2016, Li et al. 2017), inspired by the Turing test. The idea is to train a
“Turing-like” evaluator classifier to distinguish between human-generated responses
and machine-generated responses. The more successful a response generation sys-
tem is at fooling this evaluator, the better the system.

26.3 GUS: Simple Frame-based Dialogue Systems

We turn now to task-based dialogue, in which a dialogue system has the goal of
helping a user solve some task like making an airplane reservation or buying a prod-
uct. In this section we introduce the very simple GUS architecture for task-basedGUS

dialogue. Although it is quite old, (it was first introduced in 1977 in the influen-
tial GUS system for travel planning (Bobrow et al., 1977)) the GUS architecture
has been astonishingly long-lived and underlies most if not all modern commercial
digital assistants. Figure 26.8 shows a conversation with the original GUS system.

All modern task-based dialogue systems, whether the simple GUS architecture
we describe here, or the more sophisticated dialogue state architectures we turn todialogue state

in the following section, are based around frames. A frame is a kind of knowledgeframe

structure representing the kinds of intentions the system can extract from user sen-
tences, and consists of a collection of slots, each of which can take a set of possibleslot

values. Together this set of frames is sometimes called a domain ontology.
The set of slots in a task-based dialogue frame specifies what the system needs

to know, and the filler of each slot is constrained to values of a particular semantic
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GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 26.8 The travel domain: A transcript of an actual dialogue with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

type. In the travel domain, for example, a slot might be of type city (hence take on
values like San Francisco, or Hong Kong) or of type date, airline, or time.

Slot Type Question Template
ORIGIN CITY city “From what city are you leaving?”
DESTINATION CITY city “Where are you going?”
DEPARTURE TIME time “When would you like to leave?”
DEPARTURE DATE date “What day would you like to leave?”
ARRIVAL TIME time “When do you want to arrive?”
ARRIVAL DATE date “What day would you like to arrive?”
Figure 26.9 A frame in a frame-based dialogue system, showing the type of each slot and
a question used to fill the slot.

Types in GUS, as in modern frame-based dialogue agents, have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE

MONTH:NAME YEAR:INTEGER DAY:(BOUNDED-INTEGER 1 31)

WEEKDAY:(MEMBER (Sunday Monday Tuesday Wednesday

Thursday Friday Saturday))

26.3.1 Control structure for frame-based dialogue
The control architecture for frame-based dialogue systems, used in various forms
in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, is
designed around the frame. The system’s goal is to fill the slots in the frame with the
fillers the user intends, and then perform the relevant action for the user (answering
a question, or booking a flight).

To do this, the system asks questions of the user (using pre-specified question
templates associated with each slot of each frame, as shown in Fig. 26.9), filling any
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slot that the user specifies (we’ll describe how slot-filling works in the next section).
If a user’s response fills multiple slots, like the following:

(26.3) I want a flight from San Francisco to Denver one way leaving after five
p.m. on Tuesday.

the system fills all the relevant slots, and then continues asking questions to fill the
remaining slots, skipping questions associated with filled slots. The GUS architec-
ture also has condition-action rules attached to slots. For example, a rule attached
to the DESTINATION slot for the plane booking frame, once the user has specified
the destination, might automatically enter that city as the default StayLocation for
the related hotel booking frame. Or if the user specifies the DESTINATION DAY for
a short trip the system could automatically enter the ARRIVAL DAY.

Many domains require multiple frames. Besides frames for car or hotel reserva-
tions, we might need frames with general route information (for questions like Which
airlines fly from Boston to San Francisco?), or information about airfare practices
(for questions like Do I have to stay a specific number of days to get a decent air-
fare?). The system must be able to disambiguate which slot of which frame a given
input is supposed to fill and then switch dialogue control to that frame.

Because of this need to dynamically switch control, the GUS architecture is a
production rule system. Different types of inputs cause different productions to
fire, each of which can flexibly fill in different frames. The production rules can
then switch control according to factors such as the user’s input and some simple
dialogue history like the last question that the system asked.

Once the system has enough information it performs the necessary action (like
querying a database of flights) and returns the result to the user.

26.3.2 Natural language understanding for filling slots in GUS
The goal of the natural language understanding component in the frame-based archi-
tecture is to extract three things from the user’s utterance. The first task is domain
classification: is this user for example talking about airlines, programming an alarm
clock, or dealing with their calendar? Of course this 1-of-n classification tasks is
unnecessary for single-domain systems that are focused on, say, only calendar man-
agement, but multi-domain dialogue systems are the modern standard. The second
is user intent determination: what general task or goal is the user trying to accom-intent

determination
plish? For example the task could be to Find a Movie, or Show a Flight, or Remove
a Calendar Appointment. Finally, we need to do slot filling: extract the particularslot filling

slots and fillers that the user intends the system to understand from their utterance
with respect to their intent. From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL

INTENT: SHOW-FLIGHTS

ORIGIN-CITY: Boston

ORIGIN-DATE: Tuesday

ORIGIN-TIME: morning

DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6
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should give an intent like this:

DOMAIN: ALARM-CLOCK

INTENT: SET-ALARM

TIME: 2017-07-01 0600-0800

The slot-filling method used in the original GUS system, and still quite common
in industrial applications, is to use handwritten rules, often as part of the condition-
action rules attached to slots or concepts. For example we might just define a regular
expression for recognizing the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

Rule-based research systems like the Phoenix system (Ward and Issar, 1994)
consist of large hand-designed semantic grammars with thousands of rules. Asemantic

grammar
semantic grammar is a context-free grammar in which the left-hand side of each
rule corresponds to the semantic entities being expressed (i.e., the slot names) as in
the following fragment:

SHOW → show me | i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR |

morning | afternoon | evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston | San Francisco | Denver |Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chap-
ter 13), resulting in a hierarchical labeling of the input string with semantic node
labels, as shown in Fig. 26.10.

S

DEPARTTIME

morning

DEPARTDATE

Tuesdayon

DESTINATION

FranciscoSanto

ORIGIN

Bostonfrom

FLIGHTS

flights

SHOW

meShow

Figure 26.10 A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

It remains only to put the fillers into some sort of canonical form, for example
by normalizing dates as discussed in Chapter 18.

Many industrial dialogue systems employ the GUS architecture but use super-
vised machine learning for slot-filling instead of these kinds of rules; see Sec-
tion 26.4.2.

26.3.3 Other components of frame-based dialogue
The ASR (automatic speech recognition) component takes audio input from a phone
or other device and outputs a transcribed string of words, as discussed in Chapter 28.
The ASR component can also be made dependent on the dialogue state. For exam-
ple, if the system has just asked the user “What city are you departing from?”, the
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ASR language model component can be constrained to assign high probability to
answers with city names. This can be done by training a language model on an-
swers to this question, or by hand-writing finite-state or context-free grammars for
such sentences. A language model that is completely dependent on dialogue state is
called a restrictive grammar; usually real systems mix restrictive grammars withrestrictive

grammar
more general language models.

The natural language generation module of any dialogue system produces
the utterances that the system says to the user. Frame-based systems tend to use
template-based generation, in which all or most of the words in the sentence totemplate-based

generation
be uttered to the user are prespecified by the dialogue designer. Sentences created
by these templates are often called prompts. Templates might be completely fixedprompt

(like ‘Hello, how can I help you?’), or can include some variables that are filled in
by the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

It’s possible to do some simple grounding even in templated generation. Con-
sider the unnaturalness of this example from Cohen et al. (2004):

(26.4) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Without an acknowledgment, the caller doesn’t know that the system has under-
stood her ‘No’. The use of Okay below adds grounding to the templated response
What’s next?, making (26.5) a much more natural response than (26.4):

(26.5) System: Did you want to review some more of your personal profile?
Caller: No.
System: Okay, what’s next?

The rule-based GUS approach is very common in industrial applications. As was
true with the rule-based approach to information extraction, it has the advantage of
high precision, and if the domain is narrow enough and experts are available, can
provide sufficient coverage as well. On the other hand, the handwritten rules or
grammars can be both expensive and slow to create, and handwritten rules can suffer
from recall problems.

26.4 The Dialogue-State Architecture

Modern research systems for task-based dialogue are based on a more sophisticated
version of the frame-based architecture called the dialogue-state or belief-state ar-
chitecture. Figure 26.11 shows the six components of a typical dialogue-state sys-
tem. The speech recognition and synthesis components deal with spoken language
processing; we’ll return to them in Chapter 28.

For the rest of this chapter we therefore consider the other four components,
which are part of both spoken and textual dialogue systems. These four components
are more complex than in the simple GUS systems. For example, like the GUS
systems, the dialogue-state architecture has an NLU component to extract slot fillers
from the user’s utterance, but generally using machine learning rather than rules. The
dialogue state tracker maintains the current state of the dialogue (which include the
user’s most recent dialogue act, plus the entire set of slot-filler constraints the user
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DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6

0.2

0.1

{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.10

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.15

from:        downtown
to:          airport
depart-time: --
confirmed:   no
score:       0.65

Automatic Speech 
Recognition (ASR)

Spoken Language 
Understanding (SLU)

Dialog State 
Tracker (DST)

Dialog Policy

act:  confirm
from: downtown

FROM DOWNTOWN, 
IS THAT RIGHT?

Natural Language 
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

Figure 26.11 Architecture of a dialogue-state system for task-oriented dialogue from Williams et al. (2016).

has expressed so far). The dialogue policy decides what the system should do or say
next. The dialogue policy in GUS was simple: ask questions until the frame was full
and then report back the results of some database query. But a more sophisticated
dialogue policy can help a system decide when to answer the user’s questions, when
to instead ask the user a clarification question, when to make a suggestion, and so on.
Finally, dialogue state systems have a natural language generation component. In
GUS, the sentences that the generator produced were all from pre-written templates.
But a more sophisticated generation component can condition on the exact context
to produce turns that seem much more natural.

As of the time of this writing, most commercial system are architectural hybrids,
based on GUS architecture augmented with some dialogue-state components, but
there are a wide variety of dialogue-state systems being developed in research labs.

26.4.1 Dialogue Acts

Dialogue-state systems make use of dialogue acts. Dialogue acts represent the in-dialogue acts

teractive function of the turn or sentence, combining the idea of speech acts and
grounding into a single representation. Different types of dialogue systems require
labeling different kinds of acts, and so the tagset—defining what a dialogue act is
exactly— tends to be designed for particular tasks.

Figure 26.12 shows a tagset for a restaurant recommendation system, and Fig. 26.13
shows these tags labeling a sample dialogue from the HIS system (Young et al.,
2010). This example also shows the content of each dialogue acts, which are the slot
fillers being communicated. So the user might INFORM the system that they want
Italian food near a museum, or CONFIRM with the system that the price is reasonable.
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Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) χ X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X χ Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X χ Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) χ X Negate and give corrected value a = x
DENY(a = x) χ X Deny that a = x
BYE() X X Close a dialogue

Figure 26.12 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)

S: You are looking for a restaurant. What
type of food do you like?

confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,

food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)

S: Yes, Roma is in the moderate price
range.

affirm(name = "Roma", pricerange =

moderate)

U: What is the phone number? request(phone)

S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")

U: Ok, thank you goodbye. bye()
Figure 26.13 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 26.12.

26.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 17, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:

I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of IOB labels:IOB

O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O

I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 18 that in IOB tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.



26.4 • THE DIALOGUE-STATE ARCHITECTURE 505

Fig. 26.14 shows the architecture. The input is a series of words w1...wn, which
is passed through a contextual embedding model to get contextual word representa-
tions. This is followed by a feedforward layer and a softmax at each token position
over possible IOB tags, with the output is a series of IOB tags s1...sn. We can also
combine the domain-classification and intent-extraction tasks with slot-filling sim-
ply by adding a domain concatenated with an intent as the desired output for the
final EOS token.

San Francisco on Monday

Contextual
Embeddings

Classifier

B-DES I-DES O B-DTIMEOutput

…

d+i

<EOS>

softmax

Figure 26.14 A simple architecture for slot filling, mapping the words in the input through
contextual embeddings like BERT to an output classifier layer (which can be linear or some-
thing more complex), followed by softmax to generate a series of IOB tags (and including a
final state consisting of a domain concatenated with an intent).

Once the sequence labeler has tagged the user utterance, a filler string can be
extracted for each slot from the tags (e.g., “San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport code
‘SFO’). This normalization can take place by using homonym dictionaries (specify-
ing, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are of-
ten bootstrapped from GUS-style rule-based systems in a semi-supervised learning
manner. A rule-based system is first built for the domain, and a test-set is carefully
labeled. As new user utterances come in, they are paired with the labeling provided
by the rule-based system to create training tuples. A classifier can then be trained
on these tuples, using the test-set to test the performance of the classifier against
the rule-based system. Some heuristics can be used to eliminate errorful training
tuples, with the goal of increasing precision. As sufficient training samples become
available the resulting classifier can often outperform the original rule-based system
(Suendermann et al., 2009), although rule-based systems may still remain higher-
precision for dealing with complex cases like negation.

26.4.3 Dialogue State Tracking

The job of the dialogue-state tracker is to determine both the current state of the
frame (the fillers of each slot), as well as the user’s most recent dialogue act. The
dialogue-state thus includes more than just the slot-fillers expressed in the current
sentence; it includes the entire state of the frame at this point, summarizing all of
the user’s constraints. The following example from Mrkšić et al. (2017) shows the
required output of the dialogue state tracker after each turn:
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User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

Since dialogue acts place some constraints on the slots and values, the tasks of
dialogue-act detection and slot-filling are often performed jointly. Consider the task
of determining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission).

Dialogue act interpretation—in this example choosing inform from the set of
dialogue acts for this task—is done by supervised classification trained on hand-
labeled dialog acts, predicting the dialogue act tag based on embeddings represent-
ing the current input sentence and the prior dialogue acts.

The simplest dialogue state tracker might just take the output of a slot-filling
sequence-model (Section 26.4.2) after each sentence. Alternatively, a more complex
model can make use of the reading-comprehension architectures from Chapter 25.
For example the model of Gao et al. (2019) trains a classifier for each slot to decide
whether its value is being changed in the current sentence or should be carried over
from the previous sentences. If the slot value is being changed, a span-prediction
model is used to predict the start and end of the span with the slot filler.

A special case: detecting correction acts

Some dialogue acts are important because of their implications for dialogue control.
If a dialogue system misrecognizes or misunderstands an utterance, the user will
generally correct the error by repeating or reformulating the utterance. Detecting
these user correction acts is therefore quite important. Ironically, it turns out thatuser correction

acts
corrections are actually harder to recognize than normal sentences! In fact, correc-
tions in one early dialogue system (the TOOT system) had double the ASR word
error rate of non-corrections (Swerts et al., 2000)! One reason for this is that speak-
ers sometimes use a specific prosodic style for corrections called hyperarticulation,hyperarticula-

tion
in which the utterance contains exaggerated energy, duration, or F0 contours, such
as I said BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg
et al. 2001). Even when they are not hyperarticulating, users who are frustrated
seem to speak in a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance. (Swerts et al., 2000). Detect-
ing these reformulations or correction acts can be part of the general dialogue act
detection classifier. Alternatively, because the cues to these acts tend to appear in
different ways than for simple acts (like INFORM or request, we can make use of
features orthogonal to simple contextual embedding features; some typical features
are shown below (Levow 1998, Litman et al. 1999, Hirschberg et al. 2001, Bulyko
et al. 2005, Awadallah et al. 2015):
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features examples
lexical words like “no”, “correction”, “I don’t”, or even swear words, utterance length
semantic similarity (word overlap or embedding cosine) between the candidate correc-

tion act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

26.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai∈A

P(Ai|(A1,U1, ...,Ai−1,Ui−1) (26.6)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai∈A

P(Ai|Framei−1,Ai−1,Ui−1) (26.7)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE
sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s
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input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation questions:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.
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In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

It is common to use rich features other than just the dialogue state representa-
tion to make policy decisions. For example, the confidence that the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sen-
tences. As we’ll see in page ??, confidence is a metric that the speech recognizer
can assign to its transcription of a sentence to indicate how confident it is in that
transcription. Confidence is often computed from the acoustic log-likelihood of the
utterance (greater probability means higher confidence), but prosodic features can
also be used in confidence prediction. For example, utterances with large F0 ex-
cursions or longer durations, or those preceded by longer pauses, are likely to be
misrecognized (Litman et al., 2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds α , β , and γ:

< α low confidence reject
≥ α above the threshold confirm explicitly
≥ β high confidence confirm implictly
≥ γ very high confidence don’t confirm at all

26.4.5 Natural language generation in the dialogue-state model
Finally, once the policy has decided what speech act to generate, the natural language
generation component needs to generate the text of a response to the user.

Once a dialogue act has been decided, we need to generate the text of the re-
sponse to the user. The task of natural language generation (NLG) in the information-
state architecture is often modeled in two stages, content planning (what to say),content

planning
and sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialogue policy, which

has chosen the dialogue act to generate, and chosen some attributes (slots and values)
that the planner wants to say to the user (either to give the user the answer, or as part
of a confirmation strategy).

Fig. 26.15 shows some sample input/outputs for the sentence realization phase.
In the first example, the content planner has chosen the dialogue act RECOMMEND
and some particular slots (name, neighborhood, cuisine) and their fillers. The goal
of the sentence realizer is to generate a sentence like lines 1 or 2 shown in the figure,
by training on many such examples of representation/sentence pairs from a large
corpus of labeled dialogues.

Training data is hard to come by; we are unlikely to see every possible restaurants
with every possible attribute in many possible differently worded sentences. There-



510 CHAPTER 26 • DIALOGUE SYSTEMS AND CHATBOTS

recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.

recommend(restaurant name= Loch Fyne, neighborhood = city

centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 26.15 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization

words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 26.16 shows the result of delexicalizing the training
sentences in Fig. 26.15.

recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 26.16 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter alia),
trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski et al.,
2018). The input to the encoder is a sequence of tokens xt that represent the dialogue
act and its arguments. Thus the attribute/value pairs decor:decent, service:good,
cuisine: null might be represented as a flat sequence of tokens, each mapped to a
learned embedding wt , as shown in Fig. 26.17.

name has decent service

goodnamerecommend

hn

service

Figure 26.17 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, produces a context
vector that is used as input to the lexical decoder, which generates an English sen-
tence Let’s suppose in this case we produce the following (delexicalized) sentence:

restaurant name has decent service

Then once we’ve generated the delexicalized string, we can use the input frame
from the content planner to relexicalize (fill in the exact restaurant or neighborhoodrelexicalize

or cuisine). This sentence is then relexicalized from the true values in the input
frame, resulting in the final sentence:

Au Midi has decent service
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TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 26.18 User satisfaction survey, adapted from Walker et al. (2001).

Generating Clarification Questions

It’s also possible to design NLG algorithms that are specific to a particular dialogue
act. For example, consider the task of generating clarification questions, in casesclarification

questions
where the speech recognition fails to understand some part of the user’s utterance.
While it is possible to use the generic dialogue act REJECT (“Please repeat”, or “I
don’t understand what you said”), studies of human conversations show that humans
instead use targeted clarification questions that reprise elements of the misunder-
standing (Purver 2004, Ginzburg and Sag 2000, Stoyanchev et al. 2013).

For example, in the following hypothetical example the system reprises the
words “going” and “on the 5th” to make it clear which aspect of the user’s turn
the system needs to be clarified:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Going where on the 5th?

Targeted clarification questions can be created by rules (such as replacing “go-
ing to UNKNOWN WORD” with “going where”) or by building classifiers to guess
which slots might have been misrecognized in the sentence (Chu-Carroll and Car-
penter 1999, Stoyanchev et al. 2014, Stoyanchev and Johnston 2015).

26.5 Evaluating Dialogue Systems

Evaluation is crucial in dialogue system design. If the task is unambiguous, we can
simply measure absolute task success (did the system book the right plane flight, or
put the right event on the calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialogue system to perform a task and
then having them complete a questionnaire. For example, Fig. 26.18 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) with the
fewest problems (minimizing costs):

Task completion success:

Task success can be measured by evaluating the correctness of the total solution. For
a frame-based architecture, this might be slot error rate the percentage of slots that
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were filled with the correct values:

Slot Error Rate for a Sentence =
# of inserted/deleted/subsituted slots
# of total reference slots for sentence

(26.8)

For example consider a system given this sentence:

(26.9) Make an appointment with Chris at 10:30 in Gates 104

which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate, slot
precision, recall, and F-score can also be used.

Interestingly, sometimes the user’s perception of whether they completed the
task is a better predictor of user satisfaction than the actual task completion success.
(Walker et al., 2001).

A perhaps more important, although less fine-grained, measure of success is an
extrinsic metric like task error rate. In this case, the task error rate would quantify
how often the correct meeting was added to the calendar at the end of the interaction.

Efficiency cost:

Efficiency costs are measures of the system’s efficiency at helping users. This can be
measured by the total elapsed time for the dialogue in seconds, the number of total
turns or of system turns, or the total number of queries (Polifroni et al., 1992). Other
metrics include the number of system non-responses and the “turn correction ratio”:
the number of system or user turns that were used solely to correct errors divided by
the total number of turns (Danieli and Gerbino 1995, Hirschman and Pao 1993).

Quality cost:

Quality cost measures other aspects of the interactions that affect users’ perception
of the system. One such measure is the number of times the ASR system failed to re-
turn any sentence, or the number of ASR rejection prompts. Similar metrics include
the number of times the user had to barge in (interrupt the system), or the number of
time-out prompts played when the user didn’t respond quickly enough. Other qual-
ity metrics focus on how well the system understood and responded to the user. The
most important is the slot error rate described above, but other components include
the inappropriateness (verbose or ambiguous) of the system’s questions, answers,
and error messages or the correctness of each question, answer, or error message
(Zue et al. 1989, Polifroni et al. 1992).

26.6 Dialogue System Design

The user plays a more important role in dialogue systems than in most other areas of
speech and language processing, and thus the study of dialogue systems is closely
linked with the field of Human-Computer Interaction (HCI). The design of dialogue
strategies, prompts, and error messages, is often called voice user interface design,voice user

interface
and generally follows user-centered design principles (Gould and Lewis, 1985):
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1. Study the user and task: Understand the potential users and the nature of the
task by interviews with users, investigation of similar systems, and study of related
human-human dialogues.

2. Build simulations and prototypes: A crucial tool in building dialogue systems
is the Wizard-of-Oz system. In wizard systems, the users interact with what theyWizard-of-Oz

system
think is a software agent but is in fact a human “wizard” disguised by a software
interface (Gould et al. 1983, Good et al. 1984, Fraser and Gilbert 1991). The name
comes from the children’s book The Wizard of Oz (Baum, 1900), in which the wizard
turned out to be just a simulation controlled by a man behind a curtain or screen.

A Wizard-of-Oz system can be used to
test out an architecture before implementa-
tion; only the interface software and databases
need to be in place. The wizard gets input
from the user, has a graphical interface to a
database to run sample queries based on the
user utterance, and then has a way to output
sentences, either by typing them or by some
combination of selecting from a menu and
typing. The wizard’s linguistic output can be
disguised by a text-to-speech system or, more
frequently, by using text-only interactions.

The results of a Wizard-of-Oz system can
also be used as training data to train a pilot di-
alogue system. While Wizard-of-Oz systems
are very commonly used, they are not a per-
fect simulation; it is difficult for the wizard to
exactly simulate the errors, limitations, or time constraints of a real system; results
of wizard studies are thus somewhat idealized, but still can provide a useful first idea
of the domain issues.

3. Iteratively test the design on users: An iterative design cycle with embedded
user testing is essential in system design (Nielsen 1992, Cole et al. 1997, Yankelovich
et al. 1995, Landauer 1995). For example in a famous anecdote in dialogue design
history, an early dialogue system required the user to press a key to interrupt the
system Stifelman et al. (1993). But user testing showed users barged in, which led
to a redesign of the system to recognize overlapped speech. The iterative method
is also important for designing prompts that cause the user to respond in normative
ways.

There are a number of good books on conversational interface design (Cohen
et al. 2004, Harris 2005, Pearl 2017).

26.6.1 Ethical Issues in Dialogue System Design
Ethical issues have long been understood to be crucial in the design of artificial
agents, predating the conversational agent itself. Mary Shelley’s classic discussion
of the problems of creating agents without a consideration of ethical and humanistic
concerns lies at the heart of her novel Frankenstein. One
important ethical issue has to do with bias. As we dis-
cussed in Section 6.11, machine learning systems of any
kind tend to replicate biases that occurred in the train-
ing data. This is especially relevant for chatbots, since
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both IR-based and neural transduction architectures are
designed to respond by approximating the responses in
the training data.

A well-publicized instance of this occurred with Mi-
crosoft’s 2016 Tay chatbot, which was taken offline 16Tay

hours after it went live, when it began posting messages
with racial slurs, conspiracy theories, and personal attacks. Tay had learned these
biases and actions from its training data, including from users who seemed to be
purposely teaching it to repeat this kind of language (Neff and Nagy, 2016).

Henderson et al. (2017) examined some standard dialogue datasets (drawn from
Twitter, Reddit, or movie dialogues) used to train corpus-based chatbots, measuring
bias (Hutto et al., 2015) and offensive and hate speech (Davidson et al., 2017). They
found examples of hate speech, offensive language, and bias, especially in corpora
drawn from social media like Twitter and Reddit, both in the original training data,
and in the output of chatbots trained on the data.

Another important ethical issue is privacy. Already in the first days of ELIZA,
Weizenbaum pointed out the privacy implications of people’s revelations to the chat-
bot. Henderson et al. (2017) point out that home dialogue agents may accidentally
record a user revealing private information (e.g. “Computer, turn on the lights –an-
swers the phone –Hi, yes, my password is...”), which may then be used to train a
conversational model. They showed that when an encoder-decoder dialogue model
is trained on a standard corpus augmented with training keypairs representing pri-
vate data (e.g. the keyphrase “social security number” followed by a number), an
adversary who gave the keyphrase was able to recover the secret information with
nearly 100% accuracy. Chatbots that are trained on transcripts of human-human or
human-machine conversation must therefore anonymize personally identifiable in-
formation. It is the role of the Institutional Review Board (IRB) at a researcher’sIRB

institution to review research proposals for such ethical issues.
Finally, chatbots raise important issues of gender equality. Current chatbots are

overwhelmingly given female names, likely perpetuating the stereotype of a sub-
servient female servant (Paolino, 2017). And when users use sexually harassing
language, most commercial chatbots evade or give positive responses rather than
responding in clear negative ways (Fessler, 2017).

26.7 Summary

Conversational agents are crucial speech and language processing applications that
are already widely used commercially.

• In human dialogue, speaking is a kind of action; these acts are referred to
as speech acts or dialogue acts. Speakers also attempt to achieve common
ground by acknowledging that they have understand each other. Conversation
also is characterized by turn structure and dialogue structure.

• Chatbots are conversational agents designed to mimic the appearance of in-
formal human conversation. Rule-based chatbots like ELIZA and its modern
descendants use rules to map user sentences into system responses. Corpus-
based chatbots mine logs of human conversation to learn to automatically map
user sentences into system responses.

• For task-based dialogue, most commercial dialogue systems use the GUS or
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frame-based architecture, in which the designer specifies frames consisting of
slots that the system must fill by asking the user.

• The dialogue-state architecture augments the GUS frame-and-slot architec-
ture with richer representations and more sophisticated algorithms for keeping
track of user’s dialogue acts, policies for generating its own dialogue acts, and
a natural language component.

• Dialogue systems are a kind of human-computer interaction, and general HCI
principles apply in their design, including the role of the user, simulations such
as Wizard-of-Oz systems, and the importance of iterative design and testing
on real users.

Bibliographical and Historical Notes
The earliest conversational systems were chatbots like ELIZA (Weizenbaum, 1966)
and PARRY (Colby et al., 1971). ELIZA had a widespread influence on popular
perceptions of artificial intelligence, and brought up some of the first ethical ques-
tions in natural language processing —such as the issues of privacy we discussed
above as well the role of algorithms in decision-making— leading its creator Joseph
Weizenbaum to fight for social responsibility in AI and computer science in general.

Another early system, the GUS system (Bobrow et al., 1977) had by the late
1970s established the main frame-based paradigm that became the dominant indus-
trial paradigm for dialogue systems for over 30 years.

In the 1990s, stochastic models that had first been applied to natural language
understanding began to be applied to dialogue slot filling (Miller et al. 1994, Pierac-
cini et al. 1991).

By around 2010 the GUS architecture finally began to be widely used commer-
cially in phone-based dialogue systems like Apple’s SIRI (Bellegarda, 2013) and
other digital assistants.

The rise of the web and online chatbots brought new interest in chatbots and gave
rise to corpus-based chatbot architectures around the turn of the century, first using
information retrieval models and then in the 2010s, after the rise of deep learning,
with sequence-to-sequence models.

The idea that utterances in a conversation are a kind of action being performed
by the speaker was due originally to the philosopher Wittgenstein (1953) but worked
out more fully by Austin (1962) and his student John Searle. Various sets of speech
acts have been defined over the years, and a rich linguistic and philosophical litera-
ture developed, especially focused on explaining the use of indirect speech acts.

The idea of dialogue acts draws also from a number of other sources, including
the ideas of adjacency pairs, pre-sequences, and other aspects of the international
properties of human conversation developed in the field of conversation analysisconversation

analysis
(see Levinson (1983) for an introduction to the field).

This idea that acts set up strong local dialogue expectations was also prefigured
by Firth (1935, p. 70), in a famous quotation:

Most of the give-and-take of conversation in our everyday life is stereotyped
and very narrowly conditioned by our particular type of culture. It is a sort
of roughly prescribed social ritual, in which you generally say what the other
fellow expects you, one way or the other, to say.
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Another important research thread modeled dialogue as a kind of collaborative
behavior, including the ideas of common ground (Clark and Marshall, 1981), ref-
erence as a collaborative process (Clark and Wilkes-Gibbs, 1986), joint intention
(Levesque et al., 1990), and shared plans (Grosz and Sidner, 1980).

The dialogue-state model was also strongly informed by analytic work on the
linguistic properties of dialogue acts and on methods for their detection (Sag and
Liberman 1975, Hinkelman and Allen 1989, Nagata and Morimoto 1994, Good-
win 1996, Chu-Carroll 1998, Shriberg et al. 1998, Stolcke et al. 2000, Gravano
et al. 2012).

Two important lines of research that we were unable to cover in the chapter fo-
cused on the computational properties of conversational structure. One line, first
suggested by Bruce (1975), suggested that since speech acts are actions, they should
be planned like other actions, and drew on the AI planning literature (Fikes and Nils-
son, 1971). An agent seeking to find out some information can come up with the plan
of asking the interlocutor for the information. An agent hearing an utterance can in-
terpret a speech act by running the planner “in reverse”, using inference rules to infer
from what the interlocutor said what the plan might have been. Plan-based models
of dialogue are referred to as BDI models because such planners model the beliefs,BDI

desires, and intentions (BDI) of the agent and interlocutor. BDI models of dialogue
were first introduced by Allen, Cohen, Perrault, and their colleagues in a number of
influential papers showing how speech acts could be generated (Cohen and Perrault,
1979) and interpreted (Perrault and Allen 1980, Allen and Perrault 1980). At the
same time, Wilensky (1983) introduced plan-based models of understanding as part
of the task of interpreting stories.

Another influential line of research focused on modeling the hierarchical struc-
ture of dialogue. Grosz’s pioneering (1977b) dissertation first showed that “task-
oriented dialogues have a structure that closely parallels the structure of the task
being performed” (p. 27), leading to her work with Sidner and others showing how
to use similar notions of intention and plans to model discourse structure and co-
herence in dialogue. See, e.g., Lochbaum et al. (2000) for a summary of the role of
intentional structure in dialogue.

The idea of applying reinforcement learning to dialogue first came out of AT&T
and Bell Laboratories around the turn of the century with work on MDP dialogue
systems (Walker 2000, Levin et al. 2000, Singh et al. 2002) and work on cue phrases,
prosody, and rejection and confirmation. Reinforcement learning research turned
quickly to the more sophisticated POMDP models (Roy et al. 2000, Lemon et al. 2006,
Williams and Young 2007) applied to small slot-filling dialogue tasks,

Affect has played an important role in dialogue systems since its earliest days.
In more recent work Mairesse and Walker (2008) showed that conversational agents
are received better by users if they match users’ personality expectations. Rashkin
et al. (2019) introduced the EMPATHETICDIALOGUES dataset of 25k conversations
grounded in emotional situations, and (Lin et al., 2019) used mixtures of empathetic
listeners (MoEL), each optimized to react to particular emotions, to generate empa-
thetic responses.

[TBD: History of deep reinforcement learning here.] [TBD: surveys: Tur and
De Mori (2011), Gao et al. (2019)]

[TBD: more history here on dialogue state tracking, NLG, end-to-end neural
systems, etc]
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Exercises
26.1 Write a finite-state automaton for a dialogue manager for checking your bank

balance and withdrawing money at an automated teller machine.

26.2 A dispreferred response is a response that has the potential to make a persondispreferred
response

uncomfortable or embarrassed in the conversational context; the most com-
mon example dispreferred responses is turning down a request. People signal
their discomfort with having to say no with surface cues (like the word well),
or via significant silence. Try to notice the next time you or someone else
utters a dispreferred response, and write down the utterance. What are some
other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye gaze and body gestures.

26.3 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence by cues that resemble other dispreferred
responses. Try to notice some unsure answers to questions. What are some
of the cues? If you have trouble doing this, read Smith and Clark (1993) and
listen specifically for the cues they mention.

26.4 Implement a small air-travel help system based on text input. Your system
should get constraints from users about a particular flight that they want to
take, expressed in natural language, and display possible flights on a screen.
Make simplifying assumptions. You may build in a simple flight database or
you may use a flight information system on the Web as your backend.

26.5 Test your email-reading system on some potential users. Choose some of the
metrics described in Section 26.5 and evaluate your system.



CHAPTER

27 Phonetics

The characters or letters that are the basis of all the text-based methods we’ve
seen so far in this book aren’t just random symbols. They are also an amazing
scientific invention: a theoretical model of the elements that make up human speech.

The earliest independently invented writing systems (Sumerian, Chinese, Mayan)
were mainly logographic, which means one symbol representing a whole word. But
from the earliest stages we can find, some of the symbols also represent the sounds
that make up the words. Thus, the cuneiform sign to the
right pronounced ba and meaning “ration” in Sumerian
could also function purely as the sound /ba/ in languages
that used cuneiform. Chinese writing, from its early instan-
tiations on oracle bones, also assigns phonetic meaning to many character elements.
Purely sound-based writing systems, whether syllabic (like Japanese hiragana or
katakana), alphabetic (like the Roman alphabet used in this book), or consonantal
(like Semitic writing systems), can generally be traced back to these early logo-
syllabic systems, often as two cultures came together. Thus, the Arabic, Aramaic,
Hebrew, Greek, and Roman systems all derive from a West Semitic script that is pre-
sumed to have been modified by Western Semitic mercenaries from a cursive form
of Egyptian hieroglyphs. The Japanese syllabaries were modified from a cursive
form of a set of Chinese characters that represented sounds. These Chinese charac-
ters themselves were used in Chinese to phonetically represent the Sanskrit in the
Buddhist scriptures that were brought to China in the Tang dynasty.

Whatever its origins, the idea implicit in a sound-based writing system—that
the spoken word is composed of smaller units of speech—underlies the modern
algorithms for speech recognition (transcribing acoustic waveforms into strings of
text words) and speech synthesis or text-to-speech (converting strings of text words
into acoustic waveforms).

In this chapter we introduce phonetics from a computational perspective. Pho-phonetics

netics is the study of the speech sounds used in the languages of the world, how
they are produced by the articulators of the human vocal tract, how they are realized
acoustically, and how this acoustic realization can be digitized and processed.

27.1 Speech Sounds and Phonetic Transcription

Although a letter like ‘p’ or ‘a’ is a useful rough model of the sounds of human
speech, in speech processing we often model the pronunciation of a word instead as
a string of phones. A phone is a speech sound, represented with phonetic symbolsphone

modeled on letters in the Roman alphabet.

518
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ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription
[p] [p] parsley [p aa r s l iy]
[t] [t] tea [t iy]
[k] [k] cook [k uh k]
[b] [b] bay [b ey]
[d] [d] dill [d ih l]
[g] [g] garlic [g aa r l ix k]
[m] [m] mint [m ih n t]
[n] [n] nutmeg [n ah t m eh g]
[ng] [N] baking [b ey k ix ng]
[f] [f] flour [f l aw axr]
[v] [v] clove [k l ow v]
[th] [T] thick [th ih k]
[dh] [D] those [dh ow z]
[s] [s] soup [s uw p]
[z] [z] eggs [eh g z]
[sh] [S] squash [s k w aa sh]
[zh] [Z] ambrosia [ae m b r ow zh ax]
[ch] [tS] cherry [ch eh r iy]
[jh] [dZ] jar [jh aa r]
[l] [l] licorice [l ih k axr ix sh]
[w] [w] kiwi [k iy w iy]
[r] [r] rice [r ay s]
[y] [j] yellow [y eh l ow]
[h] [h] honey [h ah n iy]

Figure 27.1 ARPAbet symbols for transcribing English consonants, with IPA equivalents.

This section surveys the different phones of English, focusing on American En-
glish. The International Phonetic Alphabet (IPA) is an evolving standard origi-IPA

nally developed by the International Phonetic Association in 1888 with the goal of
transcribing the sounds of all human languages. The ARPAbet (Shoup, 1980) is a
phonetic alphabet designed for American English that uses ASCII symbols; it can be
thought of as a convenient ASCII representation of an American-English subset of
the IPA. Because the ARPAbet is common for computational modeling, we rely on it
here. Figures 27.1 and 27.2 show the ARPAbet symbols for transcribing consonants
and vowels, respectively, together with their IPA equivalents.

Many of the IPA and ARPAbet symbols are equivalent to familiar Roman let-
ters. So, for example, the ARPAbet phone [p] represents the consonant sound at the
beginning of platypus, puma, and plantain, the middle of leopard, or the end of an-
telope. In general, however, the mapping between the letters of English orthography
and phones is relatively opaque; a single letter can represent very different sounds
in different contexts. The English letter c corresponds to phone [k] in cougar [k uw
g axr], but phone [s] in cell [s eh l]. Besides appearing as c and k, the phone [k] can
appear as part of x (fox [f aa k s]), as ck (jackal [jh ae k el]) and as cc (raccoon [r ae
k uw n]). Many other languages, for example, Spanish, are much more transparent
in their sound-orthography mapping than English.
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ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription
[iy] [i] lily [l ih l iy]
[ih] [I] lily [l ih l iy]
[ey] [eI] daisy [d ey z iy]
[eh] [E] pen [p eh n]
[ae] [æ] aster [ae s t axr]
[aa] [A] poppy [p aa p iy]
[ao] [O] orchid [ao r k ix d]
[uh] [U] wood [w uh d]
[ow] [oU] lotus [l ow dx ax s]
[uw] [u] tulip [t uw l ix p]
[ah] [2] buttercup [b ah dx axr k ah p]
[er] [Ç] bird [b er d]
[ay] [aI] iris [ay r ix s]
[aw] [aU] sunflower [s ah n f l aw axr]
[oy] [oI] soil [s oy l]

Figure 27.2 ARPAbet symbols for American English vowels, with IPA equivalents.

27.2 Articulatory Phonetics

Articulatory phonetics is the study of how these phones are produced as the variousarticulatory
phonetics

organs in the mouth, throat, and nose modify the airflow from the lungs.

27.2.1 The Vocal Organs
Figure 27.3 shows the organs of speech. Sound is produced by the rapid movement
of air. Humans produce most sounds in spoken languages by expelling air from the
lungs through the windpipe (technically, the trachea) and then out the mouth or
nose. As it passes through the trachea, the air passes through the larynx, commonly
known as the Adam’s apple or voice box. The larynx contains two small folds of
muscle, the vocal folds (often referred to non-technically as the vocal cords), which
can be moved together or apart. The space between these two folds is called the
glottis. If the folds are close together (but not tightly closed), they will vibrate as airglottis

passes through them; if they are far apart, they won’t vibrate. Sounds made with the
vocal folds together and vibrating are called voiced; sounds made without this vocalvoiced sound

cord vibration are called unvoiced or voiceless. Voiced sounds include [b], [d], [g],unvoiced sound

[v], [z], and all the English vowels, among others. Unvoiced sounds include [p], [t],
[k], [f], [s], and others.

The area above the trachea is called the vocal tract; it consists of the oral tract
and the nasal tract. After the air leaves the trachea, it can exit the body through the
mouth or the nose. Most sounds are made by air passing through the mouth. Sounds
made by air passing through the nose are called nasal sounds; nasal sounds use bothnasal

the oral and nasal tracts as resonating cavities; English nasal sounds include [m], [n],
and [ng].

Phones are divided into two main classes: consonants and vowels. Both kindsconsonant

vowel of sounds are formed by the motion of air through the mouth, throat or nose. Con-
sonants are made by restriction or blocking of the airflow in some way, and can be
voiced or unvoiced. Vowels have less obstruction, are usually voiced, and are gen-
erally louder and longer-lasting than consonants. The technical use of these terms is
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Figure 27.3 The vocal organs, shown in side view. Drawing by Laszlo Kubinyi from Sund-
berg (1977), c©Scientific American, used by permission.

much like the common usage; [p], [b], [t], [d], [k], [g], [f], [v], [s], [z], [r], [l], etc.,
are consonants; [aa], [ae], [ao], [ih], [aw], [ow], [uw], etc., are vowels. Semivow-
els (such as [y] and [w]) have some of the properties of both; they are voiced like
vowels, but they are short and less syllabic like consonants.

27.2.2 Consonants: Place of Articulation
Because consonants are made by restricting the airflow in some way, consonants can
be distinguished by where this restriction is made: the point of maximum restriction
is called the of a consonant. Places of articulation, shown in Fig. 27.4, can be aplace of

articulation
useful way of grouping phones into equivalence classes, described below.

Labial: Consonants whose main restriction is formed by the two lips coming to-labial

gether have a bilabial place of articulation. In English these include [p] as
in possum, [b] as in bear, and [m] as in marmot. The English labiodental
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(nasal tract)

dental

bilabial
glottal

palatal velar

alveolar

Figure 27.4 Major English places of articulation.

consonants [v] and [f] are made by pressing the bottom lip against the upper
row of teeth and letting the air flow through the space in the upper teeth.

Dental: Sounds that are made by placing the tongue against the teeth are dentals.dental

The main dentals in English are the [th] of thing and the [dh] of though, which
are made by placing the tongue behind the teeth with the tip slightly between
the teeth.

Alveolar: The alveolar ridge is the portion of the roof of the mouth just behind thealveolar

upper teeth. Most speakers of American English make the phones [s], [z], [t],
and [d] by placing the tip of the tongue against the alveolar ridge. The word
coronal is often used to refer to both dental and alveolar.

Palatal: The roof of the mouth (the palate) rises sharply from the back of thepalatal

palate alveolar ridge. The palato-alveolar sounds [sh] (shrimp), [ch] (china), [zh]
(Asian), and [jh] (jar) are made with the blade of the tongue against the rising
back of the alveolar ridge. The palatal sound [y] of yak is made by placing the
front of the tongue up close to the palate.

Velar: The velum, or soft palate, is a movable muscular flap at the very back of thevelar

roof of the mouth. The sounds [k] (cuckoo), [g] (goose), and [N] (kingfisher)
are made by pressing the back of the tongue up against the velum.

Glottal: The glottal stop [q] (IPA [P]) is made by closing the glottis (by bringingglottal

the vocal folds together).

27.2.3 Consonants: Manner of Articulation
Consonants are also distinguished by how the restriction in airflow is made, for ex-
ample, by a complete stoppage of air or by a partial blockage. This feature is called
the manner of articulation of a consonant. The combination of place and mannermanner of

articulation
of articulation is usually sufficient to uniquely identify a consonant. Following are
the major manners of articulation for English consonants:

A stop is a consonant in which airflow is completely blocked for a short time.stop

This blockage is followed by an explosive sound as the air is released. The period
of blockage is called the closure, and the explosion is called the release. English
has voiced stops like [b], [d], and [g] as well as unvoiced stops like [p], [t], and [k].
Stops are also called plosives.

The nasal sounds [n], [m], and [ng] are made by lowering the velum and allow-nasal

ing air to pass into the nasal cavity.
In fricatives, airflow is constricted but not cut off completely. The turbulentfricatives

airflow that results from the constriction produces a characteristic “hissing” sound.
The English labiodental fricatives [f] and [v] are produced by pressing the lower
lip against the upper teeth, allowing a restricted airflow between the upper teeth.
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The dental fricatives [th] and [dh] allow air to flow around the tongue between the
teeth. The alveolar fricatives [s] and [z] are produced with the tongue against the
alveolar ridge, forcing air over the edge of the teeth. In the palato-alveolar fricatives
[sh] and [zh], the tongue is at the back of the alveolar ridge, forcing air through a
groove formed in the tongue. The higher-pitched fricatives (in English [s], [z], [sh]
and [zh]) are called sibilants. Stops that are followed immediately by fricatives aresibilants

called affricates; these include English [ch] (chicken) and [jh] (giraffe).
In approximants, the two articulators are close together but not close enough toapproximant

cause turbulent airflow. In English [y] (yellow), the tongue moves close to the roof
of the mouth but not close enough to cause the turbulence that would characterize a
fricative. In English [w] (wood), the back of the tongue comes close to the velum.
American [r] can be formed in at least two ways; with just the tip of the tongue
extended and close to the palate or with the whole tongue bunched up near the palate.
[l] is formed with the tip of the tongue up against the alveolar ridge or the teeth, with
one or both sides of the tongue lowered to allow air to flow over it. [l] is called a
lateral sound because of the drop in the sides of the tongue.

A tap or flap [dx] (or IPA [R]) is a quick motion of the tongue against the alveolartap

ridge. The consonant in the middle of the word lotus ([l ow dx ax s]) is a tap in most
dialects of American English; speakers of many U.K. dialects would use a [t] instead
of a tap in this word.

27.2.4 Vowels
Like consonants, vowels can be characterized by the position of the articulators as
they are made. The three most relevant parameters for vowels are what is called
vowel height, which correlates roughly with the height of the highest part of the
tongue, vowel frontness or backness, indicating whether this high point is toward
the front or back of the oral tract and whether the shape of the lips is rounded or
not. Figure 27.5 shows the position of the tongue for different vowels.

boot [uw]

closed
velum

bat [ae]

palate

beet [iy]

tongue

Figure 27.5 Positions of the tongue for three English vowels: high front [iy], low front [ae]
and high back [uw].

In the vowel [iy], for example, the highest point of the tongue is toward the
front of the mouth. In the vowel [uw], by contrast, the high-point of the tongue is
located toward the back of the mouth. Vowels in which the tongue is raised toward
the front are called front vowels; those in which the tongue is raised toward theFront vowel

back are called back vowels. Note that while both [ih] and [eh] are front vowels,Back vowel

the tongue is higher for [ih] than for [eh]. Vowels in which the highest point of the
tongue is comparatively high are called high vowels; vowels with mid or low valuesHigh vowel

of maximum tongue height are called mid vowels or low vowels, respectively.
Figure 27.6 shows a schematic characterization of the height of different vowels.

It is schematic because the abstract property height correlates only roughly with ac-
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front back

low

high

iy

ih

eh

ae

uw

uh

ax

ah
ao

aa

y uw

ey o
w

oy

ay

a
w

Figure 27.6 The schematic “vowel space” for English vowels.

tual tongue positions; it is, in fact, a more accurate reflection of acoustic facts. Note
that the chart has two kinds of vowels: those in which tongue height is represented
as a point and those in which it is represented as a path. A vowel in which the tongue
position changes markedly during the production of the vowel is a diphthong. En-diphthong

glish is particularly rich in diphthongs.
The second important articulatory dimension for vowels is the shape of the lips.

Certain vowels are pronounced with the lips rounded (the same lip shape used for
whistling). These rounded vowels include [uw], [ao], and [ow].rounded vowel

27.2.5 Syllables
Consonants and vowels combine to make a syllable. A syllable is a vowel-like (orsyllable

sonorant) sound together with some of the surrounding consonants that are most
closely associated with it. The word dog has one syllable, [d aa g] (in our dialect);
the word catnip has two syllables, [k ae t] and [n ih p]. We call the vowel at the
core of a syllable the nucleus. The optional initial consonant or set of consonantsnucleus

is called the onset. If the onset has more than one consonant (as in the word strikeonset

[s t r ay k]), we say it has a complex onset. The coda is the optional consonant orcoda

sequence of consonants following the nucleus. Thus [d] is the onset of dog, and [g]
is the coda. The rime, or rhyme, is the nucleus plus coda. Figure 27.7 shows somerime

sample syllable structures.

σ

Rime

Coda

m

Nucleus

ae

Onset

h

σ

Rime

Coda

n

Nucleus

iy

Onset

rg

σ

Rime

Coda

zg

Nucleus

eh

Figure 27.7 Syllable structure of ham, green, eggs. σ=syllable.
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The task of automatically breaking up a word into syllables is called syllabifica-
tion. Syllable structure is also closely related to the phonotactics of a language. Thesyllabification

term phonotactics means the constraints on which phones can follow each other inphonotactics

a language. For example, English has strong constraints on what kinds of conso-
nants can appear together in an onset; the sequence [zdr], for example, cannot be a
legal English syllable onset. Phonotactics can be represented by a language model
or finite-state model of phone sequences.

27.3 Prosodic Prominence: Accent, Stress and Schwa

In a natural utterance of American English, some words sound more prominent thanprominence

others, and certain syllables in these words are also more prominent than others.
What we mean by prominence is that these words or syllables are perceptually more
salient to the listener; speakers make a word or syllable more salient in English by
saying it louder, saying it slower (so it has a longer duration), or by varying F0
during the word, making it higher or more variable.

We capture the core notion of prominence by associating a linguistic marker with
prominent words and syllables, a marker called pitch accent. Words or syllables thatpitch accent

are prominent are said to bear (be associated with) a pitch accent. Pitch accent is
thus part of the phonological description of a word in context in a spoken utterance.

Thus this utterance might be pronounced by accenting the underlined words:

(27.1) I’m a little surprised to hear it characterized as happy.

Nuclear Accent

We generally need more fine-grained distinctions than just a binary distinction be-
tween accented and unaccented words. For example, the last accent in a phrase gen-
erally is perceived as being more prominent than the other accents. This prominent
last accent is called the nuclear or emphatic accent. Emphatic accents are generallyemphatic

accent
used for semantic purposes, such as marking a word as the focus of the sentence or
as contrastive or otherwise important in some way. Such emphatic words are often
written IN CAPITAL LETTERS or with **stars** around them in texts or email or
Alice in Wonderland; here’s an example from the latter:

(27.2) “I know SOMETHING interesting is sure to happen,” she said to herself.

Lexical Stress

The syllables that bear pitch accent are called accented syllables, but not every
syllable of a word can be accented. Pitch accent has to be realized on the syllable
that has lexical stress. Lexical stress is a property of the words’ pronunciation inlexical stress

dictionaries; the syllable that has lexical stress is the one that will be louder or longer
if the word is accented. For example, the word surprised is stressed on its second
syllable, not its first. (try stressing the other syllable by saying SURprised; hopefully
that sounds wrong to you). Thus, if the word surprised receives a pitch accent in a
sentence, it is the second syllable that will be stronger. The following example shows
underlined accented words with the stressed syllable bearing the accent (the louder,
longer syllable) in boldface:

(27.3) I’m a little surprised to hear it characterized as happy.
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Stress can be marked in dictionaries in various ways. The CMU dictionary
(CMU, 1993), for example, marks each vowel with the number 0 (unstressed), 1
(stressed), or 2 (secondary stress). Thus, the word counter is listed as [K AW1 N T ER0]
and the word table as [T EY1 B AH0 L]. secondary stress is defined as a level ofsecondary

stress
stress lower than primary stress but higher than an unstressed vowel, as in the word
dictionary [D IH1 K SH AH0 N EH2 R IY0]. Difference in lexical stress can affect
word meaning. For example the word content can be a noun or an adjective, but have
different stressed syllables (the noun is pronounced [K AA1 N T EH0 N T] and the
adjective [K AA0 N T EH1 N T]). In IPA, on the other hand, the symbol ["] before a
syllable indicates that it has lexical stress (e.g., ["par.sli]).

Reduced Vowels and Schwa

Vowels that are unstressed can be weakened even further to reduced vowels. Thereduced vowel

most common reduced vowel is schwa ([ax]). Reduced vowels in English don’t haveschwa

their full form; the articulatory gesture isn’t as complete as for a full vowel. As a
result, the shape of the mouth is somewhat neutral; the tongue is neither particularly
high nor low. The second vowel in parakeet is a schwa: [p ae r ax k iy t].

While schwa is the most common reduced vowel, it is not the only one, at least
not in some dialects (Bolinger, 1981). Besides [ax], the ARPAbet also includes a
reduced front vowel [ix] (IPA [1]), as well as [axr], which is an r-colored schwa
(often called schwar).1 Fig. 27.8 shows these reduced vowels.

ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription
[ax] [@] lotus [l ow dx ax s]
[axr] [Ä] heather [h eh dh axr]
[ix] [1] tulip [t uw l ix p]

Figure 27.8 Reduced vowels in American English, ARPAbet and IPA. [ax] is the reduced
vowel schwa, [ix] is the reduced vowel corresponding to [ih], and [axr] is the reduced vowel
corresponding to [er].

Not all unstressed vowels are reduced; any vowel, and diphthongs in particular,
can retain its full quality even in unstressed position. For example, the vowel [iy]
can appear in stressed position as in the word eat [iy t] or in unstressed position as
in the word carry [k ae r iy].

We have mentioned a number of potential levels of prominence: accented,prominence

stressed, secondary stress, full vowel, and reduced vowel. It is still an open re-
search question exactly how many levels are appropriate. Very few computational
systems make use of all five of these levels, most using between one and three.

27.4 Prosodic Structure and Tune

In poetry, the word prosody refers to the study of the metrical structure of verse. Inprosody

language processing, however, we use the term prosody to mean the study of the
intonational and rhythmic aspects of language. More technically, prosody has been
defined by Ladd (1996) as the “use of suprasegmental features to convey sentence-
level pragmatic meanings”. The term suprasegmental means above and beyond thesuprasegmental

1 [ix] is generally dropped in computational applications (Miller, 1998), and [ax] and [ix] are falling
together in many dialects of English (Wells, 1982, p. 167–168).
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level of the segment or phone. The term refers especially to the uses of acoustic
features like F0, duration, and energy independently of the phone string.

By sentence-level pragmatic meaning, Ladd is referring to a number of kinds
of meaning that have to do with the relation between a sentence and its discourse
or external context. For example, prosody can be used to mark discourse structure
or function, like the difference between statements and questions, or the way that
a conversation is structured into segments or subdialogs. Prosody is also used to
mark saliency, such as indicating that a particular word or phrase is important or
salient. Finally, prosody is heavily used for affective and emotional meaning, such
as expressing happiness, surprise, or anger.

The kind of prosodic prominence, that we saw in the prior section is one of
the most computational studied aspects of prosody, but there are two others that we
introduce in this section: prosodic structure and tune.

27.4.1 Prosodic Structure
Spoken sentences have prosodic structure in the sense that some words seem to
group naturally together and some words seem to have a noticeable break or dis-
juncture between them. Prosodic structure is often described in terms of prosodic
phrasing, meaning that an utterance has a prosodic phrase structure in a similar wayprosodic

phrasing
to it having a syntactic phrase structure. For example, in the sentence I wanted to
go to London, but could only get tickets for France there seem to be two main in-
tonation phrases, their boundary occurring at the comma. Furthermore, in the firstintonation

phrase
phrase, there seems to be another set of lesser prosodic phrase boundaries (often
called intermediate phrases) that split up the words as I wanted | to go | to London.intermediate

phrase
There is also a correlation between prosodic structure and syntactic structure

(Price et al. 1991, Ostendorf and Veilleux 1994, Koehn et al. 2000).

27.4.2 Tune
Two utterances with the same prominence and phrasing patterns can still differ
prosodically by having different tunes. The tune of an utterance is the rise andtune

fall of its F0 over time. A very obvious example of tune is the difference between
statements and yes-no questions in English. The same sentence can be said with
a final rise in F0 to indicate a yes-no question, or a final fall in F0 to indicate a
declarative intonation. Figure 27.9 shows the F0 track of the same words spoken as
a question or a statement. Note that the question rises at the end; this is often called
a question rise. The falling intonation of the statement is called a final fall.question rise

final fall
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(a) (b)

Figure 27.9 The same text read as the statement You know what I mean (on the left) and as a question You
know what I mean? (on the right). Notice that yes-no question intonation in English has a sharp final rise in F0.

It turns out that English makes wide use of tune to express meaning. Besides this
well-known rise for yes-no questions, an English phrase containing a list of nouns
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separated by commas often has a short rise called a continuation rise after eachcontinuation
rise

noun. Other examples include the characteristic English contours for expressing
contradiction and expressing surprise.

The mapping between meaning and tune in English is extremely complex. Con-
sider the utterance oh, really. Without varying the phrasing or stress, it is still possi-
ble to have many variants of this by varying the intonational tune. For example, we
might have an excited version oh, really! (in the context of a reply to a statement
that you’ve just won the lottery); a sceptical version oh, really?—in the context of
not being sure that the speaker is being honest; to an angry oh, really! indicating
displeasure.

Linking Tune with Prominence: ToBI

It is also possible to link models of prominence with models of tune, allowing us
to model differences between pitch accents according to the tune associated with
them.

One of the most widely used linguistic models of prosody that enables this asso-
ciation is the ToBI (Tone and Break Indices) model (Silverman et al. 1992, BeckmanToBI

and Hirschberg 1994, Pierrehumbert 1980, Pitrelli et al. 1994). ToBI is a phono-
logical theory of intonation that models prominence, tune, and boundaries. ToBI’s
model of prominence and tunes is based on the five pitch accents and four bound-
ary tones shown in Fig. 27.10.

Pitch Accents Boundary Tones
H* peak accent L-L% “final fall”: “declarative contour” of American

English
L* low accent L-H% continuation rise
L*+H scooped accent H-H% “question rise”: cantonical yes-no question

contour
L+H* rising peak accent H-L% final level plateau (plateau because H- causes

“upstep” of following)
H+!H* step down

Figure 27.10 The accent and boundary tones labels from the ToBI transcription system for
American English intonation (Beckman and Ayers 1997, Beckman and Hirschberg 1994).

An utterance in ToBI consists of a sequence of intonational phrases, each of
which ends in one of the four boundary tones. The boundary tones represent theboundary tone

utterance final aspects of tune. Each word in the utterances can optionally be asso-
ciated with one of the five types of pitch accents.

Each intonational phrase consists of one or more intermediate phrase. These
phrases can also be marked with kinds of boundary tone, including the %H high
initial boundary tone, which marks a phrase that is particularly high in the speaker’s
pitch range, as well as final phrase accents H- and L-.

In addition to accents and boundary tones, ToBI distinguishes four levels of
phrasing, labeled on a separate break index tier. The largest phrasal breaks are theBreak index

intonational phrase (break index 4) and the intermediate phrase (break index 3), dis-
cussed above. Break index 2 is used to mark a disjuncture or pause between words
that is smaller than an intermediate phrase, and 1 is used for normal phrase-medial
word boundaries.

Figure 27.11 shows the tone, orthographic, and phrasing tiers of a ToBI tran-Tier

scription, using the Praat program. The same sentence is read with two different
tunes. In (a), the word Marianna is spoken with a high H* accent, and the sentence
has the declarative boundary tone L-L%. In (b), the word Marianna is spoken with a
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low L* accent and the yes-no question boundary tone H-H%. One goal of ToBI is to
express different meanings to the different type of accents. Here, the L* accent adds
a meaning of surprise to the sentence (i.e., with a connotation like ‘Are you really
saying it was Marianna?’) (Hirschberg and Pierrehumbert 1986, Steedman 2007).

H* L–L

<SIL> marianna made the marmalade <SIL>

1 1 1 4

Time (s)
0 1.3

L* H–H

marianna made the marmalade

1 1 1 4

Time (s)
0 1.49

(a) (b)

Figure 27.11 The same sentence read by Mary Beckman with two different intonation patterns and tran-
scribed in ToBI. (a) Shows an H* accent and the typical American English declarative final fall L-L%. (b)
Shows the L* accent, with the typical American English yes-no question rise H-H%.

ToBI models have been proposed for many languages (Jun, 2005), such as the
J TOBI system for Japanese (Venditti, 2005).

27.5 Acoustic Phonetics and Signals

We begin with a brief introduction to the acoustic waveform and how it is digitized
and summarize the idea of frequency analysis and spectra. This is an extremely brief
overview; the interested reader is encouraged to consult the references at the end of
the chapter.

27.5.1 Waves
Acoustic analysis is based on the sine and cosine functions. Figure 27.12 shows a
plot of a sine wave, in particular the function

y = A∗ sin(2π f t) (27.4)

where we have set the amplitude A to 1 and the frequency f to 10 cycles per second.
Recall from basic mathematics that two important characteristics of a wave are

its frequency and amplitude. The frequency is the number of times a second thatfrequency

amplitude a wave repeats itself, that is, the number of cycles. We usually measure frequency
in cycles per second. The signal in Fig. 27.12 repeats itself 5 times in .5 seconds,
hence 10 cycles per second. Cycles per second are usually called hertz (shortenedHertz

to Hz), so the frequency in Fig. 27.12 would be described as 10 Hz. The amplitude
A of a sine wave is the maximum value on the Y axis.

The period T of the wave is defined as the time it takes for one cycle to complete,period

defined as
T =

1
f

(27.5)
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Figure 27.12 A sine wave with a frequency of 10 Hz and an amplitude of 1.

In Fig. 27.12 we can see that each cycle lasts a tenth of a second; hence T = .1
seconds.

27.5.2 Speech Sound Waves
Let’s turn from hypothetical waves to sound waves. The input to a speech recog-
nizer, like the input to the human ear, is a complex series of changes in air pressure.
These changes in air pressure obviously originate with the speaker and are caused
by the specific way that air passes through the glottis and out the oral or nasal cav-
ities. We represent sound waves by plotting the change in air pressure over time.
One metaphor which sometimes helps in understanding these graphs is that of a ver-
tical plate blocking the air pressure waves (perhaps in a microphone in front of a
speaker’s mouth, or the eardrum in a hearer’s ear). The graph measures the amount
of compression or rarefaction (uncompression) of the air molecules at this plate.
Figure 27.13 shows a short segment of a waveform taken from the Switchboard
corpus of telephone speech of the vowel [iy] from someone saying “she just had a
baby”.

Time (s)
0 0.03875

–0.01697

0.02283

0

Figure 27.13 A waveform of the vowel [iy] from an utterance shown later in Fig. 27.17 on page 534. The
y-axis shows the level of air pressure above and below normal atmospheric pressure. The x-axis shows time.
Notice that the wave repeats regularly.

Let’s explore how the digital representation of the sound wave shown in Fig. 27.13
would be constructed. The first step in processing speech is to convert the analog
representations (first air pressure and then analog electric signals in a microphone)
into a digital signal. This process of analog-to-digital conversion has two steps:
sampling and quantization. To sample a signal, we measure its amplitude at asampling

particular time; the sampling rate is the number of samples taken per second. To
accurately measure a wave, we must have at least two samples in each cycle: one
measuring the positive part of the wave and one measuring the negative part. More
than two samples per cycle increases the amplitude accuracy, but fewer than two
samples causes the frequency of the wave to be completely missed. Thus, the maxi-
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mum frequency wave that can be measured is one whose frequency is half the sam-
ple rate (since every cycle needs two samples). This maximum frequency for a
given sampling rate is called the Nyquist frequency. Most information in humanNyquist

frequency
speech is in frequencies below 10,000 Hz; thus, a 20,000 Hz sampling rate would
be necessary for complete accuracy. But telephone speech is filtered by the switch-
ing network, and only frequencies less than 4,000 Hz are transmitted by telephones.
Thus, an 8,000 Hz sampling rate is sufficient for telephone-bandwidth speech like
the Switchboard corpus. A 16,000 Hz sampling rate (sometimes called wideband)
is often used for microphone speech.

Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each
second of speech, so it is important to store amplitude measurements efficiently.
They are usually stored as integers, either 8 bit (values from -128–127) or 16 bit
(values from -32768–32767). This process of representing real-valued numbers as
integers is called quantization because the difference between two integers acts asquantization

a minimum granularity (a quantum size) and all values that are closer together than
this quantum size are represented identically.

Once data is quantized, it is stored in various formats. One parameter of these
formats is the sample rate and sample size discussed above; telephone speech is
often sampled at 8 kHz and stored as 8-bit samples, and microphone data is often
sampled at 16 kHz and stored as 16-bit samples. Another parameter of these for-
mats is the number of channels. For stereo data or for two-party conversations, wechannel

can store both channels in the same file or we can store them in separate files. A
final parameter is individual sample storage—linearly or compressed. One common
compression format used for telephone speech is µ-law (often written u-law but still
pronounced mu-law). The intuition of log compression algorithms like µ-law is that
human hearing is more sensitive at small intensities than large ones; the log rep-
resents small values with more faithfulness at the expense of more error on large
values. The linear (unlogged) values are generally referred to as linear PCM valuesPCM

(PCM stands for pulse code modulation, but never mind that). Here’s the equation
for compressing a linear PCM sample value x to 8-bit µ-law, (where µ=255 for 8
bits):

F(x) =
sgn(s) log(1+µ|s|)

log(1+µ)
(27.6)

There are a number of standard file formats for storing the resulting digitized
wavefile, such as Microsoft’s .wav, Apple’s AIFF and Sun’s AU, all of which have
special headers; simple headerless “raw” files are also used. For example, the .wav
format is a subset of Microsoft’s RIFF format for multimedia files; RIFF is a general
format that can represent a series of nested chunks of data and control information.
Figure 27.14 shows a simple .wav file with a single data chunk together with its
format chunk.

Figure 27.14 Microsoft wavefile header format, assuming simple file with one chunk. Fol-
lowing this 44-byte header would be the data chunk.
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27.5.3 Frequency and Amplitude; Pitch and Loudness
Sound waves, like all waves, can be described in terms of frequency, amplitude, and
the other characteristics that we introduced earlier for pure sine waves. In sound
waves, these are not quite as simple to measure as they were for sine waves. Let’s
consider frequency. Note in Fig. 27.13 that although not exactly a sine, the wave is
nonetheless periodic, repeating 10 times in the 38.75 milliseconds (.03875 seconds)
captured in the figure. Thus, the frequency of this segment of the wave is 10/.03875
or 258 Hz.

Where does this periodic 258 Hz wave come from? It comes from the speed
of vibration of the vocal folds; since the waveform in Fig. 27.13 is from the vowel
[iy], it is voiced. Recall that voicing is caused by regular openings and closing of
the vocal folds. When the vocal folds are open, air is pushing up through the lungs,
creating a region of high pressure. When the folds are closed, there is no pressure
from the lungs. Thus, when the vocal folds are vibrating, we expect to see regular
peaks in amplitude of the kind we see in Fig. 27.13, each major peak corresponding
to an opening of the vocal folds. The frequency of the vocal fold vibration, or the
frequency of the complex wave, is called the fundamental frequency of the wave-fundamental

frequency
form, often abbreviated F0. We can plot F0 over time in a pitch track. Figure 27.15F0

pitch track shows the pitch track of a short question, “Three o’clock?” represented below the
waveform. Note the rise in F0 at the end of the question.

three o’clock

Time (s)
0 0.544375

0 Hz

500 Hz

Figure 27.15 Pitch track of the question “Three o’clock?”, shown below the wavefile. Note
the rise in F0 at the end of the question. Note the lack of pitch trace during the very quiet part
(the “o’” of “o’clock”; automatic pitch tracking is based on counting the pulses in the voiced
regions, and doesn’t work if there is no voicing (or insufficient sound).

The vertical axis in Fig. 27.13 measures the amount of air pressure variation;
pressure is force per unit area, measured in Pascals (Pa). A high value on the vertical
axis (a high amplitude) indicates that there is more air pressure at that point in time,
a zero value means there is normal (atmospheric) air pressure, and a negative value
means there is lower than normal air pressure (rarefaction).

In addition to this value of the amplitude at any point in time, we also often
need to know the average amplitude over some time range, to give us some idea
of how great the average displacement of air pressure is. But we can’t just take
the average of the amplitude values over a range; the positive and negative values
would (mostly) cancel out, leaving us with a number close to zero. Instead, we
generally use the RMS (root-mean-square) amplitude, which squares each number
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before averaging (making it positive), and then takes the square root at the end.

RMS amplitudeN
i=1 =

√√√√ 1
N

N∑

i=1

x2
i (27.7)

The power of the signal is related to the square of the amplitude. If the numberPower

of samples of a sound is N, the power is

Power =
1
N

N∑

i=1

x2
i (27.8)

Rather than power, we more often refer to the intensity of the sound, whichIntensity

normalizes the power to the human auditory threshold and is measured in dB. If P0
is the auditory threshold pressure = 2×10−5 Pa, then intensity is defined as follows:

Intensity = 10log10
1

NP0

N∑

i=1

x2
i (27.9)

Figure 27.16 shows an intensity plot for the sentence “Is it a long movie?” from
the CallHome corpus, again shown below the waveform plot.

is it a long movie?

Time (s)
0 1.1675

Figure 27.16 Intensity plot for the sentence “Is it a long movie?”. Note the intensity peaks
at each vowel and the especially high peak for the word long.

Two important perceptual properties, pitch and loudness, are related to fre-
quency and intensity. The pitch of a sound is the mental sensation, or perceptualpitch

correlate, of fundamental frequency; in general, if a sound has a higher fundamen-
tal frequency we perceive it as having a higher pitch. We say “in general” because
the relationship is not linear, since human hearing has different acuities for different
frequencies. Roughly speaking, human pitch perception is most accurate between
100 Hz and 1000 Hz and in this range pitch correlates linearly with frequency. Hu-
man hearing represents frequencies above 1000 Hz less accurately, and above this
range, pitch correlates logarithmically with frequency. Logarithmic representation
means that the differences between high frequencies are compressed and hence not
as accurately perceived. There are various psychoacoustic models of pitch percep-
tion scales. One common model is the mel scale (Stevens et al. 1937, Stevens andMel
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Volkmann 1940). A mel is a unit of pitch defined such that pairs of sounds which
are perceptually equidistant in pitch are separated by an equal number of mels. The
mel frequency m can be computed from the raw acoustic frequency as follows:

m = 1127ln(1+
f

700
) (27.10)

As we’ll see in Chapter 28, the mel scale plays an important role in speech
recognition.

The loudness of a sound is the perceptual correlate of the power. So sounds with
higher amplitudes are perceived as louder, but again the relationship is not linear.
First of all, as we mentioned above when we defined µ-law compression, humans
have greater resolution in the low-power range; the ear is more sensitive to small
power differences. Second, it turns out that there is a complex relationship between
power, frequency, and perceived loudness; sounds in certain frequency ranges are
perceived as being louder than those in other frequency ranges.

Various algorithms exist for automatically extracting F0. In a slight abuse of ter-
minology, these are called pitch extraction algorithms. The autocorrelation methodpitch extraction

of pitch extraction, for example, correlates the signal with itself at various offsets.
The offset that gives the highest correlation gives the period of the signal. Other
methods for pitch extraction are based on the cepstral features we introduce in Chap-
ter 28. There are various publicly available pitch extraction toolkits; for example,
an augmented autocorrelation pitch tracker is provided with Praat (Boersma and
Weenink, 2005).

27.5.4 Interpretation of Phones from a Waveform
Much can be learned from a visual inspection of a waveform. For example, vowels
are pretty easy to spot. Recall that vowels are voiced; another property of vowels
is that they tend to be long and are relatively loud (as we can see in the intensity
plot in Fig. 27.16). Length in time manifests itself directly on the x-axis, and loud-
ness is related to (the square of) amplitude on the y-axis. We saw in the previous
section that voicing is realized by regular peaks in amplitude of the kind we saw in
Fig. 27.13, each major peak corresponding to an opening of the vocal folds. Fig-
ure 27.17 shows the waveform of the short sentence “she just had a baby”. We have
labeled this waveform with word and phone labels. Notice that each of the six vow-
els in Fig. 27.17, [iy], [ax], [ae], [ax], [ey], [iy], all have regular amplitude peaks
indicating voicing.

she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 27.17 A waveform of the sentence “She just had a baby” from the Switchboard corpus (conversation
4325). The speaker is female, was 20 years old in 1991, which is approximately when the recording was made,
and speaks the South Midlands dialect of American English.
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For a stop consonant, which consists of a closure followed by a release, we can
often see a period of silence or near silence followed by a slight burst of amplitude.
We can see this for both of the [b]’s in baby in Fig. 27.17.

Another phone that is often quite recognizable in a waveform is a fricative. Re-
call that fricatives, especially very strident fricatives like [sh], are made when a
narrow channel for airflow causes noisy, turbulent air. The resulting hissy sounds
have a noisy, irregular waveform. This can be seen somewhat in Fig. 27.17; it’s even
clearer in Fig. 27.18, where we’ve magnified just the first word she.

she

sh iy

Time (s)
0 0.257

Figure 27.18 A more detailed view of the first word “she” extracted from the wavefile in Fig. 27.17. Notice
the difference between the random noise of the fricative [sh] and the regular voicing of the vowel [iy].

27.5.5 Spectra and the Frequency Domain
While some broad phonetic features (such as energy, pitch, and the presence of voic-
ing, stop closures, or fricatives) can be interpreted directly from the waveform, most
computational applications such as speech recognition (as well as human auditory
processing) are based on a different representation of the sound in terms of its com-
ponent frequencies. The insight of Fourier analysis is that every complex wave can
be represented as a sum of many sine waves of different frequencies. Consider the
waveform in Fig. 27.19. This waveform was created (in Praat) by summing two sine
waveforms, one of frequency 10 Hz and one of frequency 100 Hz.

Time (s)
0 0.5

–1

1

0

Figure 27.19 A waveform that is the sum of two sine waveforms, one of frequency 10
Hz (note five repetitions in the half-second window) and one of frequency 100 Hz, both of
amplitude 1.

We can represent these two component frequencies with a spectrum. The spec-spectrum

trum of a signal is a representation of each of its frequency components and their
amplitudes. Figure 27.20 shows the spectrum of Fig. 27.19. Frequency in Hz is
on the x-axis and amplitude on the y-axis. Note the two spikes in the figure, one
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at 10 Hz and one at 100 Hz. Thus, the spectrum is an alternative representation of
the original waveform, and we use the spectrum as a tool to study the component
frequencies of a sound wave at a particular time point.
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Figure 27.20 The spectrum of the waveform in Fig. 27.19.

Let’s look now at the frequency components of a speech waveform. Figure 27.21
shows part of the waveform for the vowel [ae] of the word had, cut out from the
sentence shown in Fig. 27.17.

Time (s)
0 0.04275

–0.05554

0.04968

0

Figure 27.21 The waveform of part of the vowel [ae] from the word had cut out from the
waveform shown in Fig. 27.17.

Note that there is a complex wave that repeats about ten times in the figure; but
there is also a smaller repeated wave that repeats four times for every larger pattern
(notice the four small peaks inside each repeated wave). The complex wave has a
frequency of about 234 Hz (we can figure this out since it repeats roughly 10 times
in .0427 seconds, and 10 cycles/.0427 seconds = 234 Hz).

The smaller wave then should have a frequency of roughly four times the fre-
quency of the larger wave, or roughly 936 Hz. Then, if you look carefully, you can
see two little waves on the peak of many of the 936 Hz waves. The frequency of this
tiniest wave must be roughly twice that of the 936 Hz wave, hence 1872 Hz.

Figure 27.22 shows a smoothed spectrum for the waveform in Fig. 27.21, com-
puted with a discrete Fourier transform (DFT).

The x-axis of a spectrum shows frequency, and the y-axis shows some mea-
sure of the magnitude of each frequency component (in decibels (dB), a logarithmic
measure of amplitude that we saw earlier). Thus, Fig. 27.22 shows significant fre-
quency components at around 930 Hz, 1860 Hz, and 3020 Hz, along with many
other lower-magnitude frequency components. These first two components are just
what we noticed in the time domain by looking at the wave in Fig. 27.21!

Why is a spectrum useful? It turns out that these spectral peaks that are easily
visible in a spectrum are characteristic of different phones; phones have characteris-
tic spectral “signatures”. Just as chemical elements give off different wavelengths of
light when they burn, allowing us to detect elements in stars by looking at the spec-
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Figure 27.22 A spectrum for the vowel [ae] from the word had in the waveform of She just
had a baby in Fig. 27.17.

trum of the light, we can detect the characteristic signature of the different phones
by looking at the spectrum of a waveform. This use of spectral information is essen-
tial to both human and machine speech recognition. In human audition, the function
of the cochlea, or inner ear, is to compute a spectrum of the incoming waveform.cochlea

Similarly, the various kinds of acoustic features used in speech recognition as the
HMM observation are all different representations of spectral information.

Let’s look at the spectrum of different vowels. Since some vowels change over
time, we’ll use a different kind of plot called a spectrogram. While a spectrum
shows the frequency components of a wave at one point in time, a spectrogram is aspectrogram

way of envisioning how the different frequencies that make up a waveform change
over time. The x-axis shows time, as it did for the waveform, but the y-axis now
shows frequencies in hertz. The darkness of a point on a spectrogram corresponds
to the amplitude of the frequency component. Very dark points have high amplitude,
light points have low amplitude. Thus, the spectrogram is a useful way of visualizing
the three dimensions (time x frequency x amplitude).

Figure 27.23 shows spectrograms of three American English vowels, [ih], [ae],
and [ah]. Note that each vowel has a set of dark bars at various frequency bands,
slightly different bands for each vowel. Each of these represents the same kind of
spectral peak that we saw in Fig. 27.21.
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Figure 27.23 Spectrograms for three American English vowels, [ih], [ae], and [uh], spoken
by the first author.

Each dark bar (or spectral peak) is called a formant. As we discuss below, aformant

formant is a frequency band that is particularly amplified by the vocal tract. Since
different vowels are produced with the vocal tract in different positions, they will
produce different kinds of amplifications or resonances. Let’s look at the first two
formants, called F1 and F2. Note that F1, the dark bar closest to the bottom, is in a
different position for the three vowels; it’s low for [ih] (centered at about 470 Hz)
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and somewhat higher for [ae] and [ah] (somewhere around 800 Hz). By contrast,
F2, the second dark bar from the bottom, is highest for [ih], in the middle for [ae],
and lowest for [ah].

We can see the same formants in running speech, although the reduction and
coarticulation processes make them somewhat harder to see. Figure 27.24 shows
the spectrogram of “she just had a baby”, whose waveform was shown in Fig. 27.17.
F1 and F2 (and also F3) are pretty clear for the [ax] of just, the [ae] of had, and the
[ey] of baby.

she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 27.24 A spectrogram of the sentence “she just had a baby” whose waveform was shown in Fig. 27.17.
We can think of a spectrogram as a collection of spectra (time slices), like Fig. 27.22 placed end to end.

What specific clues can spectral representations give for phone identification?
First, since different vowels have their formants at characteristic places, the spectrum
can distinguish vowels from each other. We’ve seen that [ae] in the sample waveform
had formants at 930 Hz, 1860 Hz, and 3020 Hz. Consider the vowel [iy] at the
beginning of the utterance in Fig. 27.17. The spectrum for this vowel is shown in
Fig. 27.25. The first formant of [iy] is 540 Hz, much lower than the first formant for
[ae], and the second formant (2581 Hz) is much higher than the second formant for
[ae]. If you look carefully, you can see these formants as dark bars in Fig. 27.24 just
around 0.5 seconds.
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Figure 27.25 A smoothed (LPC) spectrum for the vowel [iy] at the start of She just had a
baby. Note that the first formant (540 Hz) is much lower than the first formant for [ae] shown
in Fig. 27.22, and the second formant (2581 Hz) is much higher than the second formant for
[ae].

The location of the first two formants (called F1 and F2) plays a large role in de-
termining vowel identity, although the formants still differ from speaker to speaker.
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Higher formants tend to be caused more by general characteristics of a speaker’s
vocal tract rather than by individual vowels. Formants also can be used to identify
the nasal phones [n], [m], and [ng] and the liquids [l] and [r].

27.5.6 The Source-Filter Model
Why do different vowels have different spectral signatures? As we briefly mentioned
above, the formants are caused by the resonant cavities of the mouth. The source-
filter model is a way of explaining the acoustics of a sound by modeling how thesource-filter

model
pulses produced by the glottis (the source) are shaped by the vocal tract (the filter).

Let’s see how this works. Whenever we have a wave such as the vibration in air
caused by the glottal pulse, the wave also has harmonics. A harmonic is anotherharmonic

wave whose frequency is a multiple of the fundamental wave. Thus, for example, a
115 Hz glottal fold vibration leads to harmonics (other waves) of 230 Hz, 345 Hz,
460 Hz, and so on on. In general, each of these waves will be weaker, that is, will
have much less amplitude than the wave at the fundamental frequency.

It turns out, however, that the vocal tract acts as a kind of filter or amplifier;
indeed any cavity, such as a tube, causes waves of certain frequencies to be amplified
and others to be damped. This amplification process is caused by the shape of the
cavity; a given shape will cause sounds of a certain frequency to resonate and hence
be amplified. Thus, by changing the shape of the cavity, we can cause different
frequencies to be amplified.

When we produce particular vowels, we are essentially changing the shape of
the vocal tract cavity by placing the tongue and the other articulators in particular
positions. The result is that different vowels cause different harmonics to be ampli-
fied. So a wave of the same fundamental frequency passed through different vocal
tract positions will result in different harmonics being amplified.

We can see the result of this amplification by looking at the relationship between
the shape of the vocal tract and the corresponding spectrum. Figure 27.26 shows
the vocal tract position for three vowels and a typical resulting spectrum. The for-
mants are places in the spectrum where the vocal tract happens to amplify particular
harmonic frequencies.

27.6 Phonetic Resources

A wide variety of phonetic resources can be drawn on for computational work. One
key set of resources are pronunciation dictionaries. Such on-line phonetic dictio-Pronunciation

dictionary
naries give phonetic transcriptions for each word. Three commonly used on-line
dictionaries for English are the CELEX, CMUdict, and PRONLEX lexicons; for
other languages, the LDC has released pronunciation dictionaries for Egyptian Ara-
bic, German, Japanese, Korean, Mandarin, and Spanish. All these dictionaries can
be used for both speech recognition and synthesis work.

The CELEX dictionary (Baayen et al., 1995) is the most richly annotated of
the dictionaries. It includes all the words in the 1974 Oxford Advanced Learner’s
Dictionary (41,000 lemmata) and the 1978 Longman Dictionary of Contemporary
English (53,000 lemmata); in total it has pronunciations for 160,595 wordforms. Its
(British rather than American) pronunciations are transcribed with an ASCII version
of the IPA called SAM. In addition to basic phonetic information like phone strings,
syllabification, and stress level for each syllable, each word is also annotated with
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Figure 27.26 Visualizing the vocal tract position as a filter: the tongue positions for three
English vowels and the resulting smoothed spectra showing F1 and F2.

morphological, part-of-speech, syntactic, and frequency information. CELEX (as
well as CMU and PRONLEX) represent three levels of stress: primary stress, sec-
ondary stress, and no stress. For example, some of the CELEX information for the
word dictionary includes multiple pronunciations (’dIk-S@n-rI and ’dIk-S@-n@-
rI, corresponding to ARPAbet [d ih k sh ax n r ih] and [d ih k sh ax n ax r ih],
respectively), together with the CV skelata for each one ([CVC][CVC][CV] and
[CVC][CV][CV][CV]), the frequency of the word, the fact that it is a noun, and its
morphological structure (diction+ary).

The free CMU Pronouncing Dictionary (CMU, 1993) has pronunciations for
about 125,000 wordforms. It uses a 39-phone ARPAbet-derived phoneme set. Tran-
scriptions are phonemic, and thus instead of marking any kind of surface reduction
like flapping or reduced vowels, it marks each vowel with the number 0 (unstressed),
1 (stressed), or 2 (secondary stress). Thus, the word tiger is listed as [T AY1 G ER0],
the word table as [T EY1 B AH0 L], and the word dictionary as [D IH1 K SH AH0
N EH2 R IY0]. The dictionary is not syllabified, although the nucleus is implicitly
marked by the (numbered) vowel. Figure 27.27 shows some sample pronunciations.

ANTECEDENTS AE2 N T IH0 S IY1 D AH0 N T S PAKISTANI P AE2 K IH0 S T AE1 N IY0
CHANG CH AE1 NG TABLE T EY1 B AH0 L
DICTIONARY D IH1 K SH AH0 N EH2 R IY0 TROTSKY T R AA1 T S K IY2
DINNER D IH1 N ER0 WALTER W AO1 L T ER0
LUNCH L AH1 N CH WALTZING W AO1 L T S IH0 NG
MCFARLAND M AH0 K F AA1 R L AH0 N D WALTZING(2) W AO1 L S IH0 NG

Figure 27.27 Some sample pronunciations from the CMU Pronouncing Dictionary.
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The PRONLEX dictionary (LDC, 1995) was designed for speech recognition
and contains pronunciations for 90,694 wordforms. It covers all the words used in
many years of the Wall Street Journal, as well as the Switchboard Corpus. PRON-
LEX has the advantage that it includes many proper names (20,000, whereas CELEX
only has about 1000). Names are important for practical applications, and they are
both frequent and difficult; we return to a discussion of deriving name pronuncia-
tions in Chapter 28.

The CMU dictionary was designed for speech recognition rather than synthesis
uses; thus, it does not specify which of the multiple pronunciations to use for syn-
thesis, does not mark syllable boundaries, and because it capitalizes the dictionary
headwords, does not distinguish between, for example, US and us (the form US has
the two pronunciations [AH1 S] and [Y UW1 EH1 S]).

The 110,000 word UNISYN dictionary, freely available for research purposes,
resolves many of these issues as it was designed specifically for synthesis (Fitt,
2002). UNISYN gives syllabifications, stress, and some morphological boundaries.
Furthermore, pronunciations in UNISYN can also be read off in any of dozens of
dialects of English, including General American, RP British, Australia, and so on.
The UNISYN uses a slightly different phone set; here are some examples:

going: { g * ou }.> i ng >

antecedents: { * a n . tˆ i . s ˜ ii . d n! t }> s >

dictionary: { d * i k . sh @ . n ˜ e . r ii }

Another useful resource is a phonetically annotated corpus, in which a collec-
tion of waveforms is hand-labeled with the corresponding string of phones. Three
important phonetic corpora in English are the TIMIT corpus, the Switchboard cor-
pus, and the Buckeye corpus.

The TIMIT corpus (NIST, 1990) was collected as a joint project between Texas
Instruments (TI), MIT, and SRI. It is a corpus of 6300 read sentences, with 10 sen-
tences each from 630 speakers. The 6300 sentences were drawn from a set of 2342
predesigned sentences, some selected to have particular dialect shibboleths, others to
maximize phonetic diphone coverage. Each sentence in the corpus was phonetically
hand-labeled, the sequence of phones was automatically aligned with the sentence
wavefile, and then the automatic phone boundaries were manually hand-corrected
(Seneff and Zue, 1988). The result is a time-aligned transcription: a transcrip-time-aligned

transcription
tion in which each phone is associated with a start and end time in the waveform.
We showed a graphical example of a time-aligned transcription in Fig. 27.17 on
page 534.

The phoneset for TIMIT and for the Switchboard Transcription Project corpus
below, is a more detailed one than the minimal phonemic version of the ARPAbet.
In particular, these phonetic transcriptions make use of the various reduced and rare
phones mentioned in Fig. 27.1 and Fig. 27.2: the flap [dx], glottal stop [q], reduced
vowels [ax], [ix], [axr], voiced allophone of [h] ([hv]), and separate phones for stop
closure ([dcl], [tcl], etc) and release ([d], [t], etc.). An example transcription is
shown in Fig. 27.28.

she had your dark suit in greasy wash water all year
sh iy hv ae dcl jh axr dcl d aa r kcl s ux q en gcl g r iy s ix w aa sh q w aa dx axr q aa l y ix axr

Figure 27.28 Phonetic transcription from the TIMIT corpus. This transcription uses special features of
ARPAbet for narrow transcription, such as the palatalization of [d] in had, unreleased final stop in dark, glot-
talization of final [t] in suit to [q], and flap of [t] in water. The TIMIT corpus also includes time-alignments for
each phone (not shown).
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Where TIMIT is based on read speech, the more recent Switchboard Transcrip-
tion Project corpus is based on the Switchboard corpus of conversational speech.
This phonetically annotated portion consists of approximately 3.5 hours of sentences
extracted from various conversations (Greenberg et al., 1996). As with TIMIT, each
annotated utterance contains a time-aligned transcription. The Switchboard tran-
scripts are time aligned at the syllable level rather than at the phone level; thus, a
transcript consists of a sequence of syllables with the start and end time of each
syllables in the corresponding wavefile. Figure 27.29 shows an example from the
Switchboard Transcription Project for the phrase they’re kind of in between right
now.

0.470 0.640 0.720 0.900 0.953 1.279 1.410 1.630
dh er k aa n ax v ih m b ix t w iy n r ay n aw

Figure 27.29 Phonetic transcription of the Switchboard phrase they’re kind of in between
right now. Note vowel reduction in they’re and of, coda deletion in kind and right, and re-
syllabification (the [v] of of attaches as the onset of in). Time is given in number of seconds
from the beginning of sentence to the start of each syllable.

The Buckeye corpus (Pitt et al. 2007, Pitt et al. 2005) is a phonetically tran-
scribed corpus of spontaneous American speech, containing about 300,000 words
from 40 talkers. Phonetically transcribed corpora are also available for other lan-
guages, including the Kiel corpus of German and Mandarin corpora transcribed by
the Chinese Academy of Social Sciences (Li et al., 2000).

In addition to resources like dictionaries and corpora, there are many useful pho-
netic software tools. One of the most versatile is the Praat package (Boersma and
Weenink, 2005), which includes spectrum and spectrogram analysis, pitch extrac-
tion and formant analysis, and an embedded scripting language for automation.

27.7 Summary

This chapter has introduced many of the important concepts of phonetics and com-
putational phonetics.
• We can represent the pronunciation of words in terms of units called phones.

The standard system for representing phones is the International Phonetic
Alphabet or IPA. The most common computational system for transcription
of English is the ARPAbet, which conveniently uses ASCII symbols.

• Phones can be described by how they are produced articulatorily by the vocal
organs; consonants are defined in terms of their place and manner of articu-
lation and voicing; vowels by their height, backness, and roundness.

• A phoneme is a generalization or abstraction over different phonetic realiza-
tions. Allophonic rules express how a phoneme is realized in a given context.

• Speech sounds can also be described acoustically. Sound waves can be de-
scribed in terms of frequency, amplitude, or their perceptual correlates, pitch
and loudness.

• The spectrum of a sound describes its different frequency components. While
some phonetic properties are recognizable from the waveform, both humans
and machines rely on spectral analysis for phone detection.

• A spectrogram is a plot of a spectrum over time. Vowels are described by
characteristic harmonics called formants.
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• Pronunciation dictionaries are widely available and used for both speech
recognition and synthesis, including the CMU dictionary for English and CELEX
dictionaries for English, German, and Dutch. Other dictionaries are available
from the LDC.

• Phonetically transcribed corpora are a useful resource for building computa-
tional models of phone variation and reduction in natural speech.

Bibliographical and Historical Notes
The major insights of articulatory phonetics date to the linguists of 800–150 B.C.
India. They invented the concepts of place and manner of articulation, worked out
the glottal mechanism of voicing, and understood the concept of assimilation. Eu-
ropean science did not catch up with the Indian phoneticians until over 2000 years
later, in the late 19th century. The Greeks did have some rudimentary phonetic
knowledge; by the time of Plato’s Theaetetus and Cratylus, for example, they distin-
guished vowels from consonants, and stop consonants from continuants. The Stoics
developed the idea of the syllable and were aware of phonotactic constraints on pos-
sible words. An unknown Icelandic scholar of the 12th century exploited the concept
of the phoneme and proposed a phonemic writing system for Icelandic, including
diacritics for length and nasality. But his text remained unpublished until 1818 and
even then was largely unknown outside Scandinavia (Robins, 1967). The modern
era of phonetics is usually said to have begun with Sweet, who proposed what is
essentially the phoneme in his Handbook of Phonetics (1877). He also devised an
alphabet for transcription and distinguished between broad and narrow transcrip-
tion, proposing many ideas that were eventually incorporated into the IPA. Sweet
was considered the best practicing phonetician of his time; he made the first scien-
tific recordings of languages for phonetic purposes and advanced the state of the art
of articulatory description. He was also infamously difficult to get along with, a trait
that is well captured in Henry Higgins, the stage character that George Bernard Shaw
modeled after him. The phoneme was first named by the Polish scholar Baudouin
de Courtenay, who published his theories in 1894.

Students with further interest in transcription and articulatory phonetics should
consult an introductory phonetics textbook such as Ladefoged (1993) or Clark and
Yallop (1995). Pullum and Ladusaw (1996) is a comprehensive guide to each of the
symbols and diacritics of the IPA. A good resource for details about reduction and
other phonetic processes in spoken English is Shockey (2003). Wells (1982) is the
definitive three-volume source on dialects of English.

Many of the classic insights in acoustic phonetics had been developed by the late
1950s or early 1960s; just a few highlights include techniques like the sound spectro-
graph (Koenig et al., 1946), theoretical insights like the working out of the source-
filter theory and other issues in the mapping between articulation and acoustics
((Fant, 1960), Stevens et al. 1953, Stevens and House 1955, Heinz and Stevens 1961,
Stevens and House 1961) the F1xF2 space of vowel formants (Peterson and Barney,
1952), the understanding of the phonetic nature of stress and the use of duration and
intensity as cues (Fry, 1955), and a basic understanding of issues in phone percep-
tion (Miller and Nicely 1955,Liberman et al. 1952). Lehiste (1967) is a collection
of classic papers on acoustic phonetics. Many of the seminal papers of Gunnar Fant
have been collected in Fant (2004).

Excellent textbooks on acoustic phonetics include Johnson (2003) and Lade-
foged (1996). Coleman (2005) includes an introduction to computational processing
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of acoustics as well as other speech processing issues, from a linguistic perspective.
Stevens (1998) lays out an influential theory of speech sound production. A wide
variety of books address speech from a signal processing and electrical engineering
perspective. The ones with the greatest coverage of computational phonetics issues
include Huang et al. (2001), O’Shaughnessy (2000), and Gold and Morgan (1999).
Excellent textbooks on digital signal processing are Lyons (2004) and Rabiner and
Schafer (1978).

There are a number of software packages for acoustic phonetic analysis. Proba-
bly the most widely-used one is Praat (Boersma and Weenink, 2005).

Many phonetics papers of computational interest are to be found in the Journal
of the Acoustical Society of America (JASA), Computer Speech and Language, and
Speech Communication.

Exercises
27.1 Find the mistakes in the ARPAbet transcriptions of the following words:

a. “three” [dh r i] d. “study” [s t uh d i] g. “slight” [s l iy t]
b. “sing” [s ih n g] e. “though” [th ow]
c. “eyes” [ay s] f. “planning” [p pl aa n ih ng]

27.2 Translate the pronunciations of the following color words from the IPA into
the ARPAbet (and make a note if you think you pronounce them differently
than this!):

a. [rEd] e. [blæk] i. [pjus]
b. [blu] f. [waIt] j. [toUp]
c. [grin] g. ["OrIndZ]
d. ["jEloU] h. ["pÇpl

"
]

27.3 Ira Gershwin’s lyric for Let’s Call the Whole Thing Off talks about two pro-
nunciations (each) of the words “tomato”, “potato”, and “either”. Transcribe
into the ARPAbet both pronunciations of each of these three words.

27.4 Transcribe the following words in the ARPAbet:

1. dark
2. suit
3. greasy
4. wash
5. water

27.5 Take a wavefile of your choice. Some examples are on the textbook website.
Download the Praat software, and use it to transcribe the wavefiles at the word
level and into ARPAbet phones, using Praat to help you play pieces of each
wavefile and to look at the wavefile and the spectrogram.

27.6 Record yourself saying five of the English vowels: [aa], [eh], [ae], [iy], [uw].
Find F1 and F2 for each of your vowels.



CHAPTER

28 Speech Recognition and Syn-
thesis

Placeholder

545





547

Appendices



548 APPENDIX A • HIDDEN MARKOV MODELS

CHAPTER

A Hidden Markov Models

Chapter 8 introduced the Hidden Markov Model and applied it to part of speech
tagging. Part of speech tagging is a fully-supervised learning task, because we have
a corpus of words labeled with the correct part-of-speech tag. But many applications
don’t have labeled data. So in this chapter, we introduce the full set of algorithms for
HMMs, including the key unsupervised learning algorithm for HMM, the Forward-
Backward algorithm. We’ll repeat some of the text from Chapter 8 for readers who
want the whole story laid out in a single chapter.

A.1 Markov Chains

The HMM is based on augmenting the Markov chain. A Markov chain is a modelMarkov chain

that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, like the weather. A Markov chain makes a
very strong assumption that if we want to predict the future in the sequence, all that
matters is the current state. The states before the current state have no impact on the
future except via the current state. It’s as if to predict tomorrow’s weather you could
examine today’s weather but you weren’t allowed to look at yesterday’s weather.

WARM3HOT1

COLD2
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charminguniformly
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.4 .5

.5
.5

.2

.6 .2
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Figure A.1 A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution π is required; setting π = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables q1,q2, ...,qi. A Markov
model embodies the Markov assumption on the probabilities of this sequence: thatMarkov

assumption
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(qi = a|q1...qi−1) = P(qi = a|qi−1) (A.1)

Figure A.1a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given
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state must sum to 1. Figure A.1b shows a Markov chain for assigning a probabil-
ity to a sequence of words w1...wn. This Markov chain should be familiar; in fact,
it represents a bigram language model, with each edge expressing the probability
p(wi|w j)! Given the two models in Fig. A.1, we can assign a probability to any
sequence from our vocabulary.

Formally, a Markov chain is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.∑n
j=1 ai j = 1 ∀i

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i.
Some states j may have π j = 0, meaning that they cannot
be initial states. Also,

∑n
i=1 πi = 1

Before you go on, use the sample probabilities in Fig. A.1a (with π = [.1, .7.,2])
to compute the probability of each of the following sequences:

(A.2) hot hot hot hot
(A.3) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. A.1a?

A.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden

part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventsHidden
Markov model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
∑N

j=1 ai j = 1 ∀i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation ot being generated
from a state i

π = π1,π2, ...,πN an initial probability distribution over states. πi is the probability that
the Markov chain will start in state i. Some states j may have π j = 0,
meaning that they cannot be initial states. Also,

∑n
i=1 πi = 1
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A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1) (A.4)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (A.5)

To exemplify these models, we’ll use a task invented by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for
the summer of 2020, but you do find Jason Eisner’s diary, which lists how many ice
creams Jason ate every day that summer. Our goal is to use these observations to
estimate the temperature every day. We’ll simplify this weather task by assuming
there are only two kinds of days: cold (C) and hot (H). So the Eisner task is as
follows:

Given a sequence of observations O (each an integer representing the
number of ice creams eaten on a given day) find the ‘hidden’ sequence
Q of weather states (H or C) which caused Jason to eat the ice cream.

Figure A.2 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

π = [.8,.2]

COLD2HOT1

B2
P(1 | COLD)          .5
P(2 | COLD)    =    .4
P(3 | COLD)          .1

.5.6

.5

.4

P(1 | HOT)          .2
P(2 | HOT)    =    .4
P(3 | HOT)          .4

B1

Figure A.2 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

An influential tutorial by Rabiner (1989), based on tutorials by Jack Ferguson in
the 1960s, introduced the idea that hidden Markov models should be characterized
by three fundamental problems:

Problem 1 (Likelihood): Given an HMM λ = (A,B) and an observation se-
quence O, determine the likelihood P(O|λ ).

Problem 2 (Decoding): Given an observation sequence O and an HMM λ =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 8. In the next two sections
we introduce the Forward and Forward-Backward algorithms to solve Problems 1
and 3 and give more information on Problem 2
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A.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the ice-cream eating HMM in Fig. A.2, what is the probability
of the sequence 3 1 3? More formally:

Computing Likelihood: Given an HMM λ = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|λ ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the
sequence of observations have the same length. 1

Given this one-to-one mapping and the Markov assumptions expressed in Eq. A.4,
for a particular hidden state sequence Q = q0,q1,q2, ...,qT and an observation se-
quence O = o1,o2, ...,oT , the likelihood of the observation sequence is

P(O|Q) =

T∏

i=1

P(oi|qi) (A.6)

The computation of the forward probability for our ice-cream observation 3 1 3 from
one possible hidden state sequence hot hot cold is shown in Eq. A.7. Figure A.3
shows a graphic representation of this computation.

P(3 1 3|hot hot cold) = P(3|hot)×P(1|hot)×P(3|cold) (A.7)

coldhot

3

.4

hot

1 3

.2 .1

Figure A.3 The computation of the observation likelihood for the ice-cream events 3 1 3
given the hidden state sequence hot hot cold.

But of course, we don’t actually know what the hidden state (weather) sequence
was. We’ll need to compute the probability of ice-cream events 3 1 3 instead by

1 In a variant of HMMs called segmental HMMs (in speech recognition) or semi-HMMs (in text pro-
cessing) this one-to-one mapping between the length of the hidden state sequence and the length of the
observation sequence does not hold.
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summing over all possible weather sequences, weighted by their probability. First,
let’s compute the joint probability of being in a particular weather sequence Q and
generating a particular sequence O of ice-cream events. In general, this is

P(O,Q) = P(O|Q)×P(Q) =

T∏

i=1

P(oi|qi)×
T∏

i=1

P(qi|qi−1) (A.8)

The computation of the joint probability of our ice-cream observation 3 1 3 and one
possible hidden state sequence hot hot cold is shown in Eq. A.9. Figure A.4 shows
a graphic representation of this computation.

P(3 1 3,hot hot cold) = P(hot|start)×P(hot|hot)×P(cold|hot)
×P(3|hot)×P(1|hot)×P(3|cold) (A.9)

coldhot

3

.4

hot
.6

1 3

.4

.2 .1

Figure A.4 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

Now that we know how to compute the joint probability of the observations
with a particular hidden state sequence, we can compute the total probability of the
observations just by summing over all possible hidden state sequences:

P(O) =
∑

Q

P(O,Q) =
∑

Q

P(O|Q)P(Q) (A.10)

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T ) algorithm called the forward algorithm. The forward algorithm is a kindforward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure A.5 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.
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π

H

C

H

C

H

C

P(C|sta
rt) 

* P
(3|C)

.2 * .
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P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.4 * .5

P(H|C) * P
(1|H)
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P(
H|

sta
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*P
(3

|H
)

.8 
* .

4

α1(2)=.32

α1(1) = .02

α2(2)= .32*.12 + .02*.1 = .0404

α2(1) = .32*.2 + .02*.25 = .069

t

C

Hq2

q1

o1

3
o2 o3

1 3

Figure A.5 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3.
Hidden states are in circles, observations in squares. The figure shows the computation of αt( j) for two states at
two time steps. The computation in each cell follows Eq. A.12: αt( j) =

∑N
i=1 αt−1(i)ai jb j(ot). The resulting

probability expressed in each cell is Eq. A.11: αt( j) = P(o1,o2 . . .ot ,qt = j|λ ).

Each cell of the forward algorithm trellis αt( j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton λ . The value
of each cell αt( j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ ) (A.11)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability αt( j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value αt( j) is computed as

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot) (A.12)

The three factors that are multiplied in Eq. A.12 in extending the previous paths
to compute the forward probability at time t are

αt−1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

Consider the computation in Fig. A.5 of α2(2), the forward probability of being
at time step 2 in state 2 having generated the partial observation 3 1. We compute by
extending the α probabilities from time step 1, via two paths, each extension con-
sisting of the three factors above: α1(1)×P(H|C)×P(1|H) and α1(2)×P(H|H)×
P(1|H).

Figure A.6 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. A.7 and a statement of the definitional recursion here.
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ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot) 

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)

αt-1(3)

αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure A.6 Visualizing the computation of a single element αt(i) in the trellis by summing
all the previous values αt−1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for αt(i).

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N,T]
for each state s from 1 to N do ; initialization step

forward[s,1]←πs ∗ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]←
N∑

s′=1

forward[s′, t−1] ∗ as′,s ∗ bs(ot)

forwardprob←
N∑

s=1

forward[s,T ] ; termination step

return forwardprob

Figure A.7 The forward algorithm, where forward[s, t] represents αt(s).

1. Initialization:

α1( j) = π jb j(o1) 1≤ j ≤ N

2. Recursion:

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot); 1≤ j ≤ N,1< t ≤ T

3. Termination:

P(O|λ ) =
N∑

i=1

αT (i)
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A.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequencedecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find the
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM λ = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 2.
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.6 * .2
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.5 * .5
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.4 * .5

P(H|C) * P
(1|H)

.5 * .2

P(
H|
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rt)

*P
(3

|H
)

.8 
* .

4

v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.10) = .038

v2(1) = max(.32*.20, .02*.25) = .064

t

C

Hq2

q1

o1 o2 o3

3 1 3

Figure A.8 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt( j) for two states at two time steps. The computation in each
cell follows Eq. A.14: vt( j) = max1≤i≤N−1 vt−1(i) ai j b j(ot). The resulting probability expressed in each cell
is Eq. A.13: vt( j) = P(q0,q1, . . . ,qt−1,o1,o2, . . . ,ot ,qt = j|λ ).

Figure A.8 shows an example of the Viterbi trellis for computing the best hidden
state sequence for the observation sequence 3 1 3. The idea is to process the ob-
servation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q1, ...,qt−1, given the
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automaton λ . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q1,...,qt−1

P(q1...qt−1,o1,o2 . . .ot ,qt = j|λ ) (A.13)

Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q1,...,qt−1
. Like other dynamic programming algo-

rithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t−1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot) (A.14)

The three factors that are multiplied in Eq. A.14 for extending the previous paths to
compute the Viterbi probability at time t are

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←πs ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

bestpathprob← N
max

s=1
viterbi[s,T ] ; termination step

bestpathpointer← N
argmax

s=1
viterbi[s,T ] ; termination step

bestpath← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure A.9 Viterbi algorithm for finding optimal sequence of hidden states. Given an observation sequence
and an HMM λ =(A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

Figure A.9 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t
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have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. A.10, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace
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v2(1) = max(.32*.20, .02*.25) = .064
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Figure A.10 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1( j) = π jb j(o1) 1≤ j ≤ N

bt1( j) = 0 1≤ j ≤ N

2. Recursion

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1< t ≤ T

btt( j) =
N

argmax
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1< t ≤ T

3. Termination:

The best score: P∗ =
N

max
i=1

vT (i)

The start of backtrace: qT∗ =
N

argmax
i=1

vT (i)

A.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.
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The input to such a learning algorithm would be an unlabeled sequence of ob-
servations O and a vocabulary of potential hidden states Q. Thus, for the ice cream
task, we would start with a sequence of observations O = {1,3,2, ...,} and the set of
hidden states H and C.

The standard algorithm for HMM training is the forward-backward, or Baum-Forward-
backward

Welch algorithm (Baum, 1972), a special case of the Expectation-MaximizationBaum-Welch

or EM algorithm (Dempster et al., 1977). The algorithm will let us train both theEM

transition probabilities A and the emission probabilities B of the HMM. EM is an
iterative algorithm, computing an initial estimate for the probabilities, then using
those estimates to computing a better estimate, and so on, iteratively improving the
probabilities that it learns.

Let us begin by considering the much simpler case of training a fully visible
Markov model, we’re know both the temperature and the ice cream count for every
day. That is, imagine we see the following set of input observations and magically
knew the aligned hidden state sequences:

3 3 2 1 1 2 1 2 3

hot hot cold cold cold cold cold hot hot

This would easily allow us to compute the HMM parameters just by maximum
likelihood estimation from the training data. First, we can compute π from the count
of the 3 initial hidden states:

πh = 1/3 πc = 2/3

Next we can directly compute the A matrix from the transitions, ignoring the final
hidden states:

p(hot|hot) = 2/3 p(cold|hot) = 1/3
p(cold|cold) = 2/3 p(hot|cold) = 1/3

and the B matrix:

P(1|hot) = 0/4 = 0 p(1|cold) = 3/5 = .6
P(2|hot) = 1/4 = .25 p(2|cold = 2/5 = .4
P(3|hot) = 3/4 = .75 p(3|cold) = 0

For a real HMM, we cannot compute these counts directly from an observation
sequence since we don’t know which path of states was taken through the machine
for a given input. For example, suppose I didn’t tell you the temperature on day 2,
and you had to guess it, but you (magically) had the above probabilities, and the
temperatures on the other days. You could do some Bayesian arithmetic with all the
other probabilities to get estimates of the likely temperature on that missing day, and
use those to get expected counts for the temperatures for day 2.

But the real problem is even harder: we don’t know the counts of being in any
of the hidden states!! The Baum-Welch algorithm solves this by iteratively esti-
mating the counts. We will start with an estimate for the transition and observation
probabilities and then use these estimated probabilities to derive better and better
probabilities. And we’re going to do this by computing the forward probability for
an observation and then dividing that probability mass among all the different paths
that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the
forward probability and called the backward probability. The backward probabil-backward

probability
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ity β is the probability of seeing the observations from time t + 1 to the end, given
that we are in state i at time t (and given the automaton λ ):

βt(i) = P(ot+1,ot+2 . . .oT |qt = i,λ ) (A.15)

It is computed inductively in a similar manner to the forward algorithm.

1. Initialization:

βT (i) = 1, 1≤ i≤ N

2. Recursion

βt(i) =
N∑

j=1

ai j b j(ot+1) βt+1( j), 1≤ i≤ N,1≤ t < T

3. Termination:

P(O|λ ) =
N∑

j=1

π j b j(o1) β1( j)

Figure A.11 illustrates the backward induction step.

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij  bj(ot+1) 

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b3(ot+1)

bN(ot+1)

Figure A.11 The computation of βt(i) by summing all the successive values βt+1( j)
weighted by their transition probabilities ai j and their observation probabilities b j(ot+1). Start
and end states not shown.

We are now ready to see how the forward and backward probabilities can help
compute the transition probability ai j and observation probability bi(ot) from an ob-
servation sequence, even though the actual path taken through the model is hidden.

Let’s begin by seeing how to estimate âi j by a variant of simple maximum like-
lihood estimation:

âi j =
expected number of transitions from state i to state j

expected number of transitions from state i
(A.16)

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i→ j was taken at a particular
point in time t in the observation sequence. If we knew this probability for each
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particular time t, we could sum over all times t to estimate the total count for the
transition i→ j.

More formally, let’s define the probability ξt as the probability of being in state
i at time t and state j at time t +1, given the observation sequence and of course the
model:

ξt(i, j) = P(qt = i,qt+1 = j|O,λ ) (A.17)

To compute ξt , we first compute a probability which is similar to ξt , but differs in
including the probability of the observation; note the different conditioning of O
from Eq. A.17:

not-quite-ξt(i, j) = P(qt = i,qt+1 = j,O|λ ) (A.18)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1) 

si sj

βt+1(j)

Figure A.12 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|λ ): the α and β probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c©1989 IEEE.

Figure A.12 shows the various probabilities that go into computing not-quite-ξt :
the transition probability for the arc in question, the α probability before the arc, the
β probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-ξt as follows:

not-quite-ξt(i, j) = αt(i)ai jb j(ot+1)βt+1( j) (A.19)

To compute ξt from not-quite-ξt , we follow the laws of probability and divide by
P(O|λ ), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z) (A.20)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance):

P(O|λ ) =
N∑

j=1

αt( j)βt( j) (A.21)
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So, the final equation for ξt is

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)
∑N

j=1 αt( j)βt( j)
(A.22)

The expected number of transitions from state i to state j is then the sum over all
t of ξ . For our estimate of ai j in Eq. A.16, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1

∑N
k=1 ξt(i,k)

(A.23)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(A.24)

For this, we will need to know the probability of being in state j at time t, which
we will call γt( j):

γt( j) = P(qt = j|O,λ ) (A.25)

Once again, we will compute this by including the observation sequence in the
probability:

γt( j) =
P(qt = j,O|λ )

P(O|λ ) (A.26)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure A.13 The computation of γt( j), the probability of being in state j at time t. Note
that γ is really a degenerate case of ξ and hence this figure is like a version of Fig. A.12 with
state i collapsed with state j. After Rabiner (1989) which is c©1989 IEEE.

As Fig. A.13 shows, the numerator of Eq. A.26 is just the product of the forward
probability and the backward probability:

γt( j) =
αt( j)βt( j)

P(O|λ ) (A.27)
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We are ready to compute b. For the numerator, we sum γt( j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the
denominator, we sum γt( j) over all time steps t. The result is the percentage of the
times that we were in state j and saw symbol vk (the notation

∑T
t=1 s.t.Ot=vk

means
“sum over all t for which the observation at time t was vk”):

b̂ j(vk) =

∑T
t=1 s.t.Ot=vk

γt( j)
∑T

t=1 γt( j)
(A.28)

We now have ways in Eq. A.23 and Eq. A.28 to re-estimate the transition A and ob-
servation B probabilities from an observation sequence O, assuming that we already
have a previous estimate of A and B.

These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm (Fig. A.14) starts with some initial estimate of the
HMM parameters λ = (A,B). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm, the forward-backward algorithm has
two steps: the expectation step, or E-step, and the maximization step, or M-step.E-step

M-step In the E-step, we compute the expected state occupancy count γ and the expected
state transition count ξ from the earlier A and B probabilities. In the M-step, we use
γ and ξ to recompute new A and B probabilities.

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step

γt( j) =
αt( j)βt( j)

αT (qF )
∀ t and j

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (qF )
∀ t, i, and j

M-step

âi j =

T−1∑

t=1

ξt(i, j)

T−1∑

t=1

N∑

k=1

ξt(i,k)

b̂ j(vk) =

T∑

t=1s.t. Ot=vk

γt( j)

T∑

t=1

γt( j)

return A, B

Figure A.14 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsu-
pervised learning of the A and B parameters, in practice the initial conditions are
very important. For this reason the algorithm is often given extra information. For
example, for HMM-based speech recognition, the HMM structure is often set by
hand, and only the emission (B) and (non-zero) A transition probabilities are trained
from a set of observation sequences O.
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A.6 Summary

This chapter introduced the hidden Markov model for probabilistic sequence clas-
sification.

• Hidden Markov models (HMMs) are a way of relating a sequence of obser-
vations to a sequence of hidden classes or hidden states that explain the
observations.

• The process of discovering the sequence of hidden states, given the sequence
of observations, is known as decoding or inference. The Viterbi algorithm is
commonly used for decoding.

• The parameters of an HMM are the A transition probability matrix and the B
observation likelihood matrix. Both can be trained with the Baum-Welch or
forward-backward algorithm.

Bibliographical and Historical Notes
As we discussed in Chapter 8, Markov chains were first used by Markov (1913)
(translation Markov 2006), to predict whether an upcoming letter in Pushkin’s Eu-
gene Onegin would be a vowel or a consonant. The hidden Markov model was de-
veloped by Baum and colleagues at the Institute for Defense Analyses in Princeton
(Baum and Petrie 1966, Baum and Eagon 1967).

The Viterbi algorithm was first applied to speech and language processing in the
context of speech recognition by Vintsyuk (1968) but has what Kruskal (1983) calls
a “remarkable history of multiple independent discovery and publication”. Kruskal
and others give at least the following independently-discovered variants of the algo-
rithm published in four separate fields:

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

The use of the term Viterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization problem in speech and language
processing. For non-probabilistic problems (such as for minimum edit distance), the
plain term dynamic programming is often used. Forney, Jr. (1973) wrote an early
survey paper that explores the origin of the Viterbi algorithm in the context of infor-
mation and communications theory.

Our presentation of the idea that hidden Markov models should be characterized
by three fundamental problems was modeled after an influential tutorial by Rabiner
(1989), which was itself based on tutorials by Jack Ferguson of IDA in the 1960s.
Jelinek (1997) and Rabiner and Juang (1993) give very complete descriptions of the
forward-backward algorithm as applied to the speech recognition problem. Jelinek
(1997) also shows the relationship between forward-backward and EM.
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Hajič, J., Ciaramita, M., Johansson, R.,
Kawahara, D., Martı́, M. A., Màrquez,
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A. K. (1988). Parsing strategies with
‘lexicalized’ grammars: Applications
to Tree Adjoining Grammars. In
COLING-88, 578–583.

Schank, R. C. (1972). Conceptual de-
pendency: A theory of natural lan-
guage processing. Cognitive Psychol-
ogy, 3, 552–631.

Schank, R. C. and Abelson, R. P.
(1975). Scripts, plans, and knowl-
edge. In Proceedings of IJCAI-75,
151–157.

Schank, R. C. and Abelson, R. P.
(1977). Scripts, Plans, Goals and Un-
derstanding. Lawrence Erlbaum.

Schegloff, E. A. (1968). Sequencing
in conversational openings. American
Anthropologist, 70, 1075–1095.

Scherer, K. R. (2000). Psychological
models of emotion. In Borod, J. C.
(Ed.), The neuropsychology of emo-
tion, 137–162. Oxford.

Schiebinger, L. (2019). Machine
translation: Analyzing gender.
http://genderedinnovations.
stanford.edu/case-studies/
nlp.html#tabs-2.

Schneider, N., Hwang, J. D., Sriku-
mar, V., Prange, J., Blodgett, A.,
Moeller, S. R., Stern, A., Bitan, A.,
and Abend, O. (2018). Comprehen-
sive supersense disambiguation of En-
glish prepositions and possessives. In
ACL 2018, 185–196.

Schone, P. and Jurafsky, D. (2000).
Knowlege-free induction of morphol-
ogy using latent semantic analysis. In
CoNLL-00.

Schone, P. and Jurafsky, D. (2001).
Knowledge-free induction of inflec-
tional morphologies. In NAACL 2001.

Schönfinkel, M. (1924). Über die
Bausteine der mathematischen Logik.
Mathematische Annalen, 92, 305–
316. English translation appears in
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Mané, D., 137
Mani, I., 343–345
Mann, W. C., 445, 462
Manning, C. D., 22, 72, 73,

80, 111, 115, 116,
119, 121, 122, 147,
163–165, 167, 190,
217, 253, 257, 258,

266, 271, 275, 286,
294, 296, 345, 352,
353, 392, 414, 430,
442, 474, 478

Manurung, R., 294
Marcinkiewicz, M. A., 146,

217, 219, 253, 277,
296

Marcu, D., 445–447, 449,
451, 462, 463

Marcus, M. P., 146, 179,
190, 217, 219, 253,
268, 270, 271, 277,
296, 371, 391, 425,
436

Marcus, S., 109
Marheinecke, K., 294
Marinov, S., 296
Maritxalar, M., 119
Markert, K., 421, 425
Markov, A. A., 53, 563
Markovitch, S., 109
Marley, A. A. J., 399
Marlin, B. M., 352
Maron, M. E., 72
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productions, 205
rules, 205
terminal symbol, 205
weak and strong

equivalence, 222
contingency table, 66
continuation rise, 528
conversation, 487
conversation analysis, 515
conversational agents, 487
conversational analysis, 489
conversational implicature,

491
convex, 82
coordinate noun phrase,

216
coordination ambiguity,

234, 256
copula, 146
corefer, 416
coreference chain, 417
coreference resolution, 417

gender agreement, 423
Hobbs tree search

algorithm, 440
number agreement, 422
person agreement, 423
recency preferences, 423
selectional restrictions,

424
syntactic (“binding”)

constraints, 423
verb semantics, 424

coronal sound, 522
corpora, 11
corpus, 11

ATIS, 206
BNC, 147
Brown, 11, 166
CASS phonetic of

Mandarin, 542
Kiel of German, 542
LOB, 166
regular expression

searching inside, 3
Switchboard, 11, 495,

530, 531, 541
Switchboard phonetic,

541
TimeBank, 347
TIMIT, 541

correction act detection,
506

cosine
as a similarity metric,

104
cost function, 80
count nouns, 144
counters, 27
counts

treating low as zero, 162
CRF, 164
cross-brackets, 270
cross-entropy, 51
cross-entropy loss, 81, 133
cross-validation, 69

10-fold, 69
crowdsourcing, 398

currying, 308
cycles in a wave, 529
cycles per second, 529

date
fully qualified, 345
normalization, 501

dative alternation, 376
debiasing, 118
decision boundary, 78, 127
decision tree

use in WSD, 371
declarative sentence

structure, 209
decoder, 555
decoding, 152, 555

Viterbi, 152, 555
deduction

in FOL, 310
deep

neural networks, 123
deep learning, 123
deep role, 374
definite reference, 419
degree adverb, 145
deleted interpolation, 157
delexicalization, 510
denotation, 302
dental sound, 522
dependency

grammar, 273
lexical, 256

dependency tree, 276
dependent, 274
derivation

direct (in a formal
language), 208

syntactic, 205, 205, 208,
208

description logics, 316
Det, 205
determiner, 145, 205, 211
development test set, 69
development test set

(dev-test), 36
devset, see development

test set (dev-test), 69
dialogue, 487
dialogue act

correction, 506
dialogue acts, 503
dialogue manager

design, 512
dialogue policy, 507
dialogue systems, 487

design, 512
evaluation, 511

diathesis alternation, 376
diff program, 28
digitization, 530
dimension, 100
diphthong, 524

origin of term, 143
direct derivation (in a

formal language),
208

directional adverb, 145
directive speech act, 489
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disambiguation
PCFGs for, 247
role of probabilistic

parsing, 246
syntactic, 234
via PCFG, 249

discount, 42, 44, 45
discounting, 42
discourse, 443

segment, 446
discourse connectives, 447
discourse deixis, 418
discourse model, 416
discourse parsing, 448
discourse-new, 420
discourse-old, 420
discovery procedure, 229
discriminative model, 76
disfluency, 11
disjunction, 27

pipe in regular
expressions as, 6

square braces in regular
expression as, 4

dispreferred response, 517
distance

cosine, 104
distant supervision, 339
distributional hypothesis,

94
distributional similarity,

229
document frequency, 106
document vector, 107
domain, 302
domination in syntax, 205
dot product, 77, 103
dropout, 137
duration

temporal expression, 343
dynamic programming, 24

and parsing, 234
forward algorithm as,

552
history, 563
Viterbi as, 153, 555

E-step (expectation step) in
EM, 562

edge-factored, 289
edit distance

minimum, 24
EDU, 446
Elaboration (as coherence

relation), 445
ELIZA, 2

implementation, 10
sample conversation, 10

Elman Networks, 170
ELMo

for affect, 411
for coreference, 433

EM
Baum-Welch as, 558
E-step, 562
for deleted interpolation,

45

inside-outside in parsing,
253

M-step, 562
embedded verb, 213
embeddings, 99

character, 330
cosine for similarity, 103
GloVe, 111
skip-gram, learning, 113
sparse, 103
tf-idf, 105
word2vec, 111

emission probabilities, 150,
549

EmoLex, 397
emotion, 395
emphatic accent, 525
empty category, 210
encoder-decoder, 194
end-to-end training, 181
endpointing, 488
English

simplified grammar
rules, 206

entity grid, 454
entity linking, 417, 436,

478
entity-based coherence, 452
entropy, 50

and perplexity, 50
cross-entropy, 51
per-word, 51
rate, 51
relative, 387

error backpropagation, 134
ethos, 459
Euclidean distance

in L2 regularization, 87
Eugene Onegin, 53, 563
evalb, 270
evaluating parsers, 268
evaluation

10-fold cross-validation,
69

comparing models, 38
cross-validation, 69
development test set, 36,

69
devset, 69
devset or development

test set, 36
dialogue systems, 511
extrinsic, 36
most frequent class

baseline, 148
named entity recognition,

331
of n-gram, 36
of n-grams via

perplexity, 37
pseudoword, 388
relation extraction, 342
test set, 36
training on the test set, 36
training set, 36
unsupervised WSD, 369
WSD systems, 363

event coreference, 418

Event extraction, 325
event extraction, 346
event variable, 312
events

representation of, 311
Evidence (as coherence

relation), 445
evoking a referent, 416
existential there, 146
expansion, 206, 209
expectation step, 253
expectation step in EM, 562
Expectation-Maximization,

see EM
expletive, 422
explicit confirmation, 508
expressiveness, of a

meaning
representation, 301

extraposition, 422
extrinsic evaluation, 36

F (for F-measure), 67, 243,
270

F-measure, 67, 243, 243,
270

F-measure
in NER, 331

F0, 532
factoid question, 466
false negatives, 7
false positives, 7
fasttext, 121
FASTUS, 350
feature cutoff, 162
feature interactions, 79
feature selection

information gain, 73
feature template, 285
feature templates, 80

part-of-speech tagging,
161

Federalist papers, 72
feedforward network, 129
file format, .wav, 531
filled pause, 11
filler, 11
final fall, 527
First Order Logic, see FOL
first-order co-occurrence,

116
flap (phonetic), 523
focus, 480
FOL, 298, 304
∃ (there exists), 306
∀ (for all), 306
=⇒ (implies), 309
∧ (and), 306, 309
¬ (not), 306, 309
∨ (or), 309
and verifiability, 304
constants, 305
expressiveness of, 301,

304
functions, 305
inference in, 304
terms, 305
variables, 305

fold (in cross-validation),
69

food in NLP
ice cream, 550

forget gate, 184
formal language, 207
formant, 537
forward algorithm, 552, 553
FORWARD ALGORITHM,

554
forward chaining, 310
forward composition, 225
forward trellis, 552
forward-backward

algorithm, 558, 563
backward probability in,

558
relation to inside-outside,

253
FORWARD-BACKWARD

ALGORITHM, 562
forward-looking centers,

453
Fosler, E., see

Fosler-Lussier, E.
fragment of word, 11
frame

semantic, 379
frame elements, 379
FrameNet, 379
frames, 498
free word order, 273
Freebase, 334
frequency

of a signal, 529
fricative sound, 522
Frump, 352
fully qualified date

expressions, 345
fully-connected, 129
function word, 144, 165
functional grammar, 230
functions in FOL, 305
fundamental frequency, 532

gaussian
prior on weights, 88

gazetteer, 329
General Inquirer, 64, 397
generalize, 87
generalized semantic role,

376
generation

of sentences to test a
CFG grammar, 206

template-based, 502
generative grammar, 207
generative lexicon, 371
generative model, 76
generative syntax, 230
generator, 205
generics, 422
genitive NP, 231
German, 539
gerundive postmodifier, 212
Gilbert and Sullivan, 325
given-new, 421
gloss, 359



608 Subject Index

glosses, 355
Glottal, 522
glottal stop, 522
glottis, 520
Godzilla, speaker as, 385
gold labels, 66
Good-Turing, 46
government and binding,

229
gradient, 83
Grammar

Constraint, 296
Construction, 229
Government and

Binding, 229
Head-Driven Phrase

Structure (HPSG),
220, 229

Lexical-Functional
(LFG), 229

Link, 296
Probabilistic Tree

Adjoining, 272
Tree Adjoining, 230

grammar
binary branching, 222
categorial, 223, 223
CCG, 223
checking, 232
combinatory categorial,

223
equivalence, 222
generative, 207
strong equivalence, 222
weak equivalence, 222

Grammar Rock, 143
grammatical function, 274
grammatical relation, 274
grammatical sentences, 207
greedy, 162
greedy RE patterns, 7
Greek, 518
greeting, 146
grep, 3, 3, 27
Gricean maxims, 491
grounding, 489
GUS, 498

H* pitch accent, 528
Hamilton, Alexander, 72
hanzi, 16
harmonic, 539
harmonic mean, 67
Hays, D., 296
head, 220, 274

finding, 220
in lexicalized grammar,

258
tag, 259

head tag, 259
Head-Driven Phrase

Structure Grammar
(HPSG), 220, 229

Heaps’ Law, 12
Hebrew, 518
held out, 36
held-out, 45
Herdan’s Law, 12

hertz as unit of measure,
529

hidden, 150, 549
hidden layer, 129

as representation of
input, 130

hidden units, 129
HMM, 150, 549

deleted interpolation, 157
formal definition of, 150,

549
initial distribution, 150,

549
observation likelihood,

150, 549
observations, 150, 549
simplifying assumptions

for POS tagging,
152

states, 150, 549
transition probabilities,

150, 549
trigram POS tagging, 155

Hobbs algorithm, 440
Hobbs tree search algorithm

for pronoun
resolution, 440

holonym, 358
homonymy, 354
Hungarian

part-of-speech tagging,
164

hyperarticulation, 506
hypernym, 334, 357

lexico-syntactic patterns
for, 334

hyperparameters, 137
hyponym, 357
Hz as unit of measure, 529

IBM, 53
IBM Thomas J. Watson

Research Center, 53
ice cream, 550
idf, 106
idf term weighting, 106
if then reasoning in FOL,

310
immediately dominates,

205
imperative sentence

structure, 209
implicature, 491
implicit argument, 392
implicit confirmation, 508
implied hierarchy

in description logics, 320
indefinite article, 211
indefinite reference, 419
inference, 301

in FOL, 310
inference-based learning,

294
infinitives, 215
infoboxes, 333
information

structure, 420
status, 420

information extraction (IE),
325

bootstrapping, 337
partial parsing for, 240

information gain, 73
for feature selection, 73

Information retrieval, 102
initiative, 490
inner ear, 537
inner product, 103
inside-outside algorithm,

253, 271
instance checking, 319
Institutional Review Board,

514
intensity of sound, 533
intent determination, 500
intercept, 77
interjection, 146
intermediate phrase, 527

in ToBI, 528
internal rule in a CFG

parse, 259
International Phonetic

Alphabet, 519, 542
interpersonal stance, 409
Interpolated Kneser-Ney

discounting, 46, 48
interpolation

in smoothing, 44
interpretable, 91
interpretation, 302
intonation phrases, 527
intransitive verbs, 215
intrinsic evaluation, 36
IOB, 241, 328, 504
IOB tagging

for NER, 328
for temporal expressions,

343
IPA, 519, 542
IR

idf term weighting, 106
vector space model, 100

IRB, 514
IS-A, 358
is-a, 334
ISO 8601, 344
iSRL, 392

Japanese, 518, 539
Jay, John, 72
joint intention, 516
joint probability, 248

Katz backoff, 45
KBP, 352
KenLM, 49, 54
KL divergence, 387
KL-ONE, 322
Kleene *, 5

sneakiness of matching
zero things, 5

Kleene +, 5
Kneser-Ney discounting, 46
knowledge base, 300
knowledge claim, 461
knowledge-based, 365

Korean, 539
KRL, 322
Kullback-Leibler

divergence, 387

L* pitch accent, 528
L+H* pitch accent, 528
L1 regularization, 88
L2 regularization, 87
label bias, 163
labeled precision, 270
labeled recall, 270
labial place of articulation,

521
labiodental consonants, 521
lambda notation, 308
language ID, 64
language id, 56
language model, 31

PCFG, 250
Laplace smoothing, 42
Laplace smoothing:for

PMI, 110
larynx, 520
lasso regression, 88
latent semantic analysis,

120
lateral sound, 523
LDC, 16, 253
learning rate, 83
lemma, 12, 95

versus wordform, 12
lemmatization, 3
Lesk algorithm, 365

Simplified, 365
Levenshtein distance, 23
lexical

category, 205
cohesion, 444, 457
database, 359
dependency, 256
head, 271
semantics, 95
stress, 525
trigger, in IE, 343

lexical answer type, 480
lexical dependency, 256
lexical rule

in a CFG parse, 259
lexical sample task in

WSD, 362
Lexical-Functional

Grammar (LFG),
229

lexicalized grammar, 258
lexico-syntactic pattern,

334
lexicon, 205
likelihood, 59
linear classifiers, 60
linear interpolation for

n-grams, 45
linearly separable, 127
Linguistic Data

Consortium, 16, 253
Linguistic Discourse

model, 462
Link Grammar, 296
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List (as coherence relation),
446

LIWC, 64, 398
LM, 31
LOB corpus, 166
locative, 145
locative adverb, 145
log

why used for
probabilities, 35

why used to compress
speech, 531

log likelihood ratio, 406
log odds ratio, 406
log probabilities, 35, 35
logical connectives, 306
logical vocabulary, 301
logistic function, 77
logistic regression, 75

conditional maximum
likelihood
estimation, 81

Gaussian priors, 88
learning in, 80
regularization, 88
relation to neural

networks, 131
logos, 459
Long short-term memory,

184
long-distance dependency,

217
traces in the Penn

Treebank, 217
wh-questions, 210

lookahead in RE, 11
loss, 80
loudness, 534
LSI, see latent semantic

analysis
LSTM, 352

for NER, 330
for SRL, 383

LUNAR, 485
Lunar, 322

M-step (maximization step)
in EM, 562

machine learning
for NER, 331
textbooks, 73, 93

macroaveraging, 68
Madison, James, 72
Mandarin, 539
Manhattan distance

in L1 regularization, 88
manner adverb, 145
manner of articulation, 522
marker passing for WSD,

370
Markov, 33

assumption, 33
Markov assumption, 149,

548
Markov chain, 53, 149, 548

formal definition of, 150,
549

initial distribution, 150,
549

N-gram as, 150, 549
states, 150, 549
transition probabilities,

150, 549
Markov model, 33

formal definition of, 150,
549

history, 53
Marx, G., 232
mass nouns, 144
maxent, 93
maxim, Gricean, 491
maximization step, 253
maximization step in EM,

562
maximum entropy, 93
maximum matching, 19
maximum spanning tree,

290
MaxMatch, 19
MCTest, 484
mean reciprocal rank, 483
meaning representation,

298
as set of symbols, 299
early uses, 322
languages, 299

mechanical indexing, 120
mel

scale, 533
MEMM, 160

compared to HMM, 160
inference (decoding),

163
learning, 163
Viterbi decoding, 163

mention detection, 425
mention-pair, 428
mentions, 416
meronym, 358
meronymy, 358
MeSH (Medical Subject

Headings), 57, 362
Message Understanding

Conference, 350
metarule, 216
metonymy, 358, 442
Micro-Planner, 322
microaveraging, 68
Microsoft .wav format, 531
mini-batch, 86
minimum edit distance, 23,

23, 24, 153, 555
example of, 26

MINIMUM EDIT DISTANCE,
26

MLE
for n-grams, 33
for n-grams, intuition, 34

MLP, 129
modal verb, 146
model, 301
modified Kneser-Ney, 48
modus ponens, 310
Montague semantics, 322
morpheme, 21

Moses, Michelangelo statue
of, 487

most frequent sense, 363
MRR, 483
MUC, 350, 352
MUC F-measure, 436
multi-label classification,

68
multi-layer perceptrons,

129
multinomial classification,

68
multinomial logistic

regression, 89
multinomial naive Bayes,

58
multinomial naive Bayes

classifier, 58

N-gram
as Markov chain, 150,

549
n-gram, 31, 33

absolute discounting, 46
add-one smoothing, 42
as approximation, 32
as generators, 39
equation for, 33
example of, 35
for Shakespeare, 39
history of, 53
interpolation, 44
Katz backoff, 45
KenLM, 49, 54
Kneser-Ney discounting,

46
logprobs in, 35
normalizing, 34
parameter estimation, 34
sensitivity to corpus, 38
smoothing, 42
SRILM, 54
test set, 36
training set, 36
unknown words, 41

n-gram
tiling, 472

naive Bayes
multinomial, 58
simplifying assumptions,

59
naive Bayes assumption, 59
naive Bayes classifier

use in text categorization,
58

named entity, 326
list of types, 327
recognition, 325, 327

named entity recognition,
179

names
and gazetteers, 329
census lists, 329

NarrativeQA, 483
nasal sound, 520, 522
nasal tract, 520
negative log likelihood loss,

133

negative part-of-speech,
146

neo-Davidsonian, 312
NER, 325
neural networks

relation to logistic
regression, 131

newline character, 9
noisy-or, 338
NomBank, 378
Nominal, 205
non-capturing group, 10
non-finite postmodifier, 212
non-greedy, 7
non-logical vocabulary, 301
non-terminal symbols, 205,

206
normal form, 222, 222
normalization

dates, 501
temporal, 344
word, 21

normalization of
probabilities, 33

normalized, 326
normalizing, 131
noun, 144

abstract, 144, 211
common, 144
count, 144
days of the week coded

as, 145
mass, 144, 211
proper, 144

noun phrase, 204
constituents, 205

NP, 205, 206
NP attachment, 255
nuclear accent, 525
nucleus, 445
nucleus of syllable, 524
null hypothesis, 70
numerals

as closed class, 145
Nyquist frequency, 531

o, 521
object, syntactic

frequency of pronouns
as, 254

observation bias, 163
observation likelihood

role in forward, 553
role in Viterbi, 154, 556

old information, and word
order, 254

one-hot vector, 139
one-of, 68
onset, syllable, 524
ontology, 316
OntoNotes, 371
OOV (out of vocabulary)

words, 41
OOV rate, 41
open class, 144
open information

extraction, 340
open vocabulary system
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unknown words in, 41
operation list, 23
operator precedence, 6, 6
optionality

of determiners, 211
use of ? in regular

expressions for, 4
oral tract, 520
ordinal number, 212
orthography

opaque, 519
transparent, 519

output gate, 185
overfitting, 87

palatal sound, 522
palate, 522
palato-alveolar sound, 522
parallel distributed

processing, 142
parent annotation, 257
parse tree, 205, 208
parsed corpus, 271
parsing

ambiguity, 232
chunking, 240
CKY, 235, 251
CYK, see CKY
evaluation, 268
history, 244
partial, 240
probabilistic CKY, 251
relation to grammars,

209
shallow, 240
syntactic, 232
well-formed substring

table, 244
part-of-speech

adjective, 144
adverb, 144
as used in CFG, 205
closed class, 144, 145
greeting, 146
interjection, 146
negative, 146
noun, 144
open class, 144
particle, 145
subtle distinction

between verb and
noun, 144

usefulness of, 143
verb, 144

part-of-speech tagger
PARTS, 166
TAGGIT, 166

Part-of-speech tagging, 148
part-of-speech tagging

ambiguity and, 148
amount of ambiguity in

Brown corpus, 148
and morphological

analysis, 164
capitalization, 159
feature templates, 161
for phrases, 147
history of, 166

Hungarian, 164
Stanford tagger, 164
state of the art, 149
Turkish, 164
unknown words, 159

part-whole, 358
partial parsing, 240
particle, 145
PARTS tagger, 166
parts of speech, 143
passage retrieval, 469
passages, 469
pathos, 459
pattern, regular expression,

3
PCFG, 246

for disambiguation, 247
lack of lexical sensitivity,

254
lexicalized, 271
parse probability, 248
poor independence

assumption, 254
rule probabilities, 247
use in language

modeling, 250
PCM (Pulse Code

Modulation), 531
PDP, 142
PDTB, 447
Penn Discourse TreeBank,

447
Penn Treebank, 217

for statistical parsing,
253

POS tags for phrases,
147

tagging accuracy, 149
tagset, 146, 146

Penn Treebank
tokenization, 16

per-word entropy, 51
perceptron, 126
period of a wave, 529
perplexity, 37, 52

as weighted average
branching factor, 37

defined via
cross-entropy, 52

personal pronoun, 145
personality, 409
persuasion, 460
phone, 518, 542
phoneme, 542
phonetics, 518

articulatory, 520, 520
phonotactics, 525
phrasal verb, 145
phrase-structure grammar,

205, 229
PII, 495
pipe, 6
The Pirates of Penzance,

325
pitch, 533
pitch accent, 525

ToBI, 528
pitch extraction, 534

pitch track, 532
planning

and speech acts, 516
shared plans, 516

pleonastic, 422
plosive sound, 522
plural, 211
Pointwise mutual

information, 108
politeness marker, 146
Porter stemmer, 21
POS, 143
possessive NP, 231
possessive pronoun, 145
postdeterminer, 212
postmodifier, 212
postposed constructions,

204
Potts diagram, 405
power of a signal, 533
PP, 206
PPMI, 108
praat, 534, 535, 542
precedence, 6
precedence, operator, 6
Precision, 67
precision, 243

in NER, 331
predeterminer, 213
predicate, 215
predicate-argument

relations, 215
preference semantics, 370
premises, 459
preposed constructions, 204
prepositional phrase, 212

attachment, 255
constituency, 206
preposing, 204

prepositions, 145
as closed class, 145

presequences, 490
pretraining, 138
primitive decomposition,

389
principle of contrast, 96
prior probability, 59
probabilistic CKY

algorithm, 251, 251
probabilistic parsing, 251
productions, 205
progressive prompting, 508
projection layer, 140
Prolog, 310
prominence, phonetic, 526
prominent word, 525
prompts, 502
pronoun, 145

and old information, 254
as closed class, 145
bound, 419
demonstrative, 420
non-binary, 423
personal, 145
possessive, 145
wh-, 145

pronunciation dictionary,
539

CELEX, 539
CMU, 540
PRONLEX, 541

PropBank, 377
proper noun, 144
propositional meaning, 96
prosodic phrasing, 527
prosody, 526

accented syllables, 525
reduced vowels, 526

PROTO-AGENT, 376
PROTO-PATIENT, 376
pseudoword, 388
PTAG, 272
PTRANS, 390
punctuation

for numbers
cross-linguistically,
16

for sentence
segmentation, 22

part-of-speech tags, 146
stripping before

part-of-speech
tagging, 148

tokenization, 15
treated as words, 11
treated as words in LM,

40

QuAC, 483
qualia structure, 371
quantifier

as part of speech, 212
semantics, 306

quantization, 531
query

reformulation in QA, 468
question

classification, 468
factoid, 466
rise, 527

question answering
evaluation, 483
factoid questions, 466
query reformulation in,

468

range, regular expression, 4
rapid reprompting, 509
rarefaction, 530
RDF, 334
RDF triple, 334
RE

regular expression, 3
reading comprehension,

472
Reason (as coherence

relation), 445
Recall, 67
recall, 243

in NER, 331
recipe

meaning of, 298
recurrent neural networks,

170
reduced vowels, 526
reduction, phonetic, 526
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reference
bound pronouns, 419
cataphora, 419
definite, 419
generics, 422
indefinite, 419

reference point, 314
referent, 416

accessing of, 416
evoking of, 416

reflexive, 423
register in RE, 10
regression

lasso, 88
ridge, 88

regular expression, 3, 27
substitutions, 9

regularization, 87
rejection

conversation act, 508
relatedness, 96
relation extraction, 325
relative

temporal expression, 343
relative entropy, 387
relative frequency, 34
relative pronoun, 213
release, stop, 522
relevance, 491
relexicalize, 510
ReLU, 125
reporting events, 347
representation learning, 94
resolution for inference,

311
resolve, 148
response generation, 496
restrictive grammar, 502
restrictive relative clause,

213
retrofitting, 368
ReVerb, 340
reversives, 357
rewrite, 205
Rhetorical Structure

Theory, see RST
rhyme, syllable, 524
Riau Indonesian, 144
ridge regression, 88
rime

syllable, 524
RMS amplitude, 532
role-filler extraction, 349
Rosebud, sled named, 443
rounded vowels, 524
row vector, 102
RST, 445

TreeBank, 447, 462
rules

context-free, 205
context-free, expansion,

205, 209
context-free, sample, 206

S as start symbol in CFG,
205

SAE, 13

salience, in discourse
model, 421

SAM phonetic
transcription, 539

sampling
of analog waveform, 530
rate, 530
used in clustering, 369

satellite, 445
saturated, 126
Schönfinkelization, 308
“Schoolhouse Rock”, 143
schwa, 526
SCISOR, 352
sclite package, 28
script

Schankian, 379
scripts, 349
SDRT (Segmented

Discourse
Representation
Theory), 462

second-order
co-occurrence, 116

secondary stress, 526
seed pattern in IE, 337
seed tuples, 337
segmentation

maximum matching, 19
sentence, 22
word, 15

selectional association, 388
selectional preference

strength, 387
selectional preferences

pseudowords for
evaluation, 388

selectional restriction, 384
representing with events,

385
violations in WSD, 387

semantic concordance, 362
semantic drift in IE, 338
semantic feature, 120
semantic field, 97
semantic frame, 97
semantic grammars, 501
semantic network

for word sense
disambiguation, 370

semantic networks
origins, 322

semantic parsing, 298
semantic relations in IE,

332
table, 333

semantic role, 374, 374,
376

Semantic role labeling, 380
semantics

lexical, 95
semivowel, 521
sense

word, 354, 355
sentence

segmentation, 22
sentence realization, 509
sentence segmentation, 3

sentence selection, 473
SentencePiece, 20
sentential complements,

214
sentiment, 97

origin of term, 414
sentiment analysis, 56
sentiment lexicons, 64
SentiWordNet, 403
sequence model, 149
SGNS, 111
Shakespeare

n-gram approximations
to, 39

shallow discourse parsing,
451

shallow parse, 240
shared plans, 516
shift-reduce parsing, 278
SHRDLU, 322
sibilant sound, 523
side sequence, 490
sigmoid, 77, 124
similarity, 96
Simplified Lesk, 365
singleton, 417
singular they, 423
skip-gram, 111
slot filling, 352, 500
slots, 498
smoothing, 42, 42

absolute discounting, 46
add-one, 42
discounting, 42
for HMM POS tagging,

157
interpolation, 44
Katz backoff, 45
Kneser-Ney discounting,

46
Laplace, 42
linear interpolation, 45

snippets, 469
softmax, 89, 131
source-filter model, 539
spam detection, 56, 64
span, 471
Spanish, 539
spectrogram, 537
spectrum, 535
speech

telephone bandwidth,
531

wideband, 531
speech acts, 489
spelling correction

use of n-grams in, 30
split, 256
split and merge, 258
split-half reliability, 400
SQuAD, 472, 483
SRILM, 54
SRL, 380
Stacked RNNs, 181
Stanford tagger, 164
start symbol, 205
state

semantic representation
of, 311

stationary stochastic
process, 51

statistical parsing, 251
stative expressions, 315
stem, 21
Stemming, 3
stemming, 21
stop (consonant), 522
stop words, 61
stress

lexical, 525
secondary, 526

strong equivalence of
grammars, 222

structural ambiguity, 232
structure prediction, 179
structured polysemy, 358
stupid backoff, 49
subcategorization

tagsets for, 215
subcategorization frame,

215
examples, 215

subcategorize for, 215
subdialogue, 490
subject, syntactic

frequency of pronouns
as, 254

in wh-questions, 210
subjectivity, 394, 414
substitutability, 229
substitution in TAG, 230
substitution operator

(regular
expressions), 9

subsumption, 317, 319
subword, 17
superordinate, 358
supersenses, 360
Supertagging, 264
supervised machine

learning, 57
suprasegmental, 526
SVD, 120
Switchboard, 147

Transcription Project,
541

Switchboard Corpus, 11,
495, 530, 531, 541

syllabification, 525
syllable, 524

accented, 525
coda, 524
nucleus, 524
onset, 524
prominent, 525
rhyme, 524
rime, 524

synonyms, 96, 357
synset, 359
syntactic categories, 143
syntactic disambiguation,

234
syntactic movement, 217
syntax, 203

origin of term, 143
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TAG, 230, 272
TAGGIT, 166
tagset

difference between Penn
Treebank and
Brown, 147

history of Penn
Treebank, 147

Penn Treebank, 146, 146
table of Penn Treebank

tags, 146
tanh, 125
tap (phonetic), 523
target embedding, 114
Tay, 514
TBox, 316
technai, 143
telephone-bandwidth

speech, 531
telic eventualities, 316
template filling, 326, 349
template recognition, 349
template, in IE, 349
template-based generation,

502
temporal adverb, 145
temporal anchor, 346
temporal expression

absolute, 343
metaphor for, 315
recognition, 326
relative, 343

temporal expressions, 326
temporal logic, 312
temporal normalization,

344
temporal reasoning, 323
tense logic, 312
term

clustering, 370, 371
in FOL, 305

term frequency, 105
term-document matrix, 100
term-term matrix, 102
terminal symbol, 205
terminology

in description logics, 316
test set, 36

development, 36
how to choose, 36

text categorization, 56
bag of words assumption,

58
naive Bayes approach, 58
unknown words, 61

text normalization, 2
part-of-speech tagging,

147
TextTiling, 457
tf-idf, 107
thematic grid, 375
thematic role, 374

and diathesis alternation,
376

examples of, 374
problems, 376

theme, 374
theme, as thematic role, 374

there, existential in English,
146

thesaurus, 370
tier

of ToBI transcript, 528
time, representation of, 312
time-aligned transcription,

541
TimeBank, 347
TIMIT, 541
ToBI, 528

boundary tones, 528
tiers, 528

tokenization, 2
maximum matching, 19
sentence, 22
word, 15

tokens, word, 12
topic (information

structure), 254
topic models, 97
trace, 210, 217
trachea, 520
training oracle, 283
training set, 36

cross-validation, 69
how to choose, 36

transcription
time-aligned, 541

Transformations and
Discourse Analysis
Project (TDAP),
166

transformer
for NER, 327

transition probability
role in forward, 553
role in Viterbi, 154, 556

transitive verbs, 215
TREC, 485
Tree Adjoining Grammar

(TAG), 230
adjunction in, 230
probabilistic, 272
substitution in, 230

treebank, 216, 253
trigram, 35
truth-conditional semantics,

303
tune, 527

continuation rise, 528
Turing test

Passed in 1972, 495
Turkish

part-of-speech tagging,
164

turn correction ratio, 512
turns, 488
type raising, 225
typed dependency structure,

273
types

word, 12

ungrammatical sentences,
207

unit production, 235
unit vector, 104

Universal Dependencies,
275

Unix, 3
<UNK>, 41
unknown words

in n-grams, 41
in part-of-speech

tagging, 159
in text categorization, 61

unvoiced sound, 520
user-centered design, 512
utterance, 11

vagueness, 300
vanishing gradients, 184
variable

existentially quantified,
307

universally quantified,
307

variables, 301
variables in FOL, 305
vector, 100, 124
vector length, 104
vector semantics, 94, 98
vector space, 100
vector space model, 100
velar sound, 522
velum, 522
verb

copula, 146
modal, 146
phrasal, 145

verb alternations, 376
verb phrase, 206, 214
Verbs, 144
verifiability, 299
Viterbi algorithm, 24, 153,

555
backtrace in, 557
decoding in MEMM, 163
history of, 563

VITERBI ALGORITHM,
153, 556

vocal
cords, 520
folds, 520
tract, 520

voice user interface, 512
voiced sound, 520
voiceless sound, 520
vowel, 520

back, 523
front, 523
height, 523
high, 523
low, 523
mid, 523
reduced, 526
rounded, 523

VP attachment, 255

wavefile format, 531
weak equivalence of

grammars, 222
Web Ontology Language,

321
WebQuestions, 483

well-formed substring
table, 244

WFST, 244
wh-non-subject-question,

210
wh-phrase, 210, 210
wh-pronoun, 145
wh-subject-questions, 210
wh-word, 210
WiC, 367
wideband speech, 531
wikification, 436
WikiQA, 483
wildcard, regular

expression, 5
Winograd Schema, 437
Wizard-of-Oz system, 513
word

boundary, regular
expression notation,
6

closed class, 144
definition of, 11
fragment, 11
function, 144, 165
open class, 144
punctuation as, 11
tokens, 12
types, 12

word normalization, 21
word segmentation, 15, 17
word sense, 354, 355
word sense disambiguation,

362, see WSD
word sense induction, 368
word shape, 161, 329
word tokenization, 15
word-in-context, 366
word-word matrix, 102
word2vec, 111
wordform, 12

and lemma, 95
versus lemma, 12

WordNet, 359, 359
wordpiece, 19
world knowledge, 298
WSD, 362

AI-oriented efforts, 370
all-words task, 362
bootstrapping, 371
decision tree approach,

371
evaluation of, 363
history, 370
history of, 371
lexical sample task, 362
neural network

approaches, 370
robust approach, 370
supervised machine

learning, 371
unsupervised machine

learning, 368
WSI, 368
WSJ, 147

X-bar schemata, 229
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yes-no questions, 209
yield, 249

Yonkers Racetrack, 50 zero anaphor, 420
zero-width, 11

zeros, 41
zeugma, 356
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