Basic Image Processing

PPKE-ITK

10 September 2019

Basic Image Processing Algorithms

® Course responsible and lecturer:
e Csaba Benedek, PhD
- Address:

* Primary: MTA SZTAKI (Institute for Computer
Science and Control, Hungarian Academy of
Sciences), Machine Perception Laboratory, 1111
Budapest, Kende utca 13-17, room 306

* Secondary: PPKE ITK room 408 (only for
preliminary fixed meetings)

* E-mail: benedek.csaba@itk.ppke.hu

@ Course webpage:

e http://kep.itk.ppke.hu/

10 September 2019 Basic Image Processing Algorithms

mailto:benedek.csaba@itk.ppke.hu

Personal site: http://mplab.sztaki.hu/~bcsaba
About myself...

e Research: computer vision, pattern recognition, 3D sensors (laser scanning),
biometrics (gait recognition)

e MTA SZTAKI — leader of Research Group on Geo-Information Computing
(GeoComp) @ Machine Perception Laboratory

e PPKE ITK — associate professor (in part time, since 2015)

. PPKE | NI | BTK | BAK | KIY | K | Alamed | Bessererek & ksbestesaisek Magyar | Weomad | Neptan | Pronebook | 7 | Login
GeoComp @ MPLab ‘ atlfd

| Research Group on Geo-Information Computing

PROJECTS DEMOS BENCHMARKS PUBLICATIONS

The Re h Group on G 2puting (GeoCom, arch SZTAKI
L Hews

Archaeological GIS Laboratory P

Archaeological GIS Laboratory

SZTAKI GeoComp Research Group

PPCU Archaeological GIS Laborator
http://mplab.sztaki.hu/geocomp £ v

10 September 2019 Basic Image Processing Algorithms

What is this Course About?

Robotic Wision

e Multi-variable SP
Computer - Control Non-linear SP
Intelligence | Robotics
¢ Artificial \‘-| ~ N 5|nal F’rr::ncess_i_r?m"'
. Intelligence | g _g
Cognitive .)
Vision e ™

Machine
Vision

Computer
\Vision

r Machine-)

_ Learning |

Physics | Ortics

-

Image
Processing

Statistics e
" Mathematics " Imaging
Geometry - '

Optimization o — g?ﬂiretras
. Neurobiology |

Biclogical
Vision
Source: Wikipedia

10 September 2019 Basic Image Processing Algorithms

What is this Course About?

® Machine Vision is the technology and methods used to provide imaging-
based automatic inspection and analysis for such applications as automatic
inspection, process control, and robot guidance in industry.”

Sources: Wikipedia, http://automation.com, http://www.isquaredt.com/

10 September 2019 Basic Image Processing Algorithms

Machine vision - example

® Optical analysis of scooping artifacts in printed circuit boards

m:.-'*l

©®
(2C)
00e©®
® ©®

COOCP
000 @
©00 90©

B
[]
E o e
=
L]

EE e W 0 =

Cs. Benedek, O. Krammer, M. Jandczki and L. Jakab: ”Solder Paste Scooping Detection by Multi-
Level Visual Inspection of Printed Circuit Boards”, IEEE Trans. on Industrial Electronics, vol. 60,

no. 6, pp. 2318 - 2331, 2013

10 September 2019 Basic Image Processing Algorithms

What is this Course About?

® Image Processing ”is any form of signal processing for which the input is an
image, such as a photograph or video frame; the output of image processing
may be elther an |mage or a set of characterlstlcs or parameters related to
the image.” 2 ‘

The windmill at Wijk bij Duurstede by
Jacob van Ruisdael (1670)

Source: Wikipedia

10 September 2019 Basic Image Processing Algorithms

Image processing example

® Image Decomposition Into Cartoon and Texture Parts

Cartoon (main
object shapes)

'.’-' 5 -":,;.\ o \

"3@//// s ‘ Texture
_5\/ 7= (pattern on
. /é\g\\\(/g; A the object

Input image Method 1 Method 2 Method 3

Daniel Szolgay, Tamas Sziranyi, , Adaptive Image Decomposition Into Cartoon and Texture Parts

Optimized by the Orthogonality Criterion” IEEE Trans. on Image Processing, 21 (8). pp. 3405-
3415, 2012

10 September 2019 Basic Image Processing Algorithms

What is this Course About?

@ ,,Computer Vision is a field that includes methods for acquiring, processing,
analyzing, and understanding images and, in general, high-dimensional data
from the real world”

,A theme in the development of this field has been to duplicate the abilities
of human vision by electronically perceiving and understanding an image.”

a phone front wheel of a bus

red shirt on a man jelephant is standing
elep

large green

leg of an

elephant

http://cs.stanford.edu/people/karpathy/

Source: Wikipedia

Basic Image Processing Algorithms

10 September 2019

Various levels of computer vision tasks

® Image classification: assigning a class label to the image

Car: present

Cow: present

Bike: not present
Horse: not present

® Object localization: define the location and the category

Location

Category

2019. 09. 10.

Video Traffic on the Internet

® A few crazy predictions from Cisco for 2020:

 video traffic will be 82% of all IP traffic (both business and consumer),
up from 70% in 2015,

e it would take more than 5 million years to watch the amount of video
that will cross global IP networks each month,

e every second, a million minutes of video content will cross the network.

et
CISCO.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

10 September 2019 Basic Image Processing Algorithms

Little bit of History

® Early 1920s - Bartlane cable picture transmission system
e Used to transmit newspaper images via submarine cable between
London and New York.

e Took about three hours to send an image,
first systems supported 5 gray levels

. v
u./ 2 2%

wr
A digital picture
made in 1922

»

A digital picture produced in 1921

e But these images were not created with computer, hence not
considered as a result of digital image processing.
e The real era of digital images started only after computers got powerful

enough for the task.

Basic Image Processing Algorithms

10 September 2019

Little bit of History

@ In the early 1960s:

e 1964:NASA’s Jet Propulsion Laboratory began working on computer
algorithms to improve images of the Moon.

* images were transmitted by Ranger 7 probe.
* corrections were desired for distortions inherent in on-board camera
@ In the late 1960s and early 1970s:
» medical imaging (CT),
e remote Earth resources observations,
e and astronomy
® So far this was image processing,
what about computer vision?

The first picture of the moon by a U S
spacecraft. (Courtesy of NASA.)

10 September 2019 Basic Image Processing Algorithms

Little bit of History

® In 1966, Marvin Minsky (MIT) asked his student to “spend the
summer linking a camera to a computer and
\HEN A USER TAKES A PHOTO,

getting the computer to describe what it saw”.| THE APP SHOULD CHECK HETHER
THEY'RE IN A NATIONAL PARK ...

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC SURE, ERSY GIS L0OKUR

GIMME A FEW HOURS.
e ————————— R A T . .. AND CHECK UHETHER
THE PHOTD IS OF A BIRD.

T1L NEED A RESEARCH

TEAM AND FIVE YEARS.
THE SUMMER VISION PROJECT /
Seymour Papert
The summer vision project is an attempt to use our summer workers
effectively in the construction of a significant part of a visual system.
The particular task was chosen partl‘?' because it can be segmented into

sub-problems which will allow individuals to work independently and yet xked

participate in the construction of a system complex enough to be a real |N(5) IT{-‘-HM BE HP'RD mE:’:PLHlN
THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

landmark in the development of "pattern recognition!l.

10 September 2019 Basic Image Processing Algorithms 14

Little bit of History

Neural Networks:

® 1958: Frank Rosenblatt introduced the Perceptron model

® 1970’s: Backpropagation algorithm for larger network training
® 1980’s: Appearance of Convolutional NN

® 1998: First success of CNN:

"Gradient-based learning applied to document recognition"

@ Still other methods are favored over NN
® 2012: Imagenet classification challenge won by deep CNN*
Their error rate was 15.3%, whereas the second closest was 26.2%

® Since 2012 we are witnessing the golden age of CV

*Krizhevsky, A., Sutskever, |., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural
information processing systems (pp. 1097-1105)

10 September 2019 Basic Image Processing Algorithms

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Applications

® Early Hubble Space Telescope images were distorted by
a flawed mirror and could be sharpened by deconvolution.

Source: http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1077064

10 September 2019 Basic Image Processing Algorithms

Applications

® Instagram filters

Toaster

Poprocket Nashville Gotham Lord Kelvin

Source: http://www.thephoblographer.com/2013/01/17/instagrams-presets-come-to-lightroom/#.U5SDT_nV-PQ

Basic Image Processing Algorithms

0 September 2

Applications

® Panoramic images

Source: http://en.wikipedia.org/wiki/User:Diliff

Basic Image Processing Algorithms

Thesis topic option @ PPKE/SZTAKI
Contact: Csaba Benedek

Applications

® Medical image processing:
e Ultrasound
e 3D imaging, MRI, CT, PET
e Image guided surgery

Source: http://en.wikipedia.org/wiki/Positron_emission_tomography

10 September 2019 Basic Image Processing Algorithms 19

Applications

® Face detection is a standard feature in smart phones/cameras:

Source: http://www.imore.com/

10 September 2019 Basic Image Processing Algorithms

Applications

® Facial retargeting: Entertainment

https://www.disneyresearch.com/

Cappellini Oliver

CAESAR

10 September 2019 Basic Image Processing Algorithms

T.F.Cootes, M.lonita, C.Lindner and P.Sauer, "Robust and Accurate Shape Model
Fitting using Random Forest Regression Voting", ECCV 2012

10 September 2019 Basic Image Processing Algorithms

http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/Papers/cootes_eccv12.pdf

Applications

® Emotion recognition:

For market research

https://www.realeyesit.com/ http://Www.affectiva.com/

10 September 2019 Basic Image Processing Algorithms

Applications

@ ldentity verification and recognition based on biometrics:

Biometrics in Person Identification
PPKE ITK

crossover
core
bifurcation

ridge ending

island ?

delta O] See more: e S R
o http://biometrika.itk.ppke.hu/

Smile 85%

http://blog.m2sys.com/biometric-hardware/iris-recognition-vs-retina-
W aceplusplus.com http://www.faceplusplus.com/ scanning-what-are-the-differences/

Basic Image Processing Algorithms

Applications

® Video surveillance:

http://vision.seecs.edu.pk/abnormal-event-
detection/

— !

http://www.trafficvision.com/ <= §

10 September 201 Basic Image Processing Algorithms

Thesis topic option @ PPKE/SZTAKI

http://mplab.sztaki.hu/geocomp AppllcathnS
Contact: Csaba Benedek 3D scene understanding via
laser scanning (Lidar) data

N i A0
5 ! ! 1
B/
) A
73 B4 A &
) Nz \
el o - —Er BRE .
Gty hy -
[IEERE T |
[} ! \ &
o

Automated data filtering, correction, vectorization and interpretation

10 September 2019 Basic Image Processing Algorithms

http://mplab.sztaki.hu/geocomp

Thesis topic option @ PPKE/SZTAKI
http://mplab.sztaki.hu/geocomp
Contact: Csaba Benedek

Laser scanning
Point cloud classification

pedestrian

moving car

parking car

tall vehicle

column/bole

vegetation

road

building wall

B. Nagy, and Cs. Benedek: "3D CNN Based Semantic Labeling Approach for Mobile
Laser Scanning Data", IEEE Sensors Journal, to appear 2019

Basic Image Processing Algorithms

http://mplab.sztaki.hu/geocomp

Applications

® Advanced driver assistance systems (ADAS)
e Automatic parking https://www tesla.com/
e Collision avoidance system -
Ot
e Driver Monitoring System -

e Emergency driver assistant
e Lane departure warning system
e Lane change assistance

e Pedestrian protection system oeieie

o Traffic sign recognition

10 September 2019 Basic Image Processing Algorithms

Thesis topic option @ PPKE/SZTAKI
http://mplab.sztaki.hu/geocomp

Lidar and image data fusion
for self-driving cars in SZTAKI

10 September 2019 Basic Image Processing Algorithms

http://mplab.sztaki.hu/geocomp

Administration

Administration and Course Requirements

® Web:
e http://kep.itk.ppke.hu

® Mailing list:
e https://lists.ppke.hu/cgi-bin/mailman/listinfo/kepelemzes

e You will be subscribed automatically
® Contacts:
e Csaba Benedek: benedek.csaba at itk.ppke.hu
e Miklds Koller: koller.miklos at itk.ppke.hu
e Marton Bese Naszlady : naszlady.marton.bese at itk.ppke.hu

10 September 2019 Basic Image Processing Algorithms

https://lists.ppke.hu/cgi-bin/mailman/listinfo/kepelemzes

Administration and Course Requirements

® Lectures/Seminars:
e Start time: 8:15 AM
e The attendance is obligatory
e In every lecture between Week 2 and 12 there will be a short test from the
previous lecture’s topic
* Each time 2 short questions for a maximum of 2 points (in total 22 points)
* >60% (13.5/22 points) is a requirement to take the final exam
* Recovery option: if (and only if) you fail to pass the threshold by the end of
the semester, you will have a chance on Week 13 to correct your two
worst/missing results.

* no other occasions during the semester to replace missing tests!
e No midterm or final test.

@® Lab practice:

e The attendance is obligatory

e There will be programming tasks (the default language is Matlab) that you
have to complete and submit to the online submission system on time

e You have to understand your code and be able to explain it.

e Submitting all tasks in time is a requirement of passing the course.

e You can collect maximum 11 points, threshold is 7 (details clarified by Miklds
and Marton, see Lab01 ,,General course info”)

10 September 2019 Basic Image Processing Algorithms

Administration and Course Requirements

® Assignments:
e During the semester we will hand out 4 longer programming assignments.
e You have to complete and submit your solution via the online submission
system
e Maximum 22 points, threshold for passing: 14
® Oral exam at the end of the semester:
e To be able to participate to the exam you have to pass all three threshold for
the (i) short tests, (ii) programing practices and (iii) assignments.

e Mid term points count in 30% into the final grade, 70% is coming from the
oral exam
® Offered Grade — only in expetional cases:

e On Week 13, you should write a 12th short test from the previous lecture,
and you can recover 1 test from the previous ones

e 90% rule: minimum 22 (out of 24) points in total from the tests, 10 points
from the programing practices and 20 from the assignments

-> You get a 5 as final mark
® ?

10 September 2019 Basic Image Processing Algorithms

Human Vision

® The human visual system:

e Gives us the ability to process visual stimulus, to be able to detect and
interpret information from visible light (build a representation of the
surrounding environment).

® The ultimate goal of computer vision is to build a system that
is capable of seeing as a human can (or even better).

@ It is not easy! Human vision was trained through the many
years of the evolution. It can perform complex tasks
(face/facial expression recognition) easily.

® For a computer it is still an unsolved problem: there is a gap
between how a human and how a computer sees an image.

® Yet human vision is fallible. lllusions and ambiguities are
encountered all the time.

10 September 2019 Basic Image Processing Algorithms

Illusions

® The visual system is optimized to process natural images (through
evolution)
@ Itis faced with an ill-posed problem:
e Ambiguity due to projection from 3D to 2D image
e Uncertainty due to incomplete knowledge of the environment
e Uncertainty due to noise in photoreceptors and neurons

® The visual system relies on a set of assumptions to solve this ill-
posed problem

e Assumptions presumably learned via evolution
e Assumptions tailored for the natural visual world
e Assumptions cause illusions/failures under impoverished conditions

@ lllusions can provide insights into the brain’s assumptions.

10 September 2019 Basic Image Processing Algorithms

Illusions

® Lateral inhibition + assumptions tailored for the natural visual world

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

10 September 2019 Basic Image Processing Algorithms

Illusions

® Lateral inhibition + assumptions tailored for the natural visual world

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

10 September 2019 Basic Image Processing Algorithms

Illusions

® Ambiguity due to projection from 3D to 2D image

10 September 2019 Basic Image Processing Algorithms

Illusions

ion from 3D to 2D image

ject

® Ambiguity due to pro

Maurits Cornelis Escher

Drawing Hands (1948)

(%}
=
L=
s}
=
o
&
<<
[o1Y]
=
(%]
(%]
(O]
(9}
o
fust
(a8
(O]
[e14]
©
£
=
(%]
(5]
o

10 September 2019

Illusions

e Uncertainty due to incomplete knowledge of the environment

Charles Allan Gilbert
All Is Vanity (1892)

10 September 2019 Basic Image Processing Algorithms

Illusions

e Uncertainty due to incomplete knowledge of the environment

Ludwig Wittgenstein
Rabbit and Duck (1892)

10 September 2019 Basic Image Processing Algorithms

Illusions

Frog & horse

10 September 2019 Basic Image Processing Algorithms

What does a computer ,,see”?

http://en.wikipedia.org/wiki/Roebuck-class\

10 September 2019 Basic Image Processing Algorithms

What does a computer ,,see”?

® A digital image is discreet
representation of a continuous
measurement, usually a 2 or 3
dimensional array.

® An element of this array is a pixel
(picture element).

® A pixel has a position (its coordinates
on the image) and an intensity value.

® A digital image is discretised both in
space and intensity:

e Spatial discretisation is referred to as
sampling.

e Intensity discretisation is referred to as
quantization.

10 September 2019 Basic Image Processing Algorithms

Sampling

® Sampling is the reduction of a continuous signal to
a discrete signal.

® A finite set of values (called samples) are selected to
represent the original continuous signal.

@ In case of 2D signals (images) a grid is used for sampling
® The grid points will be represented as pixels.
® The frequency of the sampling defines:

® How many grid points we have?

® What is the resolution of the image?

® How detailed the discretised image is?

31

10 September 2019 Basic Image Processing Algorithms

Sampling

® Sampling usually leads to information loss.
® The sampling frequency determines how much information we lose.
® We have to decide what is the smallest detail that we want to keep:

24x32 48x64 120x160 480x640

10 September 2019 Basic Image Processing Algorithms

Quantisation

@ Intensity discretisation is referred to as quantization.
® The digital image quality is highly depending on how many bits
we use for coding the discreet intensity values:

e Binary: each pixel is coded on 1 bit (zero or one, black or white)
e Gray scale coded on 2/4/8/16/24/32 bits

8 bit: 256 shades of gray

]

10 September 2019 Basic Image Processing Algorithms

The Histogram of an Image

@ Histogram:
h(k) = the number of pixels on the image with value k.

x10*

Original Image* Image Histogram

® The histogram normalized with the total number of pixels gives us
the probability density function of the intensity values.

* Modified version of Riverscape with Ferry by Salomon van Ruysdael (1639)

Image representation with different gray level depths

O

2 bit 3 bit
(4 values) (8 values)
4 bit 6 bit
(16 values) (64 values)

Slide credit ® Vladimir Székely, BME

10 September 2019 Basic Image Processing Algorithms

Dithering

® Mapping to reduced bit number

e Trivial solution: truncating the digital word representing the gray value
of each pixel

* pixel=pixel>>4

Original image 4 gray levels 2 gray levels

10 September 2019 Basic Image Processing Algorithms

Dithering with white noise

® Quantitatization for a single bit
e Each pixel becomes black or white

» Probability of a given pixel being black or white depends on its original
gray level

e For a grayscale image f let the domain of gray levels of O...F,_,

* A given pixel receives 1 (white) color, if the following condition holds:

f > random()-F

max

- where random() is a randomly generated number from [0,1]

Slide credit © Prof. Vladimir Székely, BME

10 September 2019 Basic Image Processing Algorithms

Dithering with white noise

® With some re-arrangement:
f >random()-F__,

f +(1—random()): Fray = Frax
® The algorithm:

f +random()- Frayx = Frax

e we add random numbers (,,noise”) with values between 0 és F,_, to the
original grayscale image

e Pixels with values above F,_, receive label 1 (white), the other ones 0
(black)

Slide credit © Prof. Vladimir Székely, BME

10 September 2019 Basic Image Processing Algorithms

Dithering with white noise

Mapping to 1 bit

10 September Basic Image Processing Algorithms

Dithering with white noise — multiple bits

@ If the gray value of the output image can be represented by
multiple (2,3,...) bits, the result of dithering can be significantly
enhanced.

® Let n be the number of different gray levels in the output
Image

® Algorithm

e Add random numbers (noise) between 0 and F, . /(n —1) to the image
pixel values

e Pixels with the modified gray levels larger than k- F,__ /(n —1) but not

max

larger than (k+1)- F, . /(n —1) receive the output value k.

10 September 2019 Basic Image Processing Algorithms

Dithering with white noise

Mapping to 2 bits

10 September 2019 Basic Image Processing Algorithms

Color Images

® Humans can distinguish thousands of color shades and
intensities, but only a few dozens of gray.

® Color can be a useful descriptor for image segmentation,
tracking, detection,...

10 September 2019 Basic Image Processing Algorithms

Color models

® Two main color mixing models:
e Additive model: Subtractive model:

Y

@ Color spaces:
e They specify a coordinate system and a subspace within that system,
where each color is represented by a single point.
* RGB
* CMY, CMYK
* HSL/HSV/HSI
* YUV, YCbCr

Basic Image Processing Algorithms

10 September 2019

Color Spaces

® RGB:

e Most common color model
Channels: Red, Green, Blue

All components are depending on luminosity
All channel needs to be coded with the same bandwidth

Changing the intensity level is not efficient, all 3 channels has to be
modified

() (255,255,255)

(0,255,0)

() (0,255,255)

(255,0,0) (255,0,255)

(0,0,0) (0,0,255)

Basic Image Processing Algorithms

10 September 2019

Color Images

® Color images are formed by combination of different color
planes

1(272,74) = [252, 213, 170]

3

10 September 2019 Basic Image Processing Algorithms

RGB channels

i

Green channel

RGB color image

Basic Image Processing Algorithms

Color Spaces

® CMY:
e used in printing
e Based on the subtractive color model: describes what kind of inks need
to be applied, so the reflected light produces the given color.

® CMYK:

e The black produced by the mixture of CMY is not really black in practice
e Black ink is added as 4th component.

® CIE:

e the CIE color model is based on how humans perceive color
e was developed to be completely independent of any device
» (CIE stands for Comission Internationale de I'Eclairage)

Source: http://dba.med.sc.edu/price/irf/Adobe_tg/models/cie.html

10 September 2019 Basic Image Processing Algorithms

CIELAB, Lab, L*a*b

® One luminance channel (L)
and two color channels (a and b).

| White

® In this model, the color
differences which you perceive
correspond to Euclidian distances
in CIELab.

@ The a axis extends from green (-a)
to red (+a) and the b axis from
blue (-b) to yellow (+b). The
brightness (L) increases from the
bottom to the top of the three-
dimensional model.

10 September 2019 Basic Image Processing Algorithms

CIE L*a*b*

@ Color filtering in CIE L*a*b*: where are the red roods?

RGB image R channel of the RGB image a* channel of the CIE
L*a*b* image

10 September 2019 Basic Image Processing Algorithms

HSI color space - fundamentals

® Hue: dominant wavelength of the Spectral Power Distribution: EH

@ Saturation: relative purity or the amount of white light in the
mixture EH-EW

@ Intensity: indicates the dominant wavelength in the mixture of
light waves: EW

SPD
SPD

EW

wavelengt wavelength

white ||ght oreen lieht

10 September 2019 Basic Image Processing Algorithms

Color Spaces

® HSI/HSL, HSV:

e The components are more intuitive
* Hue: the angle around the central vertical axis (defined in degrees)
* Saturation: the distance from the central axis

* Intensity/Lightness or Value: the height

Source: http://en.wikipedia.org/wiki/HSV_color_space

10 September 2019 Basic Image Processing Algorithms

Sources

Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos
Slides of Prof. Vladimir Székely (BME)

10 September 2019 Basic Image Processing Algorithms

Basic Image Processing

PPKE-ITK
Lecture 2.

September 17, 2019 Basic Image Processing Algorithms

2D Convolution

Examples

w Y
Original

o "
- v L8
(3 4 f Ny |
bLA)
= 4 4
2 . § \
£ \ \
o ’ £ \ \/
1 S s (> LR
g & g 3 DR
B 4 R X Iy
3 / - :
£ PRV
> i Fal s
- < / 4 y
3) . Y/
o/ 1 . y
&) o, i L 7y \
Py % LN - £ f

Smoothing/Blurring Edge Detection

September 17, 2019 Basic Image Processing Algorithms

Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transformations:

e Intensity value inversion:
g(x,y) =255 — f(x,y)

September 17, 2019 Basic Image Processing Algorithms

Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transformations:

e Intensity shift with constant:
glx,y) = f(x,y) + 100

September 17, 2019 Basic Image Processing Algorithms

Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transforms:
e Weighting :
glx,y) = f(x,y) -w(x,y)

Image w
w(x,y) € [0.5,2]

September 17, 2019 Basic Image Processing Algorithms

Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transformations:

e Average on an N neighborhood :
f(x,y) = average N(f(x,y))

Image g

September 17, 2019 Basic Image Processing Algorithms

Mathematical background

® We look at the image as a 2D function: f(x,y)

® We can define different transformations:
e Intensity value inversion: g(x,y) = 255 — f(x,y)
e Intensity shift with constant: g(x,y) = f(x,y) + 100
« Weighting: g(x,y) = f(x,y) - w(x,y)
e Average on an N neighborhood: g(x,y) = average N(f(x, y))

® In this lecture, there are two important properties of the
transformations we want to use on images: linearity and shift

invariance

September 17, 2019 Basic Image Processing Algorithms

Mathematical background

® Linearity:

TG Y) + ()] =TLE (X Y]+ T (X,)]
Tla-T(x,y)]=a- T[T (X, y)]

e e.g.: weighting is linear, intensity inversion is non-linear

® Spatial Invariance (SI): for any [k, [] spatial shift vector,

TLT(x yY)I=9(x,y)
TLT(x=k,y=D]=g(x-k,y-I)

e e.g.: weighting is not SI, intensity inversion is Sl
e e.g.: averaging on neighborhood is both linear and SlI, we call it LS

September 17, 2019 Basic Image Processing Algorithms

Unit Impulse Function

@ 2D Unit Impulse function (Delta function) on Z as follows:

1 whenx=0andy=0
o(X,y) = .
0 otherwise
L1,
® For any 2D function f(x,y): """" F— """"
f(x,y)= Z Z&(x k,y—1)-f(k,1)

:—(D I

September 17, 2019 Basic Image Processing Algorithms

Convolution

® Impulse response is the output of an LS| transformation if the
input was the Delta function: 6(X,y) > T — h(X,y)

If Tis an LS| system:
TLT(x y)]=0(xy)

Then we can define convolution as follows:
g(x,y)=f(x,y)*h(x,y) =
=h(x,y)* f(x,y) =

=3 £k 1)-h(x—k, y—1)

kK=—o0 |=—

September 17, 2019 Basic Image Processing Algorithms

Derivation of Convolution

g(x,y)=T[f(x,y)]=

S £ (k.)S(x—k, y—I)} _

|=—00

IIM8

8

k

Linearity —

S (k1) To(x—k, y—1)]=

__— :ii K. 1)-h(x—k, y—1)

Spatial Invariance

September 17, 2019

The Properties of Convolution

® Commutative:

fxg=9g=x*f
® Associative:
f(gh)=(f xg)+h
@ Distributive:
f *(g+h): f+g+f=*h

® Associative with scalar multiplication:

a(f *g)=(cf)* g

September 17, 2019

2D convolution for image processing

_ convolution kernel
output image !

input image

® In practice both the h kernel and the f image have finite size.

® Typically the size of h is much smaller than the image size
(3%x3,5%X5,5X%X7etc.)

September 17, 2019 Basic Image Processing Algorithms

2D convolution in Practice

® Let hand hbe (2r; + 1) X (2r, + 1) sized
kernels where h is the rotated version of h

with 180° —
_ _ _ _ / / 4\ \y
a—rl,—l'z o a—rl,l’z ar1’r2 o arl’_rz / / 2l \ \ \
h=| . Jandh=| : : AN
a, . Ca,, a. . o / [IR
B B B) AN WA h
- o L LTIV 1}
1{ 1 Y1)

g(x,y)= 2> f(k,1)-h(x—k,y—-1)= f
B AT X

- 2 2Nk Ty - A RnR
[y1o] 221274 |
=" Shik,1) f(x+k,y+1) AN D R W W

Basic Image Processing Algorithms

September 17, 2019

Size of the Convolved Image

Convolutional Kernel

Original Image 1 1 1 1] Output Image
1 111 \
11 1 1|=|f s
: 1 111 1 1 ’
256x256 (R N O I (256+5-1)x(2564+5-1)
5x5

In general:
Size of the input image: A X B
Size of the kernel: C X D
Size of the outputimage: (A +C—-1) X (B+D — 1)

September 17, 2019 Basic Image Processing Algorithms

Boundary Effects

® What happens at the border of the image?

Original image with
the problematic area

Circular padding Repeating border

September 17, 2019 Basic Image Processing Algorithms

Applications

® Possible application of convolution:
e Smoothing/Noise reduction
e Edge detection
e Edge enhancement
® Depending on the task the sum of the elements of the kernel
matrix can be different:
e 1:smoothing, edge enhancement

11111 0 -10
Eg: =111 -15 -1
91111 0 -10
e 0: edge detection
S 1-101 0 1 0
E.g.: -101 1 -4 1
-101 0 1 0

September 17, 2019 Basic Image Processing Algorithms

Smoothing/Blurring

® Simple average:

iif(x+i,y+j)

g(X,y) = aroy 2

September 17, 2019 Basic Image Processing Algorithms

Bluring for noise filtering

Noisy image Result of bluring

September 17, 2019

Computational requirements

® For kg kernel size and P image size (area, measured in pixels)
approximately ~k¢ P operations are needed.
® For large kernel size the execution may be slow

September 17, 2019 Basic Image Processing Algorithms

Decreasing the computational need for a simple
(averaging) blur operation

® Integral image: f — I¢

. : 1 0 2 1
auxilliary representation
* .|: 2 0 1 0
’f(’“”zzzf“’” 3 1 1 0
1=1j=1
® E.g I£(3,3) =sum of the values 1 0 1 /
of pixels =11 .
1 0 2
2 0 1 7
3 1 1 12
1 0 1 18

September 17, 2019 Basic Image Processing Algorithms

Calculation of I; with dynamic programing in ~P time:

® Auxiliary-auxiliary image: t(x,y) = Zf(x 7)

e Calculation of image t: j=1
t(x,1)=f(x,1),x=1..w; tl,y) =tl,y—1)+f(x,y)

e Calculation of I¢ using image t:
IF(Ly) =tLy),y=1..h I;(x,y) =I(x—1,y) + t(x,y)

+7=11

Utilization of the integral image

® Sum of pixel values in an arbitrary sized sub-rectangle can be calculated by
applying 3 additive operations using the integral image:

i_}d:f(i,j) =I.(c,d)-1,(a-1,d)—I.(c,b-1)+1,(a—1,b-1)

® Example (a=1, b=1, c=2, d=2): 11-6-3+1=3

1 0 2 1 1 1 3 4
f 20 1 o |l 3 3 6 7

2l || 6 7 11 12

1 0 1 4 /7 8 13 18

September 17, 2019

Using integral image for quick blurring (simple
averaging kernel)

f(x,y)= . SN F(x+i,y+j) (@reL eddition

2 e e . .
(Zr -I-l) =~ + 1 division operations

Example: r=5 - For the whole image ~122P operations

= 1
f(x,y)= (e (X+ry+r)—l,(X=r=Ly+r)—
(2r+1)
—l(X+ry-r-)+1L.(x-r-1,x-r-1)) o
+1 division
Example: r=5 - For the whole image ~ 2P+4P=6P operations
R
calc. integral image calc. bluring

September 17, 2019 Basic Image Processing Algorithms

Optional homework (a bit more than a
convolution)

® Construct an efficient contrast calculating
algorithm using the integral image! Contrast is
calculated as the standard deviation of pixel
values of the (2r+1)? size neighborhood of each

pixel.
c’(X,y) =
(i= rj —r
where: f(X,y) = (2r+1)222f(x+' Y+
I=—r j=—r
Hint:

GZ(X,y)={ ZZZ[f(X+IY+J)} Foyf

I=—1I J=—T1

September 17, 2019 Basic Image Processing Algorithms

Smoothing/Blurring

® Gaussian blur:
e Weights are defined by a 2D Gaussian function

e 2 parameters: size of the window and the standard deviation of the
Gaussian

Fixed window size,
increasing sigma

September 17, 2019 Basic Image Processing Algorithms

Smoothing/Blurring

® Gaussian blur:
e Weights are defined by a 2D Gaussian function
e 2 parameters: window size and the width of the Gaussian
e E.g. kernel size = 5x5; 0 = 1.5;
(0.0144 0.0281 0.0351 0.0281 0.0144
0.0281 0.0547 0.0683 0.0547 0.0281
0.0351 0.0683 0.0853 0.0683 0.0351

0.0281 0.0547 0.0683 0.0547 0.0281
0.0144 0.0281 0.0351 0.0281 0.0144

e E.g. kernel size = 3x3; 0 = 1.5;

0.0947 0.1183 0.0947
0.1183 0.1478 0.1183
0.0947 0.1183 0.0947

September 17, 2019 Basic Image Processing Algorithms

Smoothing/Blurring

® Gaussian blur:
A L

) $?t":”‘."‘ '~. ’ \
r e d ab- -
- NN 5 l -~ -~ 5‘

21x21;0=2 21x21;0=3 i

September 17, 2019 Basic Image Processing Algorithms

Convolution examples —averaging blur

Input Image Average blur

Convolution examples— Gaussian blur

[1 2 3 2 1]
[z 7 11 7 2]
E=1/123 * [3 11 17 11 3]
[z 7 11 7 2]
[1 2 3 2 1]

i S

InpUt Image Gaussian blur

September 17, 2019 Basic Image Processing Algorithms

Edge detection

® Goal: extracting the object contours
® Edge points: brightness changes sharply

September 17, 2019 Basic Image Processing Algorithms

Goals of edge detection

® Goal: extracting curves from 2D images
e More compact content representation then pixel
e Segmentation, recognition, scratch filtering

September 17, 2019 Basic Image Processing Algorithms

Goals of edge detection

AN
X/ %}%GM
o

(%}
=
L=
s}
=
o
&
<<
[o1Y]
=
(%]
(%]
(O]
(9}
o
fust
(a8
(O]
[e14]
©
£
o
(%]
(5]
o

e Corners, lines, borders

® Extracting image information, structures
® Not always simple...

September 17, 2019

W1

object

Edge detection

® Properties of a good edge filter:

e (Near) zero output in homogeneous regions (constant intensity)
e Good detection :

- detects as many real edges as possible

- does not create false edges (because of e.g. image noise)

e Good localization: detected edges should be as close as possible to the
real edges

 |sotropic: filter response independent on edge directions
- all edges are detected regardless of their direction

September 17, 2019

Basic Image Processing Algorithms

Basic structures

@ Edge: sharp intensity change (steep or continuous)

@ Line: thin, long region with approx. uniform width and
intensity level

@ Blob: closed region with homogeneous intensity

® Corner: breaking or direction change of a contour or edge

'l e B

Edge Line Blob Corner

September 17, 2019 Basic Image Processing Algorithms

Origin and types of edges

® Various effects may cause edges

% Sharp change in surface normals

e]
ey

Continuos change in surface depth

N

lfr———
../;\ Change in surface color
MZ Changes cased by illumination/shadows

® Basic edge types

1 /A S

September 17, 2019

step

ramp roof line

Basic Image Processing Algorithms

Parameters of an edge

@ Edge normal: vector, perpendicular to the edge, pointing
toward the steepest intensity change

e Alternatively: edge direction — a vector pointing towards the
direction of the line

@ Position: center point
® Strength: intensity ratio w.r.t. neighborhood

EDGE
DIRECTION ¢

September 17, 2019 Basic Image Processing Algorithms

Image representation

® Image: gray value is function of the x and y coordinates
(intensity function): f(x,y)

September 17, 2019 Basic Image Processing Algorithms

Edge Detection

® Edge: locations on the image where the intensity changes
sharply (usually at the contour of objects)
® We are searching for places where the gradient of the 2D
function (the image) is high.
® Main types of edge detection:
e First order derivative
e Second order derivative
e Others:
* Complex methods e.g. Canny method

* Phase Congruancy

September 17, 2019 Basic Image Processing Algorithms

Edge Detection

@ Edge detection with first order derivative:
e Using the gradient vector: T
vi { of af}

ox oy
e The approximation of the partial derivatives:
L im F(x+dx,y) - T(xy) ﬂ:r F(x,y+dy)-T(x,y)
X dx oy dy
~ f(x+1Ly)— f(XVy) ~ f(x,y+1) - f(x,y)

Since the smallest meaningful
discrete value is dx=1 and dy =1.

September 17, 2019 Basic Image Processing Algorithms

Edge Detection

@ Approximation of the x directional partial derivative:
e For better localization, use a symmetric formula around pixel (x, y)

N F(x+1y)— f(x—1y)
OX

 Corresponding convolutional kernel:
-1 0 1]

e For noise reduction, apply y directional smoothing (i.e. do not blur a sharp
vertical edge)

1] (=1 0 1 x directional Prewitt operator:
[—l 0 1]* 1i=||-1 0 1 vertical edge detectior
1 -101

September 17, 2019 Basic Image Processing Algorithms

Edge Detection

@ Approximation of the y directional partial derivative:
e For better localization, use a symmetric formula around pixel (x, y)

 Corresponding convolutional kernel:

of

o f(xy+D) - f(xy-1
& (X, y+1)—f(x,y-1)

-1
0
1

e For noise reduction, apply x directional smoothing (i.e. do not blur a sharp
horizontal edge)

September 17, 2019

-1
0
1

1]

=L =1l =1
0O 0 O
1 1 1

y directional Prewitt operator:
horizontal edge detectior

Basic Image Processing Algorithms

Edge Detection

@ Edge detection with first order derivative:

Prewitt detector

Horizontal gradient image Vertical gradient image

September 17, 2019 Basic Image Processing Algorithms

Edge Detection

@ Edge detection with first order derivative:

Horizontal gradient image

gradient image

September 17, 2019 Basic Image Processing Algorithms

Other first-order methods

® Sobel operator

-1 101 -1 | -2 | -1

21012 O 0] O

-1 101 | 2 |
d/0x 0 /0y

® Roberts operator

+1 +1
-1 -1
g1 g2

Emphasize edges with 45 degree slopes

Second order edge detection: motivation

Horizontal edge detection

() P ‘
in the following image: g /

. df(y,)/dx

/&

. dfP(xy,)/dx =N

Dﬁ_d-/ 1
il

asl /_ 1
o E 16

Top: intensity function along a selected horizontal line
Center: x directional first derivative
Bottom: x directional second derivative

September 17, 2019 Basic Image Processing Algorithms

Second order case: instead of extreme values,
search for zero crossing

September 17, 2019

02r
o

-0 TF

-0.2F

0.2

o

-0
0.2

0.8k
0.6k
0.4
0.2k

0 50 100 150 200 250

Basic Image Processing Algorithms

Extreme values
(first order)

zero crossing
(second order)

Real photo: intensity profile below the red line
segment

=20
0 =3 10 15 20 25 30

September 17, 2019 Basic Image Processing Algorithms

Edge detection with second order derivative

® Calculating the divergence of the gradient vector

ep_ (9 0\ ., _0 @
f= ox' dy f_é‘xzf ayzf

® Approximation for x direction:

fo+1Ly)—fxy) fO,y)—fx—1y)
1% 1%

0 f(x,y) _
ox2 v

fxr+1Ly) = 2f(0y) + fF(x =1L y)]

just a constant — v: distance of neighboring pixel centers

September 17, 2019 Basic Image Processing Algorithms

Edge detection with second order derivative

® Approximation of the second order derivatives for x and y directions

2
a2%?0“f@+440—2ﬂ%yyfﬂx_Ly)
2
: gglxz»y) < floy+1)—2f(x,y) +fx,y—1)

® Kernel for the second order gradient calculation with convolution:
* Laplace operator:

- =1
2 2
ot ot _ 2|+l -2 4|1 -4 1
aXZ 8y2

Ld | 0 1 0

* There are other variations. (e.g. Second order Prewitt)

September 17, 2019 Basic Image Processing Algorithms

Edge Detection

@ Edge detection with second order derivative:

Laplace edge detector Prewitt 2nd order detector

September 17, 2019 Basic Image Processing Algorithms

Edge Detection

@ Thresholding:

e To eliminate weak edges, a threshold can be used on the gradient
image:

Prewitt first order gradient image Prewitt first order gradient image
with threshold =120

September 17, 2019 Basic Image Processing Algorithms

Coming next week:
Reducing the effect of noise on edge images

® Edge detection with noise reduction:
e 1. step: Noise reduction by convolution with Gaussian filter
e 2.step: Edge detection by convolution with Laplacian kernel
@ Since convolution operation is associative we can convolve the
Gaussian smoothing filter with the Laplacian filter first, and
then convolve this hybrid filter (Laplacian of Gaussian: LoG)
with the image.

IR
Lo AR
IR

Gaussian function Laplacian of Gaussian

September 17, 2019 Basic Image Processing Algorithms

Basic Image Processing Algorithms

PPKE-ITK

Lecture 3.

October 1, 2019

Recap: first/second order edge detection

® Noise filtering is required...

October 1, 2019 Basic Image Processing Algorithms

Noise filtering (1D demonstration)

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

4 f(x)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

® Where is the edge?

October 1, 2019 Basic Image Processing Algorithms

h*f

p*(h=*f)

Sigma = 50

_ | R e
IE..' - - - - - - - é. ;L é. .. f: original Signal
w) : : :

| . | | S R S
0 200 400 600 800 1000 1200 1400 1600 1800 2000
I T I I I I I I I
[a § § § § h: Gaussian blur
2 | | | | kernel
.i....I..........I..........I..........i.... ...i.... ...i...... —]
600 800 1000 1200 1400 1600 1800 2000
= ! ! ! ! ! ! ! ! !
sk i
=]
D. SRR I I I L R R I LRI . . .
> 5 h * f: filtered signal
8 I ;._._ | | | || -]
0 200 400 600 1400 1600 1800 2000

=

° ' ' ' ' ' ' p: Prewitt (first order

(] 0

= gradient kernel)

o

2 5 5 | _ _

) S SO — e [T 0]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Smoothing the signal with Gaussian kernel, followed by applying a first order Prewitt kernel

October 1, 2019

Basic Image Processing Algorithms

Associativity of convolution:

prx(h*f)=@=*h)*f

D (hxf)=(Zh)*f

® No need for applying 2 convolutions, only one with the derivative of
Gaussian operator (can also be approximated by a discrete kernel)

Sigma = 50

f

Signal

| | 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

O 1 . ox
%h ~ p*h

Derviative of the

...

H ! ! ! ! ! ! I I I
GaUSSIan kernel 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution

(Zh)* f

! | 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

October 1, 2019 Basic Image Processing Algorithms

Second order case: Laplacian of Gaussian (LoG)

® Smoothing + Laplace = conv. with LoG operator

Sigma = 50

f

Signal

h: Gaussian smoothing kernel : | : , ,
0 200 400 600 800 1000 1200 1400 1600 1800 2000
[: Laplace-kernel | | | | | | |
2 A T L S S _
8—2h ~[xh
Ox _ _ _ _
; ; | ; ; | ; ; ;

0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
Q|
S

r\)‘ N

>

N’

>
~~
Convolution
E

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Basic Image Processing Algorithms

October 1, 2019

2D edge detection with filtering:

Laplacian of Gaussian

i
il
:;I’"':::::“::’ R
YN
L XSS L
RIS .

Prryse
F
R

I
f.’%’%;. “‘H N
irln (LA
LA

y!

,Derivative” of the 2D Gaussian

. : 0
2D Gaussian smoothing kezrrnezl — ho(u,v)
1wt O
holu) =5 20 ™

e V2 henceforward the Laplace operator:

52 92
v2f — 8:1:]2C | 8y£

e Determining kernel coefficients with discrete approximation of the 2D function

Basic Image Processing Algorithms

October 1, 2019

Edge Enhancement

Kernel for edge enhancement with
Laplace operator:

000] [o 1 0][[0 -1 0
of 010[-|1-41l=f[-15 -1
ox 000/ |01 0/]0 -10
o f
OX”
o° f
OX*

0° f

Fx)- OX’

Original image Edge enhanced image

October 1, 2019 Basic Image Processing Algorithms

Edge crispening

o e
T Y7

’I_ -

05 / i

D -

1 ! 1 1 ! 1 1 1
20 40 B0 a0 1a0 120 140 160 180

—df2(x,y,)/dx>—

Convolution matrix: 15~ F(x,y)-df?(x,y,)/dx?
00 0 0 1 0 0 -1 0 | |
010 -|(1-41[=1]-15 -1 :
000 0 1 0 0 -1 0

1 ! 1 1 ! 1 1 1
20 40 B0 a0 1a0 120 140 160 180

October 1, 2019 Basic Image Processing Algorithms

Ing variants

ispen

Edge cr

ly

image qual

® Often enhances the

-2 1

1
-2 5

-2

1]

-1

-1

-1 9 -1
-1

-1

-1

0

1

-1 5

0

1
0

-1

Basic Image Processing Algorithms

()]
i
o
o
i
—
(]
0
o
s}
O
o

Canny edge detector

Evaluation of first/second order edge detection

® Prewitt kernel + threshold
e isitagood edge detector?

October 1, 2019 Basic Image Processing Algorithms

Prewitt: is it a good edge detector?

Canny edge detector

® Remember: properties of a good edge detector:
e Good detection:
* detects as many real edges as possible
- does not create false edges
* Good localization:
* the detected edges should be as close to the real edges as possible
e |sotropic:

- all edges are detected regardless of their direction

® John F. Canny has developed an edge detector in 1986 to meet
these requirements.

October 1, 2019 Basic Image Processing Algorithms

Canny edge detector

® Goal: extracting a connected, one-pixel-thick edge network
@ Filtering Gaussian noise
® Three main steps:

__,| Gradient map |Edge thinning by non-
calculation maxima supression

—| Hysteres. thresh. [—

Canny - 1st step: gradient map

® Noise reduction:

e The original image is convolved with a Gaussian kernel to reduce image
noise.

® Gradient intensity and direction calculation:

e The horizontal and vertical derivative image is calculated (e.g. with
Prewitt kernel)

e At each pixel (i,j) calculate:

* d(i,j) gradient magnitude (how sharp is the edge — proportional to
the gradient magnitude)

I7F 1l o< d(i,j) = +/[d*G,)I? + [dY (G,)]

EDGE
DIRECTION

* n(i,j) edge normal (perpendicular to the direction)
d*(i, j)
dy (i, j)

October 1, 2019 Basic Image Processing Algorithms

n(i,j) = arctan(

Canny — 2nd step: Non-max Suppression

® Goal: thinning the edges

® The gradient map may contain
,thick” regions with large gradient
values. Earlier methods may classify
all of these points as edges.

® Along the highlighted line segments
perpendicular to the edges (marked
with red) we should only mark a
single point as edge point, the one
which is locally the brightest

Canny Edge detector

October 1, 2019

Non-Maximum Suppression step for edge thinning:

* Each edge is categorized into one of 4 main edge directions (0°, 45°,

90°, 135°), based on the gradient direction image (0).

* At every pixel, it suppresses the edge, by setting its value to O, if its

magnitude is not greater than the magnitude of the two neighbors in
the gradient direction:

Vo TREas
4AV 0o

Basic Image Processing Algorithms

Canny — 2nd step: Non-max Suppression

1. Each edge is categorized into one of 4 main edge directions (0°, 45°,

90°, 135°), based on the gradient direction image
* to each pixel (i, j) we assign the principal direction a(i, j), which one is the
closest to local edge normal n(i, j)
2. At every pixel, it suppresses the edge, if its magnitude is not greater
than the magnitude of the two neighbors in the gradient direction:
* If local edge magnitude d(i,) is smaller than in any neighboring pixel in the
a(i,j) direction set G(i,j): = 0. Otherwise (local max) : G(i,j):=d(i,j)
3. Result: ¢ image obtained from the d gradient-magnitude map, where
the edge-candidate regions become thin

3 4 2

- .,

=
N @ O
~ 9 0 O
“9® 0 O
[
[
=

Canny — 3rd step: Thresholding

® Naive solution: thresholding the ¢ map with a threshold t

e If tistoo small, we obtain many false edge points. If t is too large:

valid edges disappear.
e |f the gradient magnitude of the edges fluctuates around the
threshold, many disruptions (broken edge segments) may appear

® Improved solution: hysteresis thresholding

* Using 2 thresholds t; and t, (t; < t,):
* If the value of G(x, y) is larger than t,, (x, y) is certainly edge point
* If the value of G(x, y) is smaller than t;, (x, y) is certainly not an edge point

* If the value of G(x,y) is between the threshold, we mark it as edge point if
and only if it has a neighboring pixel already classified as edge in the
direction perpendicular to the edge normal

Canny edge detector - result

Input image

Canny edge detector - result

Norm of gradient: ,,d”

Canny edge detector - result

After thinning (E) (non-maximum suppression)

Canny edge detector - result

hysteresis thresholding

fine scale

high
threshold

coarse
scale,
high
threshold

Canny edge detector - results

sl
H -':?;Sal: W

Gradient Magnitude

Final Canny Edges

October 1, 2019 Basic Image Processing Algorithms

Line detection with Hough Transfrom

Hough Transformation

® An example of Canny edge detector...

® ...where straight lines are not detected perfectly.
® The objective of the Hough transformation is to find the lines
on a binary image, from fragments/points of the line.

October 1, 2019 Basic Image Processing Algorithms

Finding lines in an image

® Option 1:
e Search for the line at every possible position/orientation
e What is the cost of this operation?

® Option 2:

e Use a voting scheme: Hough transform

October 1, 2019 Basic Image Processing Algorithms

Finding lines in an image

® The basic idea:

e Aline can be written in the following form:
y=mx+Db

where m is the slope of the line and b is the y-intercept.

Y& y=mx+b, m?
= m|
-
> >
image space m-b space of lines

® Connection between image (x,y) and the (m,b) spaces
e Alinein the image corresponds to a pointin “m-b” space
e To go from image space to (m-b) space:
* given a set of points (x,y), find all (m,b) suchthaty=mx+b

October 1, 2019 Basic Image Processing Algorithms

Finding lines in an image

Y A A

yO o m / m:—ib+ﬁ
~
| » | »

@ Connection between image (x,y) and (m,b) spaces
e What does a point (x, y,) in the image space map to?

* For afixed y =y, x = x,point in the image space, we get a line in the
(m, b) space with a slope -1/ x, and an m-intercept: y,/ x,:

m =——b+ Yo
XO XO

October 1, 2019 Basic Image Processing Algorithms

Hough Transformation

® The basic idea:

e For the points that lie on the same line in the Euclidian space, their
corresponding line in the parameter space will cross each other in one

point :
y=myX+by| .
y 4 — m4 (05, M,)
o
K 2 ~—
’,0"
o
ol ® A
) ;'(\ S)
X / b

e This point will be m=m, and b=b,, the slope and intercept of the line in the
image space. I:{} We have the equation of the line!

® But, there is a problem with this equation of the line: vertical
lines cannot be described (their slope would be infinite).

October 1, 2019 Basic Image Processing Algorithms

Hough Transformation

® To be able to describe all possible lines with two scalar
parameters, we will use a polar representation of the line
® Each line is described by (1, @) instead of (m, b), where
e risthe perpendicular distance from the line to the origin
e (@ isthe angle this perpendicular makes with the x axis

y A

\g

October 1, 2019 Basic Image Processing Algorithms

Hough Transformation

® Mathematical basis for using the polar equation of the line
is the Hesse normal form*: A
O0=P-n,—r

P= (X, Y) arbitrary point of the line

n, = (cosd,sin9)

normal vector of the line

A

e r: perpendicular distance from the line to the origin
e (@:the angle this perpendicular makes with the x axis

* https://en.wikipedia.org/wiki/Hesse_normal_form

October 1, 2019 Basic Image Processing Algorithms 37

Hough Transformation

® Hesse normal form based polar equation of the line:

v 4 0=P-n,—r=(x,y) (cos@,sin@)—r
r U
40 r=X-cos@d+Yy-sind
—

X

® The (r, 8) parameter space is called Hough space.
® A point in the Euclidian space is a sinusoid in the Hough space,
described by the following equation:

r(@)=x-cos@+y-siné

October 1, 2019 Basic Image Processing Algorithms

Hough Transformation

@ All the sinusoid curves of the points in one line in the Euclidian
space, cross each other in one point in the Hough space.

Hough space 9

r(@)=x-cos@+y-sind

October 1, 2019 Basic Image Processing Algorithms

Hough Transformation

Noisy data

D *

features votes

Issue: Grid size needs to be adjusted...

October 1, 2019 Basic Image Processing Algorithms

Hough transform algorithm

® Basic Hough transform algorithm
1. forallr, O: initialize H[r, 0]=0
2. for each edge point I[x,y] in the image
for0=0to 180

r=Xx-cosé+y-sind

Hlr, 0] +=1
3. Find the value(s) of (r,) where Hlr, 0] is maximum
4. The detected line in the image is given by

r=X-cos@+Yy-sind

® What’s the running time (measured in # votes)?

October 1, 2019 Basic Image Processing Algorithms

Hough Transformation

Original Image

Original Image with reconstructed line

Hough Plane

October 1, 2019 Basic Image Processing Algorithms 42

Extensions

® Extension 1: Use the image gradient
1. same
2. for each edge point I[x,y] in the image
compute unique (r, 0) based on local image gradient at (x,y)
Hlr, 0] +=1
3. same
4. same

® Extension 2
e give more votes for stronger edges

® Extension 3
e change the sampling of (r, 0) to give more/less resolution

® Extension 4
e The same procedure can be used with circles, squares, or any other shape

October 1, 2019 Basic Image Processing Algorithms

Hough demos

@ Lines, circles and ellipses:
http://dersmon.github.io/HoughTransformationDemo/
® Circle : http://www.markschulze.net/java/hough/

October 1, 2019 Basic Image Processing Algorithms

http://dersmon.github.io/HoughTransformationDemo/

Image Enhancement

What is Image Enhancement?

® Image enhancement is the manipulation or transformation
of the image to improve the visual appearance or to help
further automatic processing steps.

® There is no general theory behind it, the result is highly
application dependent and subjective.

e e.g. in many cases the goal is to improve the quality for human
viewing (Medical Imaging, Satellite Images)

® Enhancement is closely related to image recovery.
® Examples:

e Contrast enhancement

e Edge enhancement

e Noise removal/smoothing

10/1/2019 Basic Image Processing Algorithms

Types of Image Enhancement

® There are two main categories:
e Spatial Domain Methods

@ In the Spatial Domain we are directly manipulating pixel
values, through..
e Point-wise Intensity Transformation
e Histogram Transformations
e Spatial Filtering
* LSI (Linear Shift-Invariant)
* Non-Linear
e etc.

10/1/2019 Basic Image Processing Algorithms

The Histogram of an Image

@ Histogram:
h(k) = the number of pixels on the image with value k.

Original Image* Image Histogram

® The histogram normalized with the total number of pixels gives us
the probability density function of the intensity values.

* Modified version of Riverscape with Ferry by Salomon van Ruysdael (1639)

10/1/2019 Basic Image Processing Algorithms

Point-wise Intensity Transformation

® Point wise transformations are operating directly on pixel
values, independently of the values of its neighboring pixels.
® We can describe the transformation as follows:

e Let x and y be two grayscale

images, and let T be a point- 250
wise image enhancement so0l
transformation that transforms \

—
4y
o

xtoy:

— ldentity
— Inverse
—N-th Power
N-th Root
Log
Inverse Log

0 50 100 150 200 250
Input intensity

Qutput intensity

y(n, n,) = T[x(n,, n,)]

10/1/2019 Basic Image Processing Algorithms

Point-wise Intensity Transformation

® Inverse transformation: y(n,n,) =255-x(n;,n,)

Original Image* Inverse Image

*Hand with Reflecting Sphere by M. S. Escher (1935)

10/1/2019 Basic Image Processing Algorithms

Point-wise Intensity Transformation

® Log transformation: y(n,n,)=c- Iog(x(nl, n,) + 1)
e Expands low and compresses high pixel value range

Original Image* Log Image Log Image
after histogram stretching

* Abbaye du Thoronet by Lucien Hervé (1951)

10/1/2019 Basic Image Processing Algorithms

Point-wise Intensity Transformation

® Power-law transformation: y(n,n,) =c-x(n;,n,)”
e Commonly referred to as gamma transformation

e Originally it was developed to compensate the input-output
characteristics of CRT displays.

e The expended/compressed region depends on y:

1 —
—gamma = 0.1
gamma = 0.25
——gamma=0.5
——gamma =1
——gamma =2
gamma=4 Here C= 1
gamma =10

Qutput intensity
o
[

0 05 1
Input intensity

10/1/2019 Basic Image Processing Algorithms

Point-wise Intensity Transformation

® Power-law transformation: y(n,n,) =c- x(n,n,)”

y=2

* Le chat Noir, Poster of Théophile Steinlen (1896)

10/1/2019 Basic Image Processing Algorithms

Dynamic Range Expansion

® Piecewise linear expansion/compression of predefined intensity
ranges:

Output intensity values

Input intensity values

e The red intensity range was expanded, while the blue ranges were
compressed.

10/1/2019 Basic Image Processing Algorithms

Dynamic Range Expansion

S

Original Image Original Histogram

——

Histogram of the Modified Image

250

1000

) ‘”HH
DW”"”” |
L] 50 100 150

10/1/2019 Basic Image Processing Algorithms

Dynamic Range Expansion

® Example: extracting the intensity values from i
the [g, g,] interval to a wider [h; h,]| domain tm

)) h2
e Enhanced contrast in the selected region, details
are better observable and distinguishable.

e |In the remaining image regions the contrast
decreases 0 -

October 1, 2019 Basic Image Processing Algorithms

Histogram Transformations

® Histogram Stretching:
e Based on the histogram we can see that the image does not use the

whole range of possible intensities:
* Minimum intensity level: 72 .
- Maximum intensity level: 190 Cal
o With the following transformation 3.
we can stretch the intensity values
so they use the whole available
ran ge : % 50 1031 onsty Vallio 200 250
Image Histogram
255
y(nl’ nz) = X X) (X(nl’ n2) — Xmin)
max min

Xmax — maX(X(nl’ nz)) Xmin - min (X(nl’ nz))
NN, n., N,

10/1/2019 Basic Image Processing Algorithms

Histogram Transformations

@ Histogram Stretching:

Original histogram

Original image

n - l
oY
R

Z15

0 50 100 150 200 250
Intensity Value

Stretched histogram

Intensity Value

10/1/2019 Basic Image Processing Algorithms

Histogram Transformations

® Histogram stretching with various transfer functions:

e Linear:
y(n,n,) = G (X(Ny, ;) = Xiyin) = 255- X(w, M) = X
Xnax ~ Xmin Xinax — Xmin
e Quadratic:

2
X(n1’ n2) o Xmin j

y(n,n,) = 255'[
X

max Xmin

e Square root

X(nl’ n2) — Xnin
X

y(n1’n2)2255'\/

max Xmin

October 1, 2019 Basic Image Processing Algorithms

Histogram stretching - results

original linear f() quadratic square root

October 1, 2019 Basic Image Processing Algorithms

Histogram stretching - results

original
linear f()
quadratic square
root

October 1, 2019 Basic Image Processing Algorithms

Histogram Transformations

@ Histogram Equalization:

e The goal is to increase the contrast, by distributing the occurrences of
the intensity values evenly through the entire dynamic range.

Original image Original histogram

50 100 150 200

Equalized histogram

10/1/2019 Basic Image Processing Algorithms

Histogram equalization background

® Simple thresholding

® For different
g, values

October 1, 2019 Basic Image Processing Algorithms © Székely Vladimir, BME

Optimal threshold value

@ Task: converting a grayscale image to binary (black&white).
What is the optimal threshold value?
e A possible good solution is to prescribe that the number of black
and white pixels should be approximately the same in the output
image.

The g, threshold value can be calculated from the histogram, (P is
the total number of pixels):

255

Zh[l]N Zh[.]~—

I=0;+1

October 1, 2019 Basic Image Processing Algorithms

Generalization: histogram equalization

® Goal: contrast enhancement

® Transform: step (staircase) function. The number of columns
determines number of color (intensity) values appearing in the
output, (e.g. number of columns=16, 32, 64, etc.).

c=x*y/oszlopol. szama

i
=
A

1
49

October 1, 2019 Basic Image Processing Algorithms

Histogram equalization — ¢ output values

® Goal: determining the t,=0, t,, ... t_,,t.=255 dividing points,
where:

Zh[i]z P% je{l.c}

e cis the number of different gray levels in the output image (c=2 for
thresholding, but it can also be 16, 32, ... 256 as well)

e P isthe total number of pixels again.

October 1, 2019 Basic Image Processing Algorithms

Histogram equalization - result

16 level ouptut Histogram of the output image

October 1, 2019 Basic Image Processing Algorithms

Histogram Transformations

® Adaptive Histogram Equalization:

e applies histogram equalization on parts of the image (called tiles)
independently

e Use post processing to reduce artifacts at the borders of the tiles.

Original image Image after CLAHE

[1] Zuiderveld, Karel. "Contrast Limited Adaptive Histograph Equalization." Graphic Gems IV. San Diego: Academic Press Professional, 1994. 474-485.

10/1/2019 Basic Image Processing Algorithms

Spatial Filtering

® Smoothing:
e Reduce the noise that may corrupt the image.
® A few noise types we will work with:
 Impulse noise, (aka salt and pepper noise)
 Additive Gaussian Noise

Additive Gaussian Noise Impulse Noise

The windmill at Wijk bij Duurstede by Jacob van Ruisdael (1670)

10/1/2019 Basic Image Processing Algorithms

Spatial Filtering

® Gaussian Smoothlng
e With 0=0.75

Original image

Image with Gaussian noise Smoothed Gaussian noise

10/1/2019 Basic Image Processing Algorithms

Spatial Filtering

® Gaussian Smoothlng
e With 0=1.5

Image with S&P noise

Original image

Image with Gaussian noise Smoothed Gaussian noise

10/1/2019 Basic Image Processing Algorithms

Spatial Filtering

@ Spatially Adaptive Noise Smoothing:
e The smoothing takes into account the local characteristics of the image:

02 02 —
y(n, n,) = [l_ _nz_j - X(ng, N,) +'—nr' x(n,, n,)
g g

/ \

ol (n,n,)=> > (x(n,n,)—X(n,n,)) >_<(n11”z)=ﬁz > x(n,n,)

(ny,n;)eN (n,ny)eN

Local variance of the image Local average of the image

Variance of the noise: either known a priori, or has to be measured

10/1/2019 Basic Image Processing Algorithms

Spatial Filtering

@ Spatially Adaptive Noise Smoothing:

Gaussian Smoothing Spatially Adaptive Smoothing

* Fatepuhr Sikri, Inde by Lucien Hervé (1955)

10/1/2019 Basic Image Processing Algorithms

Basic Image Processing

PPKE-ITK

Lecture 4.

Spatial Filtering

@ Recap: Gaussian Smoothing — efficient for Gaussian noise, but...

Image with salt and Gaussian blur with
pepper noise convolution

10/13/2018 Basic Image Processing Algorithms Image credit ® Prof. Viadimir Székely, BME 2

Spatial Filtering

® Rank filter:

1. Consider the actual pixel and its neighborhood (e.g. 3x3=9 pixel sized
window),

2. Sort the observed pixel values according to gray level,
3. Take the k-th value from this row as the new pixel value
® Median filter: k is the middle pixel value in the row:
k=[(2W+1)2-1]/2, if W is the half side size of the neighborhood
® Non-Linear filter

October 13, 2018 Basic Image Processing Algorithms

Spatial Filtering

® Median filter: replaces each pixel with the median value of its
analyzed neighborhood. (Median value: the center element of
sorted values)
e Very effective against impulse (,,salt and pepper”) noise:

" Input image with salt e g B—
and pepper noise Blur with convolution Median filter

October 13, 2018 Basic Image Processing Algorithms 4

Spatial Filtering

® Median filter: replaces each pixel with the median value of its
analyzed neighborhood. (Median value: the center element of
sorted values)
» Very effective against impulse (,,salt and pepper”) noise:

Original image Image with S&P noise Median filtered S&P noise

» Not so effective against Gaussian noise.

10/13/2018 Basic Image Processing Algorithms

Spatial Filtering

® Order statistic filtering:
e Based on the sorted pixel intensity levels in the analyzed neighborhood.
e |f after sorting...
+ we take the middle element, we get back the median filter.

* We take the maximum element to filter ,, pepper” and min to filter
,salt” noise.

- [
R SR T T

Image with S&P noise Maximum:filtered:S&P noise Minimum filtered S&P noise

e But max filter will highlight ,salt”, while min filter will highlight ,,pepper”.

10/13/2018 Basic Image Processing Algorithms

Spatial Filtering

® Order statistic filtering:
e Mid-point filtering:

* works well on Gaussian or uniform noise

y(nl,nz)z%(max {x(m, m,)}+ min {x(ml,mz)}j

(my,m;)eN (my,my)eN

e Alpha-trimmed mean filter:

y(nl’nZ) = Zx(ml,mz)

(my,m;)eN,

IN

-

* Where N, is a reduced neighborhood, not containing the lowest and
highest a element of N.

* If a =0, we get back the arithmetic mean.
* If a=|N]|-1, we get back the median filter.

10/13/2018

Basic Image Processing Algorithms

Wallis Operator

® The Wallis operator can help to adjust local contrast:

Amax Gd

Amaxal (nl’ n2) + Jd

T [p)—(d T (1 o p))_((nu n,)]

Y(nl’ nz) = [X(nl’ nz)_)—((nl’ nz)]

1 _
e where o, the local contrast: i (M, N;) = N[>, 2 (x(n,n) = x(n,ny))

(n,ny)eN

e X isthe local average: X(n,n,) = ﬁz Z x(ng, n,)

(ny,nz)eN

e g, is the desired local contrast, X, is the desired mean value of all pixels,
p is a weighting factor of the mean compensation, while A__ is
maximizing the local contrast modification.

10/13/2018 Basic Image Processing Algorithms

Wallis Operator

® We can describe the image the following way:

X(nv nz) = [X(nv nz)_)_((nv nz)J *)_((nl’ nz)

M 2)
where (2) is the local mean and (1) is the deviation from the local mean.

e With the transformation we want to ,push” the local mean and standard
deviation to a predefined desired value:

y(nll nz) = [X(nm nz)_)_((nll n,)] o (zd, n) + [p)_(d T (1 _Vp))_((nl’ nz)J

it

e We are almost there, but if the local contrast is too low, the weighting in
(1) may get too high, this is why we maximize it with A,

Oy . Anex O g
O, (n1’ nz) Anex O (n1’ nz)"' Oy

10/13/2018 Basic Image Processing Algorithms

Wallis Operator

Original Image Image after applying Wallis operator

10/13/2018 Basic Image Processing Algorithms

Anisotropic Diffusion

® The anisotropic diffusion is a technique aiming at reducing
image noise without blurring significant parts of the image
content.

@ It was first proposed by Dénes Gabor in 1965 and later by
Perona and Malik around 1990.

® Non-linear and space-variant transformation.

® The main idea is that the effect of blurring in each direction is
inversely proportional to the gradient value in that direction:

e allows diffusion along the edges or in edge-free territories, but penalizes
diffusion orthogonal to the edge direction.
® AD is an iterative process

P. Perona, J Malik (July 1990). "Scale-space and edge detection using anisotropic diffusion". IEEE Tr. PAMI, 12 (7): 629-639.
D. Gabor, “Information theory in electron microscopy,” Laboratory Investigation, vol. 14/6, pp. 801-807, 1965.

10/13/2018 Basic Image Processing Algorithms

Anisotropic Diffusion

Gaussian Blurred Image AD Image

10/13/2018 Basic Image Processing Algorithms

Anisotropic Diffusion

.‘%ﬁ -.‘*'- SR

Original Image

*

Noisy Image

e
3
i
N

AD Image

Basic Image Processing Algorithms

Total Variation Regularization

® Assumption:

e The image is smooth inside the objects, with jumps across the
boundaries.

e The noise component has high variation.

® The goal of Total Variation based noise removal is to minimize
the total variation of the image while keep the result as close to
the original input image as possible.

@ It was introduced by Rudin, Osher and Fatemi in 1992.

Rudin, L. I.; Osher, S.; Fatemi, E. (1992). "Nonlinear total variation based noise removal algorithms". Physica D 60: 259-268

10/13/2018 Basic Image Processing Algorithms

Total Variation Regularization

® TV of the output image y is defined as the integral of the
absolute gradient of the signal:

V(y): ZZ\/‘y(nl +1, nz)_ y(nl’ nz)‘z ""y(nl’ n, +1)_ y(nl’ nz)‘2

n Ny

® On the other hand, we also measure the difference between
the original image x and the output image y by L, norm E:

E(X’ y) = Z (X(nv n,)_ Y(nw n,))2

Ny,N,

® The goal function for Total Variation based regularization:
y =argmin[E(x, y)+AV(y)|
y

where A is the regularization parameter.

Rudin, L. I.; Osher, S.; Fatemi, E. (1992). "Nonlinear total variation based noise removal algorithms". Physica D 60: 259-268

10/13/2018 Basic Image Processing Algorithms

Total Variation Regularization

Gaussian Blurred Image TV Image

Matlab Code: http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html

10/13/2018 Basic Image Processing Algorithms

Total Variation Regularization

Original Image Noisy Image

Matlab Code: http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html

Basic Image Processing Algorithms

Fourier Transformation
Image filtering in the frequency domain

What is Fourier Transform?

® A transformation maps data between (different) domains.

® The Fourier Transform changes between the representation in
the time domain and in the frequency domain.

® The information is the same in both domains, only the
representation is different.

@ Itis a reversible transform.

@ It builds on the fact that any function can be represented as a
weighted sum of sinusoid functions:

J\\/\V _

o
InoAsy

A

@ If we can describe sinusoids we can describe every function.

October 13, 2018

Basic Image Processing Algorithms

2D Fourier transform

® Forward transform: map an image x(n4, n,) of size N; X N,
from the spatial domain into the X (w{, w,) frequency domain

October 13, 2018

N; 1N, -1 _ _
. —joNy A—jo,N
X(o,0,)= > > x(n,n,)e Mg

n1=0n2=0
even if the image is real the spectrum is complex due to the complex
exponential factors
w1, W, frequencies: continuous variables
X (w1, w,) continuous Fourier transform or spectrum of the discrete
image
Drawback: no computable representation of X (w1, w,)

Solution: Discrete Fourier Transform (DFT): sample the continuous
spectrum with equally spaced frequencies

Basic Image Processing Algorithms

Discrete Fourier Transform

® We sample one period of the Fourier transform in evenly

spaced frequencies: The size of the image in
the spatial domain is N;xN,

N,—1N,-14 | |
X (601, 602) = Z Z X(nl, nz)e‘”’lnle‘l“’znz The size of the image in

the frequency domain will
be the same: N;xN,

X (k.. k,) = X (e, 0)2)‘ ki = 0,1, Ny —1

27
1k 1@ = K2 Ko =o,1...,|\:\2—1
N, —1 N, -1 —JN—k1n1 _Jil_kznz Only one
X (kl’ k) = Z Z X(nl’ nz)e 1 e 2 period is kept

n,=0n,=0

October 13, 2018 Basic Image Processing Algorithms

Discrete Fourier Transform

® Forward formula: gives the description of the image in the
discrete frequency domain

N,—-1N,-1 27[——kyn —'2—7[k n
N 1M JN 2N
X (ki ko) = Y Y x(n,n)e ™ e M
n,=0 n,=0

@ Inverse Fourier transform: maps from the discrete frequency
domain back to the discrete spatial domain

NNl JN 1”1 J27[kan,
x(n,n,) = N N > ZX(kl,k e M "
2 k;=0k,=0

e algorithmically it has the same structure as the forward transform,

October 13, 2018 Basic Image Processing Algorithms

Discrete Fourier Transform

® DFT is an exact transform, there is no transformation error.

e Not surprising, since we use the same image size for the representation of
both x(n,, n,) and X(w,, w,).
® Most of the properties of continuous FT hold for DFT
e Except linear shift of FT becomes circular shift for DFT.
@ DFT and inverse DFT are computable transformations
@ There are fast ways to compute the DFT: Fast Fourier Transform

e |f the size of the image is NxN, then the naive implementation requires
N* multiplications: N? for each (k,,k,) point.

e The FFT with row/column decomposition requires only N?log,N
multiplications.

® FFT makes the Fourier transformation applicable in many
practical cases.

October 13, 2018 Basic Image Processing Algorithms

Interpretation of Fourier coefficients

® Analogy of Fourier coefficient based representation:

e Consider the image as a superposition of sinusoid/cosine waves with
different amplitudes, frequencies and directions

e 1D case in formulas: (x,: signal, X} Fourier coefficient)
— 271
X, =Y X, exp(j=—kn)
0 N

N/2-1 272. 272.
Xy = Xo + Xy €OS(7N) + Y Z(Re(xk)cos(W knj— Im(Xk)sin(W knD

k=1

X,: real number, average of the function

e 2D case (e.g. image) visualization:

October 13, 2018 Basic Image Processing Algorithms

Interpretation of 2D Fourier coefficients

1 2

X (k;, k) eXp(jZ”(kl % +k, nZD + X (=ky,—k,) exp(— jZﬂ(kl % +k, :IZD =

1 NZ

Re(X (k. k,)} 2 C()S(Z?Z’[kl % +k, nz]] —Im{X(k,, k,)}- Z'S"{Zﬂ[kl % +k, :Ijj

orientation: C—
k2/N2 k1:3 k2:2 f :1/2

1 |\|2 1

real part of an X(k, k,) Fourier coefficient is the amplitude of a cos-
wave, while the imaginary part is the amplitude of a sinusoid wave

wavelength and orientation of the waves are encoded in the (k4, k,)
position coordinates of the coefficients in the 2D Fourier map

- wavelength: : :
E (L B LS
A N, N,

Spatial frequency:

a = arctan

Slide credit ® Prof. Vladimir Székely, BME

lllustration of the periodicity of coefficients
Centered DFT: better visualization

@ In the center of the DFT array
X Is the zero-frequency
coefficient (DC component)

@ Distance from the center

Xy 0= Xoo e Frequency of the corresponding
sin/cos wave

Re-arrangement of f = \/(kll N1)2 + (k2 / N2)2

the coefficient matrix

= Xo,o

® Orientation

e Direction perpendicular to the
wavefront

o =arctan((k, /N,)/(k, / N,))

DFT abs. value image

October 13, 2018 Basic Image Processing Algorithms Slide credit ® Prof. Vladimir Székely, BME 26

Point-wise Intensity Transformation

® Log transformation:
e Commonly used to visualize the Fourier transform of an image

Original Image* The magnitude of the DFT Log of the magnitude of
the DFT

*Chez Mondrian by Andras Kertész (1926)

10/13/2018 Basic Image Processing Algorithms

Imaged absolute values of DFT coefficients —

facade of the Notre Dame Paris

32

@ In the transformed map, directions of strong lines are

perpendicular to the major contours in the image:
e A line- horizontal ledges (parkanyok)
e B line- slim vertical columns.

e Cand D lines — periodic vertical patterns with the frequency ,n = £32”
decoration of the windows behind the columns
October 13, 2018

Basic Image Processing Algorithms

Slide credit © Prof. Vladimir Székely, BME 28

Imaged absolute values of DFT coefficients—
analysing fingerprint images

® No characteristic lines in the transform
& ridges of fingerprints run in any directions
® At d distance from the center a significant ring shaped
maximum

& the average spatial frequency of the fingerprint ridges is d-times the
basic frequency f,, and there exist no nominant directions

October 13, 2018 Basic Image Processing Algorithms Slide credit ® Prof. Vladimir Székely, BME 29

Filtering in the DFT space

® Low-Pass Filter (LPF):
e Filtering out the large spatial frequencies

Result of filtering out large frequencies. Erased all coeff. a.) above 16 f,, b.) above 8 f,

Slide credit ® Prof. Vladimir Székely, BME

October 13, 2018 Basic Image Processing Algorithms 30

Filtering in the DFT space

® High-Pass Filter (HPF)
e Filtering out the low spatial frequencies

Result of filtering out large frequencies. Erased all coeff. a.) below 4 f,, b.) below 10 f,

Slide credit ® Prof. Vladimir Székely, BME

October 13, 2018 Basic Image Processing Algorithms 31

Discrete Fourier Transform

405 px

October 13, 2018

303 px

303 px

0 T 21

Original Image*

Magnitude of the

Discrete Fourier Transform

*Chez Mondrian by Andrds Kertész (1926)

Basic Image Processing Algorithms

Discrete Fourier Transform

405 px

October 13, 2018

303 px

303 px

Original Image*

Magnitude of the centered

Discrete Fourier Transform

*Chez Mondrian by Andrds Kertész (1926)

Basic Image Processing Algorithms

Discrete Fourier Transform

Original Image* Magnitude of the DFT Phase of the DFT

*Chez Mondrian by Andrds Kertész (1926)

October 13, 2018 Basic Image Processing Algorithms

Discrete Fourier Transform - Examples

Original Image

October 13, 2018

Original Image

HE E B
I.I.I.I

Magnitude Original Image

Magnitude Original Image

Basic Image Processing Algorithms

Magnitude

Magnitude

Discrete Fourier Transform

Magnitude Magnitude

October 13, 2018 Basic Image Processing Algorithms

Representing curves with Fourier-descriptors

Complex numbers from the 2D curve points: Z, = X + 1Y,
2. 1D DFT transform calculated for the complete closed curve

K-1
C, = Y7, exp(i = n-k)
k=0
3. Setting high frequency C_ coefficient to zero, then recovering
of the approximate contour points by inverse transform

LN
TOYY T

[EEY

Reconstruction of letters ,L” and ,T” with 2, 3, 4 and 8 Fourier coefficients

Homomorphic filtering

® Motivation: image with large dynamic range, e.g. natural
scene on brightly sunny day, recorded on a medium with
small dynamic range results in image contrast significantly
reduced especially in dark and bright regions

® Goal: reduce the dynamic
range, increase contrast

® Example for a spatial filter also
using Fourier-based steps

October 13, 2018 Basic Image Processing Algorithms

Homomorphic filtering

® It simultaneously normalizes the brightness across an image
and increases contrast.

® Assumes the following image model: the image is formed by
recording the light reflected from the objects illuminated by a
light source.

x(n, n,) = i(n1’ nz) ' r(n1’ nz)

I Illumination: slowly varying, main contributor to dynamic range I

I Reflectance: rapidly varying, main contributor to local contrast I

® We want to reduce the illumination component, and increase
the reflectance component.

10/13/2018 Basic Image Processing Algorithms

Homomorphic filtering

® The main steps of homomorphic filtering:

1.

10/13/2018

To separate the two components we first use log transformation:

log(x(n,, n,)) = log(i(n;, n,)) + log(r(n;, n;))

Since we assume that the illumination component varies slowly and the
reflectance varies rapidly, we can get the two component by using
(Fourier-based) low and high pass filters:

log(i(n,, n,)) = LPF[log(x(n,, n,))]

log(r(n,, n,)) = HPF[log(x(n;, n,))]
Weight the two component:

IOg(Y(nl’ nz)): 71 Iog(i(nl’ nz))+72 Iog(r(nl’ nz))’ where y, <17, >1

Transform back to the original range, using the exponential transform.

Basic Image Processing Algorithms

Homomorphic filtering

log(i(n,,n,)) g :
» LPF -

x(n,,n,) A y(n,n,)
| P exp —

__[pp oa(r(n,n,)) ?
4

2

x(ny,n,) =1(ny, n,)r(n;,n,)

log(y(n,,n,)) =, log(i(n,,n,))+ 7, log(r(n,,n,))

y(n;,n,) = [i(nv nz)]y1 [r(nl’ nz)]y2

October 13, 2018

Homomorphic filtering

Original Image Image after homomorphic filtering

10/13/2018 Basic Image Processing Algorithms

Main Sources

Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

Introduction to Fourier Transform (https://www.youtube.com/watch?v=1JnayXHhijlg)

Introduction to Compex Exponential Function (https://www.youtube.com/watch?v=gjT3XvS7Qno)

October 13, 2018 Basic Image Processing Algorithms

https://www.youtube.com/watch?v=1JnayXHhjlg
https://www.youtube.com/watch?v=qjT3XvS7Qno

Basic Image Processing

PPKE-ITK

Lecture 5.

Texture analysis

Motivation: find the object!

Solution: color filtering
KIFESTS LUSTAKNAK

Solution: texture segmentation

October 13, 2018 Basic Image Processing Algorithms

Textures - definition

® Textures demonstrate the difference between an artificial
world of objects whose surfaces are only characterized by
their color and reflectivity properties to that of real world
imagery
® How we can define texture: microstructure
e certainly not: an arbitrary pattern that extends over a large image
® Basic properties

e Small elementary pattern which is repeated periodically or quasi-
periodically in space (like pattern on a wall paper)

@ It is sufficient to describe:

e Small elementary pattern

e Repetition rules (characteristic scales)
® Types

e Artificial (Julesz, Pratt, Gagalowic)

e Natural (Brodatz)

October 13, 2018 Basic Image Processing Algorithms

Textures - definition

® Hawkins:

e Some local ,order’ is repeated over a region which is large in
comparison to the order’s size,

e The order consists in the nonrandom arrangement of elementary parts

e The parts are roughly uniform entities having approximately the same
dimensions everywhere within the textured region

® Description:
e coarseness ~ period of repetition
* e.g. wool is "coarser" than silk, under the same conditions
e fineness / rudeness, contrast, orientation, arrangement ...

October 13, 2018 Basic Image Processing Algorithms

Texture

L N i
AN e

(9 R 2
TRl I R

-
5
-~
=
.
-
»

"
»

LN oL

LR L

o A

® A texture is an image that follows some statistical properties
@ It has similar structures repeated over and over again

October 13, 2018 Basic Image Processing Algorithms

October 13, 2018

Natural textures - Brodatz

grass (fd)

bark (fakéreg)
canvas (vaszon)
sand (homok)
pigskin (disznébdr)
oxhide (marhabdr)...

T =%
; d

Basic Image Processing Algorithms

Further natural textures from Brodatz

T B w® e s e a3

ey ——

s T ——

Basic Image Processing Algorithms

o]
b
=)
N
)
—
—
)
o
o
-+
O
o

Artificial textures

e

™ . e
! n% w8

N SV

2 2he =0 NG A ’ -
R
T T TR e A e e ey

=i

T ey

October 13, 2018 Basic Image Processing Algorithms

Application Areas of Texture Analysis

Food processing industry Biometrics analysis
S o ' ’ (fingerprint, iris or retina, etc.)

Medical image analysis Global information system (GIS)
(for land, etc. analysis)

October 13, 2018 Basic Image Processing Algorithms

Texture analysis:

®There are various primary issues in texture
analysis:
» TEXTURE CLASSIFICATION
» TEXTURE SEGMENTATION
» SHAPE RECOVERY FROM TEXTURE, and
» MODELING.

Texture classification

@ In texture classification, the problem is identifying the given

textured region from a given set of texture classes.
e The texture analysis algorithms extract distinguishing feature from
each region to facilitate classification of such patterns.

Leaves

D Wood

] Grass
[]
Foil

.-'{-‘:‘:. P A TRAL A R ¥ X
2L ',‘._-,‘\.) '-‘:‘ % “~;".) \
: o - . ' s o Polils e ' N IR
R RTIERLYN A FaY) 2ty R
2 €Y P -y p G "/'. y >
PRI L EE FLY Xl
.
Novel image to Velvet .

be classified

Texture classification

@ In texture classification, the problem is identifying the given

textured region from a given set of texture classes.

e The texture analysis algorithms extract distinguishing feature from
each region to facilitate classification of such patterns.

Leaves
Wood
Grass

Foil

IR o A fma) o e

be classified

Texture segmentation

® Unlike texture classification, texture segmentation is
concerned with automatically determining the boundaries
between various textured regions in an image.

® Both reign-based methods and boundary-based methods have
been attempted to segments texture images.

October 13, 2018

Basic Image Processing Algorithms

Shape recovery from texture

® Image plane variation in the texture properties, such as

density, size and orientation of texture primitives, are the cues
exploited by shape —from-texture algorithms.

® Quantifying the changes in the shape of texture elements is
also useful to determine surface orientation.

Pasdenany -
Saianansans

nanamenEl
SRR b
(ARRRER RN RS

"ngmaassanusd
a LB I gan

October 13, 2018 Basic Image Processing Algorithms

Texture modeling

® Specify a model that clearly identifies the given pattern sample

Original

R . Synthesis
Brodartz Training of Y . &)
IR according to =
texture A 0 texture : =
images LSBT the trained o
B (VT models — 5
(used for M atd ERAGHY : models — 0’
training) (A ML S impose @
statitistics L L 0
statistics -
@

October 13, 2018 Basic Image Processing Algorithms

Techniques for Texture Extraction

® There are various techniques for texture extraction. Texture
feature extraction algorithms can be grouped as follows:
> Statistical
> Geometrical
» Model based
> Signal Processing

October 13, 2018 Basic Image Processing Algorithms

Statistical methods

1. Local features
e Grey level of central pixels,
e Average of grey levels in window,
e Median,
e Standard deviation of grey levels,
e Difference of maximum and minimum grey levels,
e Difference between average grey level in small and large windows,
e Kirsch feature,
e Combine features
2. Galloway
e run length matrix
3. Haralick

e CO-Occurrence matrix

October 13, 2018 Basic Image Processing Algorithms

Geometrical methods

® Steps
1. Threshold images into binary images of n grey levels.
2. Calculate statistical features of connected areas.

October 13, 2018 Basic Image Processing Algorithms

Model based methods

® These involve building mathematical models to describe
textures:
> Markov random fields (see: later — image segmentation lecture)

> Fractals:

October 13, 2018 Basic Image Processing Algorithms

Signal processing includes

® These methods involve transforming original images using
filters and calculating the energy of the transformed images.

Law’s masks (see: today — later)
Laines — Daubechies wavelets
Fourier transform (see: last lecture)
Gabor filters (see: today — later)

October 13, 2018 Basic Image Processing Algorithms

Flowchart for Texture

[Image Pre- @age selec@

processing

! | @rtinto Gray level
C Sintactic D

Feature w
evaluation

Analysis

1st order }

3 Gl D—

Fourier,
Wavelet

* Manual selection S
Feature _J « Average features of same type
assortment * PCA

« Step-wise discriminant analysis

J—
- LDA

* Neural Network
Classification Bayes Decision
Support Vector Machine

Logistic Regression
{} Decision Trees
(_* K- Nearest Neighbor
» K-means / Hierarchical clustering

Evaluation Leave —one —out
» Test/Training set

October 13, 2018 Basic Image Processing Algorithms

2"d order]

7

Higher order]

\

Discrimination vs. classification of textures

® Discrimination

e Classification - grouping of blobs or points, and classifying them into
various classes (local attributes)

e Segmentation - separation of spots / areas (local properties +
neighborhoods)

@ Classification
e Supervised approach
* take samples of textures (statistics, metrics) then
* examine the similarity of new textures
e Unsupervised
* evaluate statistics
* sample categorization into classes

October 13, 2018 Basic Image Processing Algorithms

Methods for Texture Features

Texture
featu res

Filter]
[Statistical

o Gabor filters
o Wavelet

[0 General statistical Structural —
parameters —
amplitude features

o Co-occurrence matrix-
based features [Model]

o Autocorrelation
features

o Laws texture energy L. { o Fractal features

features o Random fields features
o LBP features etc

October 13, 2018 Basic Image Processing Algorithms

Statistical features
Amplitude features

® Amplitude-features

e Mean 1
M(j,k) = (2w+1) mZWZF(Hm k+n)
e Deviation
- 1 wow - - : 1/2
S(j,k):(2W+1)2 LZWZW[F(J+m,k+n)—M(J+m,k+n)]}

October 13, 2018 Basic Image Processing Algorithms

Statistical features
Gray Level Co-occurrence Matrix (GLCM)

Also referred as co-occurrence distribution.

It is the most classical second-order statistical method for texture

analysis.

® An image is composed of pixels each with an intensity (a specific
gray level), the GLCM is a tabulation of how often different
combinations of gray levels co-occur in an image or image section.

® Gray Level Co-occurrence Matrix (GLCM) filters operate by
computing, for each filter window position, how often specific pairs
of image cell values occur in neighboring cell positions (such as one
cell to the right).

® The results are tabulated in a co-occurrence matrix, and specific

statistical measures are computed from this matrix to produce the

filtered value for the target cell

OO,

October 13, 2018 Basic Image Processing Algorithms

Statistical features
First vs. second order statistics examples

® First order statistics example: simple histogram
e Measures the number of different gray value occurrences of
independent pixels
e h;: number of pixels in the image with gray value i
® Second order statistics example: GLCM
e Measures the frequencies of joint gray value occurrences of different
pixel pairs with a pre-defined spatial offset
°* Dij (Ax, Ay): frequency of pixel pairs with an offset (Ax, Ay), where the
gray value of the first pixel is i and the gray value of the second pixel is j
e For example: Ax=1, Ay = 0, i=0, j=255: frequency of one-pixel-wide
vertical black-white transitions in an image

_

13 October 2018 Basic Image Processing Algorithms

Statistical:
Co-occurrence Matrix-based Features

® It is a matrix of frequencies at which = two pixels, separated
by a certain vector, occur in the image.
® Co-occurrence matrix is defined as,

pii(Ax, Ay)=W - Q(i, j|Ax, Ay)

where,
N—-Ay M—Ax

1
Vo Gimmom sy Q)=),) 4
n=1 m=1

where,

1 if f(m,n)=iand f(m+Ax,n+Ay)= j
0 otherwise

October 13, 2018 Basic Image Processing Algorithms

Computation of Co-occurrence Matrix

@ It has size NxXN (N = Number of gray-values) i.e., the rows &
columns represent the set of possible pixel values.
® Polar representation of the offset:

e two parameters d, 6 (instead of Ax, Ay):

d - Relative distance between the pixel pair
(measured in pixel number. e.g., 1, 2, ...)

0 - Relative orientation / rotational angle.
(e.g., 02, 452,902, 1352, ...)

13 October 2018 Basic Image Processing Algorithms

8 Directions/orientations (6) of Adjacency

135 45

we consider 6 as horizontal (0°), front diagonal (45°),
vertical (90°) and back diagonal (135°)

October 13, 2018

Computation of Co-occurrence Matrix

Find the number of co-occurrences of pixel

Image matrix

i to the neighboring pixel value j
0 0 1 1
00 1 1 i/ 0 1 2 3
0 2 2 2 0 #00) #01) #02) #0,3)
2 2 3 3

1 #(1,0) #(1,1) #(1,2) #1,23)
Pixel values: 0,1,2,3. Thus, N=4

Thus, size of CM = 4x4
d=1
@ = horizontal (0°)

2 #2,0) #21) #022) #2.3)

3 #30) #31) #32) #@33)

October 13, 2018 Basic Image Processing Algorithms

Example: Computation (contd.)

i/ 0 d=1 6 = horizontal (0°)
>

W N = =
W N = =

October 13, 2018

Example: Computation (contd.)

d=1 @ = horizontal (0°)
0 0—1 1 2 2 1 0
0 0—1 1
image 0—2 2 2 —
2 2 3 3
" 5 : , ; CM for the Image

0 #0,1) #0,2) #0,3)

Image
i/ 0 1
0 #00) #0,1)
1 #(10) #1.1)
2 #(20) #21)
3 #(30) #(31)

o O O O

#(0,2)

#(1,2)

#(2,2)

#(3,2)

Example: Computation (contd.)

#(0,3)

#(1,3)

#(2,3)

#33)

0 = horizontal(0°)

2 2 1 0
0 2 0 0
0 0 3 1
0 0 0 1

CM for the Image

Example: Computation (contd.)

d=1 6 = vertical (90°)
O 0 1 1 3 0 2 0
0 0 1 1 0 2 2 0
Image (o 2 2 2 _ 0o 0 1 2
2 2 3 3 O 0 O O
i 0 1 5 2 CM for the Image

0 #0,0) #01) #02) #0,3)

1 #10) #11) #12) #13)

2 #20) #21) #(22) #23)

3 #30) #3B1) #32) #33)

October 13, 2018 Basic Image Processing Algorithms

Features on co-occurrence matrix

- Co-occurrence matrices capture properties of a texture
- But they are not directly useful for further analysis
(e.g., comparison of two textures)

Original Co-occurrence 20dorder
Image Matrix Statistics

V
V
]
N

11 Numeric features are computed from a matrix

Features on co-occurrence matrix

Co-occurrence Matrices

(d,8) = (1,0°)
Angular Second Moment (ASM) feature
Contrast feature Feature
Entropy feature Vector
 (d,0) = (1,45°) $- Variance feature
Correlation feature
Inverse Difference Moment (IDM) feature $
Sum Average feature

Sum Variance feature
$‘ Sum Entropy feature
Information Measures of Correlation feature — 1
Information Measures of Correlation feature — 2

1 (d,0) =(1,135°) ﬁ

A4

(d,0) =(1,90°)

\ /7

Energy

® Also called Uniformity or Angular second moment.

® Measures the textural uniformity that is pixel pair
repetitions.

® Detects disorders in textures.

® Energy reaches a maximum value equal to one

Energy=Y.; . p{;

October 13, 2018 Basic Image Processing Algorithms

Entropy

® Measures the disorder or complexity of an image.

® The entropy is large when the image is not texturally uniform.
® Complex textures tend to have high entropy.

® Entropy is strongly, but inversely correlated to energy.

Entropy=—.; 2.; Pij 1082 pi;

October 13, 2018 Basic Image Processing Algorithms

Contrast

® Measures the spatial frequency of an image and is difference
moment of GLCM.

@ It is the difference between the highest and the lowest values
of a contiguous set of pixels.

® It measures the amount of local variations present in the
image.

Contrast=Y,; .:(i — j)*p;;

October 13, 2018 Basic Image Processing Algorithms

Homogeneity

Also called as Inverse Difference Moment.

Measures image homogeneity as it assumes larger values for
smaller gray tone differences in pair elements.

It is more sensitive to the presence of near diagonal elements
in the GLCM.

It has maximum value when all elements in the image are
same.

Homogeneity decreases if contrast increases while energy is
kept constant.

. 1
Homogeneity(hom) =zz 1+ G—zPu
i

October 13, 2018

Variance

@ This statistic is a measure of heterogeneity and is strongly
correlated to first order statistical variable such as standard
deviation.

@ Variance increases when the gray level values differ from their
mean

Variance(var)= ZiZj(i — p)* Pij
where p is the mean of p;;

October 13, 2018 Basic Image Processing Algorithms

GLCM Filters

@ Contrast (Sum of Squares Variance)

e measures gray-level contrast by wusing GLCM
weighting factors equal to the square of the gray level
difference. Thus the averaging weights are 0 for
matrix position on the main diagonal and increase
exponentially away from the diagonal. The filter
result is O for areas with identical image values and is
high where there are large differences in tone.

$ |

—— .

vt . _ad : : -;::_. Q- r D -
Thresholded Contrast Contrast filter output

October 13, 2018 Basic Image Processing Algorithms

Features on co-occurrence matrix
Examples

Feature Comment

- Have discriminating ability.

F2: Contrast - Rotationally-variant.

- Have strong discriminating ability.
- Almost rotational-invariant.

F3: Entropy

- Have discriminating ability.

F4: Variance - Rotational-invariant.

- Have strong discriminating ability.

F5: Correlation - Rotational-dependent feature.

October 13, 2018 Basic Image Processing Algorithms

Features on co-occurrence matrix

Feature Comment
- Characteristics are similar to
F7: Sum average ‘variance’/F4

- Rotational-invariant.

- It has almost similar pattern of ‘sum
F10: Information Measure average’/F7 but vary for various

of Correlation-1 classes
- Varies significantly with rotation

- It is computationally expensive
compare to others.
- Rotation-variant

F11: Information Measure
of Correlation—2

October 13, 2018 Basic Image Processing Algorithms

Features on co-occurrence matrix

Feature Comment

F1: Angular Second L .
- No distinguishing ability

Moment / Energy

F6: Inverse Different - Similar to ‘angular second
Moment moment’/F1

F8: Sum Variance - Similar to ‘variance’/F4
F9: Sum Entropy - Similar to ‘entropy’/F3

October 13, 2018 Basic Image Processing Algorithms

Visualization of co-occurence histograms

® Dependency matrices
e co-occurrence histograms

e calculated in a given
direction, and distance

e smoother texture implies
more steady response
(less dependencies)

e Coarse texture: dominant
response along the main
diagonal

lvy (borostyan)

Grayscale dependency matrices forr = 4,0 = 0’

13 October 2018 Basic Image Processing Algorithms

Statistical features
Autocorrelation function

@ Definition of autocorrelation: compare the dot product
(energy) of non shifted image with a shifted image

Y=o Xy=0l(x, I(x + Ax,y + Ay)

RII (Ax; A:V) —
® Features:

e Autocorrelation function Different
can detect repetitive shift values
patterns of texels \

e Also defines Ax, Ay

fineness/coarseness of the
texture

October 13, 2018 Basic Image Processing Algorithms

Textures — image features

(¢) Wool (d) Raffia

Principle: a coarse pattern texture for the same shift value
shows greater autocorrelation than a finer pattern one

October 13, 2018 Basic Image Processing Algorithms

Interpreting autocorrelation

® Coarse texture = function drops off slowly

® Fine texture = function drops off rapidly

® Regular textures = function will have peaks and valleys; peaks
can repeat far away from [0, O]

® Random textures = only peak at [0, 0]; breadth of peak gives
the size of the texture

October 13, 2018 Basic Image Processing Algorithms

Autocorrelation

ENMNE
I
fuﬁ,_u |

1

<A he -0,
(4

—r:
£

41 §
g

by

October 13, 2018 Basic Image Processing Algorithms

Autocorrelation

(%]
€
L=
+—
=
o
ol
<
[e14]
=
(%]
(%]
(O]
(9}
o
fust
(a8
(O]
[e1Y]
©
£
o
(%]
(5]
o

October 13, 2018

Autocorrelation calculation the
Fourier domain

® Wiener-Khinchin Theorem
e Inputimage: I(x,y)
e Fourier transform: {X(w{, w,)} = DFT{I/(x,y)}
o Power spectrum: Pyy(wq, w;) = X(wq, w,) * X* (w1, w5)=|X (wq, w,)|?

e Autocorrelation: inverse Fourier transform of the power spectrum:
{R;1(Ax, Ay)} = IDFT{Pxx (w1, w;)}

Fourier domain analysis

® Power spectrum: X{w, w,} - X*{w, w,}= =|X{w, w,}|?
® Concentrated power = regularity

® High frequency power - fine texture

@ Directionality = directional texture

R
kg

October 13, 2018 Basic Image Processing Algorithms

Correlation (pattern recognition)

October 13, 2018

Textures — image features

® Edge detection based procedures

E(j,k) = binary edge image obtained
by some edge detector (eg. Sobel)

Use low threshold for binarization

Measure of local edge content

TG = = > SE(j+mk+n)

(2w+1)* =

13 October 2018 Basic Image Processing Algorithms

Laws filters

® Enhancing micro-structure of the texture
® Main elements:

e Averaging
e Edges
e Points
N 1] 1]
1 1 1
L, == E, == S,==|-2
6 2 2
level detection filter edge detection filter spot detection filter

October 13, 2018 Basic Image Processing Algorithms

Laws filters

October 13, 2018

N

N b~

NE 1]
Ho=LE] =12 0 -2
10 -1
0 -1
_—

Hy=EEg =5/ 0 0
-1 0 1
R
Ho=S:E5 =5|-2 0 2
1 0 -1

Basic Image Processing Algorithms

. 1 -2
HS:LSS;:E 2 —4
1 -2
. 1 -2 1
H6=E35;=Z 0 0 O
-1 2 -1
. 1 -2 1
H9=s33;=Z -2 4 -2
1 -2 1

Texture segmentation - Laws

® Training step, thereafter recognizing the trained textures
® Utilizing Law matrices

LI

-

! A

Training image

October 13, 2018

ETeRRIIRTTY eEeRiTrEn
Input test image

Basic Image Processing Algorithms

Ground truth for
the test image

Learning a training texture model

Squared averaging

1
M= KE6)
hw £y y

Convolution
with H; kernel

Convolution
with H, kernel

1
M2=—z Kzz(x;}’)
hw £y
o

— ® K, = F ® H,
F: h X w training ® o
texture sample ® ®

Convolution

1
Mgy = h_z Ki(x,y)
with Hy kernel W =25

K9:F®H9

October 13, 2018 Basic Image Processing Algorithms

Laws filter— training phase

® Each training texture j is represented by 9 scalars: M{ M;

1 - 2 _ . .
M/ =%, (K (xy), wherei=1,..,9,j=1,..4, and K/ =F ®K,

Mi, M3, M3, ML, M, M}, M3, Mg, M3

MZ,M%, M2, M2, M2, M2, M2, M, M&

M7, M3, M3, M, M2, Mg, M7, Mg, M3

M}, M5, M3, M§, M&, Mg, M5, Mg, M§

October 13, 2018 Basic Image Processing Algorithms

Laws filter— recognition phase

@ Input image: consists of arbitrary regions of pre-trained
textures

RARERRREEER 'n"n P O '“lﬂ

TS STE]

.0y byt T

s BE

») SREH]

vt [yl v

Lyl

T H]
TR

‘ i

:lnm 1

TYAT]

m & 1]
i 3

#
EESE, ;-,_ -Sg

ﬂ.!l'.fgﬂ""' ".!"ES

Ground truth

October 13, 2018 Basic Image Processing Algorithms

Laws filter— recognition phase

3X3
: ”Squared” Py
Convolution b(I]urrin 1
with H; kernel 8
T ——— P,=1Q H,
i i Convolution 3X%3 .
3T 2 L . 7 ”
i : *g%:g with H, kernel Squared P;
= i blurring
} - Lyt
3 A ®
fatisls bt sl b ®
o
I: input image 3 % 3
texture sample Convolution »Squared” Pg*
with Hqg kernel blurring

P9=I®H9

13 October 2018 Basic Image Processing Algorithms

Laws filter— recognition phase

@ Pixel level decision of the input map

Pi*(xiy) _ Ml]

ClassMap(x, y) = argmin z
J=l4 S

where
x+1 y+1

1
Pi*(X,Y)=§ y y P (x+7,y+5)

r=x—1s=y-1

October 13, 2018 Basic Image Processing Algorithms

Texture segmentation result

® Output ,winner class” maps for the four textures — enhanced
with some morphology

PRA WA e By | 4 EW b WA AT AE D TERET
;ln [(Iyl T [¢ Ll
m £t iyl i
'Ih 0 1] 4] %
SR
iF, b
Ly
E |
L

s,
e " %]
o Bt
= 1]
'mn' ‘{ll

' \ i
i b
1 f]
]
e
Lyl
T 3 0y i
FRFET 1 i)

iR sttt H

Laws segmentation results

Ground truth

October 13, 2018 Basic Image Processing Algorithms

Texture segmentation result

® Output ,winner class” maps for the four textures — enhanced
with some morphology

R

Lt L Ta

5 L1

INETERET 558
r L

Laws segmentation results

October 13, 2018 Basic Image Processing Algorithms

Gabor filters — 1D illustration

Sinusoid Gaussian

\ / filter

Gabor filter

Gabor filters- 2D kernel example

October 13, 2018 Basic Image Processing Algorithms

-

N2
-,

~
AN

RN avet

e

— N o
za .?’r.«i“@v. e

L .,Eﬁ\'(b.“. >
NS

N o

L S
s P

Il

2D - Gabor wavelets

Salient bright thin vertical
lines

il n AR m\ |

’ ‘ ”‘ ” l l \ ‘ \‘\m |' |
‘ | ‘ '“I
LN i ||||”|l'

I

Dark-bright transitions in
horizontal direction

| 1\
i »n"...\
“ LA HM“

("N |1 I H“M 'l'“mhi

' 11 \\1l
lm il
| ‘..'a

Application of Gabor filters in image processing

® Gabor filters can selectively highlight specific image elements
according to their appropriately set frequency, orientation and
phase parameters

@ Invariant for additive changes of illumination (in case of
asymmetric sinusoid functions)

® Motivation: vision mechanism of mammals — one of the first
processing operations of visual stimuli in the brain

October 13, 2018 Basic Image Processing Algorithms

Application of Gabor filters in image processing

a) Input image. b) Output of a low frequency, horizontal,
asymetric Gabor filter. c) Output of a low frequency,
horizontal, symetric Gabor filter d) Output of a diagonal
Gabor filter

October 13, 2018 Basic Image Processing Algorithms

Direction selective Gabor filter bank

October 13, 2018 Basic Image Processing Algorithms

Texture Synthesis

@ Given a small sample, generate larger realistic versions of the
texture

Alexei A. Efrosand Thomas K. Leung, “Texture Synthesis by Non-parametric
Sampling,”Proc. International Conference on Computer Vision (ICCV), 1999.

October 13, 2018 Basic Image Processing Algorithms

Synthesizing One Pixel

input image

synthesized image

® What is P(x|neighborhood of pixels around x)?

e Find all the windows in the image that match the neighborhood-
consider only pixels in the neighbourhood that are already filled in

e To synthesize x
* pick one matching window at random
* assign x to be the centerpixel of that window

October 13, 2018 Basic Image Processing Algorithms

Really Synthesizing One Pixel

sample image

Generated image

® An exact neighborhood match might not be present

® So we find the best matches using SSD error and randomly
choose between them, preferring better matches with higher
probability

October 13, 2018 Basic Image Processing Algorithms

Block-based texture synthesis

L
T

Input image

Synthesizing a block

® Observation: neighbor pixels are highly correlated
@ ldea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once

Image Quilting for Texture Synthesis and Transfer', Efros& Freeman, SIGGRAPH, 2001.

October 13, 2018 Basic Image Processing Algorithms 79

http://graphics.cs.cmu.edu/people/efros/research/quilting/quilting.pdf

block

Input texture

B1 B2 B1| [B2 B1| | B2
Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut

October 13, 2018 Basic Image Processing Algorithms

October 13, 2018

overlapping blocks vertical boundary

-

- F

-1 RE

overlap error min. error boundary

Basic Image Processing Algorithms

Texture Transfer

Constraint

Texture sample

October 13, 2018 Basic Image Processing Algorithms

Texture Transfer

® Each patch satisfy a desired correspondence map C as well as
satisfy the texture synthesis requirements.

@ C: a spatial map of some corresponding quantity over both
the texture source image and a controlling target image.

e E.g.image intensity, blurred image intensity, local image orientation
angles, or other derived quantities.

Constraint

-

Here: bright patches of face and
bright patches of rice are
defined to have a low
correspondence error.

LLLLL

Texture sample

October 13, 2018 Basic Image Processing Algorithms

Texture Transfer

@ Take the texture from one
image and “paint” it onto
another object

® Same algorithm as before with additional term

e do texture synthesis on imagel, create new image (size of
image2)
e add term to match intensity of image2

October 13, 2018 Basic Image Processing Algorithms

parmesan

October 13, 2018 Basic Image Processing Algorithms

Texture transfer
result

Target image Source texture

October 13, 2018 Basic Image Processing Algorithms 86

Texture transfer

source texture

source texture

i

correspondence maps texture transfer result

target images texture transfer results

October 13, Basic Image Processing Algorithms

Basic Image Processing

PPKE-ITK

Lecture 6.

October 15, 2019 Basic Image Processing Algorithms

lmage Recovery

lmage Recovery

What is Image Recovery?

Recovery vs Enhancement

® (Recap) Image enhancement is the manipulation or
transformation of the image to improve the Vvisual
appearance or to help further automatic processing steps.

We don’t add new information to the image, just make it more visible
(e.g. increasing contrast) or highlight a part of it (e.g. dynamic range
slicing).

® Recovery: the modeling and removal of the degradation the
image is subjected to, based on some optimality criteria.

October 15, 2019

In case of recovery there is a degradation we want to remove, lost
information we want to recover (e.g. make blurred text readable
again). It is done by modeling the degradation and making assumptions
about the degradation and the original image.

Basic Image Processing Algorithms

Image Recovery Examples

f\o . j\o e
V¢ 5 4, S
des et f‘x& des et f‘&"

Blurred Image Restored Image Original Image

October 15, 2019

Image Recovery Examples

® Images from the Hubble Space Telescope, taken with a defective
mirror.

Source of the images: Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

October 15, 2019 Basic Image Processing Algorithms

Image Recovery Examples

@ Blind restoration of image corrupted by motion blur:

Original Image with Motion Blur Restored Image

Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For Multimedia Problems," Multimedia, IEEE Transactions
on ,vol.16, no.4, pp.1000,1017, June 2014.

October 15, 2019

Image Recovery Examples

® Super-resolution:

e The process of combining multiple low resolution images to form a high
resolution image.

Single, non-enhanced Multiple Frames of Reconstructed Frame
frame the same scene

Source of the Image: http://www.motiondsp.com/products/ikena/super-resolution

October 15, 2019 Basic Image Processing Algorithms

Super-Resolution

® Concept:
e We have a series of snapshots of the same scene (e.g. video).

e Due to camera or subject motion, each image provides a slightly
different view.
e Together, they provide a much more of information about the scene.

Registration

Non-uniform
interpolation

Deblurring

Aligned low resolution images Interpolated and deblurred image

Low resolution observations

http://www.ifp.illinois.edu/~jyang29/papers/chapl.pdf

October 15, 2019 Basic Image Processing Algorithms

Image Recovery Examples

@ Error Concealment: reconstruction of data that was lost during
transmission of images e.g. over a network where data packets
are lost

% bilinear (2

J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded images," IEEE Signal Processing Letters, 2008.

October 15, 2019 Basic Image Processing Algorithms

Image Recovery Examples

® Inpainting:
e Similar to error concealment but the location of the missing information is not
so well structured and not known apriori, so we have to find it first.

http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-image-restoration.html
http://nbviewer.ipython.org/github/chintak/inpainting-demo/blob/master/Hello_ShopSense.ipynb

October 15, 2019 Basic Image Processing Algorithms

Image Recovery Examples

® Deblocking:
e removal of blocking artifacts introduced by compression

S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge Regeneration" Journal of Electronic Imaging (JEI), Jan 2014

October 15, 2019 Basic Image Processing Algorithms 12

Sources of Degradation and Forms of Recovery

Sources of Degradation Forms of Restoration
1. Motion
>, Atmospheric turbulence Restoration/Deconvolution
3. Out-of-focus lens Removal of Compression
4. Finite resolution of the Artifacts
Sensors

5. Limitations of the Super-Resolution

acquisition system
6. Transmission error
7. Quantization error
8. Noise

October 15, 2019 Basic Image Processing Algorithms

Inpainting/Concealment

Noise smoothing

Inverse problem formulation of Recovery

® The original image x goes through a system (H), that introduces
some type of degradation resulting the observed image y:

x(n, n,) > H —y(n,n,)

® The objective is to reconstruct x based on...

e yand H
°y
e yand partially H

® If we know x and

°y
e H

October 15, 2019

*

*
*

*
*

——

recovery
blind recovery
semi-blind recovery

Inverse problems

—

system identification
system implementation

Basic Image Processing Algorithms

Degradation and Restoration

Prior Identification
Knowledge of H of H

}

H
n:>%:>

Original Image*

-

Knowledge

of H]
Prior

Knowledge of X

X

v/
R

2

Knowledge of

the noise statistics

Noise

measurement

* From the TV series Fringe

October 15, 2019 Basic Image Processing Algorithms

Degradation Model

® The model of degradation for restoration problems:

y(nl’ n2) — H [X(nl’ nZ)] + n(nl’ n2)

@ If an LSI degradation system is assumed, with signal independent
additive noise:

y(ny, n,) = X(ny, n,) * h(ny, n,) + n(ny, n,)

® The restoration problem in this case is called deconvolution.

October 15, 2019 Basic Image Processing Algorithms

Point spread function (PSF) of an imaging system

l\

Object
x(nl, n2)

/ Observed image
y(nl, n2)

PSF h(nq,n,)

® PSF: system’s impulse response

e Animage h(n{,n,) which describes
the response of an imaging system to
a point source or a point object

e The degree of spreading (blurring) of
the point object is a measure for the
quality of the imaging system

e The observed image y(n,,n,) can be
taken as the convolution of the object
and the PSF

y(n,,n,) =x(n,, n,) *h(n;,n,)

® 2D convolution calculation in a naive form: quite slow, O(N%)

October 15, 2019 Basic Image Processing Algorithms

Faster convolution calculation — 1st approach:
Convolution in matrix-vector form (MVF)

® 1D convolution can be represented in a matrix-vector form:

X:1xN
y(n) =x(n)*h(n) = Zx(k)h(n—k) ,Where h:1xL
‘ y:1x(N +L-1)
y© | [h) 0 0 1T x(0]
(D) h@m h©@ 0 0 X0
h(.2) h(l) h(0) o O
ey h)
0 h(L -1) ;
Y(N+L-2)] | : h(L-1)] [x(N-1)
y = H ' X

H: block circulant matrix.

October 15, 2019 Basic Image Processing Algorithms

LS| degradation model in MVF

® The N;X N, images involved must be lexicographically ordered.
That means that an image is converted to a column vector by
pasting the rows one by one after converting them to columns.

e An image of size 256x256 is converted to a column vector of size
65536x1.

@® An LSl degradation model can be written in a matrix form, where
the images are vectors and the degradation process is a huge but
sparse block circulant matrix H, and n is a noise component

y=Hx+n

e x, n and y are column vectors of size N;N, X 1

October 15, 2019 Basic Image Processing Algorithms

Faster convolution calculation — 2nd approach:
Operation in the Fourier domain

® Convolution theorem: convolution in the spatial (PSF) domain
becomes simple element wise multiplication in the Fourier domain

y(ny,ny) = x(ny,ny) * h(ng,ny) -
— Y(wlr (1)2) — X((Ul, (1)2)) H(wl) (1)2)

® LSl degradation model representation in the frequency domain:
o, =0,...,N, -1
»,=0,.,N,-1

Y(o,»,)=H(o,n,) X(o,n,)+ N(o,,®,), Where{

Here all matrices have a size of Ny X N, :

* X(wq,w,): DFT of the x(ny,n,) 2D input image (matrix!)

* H(w;, w,): DFT of the point spread function (optical transfer function),
* N(wq, w,): DFT of the noise

* Y(wq,w,): DFT of the output

October 15, 2019 Basic Image Processing Algorithms

lmage Recovery

Deconvolution Algorithms

Inverse Filter

® Simplest deconvolution filter, developed for LSI systems.
® Can be easily implemented in the frequency domain as the
inverse of the degradation filter.
® Main limitations and drawbacks:
e Strong noise amplification
e The degradation system has to be known a priori.
® The degradation equation: y = HX + n

e |n this problem we know H and y and we are looking for a descent x

e The objective is to find x that minimizes the Euclidian norm of the
error:

argmin (J (x)) = argmin (“y —~ HX||2)

October 15, 2019 Basic Image Processing Algorithms

Inverse Filter

® The problem is formulated as follows: we are looking to
minimize the Euclidian norm of the error:

argmin (3(x)) = argmin (Jy — Hx|*)

® The first derivative of the minimization function must be set to
Zero.

&J(X)_ 0 (Ty _ouTYyT TaT
= _o:>ax(yy 2xHy+xHHx)

=—2H"'y+2H"Hx =0

H'Hx = H T‘y/ Generalized Inverse

x=(HTH)Hy

October 15, 2019 Basic Image Processing Algorithms

Inverse Filter

® We have that in Matrix-vector form (Mvf):
HH"x = HTy

® Frequency domain representation: if we take the DFT of the above
relationship in both sides we have:

|H((J)1, w2)|2 ’ X(wl) (1)2) — H*(wl) (,()2) ’ Y(a)ll (1)2)

e Recap: connection between the Mvf and the DFT representation of LSI
systems

e We do not prove here: if the DFT of an LS| transform H is H(w{, w,), then
the DFT of HTis H* (w4, w,) (complex conjugate)

e Easy to prove: for any complex number ¢ -c* = |c|?:

st = +jy) - (x —jy) =x*—jxy +jxy — jjy? = x* + y* = |c|?

October 15, 2019 Basic Image Processing Algorithms

Inverse Filter

® We have that: HY (@, ,)Y (o, ®,)

® Problem: It is very likely that H(w{, w,) is O or very small at
certain frequency pairs.

® For example, H(w{, w,) could be a sinc
function.

® In general, since H(wq, w,) is a low pass |
filter, it is very likely that its values drop
off rapidly as the distance of (w{, w,)
from the origin (0,0) increases.

Slide credit: Tania Stathaki Imperial College London

October 15, 2019 Basic Image Processing Algorithms 25

Inverse filtering for noisy scenarios

® Simplification: consider a system where H(wq, w,) is real*. In
this case, the inverse filter output is calculated as:

Y (o, ®,)

H (0)1,0)2)

® Assume, that in fact the degradation system output is affected
by noise N(w, w,):

>Zinv(a)l’a)z) =

Y(o,®,)=H(o,o,) X(o,®,)+N(o,»,)
_ R Reconstruc-
® In this case: X. (w,®,) tionerror

Real signal /

Y (o, ®,)— N(o,,)
H(w,, ®,)

*holds for central symmetric PSF

October 15, 2019 Basic Image Processing Algorithms 26

Inverse filtering for noisy scenarios

® Filter output is affected by noise N (w4, w-,):

Y (o, 0,)—N(o,0,) Y(o,0,) [N(o,o,)
H(w,, ®,) - H(o,®,) [H(o,o,)

X(o, »,) =

® Problem: It is definite that while H(wq, w,) is 0 or very small at
certain frequency pairs, N (w4, w,) is large.

® Note that H(w{, w,) is a low pass filter, whereas N(w{, w,) is
N(wq,w>)

an all pass function. Therefore, the term (error of

H(wler)
estimation for X (w4, w,)) can be huge!
® The drawback of this method is the strong amplification of

noise - Inverse filtering fails in that case ®

October 15, 2019 Basic Image Processing Algorithms

Pseudo-inverse filtering

@ Instead of the conventional inverse filter, we implement the

following:

X (a)l’a)z) =

(H *(a)l’w2)Y (), w,)

H (o, @,)

if [H(w, @,)| 2T

® The parameter T

T if‘H(a)l,a)z)‘<T

(called threshold in the figures in the next

slides) is a small number chosen by the user.
@ This filter is called pseudo-inverse or generalized inverse filter.

October 15, 2019

Basic Image Processing Algorithms

Pseudo-inverse filtering with different
thresholds

October 15, 2019 Basic Image Processing Algorithms

Inverse Filter

Blurred Image

Blurred Image with Additional Noise The Noise Component (amplified 10 times)

October 15, 2019 Basic Image Processing Algorithms 30

Inverse Filter

Reconstructed Image (with 7=0.02) Reconstructed Image (with 7=0.1)

October 15, 2019 Basic Image Processing Algorithms 31

Inverse Filter

Blurred Image with Additional Noise Reconstructed Image (with 7=0.1)

October 15, 2019 Basic Image Processing Algorithms

Matlab code of an inverse filter

T=.2;

x=double (imread ('lena.bmp')),; %read original 1mage

Nl=size (x,1); N2=size (x,2);

figure(l); i1magesc(x); colormap(gray),; %display original image
w=5; h=ones (w,w)/w"2; % PSF of bluring

X=fft2(x); % DFT of original image

H=fft2 (h,N1,N2); % DFT of PSF

Y=X.*H; % DFT of blurred image

y=1fft2(Y)+10*randn (N1,N2); %observed image: blurred + additive
noise

Y=fft2(y); % DFT of the observed image

figure (2); 1magesc(abs (ifft2(Y))); colormap(gray); %display
observed 1image

BF=find (abs (H)<T) ;

H(BF) =T;

invH=ones (N1,N2) ./H;

X1=Y.*invH;

im=abs (1fft2(X1)); % reconstructed image

figure (3); 1magesc(im); colormap (gray) S%Sdisplay result

October 15, 2019 Basic Image Processing Algorithms

Constrained Least Square Methods

® The objective is to reduce the noise amplification effect of the
inverse filter by adding extra constraints about the restored
image:

 On one hand we still have the term describing the solution’s fidelity to

the data:
argmin (J (x)) = argmin Q\y - HXHZ)

e But we also have a second term, incorporating some prior knowledge
about the smoothness of the original image:

ex], <«
e Putting the two together with the introduction of a:

argmin |y — Hx| + afJcx)

October 15, 2019 Basic Image Processing Algorithms

Constrained Least Square Methods

argmin |y — Hx; + acx];) = x=(HTH +aCTC) HTy

@ Cis a high pass filter

e Intuitively this means that we want to keep under control the amount
of energy contained in the high frequencies on the restored image.

® a is the regularization parameter

® In the frequency domain (for H and C block circulant) we have
the following formula:

H *(a)l’ @,)

H (e, a)z)‘2 + a|C(a, a)z)‘2

X (@, @,) = Y (@, @,)

e if ais 0, we get back the simple Least Square method (Inverse Filter)

October 15, 2019 Basic Image Processing Algorithms

Constrained Least Square Methods

@ (Optional) Different types of regularization:

e CLS: , ,
X(cr)evs = argmin |y — Hx|? + cx?)

e Maximum Entropy Regularization:
N
X(a),e = argmin (Hy - HXHE +a) X log(xi)j
X i=1

e Total Variation Regularization:

N
() = argmin [Hy i+ a3 [ax] \}

i=1

. Ip — horms:

N
J(z)=HzHE=Z_1:\zi\p, 1< p<?2

October 15, 2019 Basic Image Processing Algorithms

Constrained Least Square Methods

Reconstructed Image (CLS with a=0.1) Reconstructed Image (CLS with a=0.5)

October 15, 2019 Basic Image Processing Algorithms 37

CLS vs. LS

Reconstructed Image (LS with 7=0.02) Reconstructed Image (LS with 7=0.1)

October 15, 2019 Basic Image Processing Algorithms 38

Wiener Filter

® Stochastic restoration approach:
e Treat the image as a sample from a 2D random field.

e The image is part of a class of samples (an ensemble), realizations of

. realizations of the 2D random field
e Autocorrelation:

October 15, 2019

the same random field.

H *(a)v ®,) P, (@, ®,)

R(wl’a)Z) —

2
‘H (@, a)z)‘ Py (@, @,) + By (@, @,)

Expected value over many

Ry (N, N,,n5,0,) = E[f(n,,n,) " (ng,n,)]

e Power-Spectrum (Wide Sense Stationarity (WSS) input)

Fourier transformation

Py (0, 0,) = DFT{Rff (d,, dzﬁ

Basic Image Processing Algorithms

dl:nl—n3 ,d2:n2—n4

Autocorrelation calculation - some details

® Definition of autocorrelation:
Ry (N, Ny, ng,0,) = E[F(n,,n,) £(ny,n,)]

® Wide Sense Stationarity property (WSS):

Expected value over
many realizations of
the 2D random field

I:fo (nl’ Ny, N, n4) = Rff (nl — N3, Ny — n4) — Rff (d1’ dz)

® Ergodicity:

e ensemble average is equal to spatial average

N N
Ry (dy,d,) = lim ——L—— > > £k, k,)f"(k, —d,, k, —d,)

N —a0 (ZN +:|.)2 ky=—N k,=—N

October 15, 2019 Basic Image Processing Algorithms

Autocorrelation calculation the
Fourier domain

® Recap (from textures lecture) Wiener-Khinchin Theorem
e Inputimage: x(n,n,)
e Fourier transform: {X(w, w,)} = DFT{x(n{,n,)}
e Power spectrum: P, (w1, w;) = X (w41, w,) * X* (w1, w,)

e Autocorrelation: inverse Fourier transform of the power spectrum:
{RXX(dli dZ)} — IDFT{PXX(wlr (1)2)}

October 15, 2019 Basic Image Processing Algorithms

Wiener Filter

® The degradation model: y(n;,n,) = x(n;,n,) *h(n,n,)+n(n,n,)
® The objective:

X(n,, n,) = argmin Enx(nl’ n,) — x(n, nZ)‘z]

X(ng,ny)

® We look for the solution in the following format, assuming an
LS| restoration model:
Y(nl’ nz) — r(n1’ nz) * y(n1’ nz)
e The input image is assumed to be WSS with autocorrelation R,,(n,,n,).
® The recovered image is obtained in the Fourier domain:

X (o, w,) =R(w, ®,)-Y (), w,)

Recovered Wiener Observed
Image filter degraded image

Basic Image Processing Algorithms

Wiener Filter

® Assumptions:
e that both the input image and the noise are WSS.
e The restoration error and the signal (the observed image) is orthogonal:

E[e(ny nz)y*(n3’ n4)] - E[(X(nl’ nz) - i(nl’ nz))y*(n3’ n4)] =0, v(nm n2)1 (ns’ n4)

e |t can be shown™ that the following transfer function implements the
above constraint:

H (o, ,) P, (0, ®,)

2
‘H (@, 0)2)‘ Py (@, 0,) + Py (0, @,)

R(w,, @,) =

*proof available as supplementary material
optional to read, not part of exam

October 15, 2019 Basic Image Processing Algorithms 43

Wiener Filter and CLS Filter

® Wiener filter:

R(a)l,a)z)z H (0)1,602)°PXX(0)1,602) _

2
‘H (@, 602)‘ Py (o, w,) + Py (0, @,)

H (o, ,) _ H (o, o,

2 Py (o, w,)
‘H (@, (02)‘ + P[j(’:(a)ll, 0)22) X‘l (o, 0)2)‘2
. Assuming white noise
® CLS filter:

H*(a)l’ @,)

‘H (o, coz)‘2 + a‘C(a)l, a)z)‘2

Noise to signal ratio

R(o,, ,) =

® With the right choice of C and a, CLS filter is the same as the
Wiener filter.

October 15, 2019 Basic Image Processing Algorithms

Wiener Filter

Original Image

Reconstructed with Wiener filter Reconstructed with CLS filter

October 15, 2019 Basic Image Processing Algorithms

Wiener Lab task on week 7

® See more practical details on the corresponding laboratory
excercise!

original noisy blurred with edge-/frame-modification reconstructed with autocorrelations

October 15, 2019 Basic Image Processing Algorithms

Main Sources and Further Readings

® Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

® Babacan, D. S., R. Molina, and A. K. Katsaggelos, "Total Variation Super Resolution Using A Variational
Approach", IEEE International Conf. on Image Processing 2008, San Diego, USA, 10/10/2008.

® J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded
images," IEEE Signal Processing Letters, vol. 15, pp. 178-181, 2008.

® Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For
Multimedia Problems," Multimedia, IEEE Transactions on , vol.16, no.4, pp.1000,1017, June 2014

® http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-
image-restoration.html

® S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge
Regeneration" Journal of Electronic Imaging (JEI), Jan 2014

October 15, 2019 Basic Image Processing Algorithms

Basic Image Processing

PPKE-ITK

Lecture 7.

2019. 10. 22. 1

Image Segmentation

Image Segmentation

® What is on the image? — This is maybe the most important
guestion we want to answer about an image.
® For a human observer it is a trivial task, for a machine it is still
an unsolved problem.
® An important step toward our goal is to segment the image into
meaningful parts.
® The objective is to group pixels together based on some
common characteristics:
e they belong to the same physical object
e they have the same intensity level/color/texture
e they belong to the background/foreground

2019. 10. 22. 3

Image Segmentation

Original Image

S

Sample from BSDS500 (Berkeley Segmentation Data Set and Benchmarks 500):
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

2019. 10. 22. 4

Gestalt grouping

® Gestalt definition: a !
configuration or pattern of |
elements so unified as a whole
that it cannot be described
merely as a sum of its parts

2019. 10. 22. 5

Gestalt psychology or gestaltism

® German: Gestalt - "form" or "whole”
e Berlin School, early 20th century
e Kurt Koffka, Max Wertheimer, and Wolfgang Kéhler

D. Brett King

® View of brain: Michael Wertheimer

whole is more than the sum of its parts
holistic

parallel l 3 .
analog "

self-organizing tendencies

Max \X/etheimer
& Gestalt Theory

2019. 10. 22. 6

Slide from S. Saverese

Types of segmentations

FAYAY

Multiple Segmentations

2019. 10. 22.

Image Segmentation

® The segmentation can be knowledge-driven (top-down) or
data-driven (bottom-up).
® Knowledge driven segmentation methods builds prior
knowledge into the segmentation algorithm:
e Hard to implement
e Cannot stand alone: need cues from bottom-up segmentation
@ Data-driven methods builds on the raw pixel data:
e they are easier to implement
e they often fail on real life images
® There is the so-called semantic gap between the two approach.
® The complex, high level definitions of top-down methods are
hard to embed efficiently into low level algorithms.

2019. 10. 22. 8

Major processes for segmentation

® Bottom-up: group tokens with similar features
® Top-down: group tokens that likely belong to the same object

Bottom-up Top-down

A g

(cj

[Levin and Weiss 2006]

2019. 10. 22. <)

K-means clustering using intensity alone and
color alone

Image Clusters on intensity Clusters on color

2019. 10. 22.

Image Segmentation

@ Intensity Level Based Segmentation
e Otsu’s Method

® Region-based Segmentation
e Region growing
e Region Splitting and Merging

® Clustering in the Feature Space

2019. 10. 22.

Intensity Level Based Segmentation

® Thresholding

e Assumption: the image parts (e.g. object and background) can be
separated based on their intensity level.

object X(n,n,)<T
background x(n,,n,)>T

S(n1’ nz) — {

...Where s(n,,n,) is the cluster of the (n,n,) pixel of the x image and T is
a threshold.

e The main question is how to determine the threshold?

2019. 10. 22.

Intensity Level Based Segmentation

® Thresholding:
e The main question is how to find the optimal threshold?

Original Image

2019. 10. 22.

Intensity Level Based Segmentation

® Otsu’s method:

e Automatically determines the optimal global threshold by minimizing the
intra-class variance.

e The intra-class variance is defined as follows:
o0 (k) = @, (k)or (k) + w,(k)o? (k)

where w; and o; are the probability and the variance of the two classes
separated by the threshold k.

e Otsu showed that minimizing the intra-class variance is the same as
maximizing inter-class variance:

o (k) =0’ - O_\i(k) = wl(k)a)z (k)(lul(k) _ﬂz(k))z

where u; are the means of the two classes separated by threshold k.
Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. Sys., Man., Cyber. 9 (1): 62—-66.

2019. 10. 22.

Intensity Level Based Segmentation

® Otsu’s method:
05 (k) =o” — O_\i(k) = a’l(k)a)z (k)(lul(k) _ﬂz(k))z
e To calculate w;and y,; the normalized histogram of the image is used:

o, (k) = z D o,(K)= 3 p,

i=k+1

(k) = [zp] /w 1K) = [zpj /m

where p; is the i-th entry in the normalized histogram of the image
(probability of the i-th intensity level).

The Otsu threshold is the value that maximizes the inter-class variance.
* Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. Sys., Man., Cyber. 9 (1): 62—66.

2019. 10. 22.

Result of Otsu’s method

Original Histogram Thresholded

0 100 200

2019. 10. 22.

Result of Otsu’s method

® Otsu’s method:

Original Image

Grayscale Image

Otsu threshold: T=168

2019. 10. 22.

Region-Based Segmentation Methods

® Let R be the entire image region, and R, ..., R, are subregions.
® We want to find a segmentation that is..

e Complete: U, R, =R

Points in the region R, (i = 1, ...,n) are connected

The regions are disjoint: R, N Rj = QforVi +#j

All the pixels in a region has common properties...

2019. 10. 22.

...that they don’t share with pixels from other regions.

Region-Based Segmentation Methods

® Region growing:

2019. 10. 22.

The method is initialized with a set of seed points as regions

We start growing the regions by adding neighboring pixels to the region
if they has similar predefined properties as the seed points.

The seeds can be selected based on prior information, or evenly, or
random...

The similarity criteria is usually depending on the segmentation result we
want. (Commonly used properties are the intensity level, color, texture,
motion,...)

Pros: simple, works well on images with clear edges, prior knowledge can
be easily utilized, robust to noise...

Cons: time consuming

Region growing

® We start growing the regions by adding neighboring pixels to

the region if they has similar predefined properties as the
seed points

Flood(X, y) {
If (pixel[x][y] is internal point) {
addToRegion(x, y);
Flood(x, y-1);
seed Flood(x, y+1);
Flood(x-1, y);
Flood(x+1, y);

}

Internal point= dark blue

2019. 10. 22.

Region-Based Segmentation Methods

® Region growing:

Original Image Grayscale Image

seed point

Region Growing

2019. 10. 22.

Region growing results on medical data

@ Liver segmentation from CT

Manual Ground Truth Region growing result

2019. 10. 22.

Region-Based Segmentation Methods

® Region splitting and merging:
e Let R represent the entire image region and P be a predicate.
e The splitting and merging steps are alternating:
- We split the region R; into 4 sub regions if P(R,) = false
* We merge 2 neighboring regions R; and R; if P(R; U R;) = true
e The minimum region size has to be selected.

2019. 10. 22.

Region-Based Segmentation Methods

® Region splitting and merging:

Original Image Grayscale Image

Split and Merge Wl

2019. 10. 22.

24

Clustering in the Feature Space

® A clustering algorithm is used to find structure in the data.
@ The pixels are represented in the feature space.
® Usual features: colors, pixel coordinates, texture descriptors,..

Original Image Feature Space Segmented Image

Source of the Images: http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/

2019. 10. 22.

Clustering in the Feature Space

® Partitioning-Clustering Approach

° Learning a partition on a data set to produce several non-empty clusters

o Assume that the number of clusters, K, is given in advance

o Given a K, find a partition of K clusters to optimize the chosen
partitioning criterion (cost function)

o In principle, optimal partition S = {S;, ... S} achieved via minimizing
the sum of squared distance to its “representative object” in each cluster

argmin ZK: > d?(x,)
S i=1 xe$,
o global optimum: exhaustively search all partitions: too expensive!

° a typical clustering analysis approach via iteratively partitioning training
data set to learn a partition of the given data space

2019. 10. 22.

K-means Algorithm

® K-means algorithm (MacQueen’67): a heuristic method
e Each cluster is represented by the centre of the cluster and the
algorithm converges to stable centroids of clusters.
e K-means algorithm is the simplest partitioning method for clustering
analysis and widely used in data mining applications.

e Each sample will belong to the cluster with the nearest mean.
® The objective is to minimize the within-cluster sum of

squares:
N

arggninizdz(x’ﬂi)’ d (%, 24) =X =g = D" (%, =t]

i=1 xe§; n=1
e wherex € R" are the data samples, U;is the mean (prototype) of
the points in the cluster S;(i = 1...K).

2019. 10. 22.

K-means Algorithm

® Given the cluster number K, the K-means algorithm is carried
out in three steps after initialization:

2019. 10. 22.

1)
2)

3)

4)

Initialisation: set the K cluster seed points (randomly)

Assignment step: Assign each object to the cluster of the nearest
seed point measured with a specific distance metric

Update step: Compute new seed points as the centroids of the
clusters of the current partition (the centroid is the centre, i.e., mean

int, of the cl
point, of the cluster) @y _ 1

(t) .
Xj ESi

Go back to Step 1), stop when no more new assignment (i.e.,
membership in each cluster no longer changes)

Understanding K-means

| 3 ® How K-means partitions?

e When K centroids are set/fixed,
they partition the whole data
space into K mutually exclusive
subspaces to form a partition.

e A partition amounts to a Voronoi
diagram

e Changing positions of centroids
leads to a new partitioning.

= X

@ Efficient in computation ©

e O(tKn), where n is number of objects (eg. pixels), K is number of
clusters, and t is number of iterations. Normally, K, t < n.

2019. 10. 22.

K-Means Clustering

® Illustration of K-means iteration:

Source of the images: http://en.wikipedia.org/wiki/K-means_clustering

2019. 10. 22.

http://en.wikipedia.org/wiki/K-means_clustering

K-Means Clustering - Relevant Issues

@ Limitation of K-means:
e Number of clusters has to be known a priori priori (specify K in
advance)
e Sensitive to initial seed points, could stuck in a local minimum
e Spherical clusters: not suitable for discovering clusters with non-convex
shapes

Source of the images: http://commons.apache.org/proper/commons-math/userguide/ml.html

2019. 10. 22.

Relevant Issues

® Other issues
» Unable to handle noisy data and outliers (K-Medoids algorithm)

e Applicable only when mean is defined, then what about categorical
data? (K-mode algorithm)

e How to evaluate the K-mean performance?

2019. 10. 22.

Color-Based Image Segmentation
Using K-means

® Step 1: Loading a color image of tissue stained with hemotoxylin
and eosin (H&E)

H&E image
.1“ % o{@‘

=Y . L \
-d‘\‘ \-—hn

.‘ 2 ’ : '
\E ’! \' . *"
4, Pa T -

-

A } % ~"Q'I.

Image courtesy of Alan Partn, Johns Hopkins Universty

2019. 10. 22.

Color-Based Image Segmentation
Using K-means

@ Step 2: Convert the image from RGB color space
to CIE L*a*b™color space (ReCap from Lecture 1)

e Unlike the RGB color model, CIE L*a*b* color is designed to
approximate human vision: brightness and color shade components of
the pixel values are encoded in different channels

e There is a complicated transformation between RGB and CIE L"a*b*
¢ (L*Cl*b*)= T(R, G, B) | White
(R, G B)=T'(L"a*b™)

* The brightness (L) increases from
the bottom to the top of the three-
dimensional model.

* Color shades: The a axis extends

from green (-a) to red (+a) and the b
axis from blue (-b) to yellow (+b).

10/22/2019

Color-Based Image Segmentation
Using K-means

@ Step 3: Undertake clustering analysis in the (a*, b*) color

space with the K-means algorithm
e During feature selection, L* feature is discarded. As a result, each pixel
has a 2D feature vector x = [a*, b*] € R?.
e Applying the K-means algorithm to the image in the a*b* feature space
where K = 3 (by applying the domain knowledge).

2019. 10. 22.

Color-Based Image Segmentation
Using K-means

® Step 4: Label every pixel in the image using the results from
e K-means clustering (indicated by three different grey levels

image labeled by cluster index

< Sk
=

L g

2019. 10. 22.

Color-Based Image Segmentation
Using K-means

® Step 5: Create Images that Segment
the H&E Image by Color

e Apply the label and the color information
of each pixel to achieve separate color
images corresponding to three clusters.

objects in cluster 1 objects in cluster 2

“blue” pixels “white” pixels “pink” pixels

2019. 10. 22.

Color-Based Image Segmentation
Using K-means

@ Step 6: Segment the nuclei into a separate image with the L*

feature

e In cluster 1, there are dark and light blue objects (pixels). The dark blue
objects (pixels) correspond to nuclei (with the domain knowledge).

e L* feature specifies the brightness values of each colour.
e With a threshold for L*, we achieve an image containing the nuclei only.

blue nuclei

2019. 10. 22.

Summary: K-means

K-means algorithm is a simple yet popular method for clustering
analysis
Its performance is determined by initialisation and appropriate
distance measure
There are several variants of K-means to overcome its weaknesses
K-Medoids: resistance to noise and/or outliers
K-Modes: extension to categorical data clustering analysis
CLARA: extension to deal with large data sets
Mixture models (EM algorithm): handling uncertainty of clusters

Online tutorial: how to use the K-means function in Matlab

https://www.youtube.com/watch?v=aYzjenNNOcc

Discussed image segmentation example:

https://www.mathworks.com/help/images/examples/color-based-

segmentation-using-k-means-clustering.html

2019. 10. 22.

https://www.youtube.com/watch?v=aYzjenNNOcc

K-Means : some further results

® Segmentation in RGB color space can also work...

2019. 10. 22.

K-Means: some further results

® Segmentation of a noisy grayscale image
e Gaussian white noise, K=4

TR

R A ;:4_:1 e

ar P

A IO

-;::l':::p.-.: ;I' '#'.Fr-. " . Ly

2019. 10. 22.

K-Means result

® Segmentation of an aerial image in CIE L*a*b”*, feature
channels: (a*b*), K = 5

10/22/2019

tut

: NOISY oup

segmentation

Per-pixel

Post processing: enhancing the regions by
compactness and shape analysis

10/22/2019 44

Morphology - overview

® Once segmentation is complete, morphological operations can
be used to remove imperfections in the segmented image and
provide information on the form and structure of the image
@ In this section we will consider
e What is morphology?
e Simple morphological operations
e Compound operations
e Morphological algorithms

Slides for dilation/erosion credits: Dublin Institute of Technology

2019. 10. 22.

What Is Morphology?

® Morphological image processing (or morphology) describes a
range of image processing techniques that deal with the shape
(or morphology) of features in an image

® Morphological operations are typically applied to remove
imperfections introduced during segmentation, and so
typically operate on bi-level images

2019. 10. 22.

Morphological Operations: details
1, 0, Black, White?

® Throughout all of the following slides whether 0 and 1 refer to
white or black is a little interchangeable

@ All of the discussion that follows assumes segmentation has
already taken place and that images are made up of Os for
background pixels and 1s for object pixels

® After this it doesn’t matter if O is black, white, yellow,

2019. 10. 22.

Morphological Operations

O]

O]

®©

©

2019. 10. 22.

Morphological operations are affecting the form, structure or
shape of an object.

They are used in pre- or postprocessing (filtering, thinning, and
pruning) or for getting a representation or description of the
shape of objects/regions (boundaries, skeletons convex hulls).
Two basic operations:

e Dilation: expands the object, fills in small holes and connects disjoint
objects.

e Erosion: shrinks objects by removing (eroding) their boundaries.
The basic idea in binary morphology is to probe an image with a
structuring element (a simple, pre-defined shape), drawing
conclusions on how this shape fits or misses the shapes in the
image.

Morphological Operations

® Structuring element:
e.g.:

000 ®
000 000
000 ®
8 neighbors 4 neighbors
@ Dilation:

e A shift-invariant operator, that expands the object, fills in small holes and
connects disjoint objects.

e Steps:
* The structuring element is placed on each pixel on the image
* If the pixel belongs to the foreground pixel, we do nothing

* If the pixel belongs to the background, we change it to a foreground pixel
if any pixel covered by the structuring element is a foreground pixel.

2019. 10. 22.

Morphological Operations

® Erosion:

e A shift-invariant operator, that erodes away the boundaries of regions

of foreground pixels. Thus areas of foreground pixels shrink in size, and
holes within those areas become larger.

e Steps:
* The structuring element is placed on each pixel on the image
* If the pixel is a background pixel, we do nothing

* If the pixel is a foreground pixel, we change this pixel to a background
if any pixel covered by the structuring element is a background pixel.

® Erosion on the image has the same effect as dilatation on the
Inverse image.

® Opening: Erosion + Dilation
@ Closing: Dilation + Erosion

2019. 10. 22.

Quick Example

Image after segmentation Image after segmentation and
morphological processing

Structuring Elements, Hits & Fits

.. Structuring Element

Fit: All on pixels in the structuring
element cover on pixels in the
image

Hit: Any on pixel in the structuring
element covers an on pixel in the
image

C

All morphological processing operations are based on these
simple ideas

2019. 10. 22.

Structuring Elements

® Structuring elements can be any size and make any shape
® However, for simplicity we will use rectangular structuring
elements with their origin at the middle pixel.
e lsrepresent the on pixels of the structuring element

olol1|o]o0

111]1 ol1|1|1]o0
1 1 11 : °iF
11111 O(1/1|1]0
olol1|o0]o0

2019. 10. 22.

Fitting & Hitting

Structuring

Element 1

1

1

Structuring

Element 2

ojojo|O0|O|O|O|O|O|O|O]O
ojojo|1|1|/0|0|0O|0O|O|O]O
ojo|l1B|1|1|12|0(@|0|O0]|O
o(1f|1|1|1|1|1|2]|0|0|0]|O
o(1|1|1|1|1|1|12]|0|0]|0]|O
o(o|1|1|1|1|1|1]0]|0|0]0O
oj(o|1|1|1|1f1l2]|1]0]|0]|O
o|o|1|1|2|1|1(Al1|1]|1]|0

o(0;0;]0jO01}J1}2|2}11|0

o0,0/0/0(01010(0(010|0]|O0

Fundamental Operations

® Fundamentally morphological image processing is very like
spatial filtering

® The structuring element is moved across every pixel in the
original image to give a pixel in a new processed image

® The value of this new pixel depends on the operation
performed

® There are two basic morphological operations: erosion and
dilation

2019. 10. 22.

Erosion

@ Erosion of image f by structuring element s is given by f&s
The structuring element s is positioned with its origin at (X, y)
and the new pixel value is determined using the rule:

1 1f sfits f
0 otherwise

g(x,y)={

2019. 10. 22.

Erosion Example

Processed Image With Eroded Pixels

Structuring Element

2019. 10. 22.

Erosion Example

Original Image Processed Image With Eroded Pixels

{ Structuring Element

2019. 10. 22.

Erosion Example 1

A A A

Watch out: In these examples a 1 refers to a black pixel!

2019. 10. 22.

Erosion Example 2

After erosion
with a disc of
radius 10

Original
Image

After erosion
with a disc of
radius 5

After erosion
with a disc of
radius 20

2019. 10. 22.

What Is Erosion For?

Erosion can split apart joined objects

2

Erosion can strip away extrusions

& B

Watch out: Erosion shrinks objects

2019. 10. 22.

Dilation

@ Dilation of image f by structuring element sis given by f @ S
® The structuring element s is positioned with its origin at (X, y)
and the new pixel value is determined using the rule:

1if shits f
0 otherwise

g(Xx, y)={

2019. 10. 22.

Dilation Example

Processed Image

Structuring Element

2019. 10. 22.

Dilation Example

Original Image Processed Image With Dilated Pixels

Structuring Element

2019. 10. 22.

Dilation Example 1

Original image Dilation by 3*3 Dilation by 5*5
square structuring square structuring
element element

Watch out: In these examples a 1 refers to a black pixel!

2019. 10. 22.

Dilation Example 2

Original image After dilation
Historicaliy, certain computer Historically, certain computer
programs were written using programs were written using
only two digits rather than only two digits rather than
four to define the applicable four to define the applicable
vear. Accordingly, thea year. Accordingly, the
company's software may company's software may
recognize a date using "00" recognize a date using "00"

as 1900 rather than the y@r as 1900 rather than the.

20690, 2000,
€ ¢ c E

Structuring 13
element 010

2019. 10. 22.

What Is Dilation For?

Dilation can repair breaks

OO0

Dilation can repair intrusions

Watch out: Dilation enlarges objects

2019. 10. 22.

Compound Operations

More interesting morphological operations can be performed by
performing combinations of erosions and dilations
The most widely used of these compound operations are:

e Opening

e Closing

2019. 10. 22.

Opening

® The opening of image f by structuring element s, denoted f o S
is simply an erosion followed by a dilation

fos=({fos)as
1 . . :y

ASB ~
A A-B=(ASB)®&B

Original shape After erosion After dilation
(opening)

Note: a disc shaped structuring element is used

2019. 10. 22.

Opening Example

Original
Image

Image
After
Opening

2019. 10. 22.

Opening Example

Original Image Processed Image

+ Structuring Element

2019. 10. 22.

Closing

® The closing of image f by structuring element s,
denoted f « S is simply a dilation followed by an
erosion

fos=(f @s)os

|

;.) S E

A-B=(A®B)2 B

A AE B

Original shape After dilation After erosion
(closing)

Note: a disc shaped structuring element is used

2019. 10. 22.

Closing Example

2019. 10. 22.

Original
Image

Image
After
Closing

Closing Example

Original Image Processed Image

! Structuring Element

2019. 10. 22.

Morphological Processing Example

B

" ” A
- .},,‘_,.. # 'j_l r R
. LI .O‘J*L o ...;.I'.'_ b Ll.i' !
X SN ‘)(A:—BH-,B—A-B
SARNEN (A-B)& B [(A-B)®B|©B=(A-B)+B
NN

—
, ::.:—%\

Y,
'\.';.\l

%ﬁﬂ\\\\ﬁ:

2019. 10. 22.

Morphological Operations

Foreground Mask.of MoG (7=20)

' P
..-.:r:.'.:' .I‘I
“ L]

¥

Dilated Foregfound Mask Eroded Foreground Mask

TR

L]
5;

2019. 10. 22.

Morphological Operations

Closing Opening

2019. 10. 22.

Morphological Operations

Foreground Mask.of MoG (7=20)

The Fg mask after a more complicated
sequence of erosin and dilation

2019. 10. 22.

Morphological Algorithms

® Using the simple technigue we have looked at so far we can
begin to consider some more interesting morphological
algorithms
® We will look at:
e Boundary extraction
e Region filling
® There are lots of others as well though:
e Extraction of connected components
e Thinning/thickening
e Skeletonisation

2019. 10. 22.

Boundary Extraction

@ Extracting the boundary (or outline) of an object is often
extremely useful
® The boundary can be given simply as

p(A) =A—-(A&B)

—Origin

AEB B(A)

2019. 10. 22.

Boundary Extraction Example

® A simple image and the result of performing boundary
extraction using a square 3 X 3 structuring element

Original Image Extracted Boundary

2019. 10. 22.

Region Filling

® Given a pixel inside a boundary, region filling attempts to fill
that boundary with object pixels (1s)

2019. 10. 22.

Region Filling

® The key equation for region filling is: T X
X, = (Xx_1 @® B) N A€, where mEmE
- A is the original (boundary) image, S A

- X, is simply the starting point (single
pixel) inside the boundary,
* B is a simple structuring element and

* A€ is the complement of A

® This equation is applied repeatedly until X, is equal to
Kk—1
® Finally the result is unioned with the original boundary

2019. 10. 22. 83

Region Filling Step By Step

i | mE]
EEEEEEEEEN
INEEEEETE
W | jEEEe |
EOINEEEEEN
EEEEEEEEN

2019. 10. 22.

Region Filling Example

Original Image One Region All Regions Filled
Filled

2019. 10. 22.

Grayscale morphology

® Gray-Scale Morphology: Erosion and Dilation by Flat
Structuring

[f —b](x,y)=min{f(x+s,y+1)}

(s,t)eb

| f ®@b](x, y):(max{f(x—s,y—t)}

s,t)eb

2019. 10. 22.

Grayscale morphology

c
O
m
c
O
o
. - e s S L]
o0 @ YvYY |
e @ |
"% 0:0:0 %8 oo
. il Ak

Summary-morphology

® The purpose of morphological processing is primarily to
remove imperfections added during segmentation

® The basic operations are erosion and dilation

® Using the basic operations we can perform opening and
closing

® More advanced morphological operation can then be
implemented using combinations of all of these

2019. 10. 22.

Basic Image Processing Algorithms

PPKE-ITK

Lecture 8.

2019. 11. 05.

Image and Video Segmentation

Previously on... Basic Image Processing

® Previous topics:
e Color Spaces, dithering
2D convolution, Canny edge detector Classical era
e Hough transformation & Image Enhancement __ mainly from

e Fourier anaIyS|.s ’60s-'80s
e Texture analysis i
(with

e Image recovery _
e Segmentation: Otsu, K-means and Morphology exceptions)

® Remaining topics:

e Markov Random Fields, Marked Point Processes Modern era
e Mean shift mainy from
o Descriptors: SIFT, HOG, Local Binary Patterns — ’00s-"10s

e Video processing (with

e Machine Learning exceptions)

o Deei Learnini S

Recap: Morphological Operations
Limitations: distortion of object shapes

Foreground Mask.of MoG (7=20)

Closing Opening

2019. 11. 05.

Beyond morphology based approaches?

@ Pixel-by-pixel classification: observation (image) based
knowledge, e.g. pixel color values, local texture features etc.
® Morphology to obtain homogeneous regions: prior knowledge

Homogeneous, but often

Morphology

Pixel-by-pixel - . — ' distorted shapes
classification braesﬁr(\jerriil:tn (especially on the object

boundaries)

Pixel-by-pixel '
descriptors Joint decision |
considering both - Homogeneous shapes with

iac?
Prior knowledge e accurate boundaries-

based soft ‘

constraints

11/5/2019)

Markov Random Fields in Image Segmentation

® Segmentation as pixel labeling
@ Probabilistic approach
e Segmentation as MAP estimation
e Markov Random Field (MRF)
e Gibbs distribution & Energy function
® Classical energy minimization
e Simulated Annealing
e Markov Chain Monte Carlo (MCMC) sampling
® Example MRF model & Demo
® Parameter estimation (EM)

MREF slides adopted © Zoltan Kato, University of Szeged, http://www.inf.u-szeged.hu/~kato/

2019. 11. 05. 6

Markov Random Fields in Image Segmentation
main principle

® Mapping the image to a graph

e nodes are assigned to the different pixels, and the o000 p oo o
edges connect pixels which are in interaction 0 0 ©
® Segmentation as pixel labeling: o000 doo oo
e each pixel gets a class-label from a task- il R

dependent label set A

@® Inverse problem formulation:

e Instead of finding a direct algorithm to find the optimal labeling, we construct a (pseudo-)
probability function which assigns a likelihood value to each possible global segmentation,
then an optimization process attempts to find the labeling with the highest confidence

® What does the probability function depend on?
» |ocal feature vectors at each pixel (color, texture etc)
* classes in A are as stochastic processes, described by different feature distributions
» |abel consistency (soft) constraints between neighboring pixels

* e.g. for preferring smooth segmentation map we penalize if two neighboring nodes have
different labels

11/5/2019 7

Segmentation as a Pixel Labelling Task

@ Extract features from the input image
e Each pixel s in the image has a feature vector fs
e For the whole image, we have: R
f = {fs:s € S}: global observation A
® Define the set of labels A L
e Each pixel s is assigned a label wg € A
e For the whole image, we have:
w = {w,:s € S}: global labeling
o (): set of all possible w global labelings (i.e. w € ()
® Foran N X M image, there are [Q| = |A|YM
possible global labelings.
 Which one is the right segmentation?

Source: Zoltan Kato, http://www.inf.u-szeged.hu/~kato/

2019. 11. 05.

Probabilistic Approach, MAP

® Define a probability measure on the set of all possible global
labeling and select the most likely one.

® P(w|f) measures the probability of a global labeling w, given
the observed features f

® Our goal is to find an optimal labeling @ which maximizes
P(w|f)

® This is called the Maximum a Posteriori (MAP) estimate:

@ = argmax P(w|f)
WE()

11/5/2019 9

Bayesian Framework

@ By Bayes Theorem, we have

likelihood | | prior

|
Polf) = LII@P@) o))

P(f)
® P(f) is constant /

e it does not depend on the actual labeling!
@ We need to define P(f|w) and P(w) in our model

We will use Markov Random Fields

2019. 11. 05.

Why MRF Modelization?

@ In real images, regions are often homogenous; neighboring
pixels usually have similar properties (intensity, color, texture,
...) — prior neighborhood constraints vs. noisy pixel level
descriptors

® Markov Random Field (MRF) is a probabilistic model which
captures such contextual constraints

e Well studied, strong theoretical background

e Allows Monte-Carlo Markov Chain (MCMC) sampling of the (hidden)
underlying structure — Simulated Annealing

e Fast and exact solution for certain type of models — Graph cut
[Kolmogorov]

11/5/2019

What is MRF?

@ To give a formal definition for Markov Random Fields, we need
some basic building blocks
e Observation Field and (hidden) Labeling Field
Pixels and their Neighbors

Cliques and Clique Potentials

Energy function
Gibbs Distribution

11/5/2019

Markov Chains vs Markov Random Fields

® Recap: Discrete Markov Chains: discrete time, discrete state
stochastic processes
e Given: set of possible states 54, S5,...Sy @

e q;:stateattimet, (t=1,..T) // \:\

e Observed state sequence: ¢4, qy,...q7 @ . @
e Markov property: i

P(CIt = Sj|CIt—1 = Si) = P(Qt = 5j|Qt—1 =381, qt—2 = Sky Q1 = Sl)

 Conditional probability of the current state only depends on the
previous state (i.e. only neighboring states interact —in time)

® Markov Random Fields: instead of temporal neighboring
states, we consider the spatially neighboring pixels

e Pixel labels are not independent, however, direct dependence is only
considered between the spatial neighbors

11/5/2019

Definition — Neighbors

@ For each pixel, we can define some surrounding pixels as its
neighbors.
® Example: 1St order neighbors and 2nOI order neighbors

11/5/2019

Definition — MRF

@ The labeling field X can be modeled as a Markov Random
Field (MRF) if
1. Forallw e :PX =w) >0
2. ForeveryseSandw € :

P(wi|w,,r #+5) = P(ws|w,, T € Ny)

- N, denotes the neighbors of pixel s

11/5/2019

Hammersley-Clifford Theorem

® The Hammersley-Clifford Theorem states that a random field is a MRF if
and only if P(w) follows a Gibbs distribution.

1 1
P(w) = Eexp(—U(a))) = exp| — z V. (w)

ceC

e whereZ =Y, cqexp(—U(w)) is a normalization constant

® Practical consequence:

e probability functions of MRFs have a special form: they can be factorized into
small terms V.(w) called clique potentials, which can be locally calculated on
the graph

o this property makes possible to design the P(w) probability function in a
modular way, and enables using efficient iterative optimization techniques

e Technical note: instead of maximizing this probability function we usually
minimize the minus logarithm of it, U(w), which is called the energy function

11/5/2019

Definition — Clique

® The H-C theorem provides us an easy way of defining MRF models via
clique potentials.

® A subset C € Sis called a cligue if every pair of pixels in this subset are

neighbors.

A clique containing n pixels is called nt order clique, denoted by C,,

The set of cliques in an image is denoted by

®© ®

C:C'1UC2UUCK

’

@ —@

singleton doubleton

11/5/2019

Definition — Cliqgue Potential

® For each clique c in the image, we can assign a value I.(w)
which is called clique potential of c, where w is the
configuration of the labeling field

® The sum of potentials of all cliques gives us the energy U(w)
of the configuration w.

U(w) =) Ve(w) =

ceC

= Z Ve, (w;) +Z VCZ(a)i, a)j) + -

= (i,))EC,

11/5/2019

Segmentation of grayscale images:
A simple MRF model

@ Construct a segmentation model where regions are formed by
spatial clusters of pixels with similar intensity:

Model MRF segmentation model

parameters &
find MAP estimate @

}

Segmentation @

Input image

11/5/2019

MRF segmentation model

® Pixel labels (or classes) are represented by (for
example) Gaussian distributions:

exp | — (fs - :“ws)z
V210, 205,
® Cligue potentials

e Singleton: proportional to the likelihood of features

P(fslws) -

given w : log P(f|w) Cligues
e Doubleton: favors similar labels at neighboring o O f
pixels — smoothness prior

—ﬁ lf w; = (UJ

Ve) = B0) = i o 7

- as 3 increases, regions become more homogenous

11/5/2019

Model parameters

classes:

@ Doubleton potential B
e |less dependent on the input —
* can be fixed a priori
® Number of labels |A|
e Problem dependent —
* usually given by the user or

* inferred from some higher level knowledge
@ Each label A € A is represented by a
Gaussian distribution N(uy, 03):
e estimated from the input image

11/5/2019

Model parameters

® The class statistics (mean and variance) classes:

can be estimated via the empirical mean
and variance:

1
aen m=1S

» where S;denotes the set of pixels in the
training set of class A

e atraining set consists in a representative
region selected by the user

2019. 11. 05.

Energy function

® Now we can define the energy function of our MRF model:

2
Ul(w) = Z (log(\/%aws) + Us 2_0'[;%)) + 2 B (ws, w,)

Wg

S S,r

® Recap: the P(w) probability can be directly derived from the

energy . .
P(w) = Zexp(—U(w)) = Eexp (— Z V. (w))

ceC

® Hence:

oM4P = argmax P(w|f) = argmin U(w)
wEel) wel)

11/5/2019

Optimization

® Problem reduced to the minimization of
a non-convex energy function
e Many local minima !
® Gradient descent?
e Works only if we have a good initial
segmentation /o
® Simulated Annealing

IL-,“\ /'f |} II,"Iﬁ-— —
e Always works (at least in theory)

Y

2019. 11. 05.

ICM (lterated Conditional Mode)
~Gradient descent approach [Besag86]

1. Start at a ,,good” initial configuration w® and set
k = 0.

2. For each configuration which differs at most in
one element from the current configuration w
(they are denoted by V' «), compute the
energy U(n) (n € NV k).

3. From the configurations vk, select the one £
which has the minimal energy:

k

w**t! = argmin U(n)

nEka [4

4. Goto Step 2, with k = k 4+ 1until convergence
obtained (for example the energy change is less
than a certain threshold).

11/5/2019

ICM (lterated Conditional Mode)

ICM for mage segmentation models

1. Start at a,good” initial segmentation w® and set
k=0 Only depens on pixel s

and its four neighbors

3. From the configurations V', select the one which W
has the minimal energy:

w**t1 = argmin AU ()

neN k 4

4. Goto Step 2, with k = k 4+ 1until convergence
obtained (for example the energy change is less
than a certain threshold).

11/5/2019

ICM initialization

® Per-pixel Maximum a Posteriori (MAP) estimate:

0 . (fs — m)?
ws = argmin log(\/ 2710;\) + 5
AEA 205

Input image Initial label map

2019. 11. 05.

ICM optimization steps

ICM vs. Simulated Annealing

ODQDODQ
OD®DQDO
ODQDQD.
QDQDQDQ = Gl

Can get stuck in local minimal

: accept a move even if
energy increases (with certain probability) Slide adopted from C. Rother ICCV'09 tutorial:

http://research.microsoft.com/

2019. 11. 05.

Simulated Annealing
Modified Metropolis Dynamics (MMD)

1. Set k = 0 and initialize w randomly. Choose a sufficiently high
initial temperature T =T,

2. Construct a trial perturbation n from the current configuration w
such that n differs only in one element from w.

3. (Metropolis criteria) Compute AU = U(n) — U(w) and accept 1 if
AU < 0 else accept with probability exp(—AU/T) (analogy with
thermodynamics):

n ifAU <0
w =49n ifAU > 0and ¢ < exp(—AU/T)
w otherwise

where € is a uniform random number in [0,1].
4. Decrease the temperature T = Ty, and goto step 2 with k =k +
1 until the system is frozen.

2019. 11. 05.

Temperature Schedule

@ In theory: should be logarithmic — in practice: exponential
schedule is reasonable
@ Initial temperature: set it to a relatively low value (~4) —
faster execution
e must be high enough to allow random jumps at the beginning!
® Schedule: T,,1 =c Ty, k=0,1,2,.. (e.g.c = 0.95).
® Stopping criteria:
e Fixed number of iterations
e Energy change is less than a thresholds

2019. 11. 05.

MMD segmentation

@ Starting MMD: random label map!

2019. 11. 05.

ICM vs MMD

ICM result MMD result

2019. 11. 05.

MRF Summary

® Design your model carefully

e Optimization is just a tool, do not expect a good segmentation from a
wrong model

® What about other than graylevel features?
e Extension to color is relatively straightforward

2019. 11. 05.

What color features?

2019. 11. 05.

Extract Color Feature

® We adopt the CIE-L*u*v* color space because it is
perceptually uniform.

e Recap from earlier slides: similarly to CIE-L*a*b*, color difference can
be measured here by Euclidean distance of two color vectors.

® We convert each pixel from RGB space to CIEL*u*v* space
 We have 3 color feature images

2019. 11. 05.

Color MRF segmentation model

@ Pixel labels (or classes) are represented by
three-variate Gaussian distributions

1 1, _ _
P(fs|lws) = \/E|Z | exp <_E (ﬁs - ﬁws)zg):sl(fs - ﬁws)T>

® Cligue potentials
e Singleton: proportional to the likelihood of features
given w : log P(f|w)
e Doubleton: favors similar labels at neighboring o 00— f
pixels — smoothness prior

Cliques

—ﬁ lf w; = (UJ

VCz(i'j) — ,86((‘)1'1(‘)]) — {-l_ﬁ

- as 3 increases, regions become more homogenous

11/5/2019

Segmentation examples

color image segmentation

11/5/2019

Mean shift segmentation

@ Versatile technique for clustering-based segmentation

Segmented "landscape 1" Segmented "landscape 2"

D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature space
analysis," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 5, pp. 603-619, May 2002

2019. 11. 19. 1

Mean shift clustering

® Sources: Mean Shift Theory and Applications, presentation of
Yaron Ukrainitz & Bernard Sarel
@ Further credits:
e Alper Yilmaz, Afshin Dehghan
e Lecture of Mubarak Shah, UCF FL, USA
* https://www.youtube.com/watch?v=M8B3RZVqggOo

11/19/2019 2

Origin: Mean-Shift Clustering

® Non-parametric iterative clustering technique introduced in
1975 by Fukunaga and Hostetler.

® Do not need to know the number of clusters a priori.
® Does not constrain the shape of the cluster.

® Mean shift considers the points in the feature space as samples
from an underlying probability density function.

® The objective of the algorithm is to find the modes of this PDF,
and associate each point with the node it is , attracted to”.

Fukunaga and Hostetler, "The Estimation of the Gradient of a Density Function, with Applications in
Pattern Recognition", IEEE Transactions on Information Theory vol 21, pp 32-40,1975

2019. 11. 19. 3

Mean shift — intuitive description

® Region of
® ® ° T interest
‘J’ ————— _’
v ® Center of
® R
Q o ©® mass
9 o
0 ® o
° ®
o o o
C
° oo 0 © »
000 o
C N
o o ®
o ©
® 9
. % o
» o »
o ® o o
o .
° ° ® ® ® .. Mean Shift
® i vector

Objective : Find the densest region
Distribution of identical billiard balls

Slide by Y. Ukrainitz & B. Sarel

Mean shift — intuitive description

Region of
() interest

o
® Center of
o mass
® 9
o
PY o
P ®
PY o
o
o o
o
9 ® ® o
o
o o o i
® ® Mean Shift
[) vector

Objective : Find the densest region
Distribution of identical billiard balls

Slide by Y. Ukrainitz & B. Sarel

Mean shift — intuitive description

Region of
() interest

o
® Center of
o mass
® 9
o
PY o
P ®
PY o
o
o o
o
9 ® ® o
o
o o o i
® ® Mean Shift
[) vector

Objective : Find the densest region
Distribution of identical billiard balls

Slide by Y. Ukrainitz & B. Sarel

Mean shift — intuitive description

Region of
() interest

o
® Center of
o mass
® 9
o
PY o
P ®
PY o
o
o o
o
9 ® ® o
o
o o o i
® ® Mean Shift
[) vector

Objective : Find the densest region
Distribution of identical billiard balls

Slide by Y. Ukrainitz & B. Sarel

Mean shift — intuitive description

Region of
() interest

o
® Center of
o mass
® 9
9 ¢ ®
PY)
PY o
o
o o
o
° ° ® ® ® Mean Shift
® vector

Objective : Find the densest region
Distribution of identical billiard balls

Slide by Y. Ukrainitz & B. Sarel

Mean shift — intuitive description

Region of
() interest

o
® Center of
o mass
® 9
9 ¢ ®
PY)
PY o
o
o o
o
° ° ® ® ® Mean Shift
® vector

Objective : Find the densest region
Distribution of identical billiard balls

Slide by Y. Ukrainitz & B. Sarel

Mean shift — intuitive description

® Region of
> ® ° ® interest
¢ ® ¢ ¢ ® Center of
® ® ° mass
®
® »
)
® ®
° ’ ® o
F ° F ®
® ®
o ° ®
® ®
®
o ® o o
®
® ® ®
® ®
®

Objective : Find the densest region
Distribution of identical billiard balls

Slide by Y. Ukrainitz & B. Sarel

Mean shift vector

® Given:

e Data points and approximate location of the mean of this data
® Task:

e Estimate the exact location of the mean of the data by determining the
shift vector from the initial mean

e We do this iteratively, until we do not have to move (mean shift vector
equals to zero)

11/19/2019

Mean shift vector example

’ ’
° ’
’ ’
’ °o®
’ ’ .
° o ® o o 1
Yo “.!.“. mp(y) = n_z:xl — Yo
o © 0 d00o0 *i=1
’ ’ ",
’ ’ ° 7

® Mean shift vector always points towards the direction of the
maximum increase in the density

11/19/2019

Mean shift with point weights

® n,: humber of points

Ny in the kernel
. W. ° x.

my,(y,) = [Zl‘%x {0o) - Xif Yo © Yo:initial mean
2.2 wi(¥o) location

® x;: data points
® h: kernel radius

® Weights are determined by different kernels:
e Uniform, Gaussian, Epanechnikov

11/19/2019

What is Mean Shift ?

® A tool for:

e Finding modes in a set of data samples, manifesting an underlying
probability density function (PDF) in RN
® PDF in feature space
e Color space
e Scale space
e Actually any feature space you can conceive

2019. 11. 19.

Parametric vs. nonparametric distributions

® Problem: model the height !
distribution of people in the class

e Approximate the histogram with a
Gaussian density:

[T " BT
th o th O

number of people
3 2

1 — w)?)
fx) = exp (- o f)) i e e s e e
\/%O' 20 height (cm)
* u and o are empirical mean and stdev -
values calculated from the samples P(x; <x<xp) = j f(x)dx
(i.e. people in the class) 0

® Parametric distributions:

» We have a closed formula for the probability density function (PDF)
with a few parameters

e Estimate the PDF parameters from the samples, then forget the
samples and use the pdf directly for probability calculation

e Various distributions exist: Gaussian, Poisson, Gamma, Beta, etc...

11/19/2019

Parametric vs. nonparametric distributions

® What happens if the |]
distribution of samples... | |

e ...does not fits any well known
parametric pdf formula, or...

_ /|
e ... we cannot decide what sort //
of formula we need the use ' H
(too few samples) e o e e e s
f(x) =727 Non-Gaussian distribution

AN

® Non-Parametric distributions:
e We do not have a closed formula for the probability density function (PDF)

e Instead, we need to store the samples, and use the samples directly to
model the PDF

e Our desire: the value of f(x) should be , high”, if we find ,,a lot of samples”
around x

11/19/2019

What is Mean Shift ?

® A tool for:

e Finding modes in a set of data samples, manifesting an underlying
probability density function (PDF) in RV

Non-parametric

=% | Density Estimation

Discrete PDF Representation

Non-parametric

Density GRADIENT Estimation
(Mean Shift)

)

PDF Analysis

2019. 11. 19.

Non-Parametric Density Estimation

The data point density 2D data points

implies a pdf value

. -

Assumed Underlying PDF Real Data Samples

11/19/2019

Non-Parametric Density Estimation

Assumed Underlying PDF Real Data Samples

2019. 11. 19.

_Density Estimation

Probability

Assumed Underlying PDF Real Data Samples

2019. 11. 19.

Kernel Density Estimation

Assumption : The data points are sampled from an underlying PDF

L

T

Assumed Underlying PDF Real Data Samples

* Each sample point contributes to the PDF with an additive term
(here: Gaussian) - u; : equal to the ith sample

11/19/2019

Kernel Density Estimation

n _(x=pp)*
PDF (x) = z c;-e 29
=1

® Non-parametric PDF with Gaussian kernel:

e Seems like a mixture of Gaussians, where the number of components is
equal to the number of samples, and the mean values of the
components are at the sample points uq, u,, ..., Uy

® Probability calculation for particular x value:

e We calculate it as a weighted sum from the surrounding sample points -
all the points contribute!

e We look at the distance of x from each sample point
e The PDF value is high for x which has a lot of samples around it

2019. 11. 19.

Kernel Density Estimation
Various Kernels

* Roles of kernels: they determine the weights of nearby
points in the density calculation.

A function of some finite number of

1 n
P(X)=—) K(X-X
) nizzll (x-x;) data points x;...x,,

Examples:

| PP S 2 I
e Epanechnikov Kernel e(X) =

0 otherwise
e Uniform Kernel K, (X) :{ g th”X” 3_1
otherwise

s

1, 2
[] K =C- S
Normal Kernel n(X)=c exp(2||X|| j ’

11/19/2019

Profile and kernel

® Radially symmetric kernel
K(x) = ck(]x||?)

Profile

n 1 n
PG =Y KGe—x) = ¢ » k(lx =l
i=1 =1

11/19/2019

Kernel Density Estimation

® Non parametric probability function (pdf)

» We do not have any assumptions about the closed form of the
distribution (such as Gaussian or mixture of Gaussians)

e We estimate the pdf directly from the sample points x;... x,,

1 n
PG = ¢) k(llx =)
=1

11/19/2019

Non parametric probability density calculation

1 n
PG = ¢) k(llx =)
i=1

® Given feature vector x

e e.g. 1D gray value, 3D color vector, 6D vector of color + texture
components etc.

@ Task: calculate the probability (density) value of x directly
from the sample points x4... X,
 Calculate the Euclidean distance d; of x from each x;.

e Use a kernel profile k(.) which assigns a weight to x; as a function of
the calculated d; distance (for lower distance higher weight, see
different kernels)

e Take the pdf value as a the normalized sum of the weights

e High pdf values corresponds to x features which have several x;-s
,hearby”

11/19/2019

Kernel Density Estimation

@ Relations of nonparametric pdfs and means shift

n
1
PG = ¢) k(llx =)
i=1
@ Derivative of the pdf (gradient of the density):

n
1
7P() = —c) Th(llx - 1)
=1

7P(x) = 2¢ (e~)R (llx xi?)
=1

11/19/2019

Kernel Density Estimation

2019. 11. 19.

7PG) =~ 2¢) (x — x K (Ix — 112
i=1

: 90x) =~k ()
7P() =~ 2¢ Y (x ~ gl = 3l
i=1
n 1 n
7PG) =~ 2¢ Y gl —xll?) —=2¢ Y xgClx - xil?)
i=1 =1

n noo. 12
o0 =226 S gl - sl Ff:lxlg(nx xil|) _x]
=1

i=1 9Ulx —x;1%)

Kernel Density Estimation

7P(x) = —2czg<ux—xlu2>[2” gl %D x]

g(llx = x;1[?)

1 X
VP(x) = —2c Ji [Zl /. x]
i=1

i=1Yi

2019. 11. 19.

Mean shift & nonparametric density analysis

m(x) mean
shift vector

n
C ®
TP() ==) gi X mx) o
n 4 ® [\
=1 PY
VP(x) o ® o °
m(x) = C on ® o ©
n&i=1Yi 9 9
® ®
® ¢ o A
Main theoretic result: Mean shift vector is ® ®
proportional to the gradient of the nonparametric
pdf, therefore it is appropriate for mode seeking g(x) =—-k'(x)

2019. 11. 19.

Mean shift mode detection

hat happens if we

reach a saddle point
?

J

Perturb the mode position
and check if we return back

Updated Mean Shift Procedure:

e Find all modes using the Simple Mean Shift Procedure

e Prune modes by perturbing them (find saddle points and plateaus)
* Prune nearby — take highest mode in the window

2019. 11. 19.

Mean-Shift Clustering

® Main steps:

1. A density estimation window (e.g. a Gaussian window) is placed on
each sample point.

2. Within each window the mean shift vector is calculated, which points
toward the maximum density:

X — X where
Z Xi g{ J x is a d dimensional feature point,
m, (X) - X g(x)=-K’(x), where K is a kernel function (e.g.
X — X, Gaussian kernel)
Z g[J h is the bandwidth parameter of the kernel

3. The window is shifted with the mean shift vector.

Step 2 and 3 are repeated until convergence to a local density
maximum.

5. The sample points that converged to the same local maximum will
belong to the same cluster.

2019. 11. 19.

Real Modality Analysis

Tessellate the space with windows Run the procedure in parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode

2019. 11. 19.

Attraction basin

@ Attraction basin: the region for which all trajectories lead
to the same mode
@ Cluster: all data points in the attraction basin of a mode

Slide by Y. Ukrainitz & B. Sarel

Clustering
Synthetic Examples

4

—_—

“Complex Modal Structurgs .

60
.
- 5
[ET A
- 0-. i
-0.5.
- -
S :
e .
L e = S
- -
I T e
- - 1
15 N . -y
3 St g C
R -
o P i

Clustering
Real example

Feature space: Initial window

*p 1% I » ?
L*u*v representation 2w centers
0. ¥ SOl b
°‘ . . - . -
-0 .
-20/ oo "% =
:._40 n. .
-0 | et 7
-50. -
-30. BN o
i S . - """ 100
B 100 b 2 el
0 e o -
v 0 40 L
-
20-
20 20
- o
0 . 04 20
20 - 20,
.- <40
-10 -40-
B / - 80
" %
30 - 2 ¥ - 100
» : > 100 m’- L 100 - =
famear e = g o 10 e 60
S 60 10 A‘-.__ﬁ--"‘ 60 u’ 0 J0 L
u* 0 40 14 0 J0 L’

Modes found uModes after Final clusters
pruning

Clustering
Real example

L*u*v space representation

Clustering
Real example

2D (L*u)
space
representation

1¢¢ e ! ' - ! } Flnal Clusters

100

NORMALIZED DENSITY

Not all trajectories
In the attraction basin
reach the same mode (o

Mean shift for image segmentation

® Segmented regions

e Similar color/texture values
e Spatially connected pixels
® Grayscale image segmentation
model
e Each pixel = a ,billiard ball” x in the 3D
joint spatial-intensity space:
x = [x,y,z(x,y)] € R>
where z(x,y) is the gray level of pixel
(x,y)
e Segmentation: find the modes of this

3D distribution —i.e. dense regions with
their attraction basins

11/19/2019

Discontinuity Preserving Smoothing

Feature space : Joint domain = spatial coordinates + color space

~

§

Meaning : treat the image as data points in the spatial and gray level domain:
x = [x5x"] = [x,v,z(x,y)] € R® where z(x,y) is the gray level of pixel (x,y)

S

2
h

r

X

K(x)=C-ks(:

S r

Image Dat:é‘ Mean Shift Smoothing
(slice) vectors result

2019. 11. 19.

Discontinuity Preserving Smoothing

The image gray levels... ... can be viewed as data points
in the X, y, z space (joined spatial
and color space)

2019. 11. 19.

Discontinuity Preserving Smoothing

Flat regions induce the modes !

'/J. - Do e /.}'\‘/‘\’_‘/.
y

Discontinuity Preserving Smoothing

® The effect of window
size in spatial and
range spaces

: iy i -l Ro:_4:02 Sk
(hss hr) . (]6:4) (h:n hy) = (16,8) (hsa hr) = (16,]6)

(s, h,j = (Sé, 4) (h;h;) =» (32. 8) (h,.h,). (32,16)

2019. 11. 19.

Discontinuity Preserving Smoothing

Discontinuity Preserving Smoothing

2019. 11. 19.

Segmentation

® Segment = Cluster, or Cluster of Clusters
® Algorithm:
e Run Filtering (discontinuity preserving smoothing)
e Cluster the clusters which are closer than window size

2019. 11. 19.

Segmentation

...when feature space is only
gray levels...

2019. 11. 19.

Segmentation

2019. 11. 19.

Mean shift segmentation results

: v 4
4 \ ' RPN

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean-shift: other issues

® Speedups
e Uniform kernel (much faster but not as good)
e Binning or hierarchical methods

e Approximate nearest neighbor search
® Methods to adapt kernel size depending on data density
® Lots of theoretical support

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach
toward Feature Space Analysis, PAMI 2002.

Mean shift pros and cons

® Pros
e Good general-practice segmentation
e Finds variable number of regions
e Robust to outliers
® Cons
e Have to choose kernel size in advance

e Original algorithm doesn’t deal well with high
dimensions

® When to use it
e Oversegmentatoin
e Multiple segmentations
e Other tracking and clustering applications

Basic Image Processing Algorithms

PPKE-ITK

Lecture 9.

2019. 11. 19. 1

Watershed algorithm

® A mathematical morphology based approach on image
segmentation

11/19/2019

Watershed Segmentation

® A grey-level image may be seen as a topographic surface,
where the grey level of a pixel is interpreted as its altitude in
the surface.

® The goal of the algorithm is to find the ,watersheds” that are
separating the ,,catchment basins” from each other.

[Tooding

N\, /\ N\ dﬂm \
RASA [VNV
(a) (b)

A LABNAL LA
© &)

Concept of the watershed algorithm*

*Yu-Hsiang Wang: , Tutorial: Image Segmentation” (http://disp.ee.ntu.edu.tw/meeting/%E6%98%B1%E7%BF%94/Segmentation%20tutorial.pdf)

2019. 11. 19.

Watershed-Basic Definitions

® I: 2D gray level image

® Path P of length £ betweenp and g in I Pg
o A (£ + 1)-tuple of pixels (py = 0, Py ., Py = P gi
q) such that p;, p;,1 are adjacent (4 adjacent, Ds|Ds| P-
8 adjacent, or m adjacent)
e £(P):the length of a given path P 4-adjacent path P
with £(P)=6
® Minimum

e Aminimum M of [is a connected plateau of
pixels from which it is impossible to reach a
point of lower altitude without having to
climb

Plateau M, Plateau M,

2019. 11. 19. 4

Basic Steps

® Piercing holes in each
regional minimum of |

® The 3D topography is
flooded from below
gradually

® When the rising water in
distinct catchment basins
is about to merge, a dam
is built to prevent the
merging

® Instead of working on an image itself, this technique is
often applied on its gradient image.

2019. 11. 19. 5

Watershed-Basic Definitions

® Three types of points
e Points belonging to a regional minimum
e Catchment basin / watershed of a regional minimum
* Points at which a drop of water will certainly fall to a single minimum
e Divide lines / Watershed lines

* Points at which a drop of water will be equally likely to fall to more
than one minimum

* Crest lines on the topographic surface
@ This technique is to identify all the third type of points for segmentation

- h

Watershed ridge line

\

Catchment basins

2019. 11. 19.

Basic Steps

® The dam boundaries
correspond to the
watershed lines to be
extracted by a water-
shed segmentation
al-gorithm

e Eventually only const-
ructed dams can be
seen from above

2019. 11. 19. 7

Dam Construction

® Based on binary morphological dilation
@ At each step of the algorithm, the binary image in obtained in
the following manner:
1. Initially, the set of pixels with minimum gray level are 1, others 0.

2. In each subsequent step, we flood the 3D topography from below
and the pixels covered by the rising water are 1s and others Os. (See
previous slides)

2019. 11. 19. 8

Dam Construction

4

® The dam is constructed by the

points on which the dilation would

cause the sets being dilated to
merge.

e Result: one-pixel thick connected path

e Setting the gray level at each point in
the resultant path to a value greater

— 4

than the maximum gray value of the M

image. Usually max+1

P Dam points

2019. 11. 19.

Distance transform

@ Distance transform operator:

Input: binary image (showing foreground/background regions)

Result: a graylevel image, where the graylevel intensities of points
inside foreground regions are show the distance to the closest
boundary from each point

Implementation: through morphological operations

Often used as input of the Watershead transform (instead of the
gradient image)

https://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm

11/19/2019

Example 1 - Watershed Transform of Binary
Image Using the Distance transform

A: Original image B: Negative of image A
C: Distance transform of B D: Watershed transform of C A ' B
C|D

Distance transform of a binary image is defined by the
distance from every pixel to the nearest non-zero valued

pixel
1 1 0 0 0 0.00 0.00 1.00 2.00 3.00
1 1 0 0 0 0.00 0.00 1.00 2.00 3.00
0 0 0 0 0 1.00 1.00 1.41 2.00 2.24
0 0 0 0 0 1.41 1.00 1.00 1.00 1.41
o 1 1 1 0 1.00 0.00 0.00 0.00 1.00

2019.11.19.

Example 1 - Watershed Transform of Binary
Image Using the Distance transform

® Segmentation example applying watershed to the inverse
distance image using the binary mask

2019. 11. 19.

Examples 2 - oversegmentation

(a) Original image

(b) Gradient image of image (a)

(c) Watershed lines obtained from
image b (oversegmentation)

=» Each connected region contains
one local minimum in the | @)

corresponding gradient image D ALLE, e >
. . TR T o . -'5{?
(d) Watershed lines obtained Fatagaterizratsl

) 2 T T
from smoothed image (b) :

2019. 11. 19.

Simple trick

® Use median filter to
reduce number of regions

2019.11.19.

2019.11.19.

15

Object segmentation by watershed algorithm

® Task: segmentation of (possibly touching) objects in front of a
background

Electrophoresis image

11/19/2019

Watershed Segmentation

® Over-segmentation problem:

e most times the real watershed transform of the gradient present many
catchment basins, each one corresponds to a minimum of the gradient
that is produced by small variations, mainly due to noise.

Original Image* Segmentation Result*
*Yu-Hsiang Wang: , Tutorial: Image Segmentation” (http://disp.ee.ntu.edu.tw/meeting/%E6%98%B1%E7%BF%94/Segmentation%20tutorial.pdf)

2019. 11. 19.

The Use of Markers

® Over-segmentation problem
e Usually, we cannot overcome it with simple filtering (like median)
e Use of markers can be a solution
@ Internal markers are used to limit the number of regions by
specifying the objects of interest
e Like seeds in region growing method
e Can be assigned manually or automatically

e Regions without markers are allowed to be merged (no dam is to be
built)

® External markers: pixels where we are confident to belong to
the background

e Watershed lines are typical external markers and they belong the same
(background) region

2019. 11. 19.

Watershed Based Image Segmentation

® Use internal markers to obtain watershed lines of the gradient
of the image to be segmented.

® Use the obtained watershed lines as external markers

® Each region defined by the external markers contains a single
internal marker and part of the background

® The problem is reduced to partitioning each region into two
parts: object (containing internal markers) and a single
background (containing external markers)

2019. 11. 19.

Over-segmentation: solution

® FIRST STEP: we mark each
blob of protein of the
original image

Image with a few markers (not all blobs

are marked here)
© Nadine Garaisy

2019. 11. 19.

Usage of internal markers

® Now we look at the final result of the marking as a topographic surface, but
in the flooding process instead of piercing the minima, we only make holes
through the components of the marker set that we produced

= —.
oy DR

. 0 o

= , L ¥

" ! =

] b P E |

z ¥ v ,

E £ .

i H i . I

1 " T B r
'y E) [

)

® This way the flooding will
produce as many catchment
basins as there are markers in
M, and the watershed lines of
the contours of the objects
will be on the crest lines of
this topographic surface

Initial image marked with the set M
© Nadine Garaisy and the resulting watershed lines

2019. 11. 19.

Watershed Segmentation

@ Partitioning each region into two parts: object (containing internal
markers) and a single background (containing external markers)

* Global thresholding, region growing, region splitting and merging...

I'|_

Image with internal and external markers Final segmentation result

2019. 11. 19.

Watershed segmentation example

® Use the Gradient Magnitude as the Segmentation Function

e The gradient is high at the borders of the objects and low (mostly) inside the
objects.

Original image (1) Gradient magnitude image

2019. 11. 19.

Watershed segmentation example

® Obtaining good foreground markers: regional maxima of the morphology
enhanced input image

Result of grayscale morhpology (M) Regional maxima of (M) superimposed
on original image (I)

2019. 11. 19.

Watershed segmentation example

® Obtaining good background markers
e Step 1: threshold the morphology enhance image

» Result of grayscale morhpology (M) » T: result of Otsu threshold on M

2019. 11. 19.

Watershed segmentation example

® Obtaining good background markers
e Step 1: threshold the morphology enhance image

e Step 2: using the watershed transform of the distance transform of T,
and then looking for the watershed ridge lines of the result

S

« T: result of Otsu threshold on M « Watershed lines (background markers)

11/19/2019

Watershed segmentation:
Visualization of the results

Superimpose the foreground markers, Segmentation results: display the

background markers, and segmented label matrix as a color image
object boundaries.

Matlab tutorial example, with source code:
https://www.mathworks.com/help/images/examples/marker-controlled-watershed-
segmentation.html|?prodcode=IP&language=en

11/19/2019

Watershed application example

® Segmentation of masonry wall images

Input Marker image by Segmentation Ground Truth
Deep Learning result

Reference: Y. Ibrahim, B. Nagy and Cs. Benedek: "CNN-based Watershed Marker Extraction
for Brick Segmentation in Masonry Walls", International Conference on Image Analysis and
Recognition (ICIAR), Waterloo, Canada, August 27-29, 2019

2019. 11. 19.

https://www.aimiconf.org/iciar19/

Further results...

Y. Ibrahim, B. Nagy and Cs. Benedek: "CNN-based Watershed Marker Extraction for Brick Segmentation in Masonry
Walls", International Conference on Image Analysis and Recognition (ICIAR), Waterloo, Canada, August 27-29, 2019

2019. 11. 19.

https://www.aimiconf.org/iciar19/

Summary: Watershed Segmentation

® There are 3 types of pixels:
e Points belonging to a regional minimum
e Point belonging to the catchment basin of a regional minimum
e Points belonging to a watershed line
® The resulted boundaries of the regions are continuous.
@ Butitis time consuming and has over-segmentation problems.
® The solution to the over-segmentation is to use markers:
e Internal markers:
* Each one correspond to one object
* Surrounded by points with higher altitude
* Points in a region form a connected component
* The points of the connected component has the same intensity
e External markers:

- Segment the image into regions with one internal marker object and
background points.

2019. 11. 19.

Basic Image Processing Algorithms

PPKE-ITK
Lecture 11.

2019. 11. 26. 1

Local Feature Descriptors

@ The detection and description of local features has an important

ccccccccccccccccccc

role in many applications: T
e Object recognition/detection/tracking £

Image and video retrieval s

- chairLeftTruncOcc

Image registration, motion estimation

Wide baseline matching

Texture classification

Structure from Motion

e etc
.
v f A P ey
e e - A
i)

1&')

B e

&

j EEp | EEEEE
,

Local Feature Descriptors

® There are different types of use of the descriptors:
e Description and matching of key points:
1. Feature/Keypoint detection
2. Local feature description around the key points
3. Keypoint matching
» Bag-of-Features (or bag-of-words)
1. Feature detection
2. Feature description
3. Feature clustering
4.

Frequency histogram construction
for image or image part description

e Description of a specific area:
1. Find the region of interest (ROI) (e.g. scanning through the image)
2. Description of the ROI
3. Classification/Clustering of the ROI descriptor

2019. 11. 26.

Keypoint matching example

® Application: pixel level image matching from stereo images for
depth map calculation

Left image a2 Right image

Found true
corresponences

;S

vz

P o T e i e !
| i ¥
% e
C g e o, i
h -

2019. 11. 26.

G S
® D
Y n
° B
%ba
T >
£ ¢
O O
omﬁ
(¥p]
© &
S 2
-
Mm
S
O
(o] 0]
<

Feature match

Some Matching Results

019. 11. 26.

Which pixels are easy to match?

Interest points

» 0D structure: single points
not useful for matching

1D structure: lines

» edge, can be localised in 1D,
subject to the aperture problem

| 2D structure: corners
e 4 » corner, or interest point, can be localized
in 2D, good for matching

Interest Points have 2D structure.

2019. 11. 26.

How to find good feature points?

® Based on the idea of auto-correlation
e Sum of squared differences (SSD) matching

Flat area Edge area

Corner

* Important difference in all directions — Small 55D
=> interest point — > LlargeSSD

2019. 11. 26.

Background: Moravec Corner Detector (1980)

e take a window W in the image
e shift it in four directions
[AX, Ay] € {[1,0], [071]' [1'1]' [_1'1]}
e compute a SSD difference for each direction

e compute the min difference at each pixel

e Jocal maxima in the min image are corners

2
SSD(Ax, Ay) = z (I(xk,yk) — I(x) + Ax, y;, + Ay))
(Xk,yk)EW
® Limitation: not isotropic

e if an edge is present that is not in the direction of the neighbors
(horizontal, vertical, or diagonal), then the smallest SSD will be large
and the edge will be incorrectly chosen as an interest point.

2019. 11. 26.

Harris detector

@ Auto-correlation function (SSD) for a point (x,y) and an
arbitrary shift (Ax, Ay) - not only 4 directions!

2
Fay) =) (G0 = 1o+ A%,y +4y))
(Xk,yk)EW

® Discrete shifts can be avoided with the auto-correlation matrix
(Taylor approximation):

Ax
106 + A%, v + Ay) = 1000 v0) + TGt vi) Ly G yi)]]

Ay
» where I, and I,, are the derivative images (e.g Prewitt). Then:

flx,y) = z ([Ix(xRJYk) Ly (e, Y] [2;)2

(XK, YK)EW

2019. 11. 26.

Harris detector

® Rewrite as inner (dot) product

flx,y) = Z ([1 (X Vi) 1y (xp, yi)] yDZ =

(XY) EW
L (Xp, Vi)
= Z [Ax Ay] [Ix(xk ik) (LG, vie) Ly (e, Yie)] y]
(XkYK)EW A

® The center portion is a 2x2 matrix:

:Z[Ax Ay] [Ix “ = [Ax Ay Llj I’;éy] [ﬁ;]:

w

11/26/2019

Harris detector

3 -
(LG, vi)) 2 Le G, i) 1y (e, i)
, w , w Ax
— [Ax A}I] (.Xk yk)E (.X'k yk)e , Ay]
Z Ix(xkr yk)ly(xk, yk) z (Iy(xkr yk))
L (X, Y) EW ' (XK, Y1) EW 4
M

® M: auto-correlation matrix of the local gradient map
e captures the structure of the local neighborhood (recap: PCA)
e measure based on eigenvalues A{,1, of M
* 0 strong eigenvalue (41; = 0,4, = 0) => uniform region
* 1 strong eigenvalue (1; > 0,4, = 0) => contour
- 2 strong eigenvalues (1; > 0,4, > 0) => interest point (corner)
® Interest point detection:
e threshold on the eigenvalues, then find maximum for localization

2019. 11. 26.

Some Details from the Harris Paper

@ Alternative measure for corner strength to avoid eigenvalue
computation:

a1 alzl Tr(M) = a11 + A2

R = Det(M) - k Tr2(M) [M=[o

Det(M) = ay1a,; — aga;,

® It can be shown:
Tr2 (M):Al + /12 Det(M) —).1/12

* instead of calculating the A; and A, eigenvalues, we use trace and
determinant (x parameter is usually between 0.04 — 0.15)

® Classification based on R:
e positive for corners (R >> 0),
e negative for edges (R «< 0),
o small for flat regions (R = 0)
® Select corner pixels that are 8-way local maxima

2019. 11. 26.

Determining correspondences

E

Vector comparison using a distance measure

|l -~

What are some suitable distance measures?

2019. 11. 26.

Distance Measures

® Let W; and W, be two rectangular windows in image I; and I,
respectively

e The two windows have same size, but not necessarily the same center
positions

® To compare W; and W, we can use the sum-square difference
of the values of the pixels in a square neighborhood about the
points being compared. This is the simplest measure.
w; w,

2
SSD(W]_, Wz) — 2 (Wl (xk))’k) _ WZ (xkl yk))
(XK, Yk)

2019. 11. 26.

Harris based feature matching

® Basic feature matching = Harris Corners & Correlation

® Very good results in the presence of occlusion and clutter
e |ocal information
e discriminant grayvalue information
e invariance to illumination

® No invariance to scale and affine changes, limited invariance
to image rotation

® Solution for more general view point changes
e |ocal invariant descriptors to scale and rotation
e extraction of invariant points and regions

2019. 11. 26.

Rotation/Scale Invariance

- S

e

original translated rotated scaled
Translation Rotation Scale
Is Harris ? ? ?
Invariant?
IS correlation ? ? ?

Invariant?

2019. 11. 26.

Rotation/Scale Invariance

e . . ANy

original translated rotated scaled
Translation Rotation Scale
Is Harris YES YES NO
Invariant?
IS correlation ? ? ?
Invariant?

2019. 11. 26.

Rotation/Scale Invariance

original translated rotated scaled
Translation Rotation Scale
s Harris YES YES NO
Invariant?
Is correlation |YES NO NO

Invariant?

2019. 11. 26.

Matt Brown’s Invariant Features

e Local image descriptors that are invariant (unchanged) under
image transformations

2019. 11. 26.

Application: Image Stitching

[Microsoft
Digital Image
Pro version 10 |

2019. 11. 26.

SIFT: Scale-Invariant Image Transform

® Developed by David Lowe, University of British Columbia

Cited by 54194
David Lowe -
4216
Computer Science Dept., University of British Colun -
Verified email at cs.ubc.ca - Homepage
Computer Vision Object Recognition 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
S aroy | vear Citation data from 25.11.2019
Distinctive image features from scale-invariant keypoints @ 2004
DG Lowe
International journal of computer vision 60 (2}, 91-110
Object recognition from local scale-invariant features 18083 1999

DG Lowe
International Conference on Computer Vision, 1999, 1150-1157

* Lowe, ,Object recognition from local scale-invariant features”, In: IEEE International Conference on

Computer Vision, Vol. 2 (1999), pp. 1150-1157 vol.2.
* Lowe, , Distinctive image features from scale-invariant keypoints” International journal of computer

vision 60 (2), 91-110, 2004

2019. 11. 26.

SIFT: Motivation

® The Harris operator is not invariant to scale and correlation is
not invariant to rotation*

@ For better image matching, Lowe’s goal was to develop an
interest operator that is invariant to scale and rotation.

® Also, Lowe aimed to create a descriptor that was robust to the

variations corresponding to typical viewing conditions. The
descriptor is the most-used part of SIFT.

1But Schmid and Mohr developed a rotation invariant descriptor for it in 1997.

2019. 11. 26.

ldea of SIFT

® Image content is transformed into local feature coordinates
that are invariant to translation, rotation, scale, and other
Imaging parameters
4)

—|F
R
— 15

_ J

SIFT Features

2019. 11. 26.

SIFT: Scale-Invariant Image Transform

® Advantages:
e Invariant to translation, scaling, and rotation
e Robust to illumination changes, noise, minor changes in viewpoint
e Robust to local geometric distortion
e Highly distinctive
e SIFT based object detectors are robust to partial occlusion
@ Steps of the Algorithm:
Scale-space extrema detection
Keypoint localization
Orientation assignment
Keypoint description

2019. 11. 26.

. Scale-space extrema detection
Scale change via Gaussian blur

® Blurring image with a Gaussian kernel:

e Loosing details i.e. transforming the image into a different scale
L(x, y,k-0)=G(x, y,k-o)*1(x,y)

* Where 2,y
G(x,y,a):2 ~e %

* Increasing k will increase the amount of blur, i.e. yields a lower scale
representation of the image content

* At a certain level of blur, the image can be spatially downscaled

11/26/2019

Gaussian Pyramid

At each level, image is smoothed and reduced in size.

- And so on.

At 2" |evel, each pixel is the result
of applying a Gaussian mask to the
first level and then subsampling to
reduce the size.

sian filter

Bottom level is the original image.

2019. 11. 26.

Example:
Subsampling with Gaussian pre-filtering

Gaussian 1/2

2019. 11. 26.

. Scale-space extrema detection
Lowe’s Scale-space Interest Points

@ Laplacian of Gaussian (LoG) kernel
e Scale normalised (x by scale?)

e Proposed by Lindeberg

® Scale-space detection
e Find local maxima across scale/space
e A good “blob” detector

| T. Lindeberg IJCV 1998 |

N\ N
\
\
\/
10 -5 \0/5 10
i .
-iﬂ{;‘t&:t“}ﬂi\
1 1 w2+yz
G(r,y.0) = e 2 o
2T
2y N2 Y
) 0%G %G
oh o

2019. 11. 26.

LoG extrema examples

maxima

® Dependence on sigma of
blurring (i.e. scale):

TE=

= =
i

u
"\

.

|

il

2 1

~ LoG sigma =

LoG sigma= 10

11/26/2019

LoG as blob detector

/
0 N 0

A R N
ONQ o% ONQ

. Scale-space extrema detection
Lowe’s Scale-space Interest Points

® Using Laplacian of Gaussian (LoG) directly - 02V?G
e Extrema useful: found stable feature and gives excellent notion of scale
e Calculation costly instead...

® Approximation of LoG:

06 G(x,y,ko) —G(x,y,0)
" 0o ko — o

oV?%G

G(x,y, ko) —G(x,y,0) = (k —1)a*V?*G
e Difference of Gaussians (DoG) approximates LoG:

D(x,y,0) = (G(x,y, ko) — G(x,y,0)) * [(x,y)=
= L(x,y,ko) — L(x,y,0)

11/26/2019

|. Scale-space extrema detection
Workflow

@ |. Scale-space extrema detection:
» Key point detection with Difference of Gaussians (DoG):
 I(x,y) is the original image
* G(x,y, ko) is the Gaussian blur at scale ko
* The original image convolved with Gaussian kernel at different scales:

L(x, v,k - &) =G(x, y,k-c)*1(x,y)

* The convolved images are grouped by octave (in an octave o is doubled).
The difference of consecutive convolved images is taken in an octave:

D(x, y,)=L(x, y,k -)~ L{x, v, k; - &)

2019. 11. 26.

|. Scale-space extrema detection
Lowe’s Pyramid Scheme

sale | g2 P
e |

octave)

s+2 filters
GS+1:2(S+1)/SGO
Scale
] (first
—nils octave)
6,=2"%q,
S+3 _

' images differ-

—22/ .
G,=2%5c, includiny lefergnceof ence
o, =215 . Gaussian Gaussian (DOG) .

1 0 original images
Go

The parameter s determines the number of images per octave.

2019. 11. 26.

|. Scale-space extrema detection
Lowe’s Pyramid Scheme

@ Scale space is separated into octaves:
e (Qctave 1 uses scalec
e (Qctave 2 uses scale 2

e etc.

® In each octave, the initial image is repeatedly convolved with
Gaussians to produce a set of scale space images.

® Adjacent Gaussians are subtracted to produce the DOG
® After each octave, the Gaussian image is down-sampled by a

factor of 2 to produce an image % the size to start the next
level.

2019. 11. 26.

Il. Key point localization

® Detect maxima and minima
of difference-of-Gaussian in
scale space

® Each point is compared to
its 8 neighbors in the
current image and 9
neighbors each in the scales
above and below

2019. 11. 26.

s+2 difference images.
top and bottom ignored.
S planes searched.

A o L
il

For each max or min found,
output is the location and
the scale.

Il. Key point localization

® Il. Keypoint localization:
e Localization is done with sub pixel accuracy, based on the interpolation

of nearby data:
O
True Extrema A
o ’\0/\
A A @
/ $.~./A
O A

A
/ Detected Extiema

Sampling

2019. 11. 26.

Il. Key point localization

@ Il. Keypoint localization:

e Rejection of weak candidates:
 Low contrasted points

* Poorly localized points along edges:

* The DoG function will have strong responses
along edges, but these points are not stable,
since their location is poorly defined.

* These points will be removed based on the
principal curvature across and along the edge.

e Similar approach to Harris, but here the ratio
of the trace? and determinant of the Hessian
detector matrix (Beaudet, 1978) is calculated

http://en.wikipedia.org/wiki/Scale-invariant_feature_transform

11/26/2019

lll. Orientation Assignment

® Orientation Assignment: goal is to ensure rotation invariance
* Find the main orientation(s)
* Assign it to the key point and
* Give the description of the keypoint relative to this orientation.

2019. 11. 26.

lll. Orientation Assignment

@ Steps of orientation assignment

e Gaussian smoothed image is taken at the scale
of the keypoint.

 The edge magnitude and orientation is
calculated for each point in the neighborhood.

e A 36 bin orientation histogram is composed,
where each bin represents a 10 degree interval,
and each neighboring point’s bin is determined
based on its edge orientation and its weight
based on the edge magnitude. o ¢ 27

e Also the points are weighted with a Gaussian window, so the points
farther away has less effect than the points closer to the keypoint.

e The canonical orientation of the keypoint will correspond to the peak of
the histogram.

11/26/2019

Result of Keypoint localization with
orientation assignment

\\\. i

i‘i?h X =
Tl _ u?ﬁ!t“i initial keypoints
i f’

729

keypoints after e _
low contrast w%%
based rejection ©™=

2019. 11. 26.

V. Keypoint Descriptors

@ At this point, each keypoint has
e |ocation
e scale
e orientation
® Next is to compute a descriptor for the local image region
about each keypoint that is
 highly distinctive
e invariant as possible to variations such as changes in viewpoint and
illumination

2019. 11. 26.

Normalization

@ Rotate the window to standard orientation (e.g. the calculated
canonical orientation vector should point upwards)

® Scale the window size based on the scale at which the point
was found.

2019. 11. 26.

Lowe’s Keypoint Descriptor
(shown with 2 X 2 descriptors over 8 X 8)

® Demonstration example: take here a 8x8 point neighborhood around the
keypoint and divide it into 2x2 gradient window.
@ Build the orientation histogram of the 2x2 samples in each window with 8

direction bins — concatenate the 8bin histograms to obtain feature vector.
T —

S MIE
A NEA :‘;
—_— T’ >
T— N » it "

F i

i« A A z -

N v ey

\qu.*.ﬁ_‘y/
u

Image gradients Keypoint descriptor

@ In practice: 4x4 arrays (form 16x16 point neigborhoods), with 8 bin histogram

is used, a total of 4x4x8=128 features for one keypoint
11/26/2019

V. Keypoint Descriptor: Overview

®©@ @®

2019. 11. 26.

Use the normalized region about the keypoint

Take a 16x16 point neighborhood around the keypoint and divide it into
4x4 gradient window.

Compute gradient magnitude and orientation at each point in the region
(weight them by a Gaussian window overlaid on the circle)

Build the orientation histogram of the 4x4 samples in each window with 8
direction bins.

4 X 4 times 8 directions gives a vector of 128 values. I |

SON
v |vlale
e
A

-l AN RN
~ MR oaeEe

Image gradients Keypoint descriptor

Image from: Ofir Pele

Using SIFT for Matching “Objects”

SIFT: Scale-Invariant Image Transform

@ SIFT inspired methods:

e PCA-SIFT:
* Reduce dimensionality, only keeps 20 dimension out of 128.

e SURF:

* Inspired by SIFT, but uses box filters (Haar like filters) with Integral
Image implementation for fast calculation.

* Has similar results as SIFT, but more sensitive to viewpoint and
illumination changes.

Y. Ke and R. Sukthankar, “PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,” Proc. Conf. Computer Vision and Pattern
Recognition, pp. 511-517, 2004.

H. Bay, T. Tuytelaars, L. Van Gool "SURF: Speeded Up Robust Features", Proceedings of the 9th European Conference on Computer Vision, Springer
LNCS volume 3951, part 1, pp 404--417, 2006.

2019. 11. 26.

Basic Image Processing Algorithms

PPKE-ITK

Lecture 12.

2017.12.05. 1

Introduction to Machine Learning

What is Machine Learning?

—r77 —

® Face detection

® E-mail spam filter

® Page ranking in Google search

® Road sign recognition in cars

® Advertisements on web pages and other recommendation

Syste ms F o _me

\ =
) e ,WMjm s As
® Handwriting recognition SO PN

Winter is here. Go to the store and buy
some snow shovels.

® Credit card fraud detection

2017.12.05. 3

What is Machine Learning?

® Arthur Samuel (1959): "Field of study that gives computers the
ability to learn without being explicitly programmed".

® Tom M. Mitchell: "A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E".

2017.12.05. 4

Machine Learning Algorithms

® Supervised Learning:

e The supervised algorithms are trained on labeled data, where the
desired output is known. The goal is to train a classifier that can work
on previously unknown data.

- Regression: prediction of continuous valued output
AR

® Y: Stock prices
M X: Company sells data
>
,{(K
A
8 . :
/ What is the right model?
4 >

L
3

2017.12.05.

Machine Learning Algorithms

® Supervised Learning:

e The supervised algorithms are trained on labeled data, where the
desired output is known. The goal is to train a classifier that can work
on previously unknown data.

- Classification: prediction of discrete valued output

A
Y: Spam/Not Spam

X: frequency of a certain word
or

—90—90-00——|00—0 > Y: Face/Not Face
X: Haar-feature

8 B 8 88N

We can represent the

problem in a different way @

Based on only one feature we
cannot make a good decision

2017.12.05. 6

Machine Learning Algorithms

® Supervised Learning:

e The supervised algorithms are trained on labeled data, where the
desired output is known. The goal is to train a classifier that can work
on previously unknown data.

- Classification: prediction of discrete valued output

In 1D the problem
is not separable:

Spam/Not Spam
! ! X: frequency of a certain word

Y: frequency of another word
By adding a new feature, the two A % or
classes are becoming separable: 8 Face/Not Face

° 8 X: Haar-feature
\“ x 8 Y: Haar-feature 1.
>

2017.12.05.

Machine Learning Algorithms

® Unsupervised Learning
e In case of unsupervised learning the training data is not labeled.

® %

™

% Taolt
%

X %

= 8o

®
8 le g%

% %
8 . ®
$ s®l % %xs
¥ u u?®
* %
A

Supervised learning Unsupervised learning

2017.12.05. 8

Machine Learning Algorithms

® Unsupervised Learning
e The goalis to find meaningful structure in the data.

e Applications:
* Social Network Analysis

* Market Segmentation
* Compression
* Image Segmentation=

Original Image Feature Space Segmented Image

Source of the Images: http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/

2017.12.05.

Machine Learning Algorithms

® Reinforcement Learning
e The goal is to get an agent to act in the world so as to maximize its
rewards.

® Recently very hot topic:
e Computers can automatically learn to play ATARI games...

e ...can beat humans in go (AlphaGo) TR i

e ...can learn to walk e aamaaaa

il | 1Y A
00‘;10,29 . e ala

2017.12.05.

Supervised Learning

2017.12.05.

Linear Regression

® Example: Housing Prices

e |tis a supervised learning problem: we have data with ground truth.
e We know the size of the houses and the price they were sold for:

Training data:

Size in feet? (x) Price ($) in 1000's (y)
2104 460 <\First training example:
1416 232 (x(®), y(1))
1534 315
852 178
A
Price

Size (square feet)

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Summarization of a Learning Algorithm

Training Data

v

Learning Algorithm

l

Learned Hypothesis Function:

h \
h mapsxtoy

Estimated Price of
the House

Size of the House,
X

Estimated value of

New, previously .

unseen data

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Supervised Learning
Linear Regression

® Representation of h for linear regression with one variable:

hy=0,+0x —— 6.' S are the parameters

® How to find the best values for the parameter 67

A 6, =15 A O, = A6, =1
0,=0 0, =05 6 =05
y y / Y
> > >
X X X

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Linear Regression

® How to find the best values for the parameter 67
® Idea: Find parameters (8,,6,), so that h,(x) is close to y for
the training examples. ,
min L Zm: (he (X(i))_ y(')) where m is the number

606, 2m — of training examples

| J
I

h,(x") = 6, + Gx"

® The conventional notation of the above expression:

min J(6,, 6,)

%0 J(8,,6,) is called
> | the cost function

30, 6,) = 5= Zm:(hg(xm)_ y0)

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Linear Regression

® We have a hypothesis function to map the features to the labels:
X to y, house size to price, etc.
h, =6, + X

® The hypothesis function has parameters (8, 6,), which are
optimized during the training by the minimization of the cost

function: m _ 2
‘J(Qm ‘91) = % Z(he(x(l))_ y(l))

=1

® Simplified example (with 6, = 0):

2017.12.05.

Gradient Descent

® Gradient Descent method will be used to find the minimum of
](90» 91)5
e Start with arbitrary initial values (e.g. 6, = 0, 6, = 0)

 In each iteration change 6, and 8, so that J is reduced, until it reaches
its minimum value. To achieve this the following update rule is used:

o .
0, =0, —a55 J(6,,6,) for j=0,1
\ ! J
|
learning rate derivative of J

e The update is done simultaneously for all the 6.
@ Intuition in 1D: AJ (61)

The tangential has a positive slope, the
derivative is positive, 8 will be decreased.

The tangential has a negative slope, the
derivative is negative, 8 will be increased.

2017.12.05.

Gradient Descent

® In each iteration we move toward the minimum:

(6. 6,)

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Gradient Descent

@ In each iteration we move toward the (local) minimum:

(6. 6,)

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Linear Regression

® With a convex J function, there is only one minimum, the
global minimum:

: St
= ou; A e o
4 s
T e o e e s
e o e e e e
LR q'-_.q?-.t,..‘ 3 ﬂoéﬁt.g@,'rﬁﬁwnﬂf«ﬁ
S et

B e
e e

0, 20 -20 8,

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.

Linear Regression

@ Linear regression can be more powerful with multiple variables:
e Size of the house, # bedrooms, age, # floors, ...
 The new hypothesis function

N, (X, X0 Xgyeery X) = B + OX + O)X, + OX + ... + O, X,

e More convenient to write it in a matrix-vector form:

1
m) _ 2
h,(x)=0" - x=[0, 0, .. 0] 3(0) = 5= 37 (n, (<) - y©)
: i=1
X,

e Features may have different scale (#bedrooms: 1-5, size of the house:
500-2000). Scaling the features to the same range + normalizing the mean
often helps the learning algorithm to perform better.

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Logistic Regression

® Supervised classification algorithm:
e From the input features (x) it predicts a discrete output (y):
 Face/Not Face, Spam/Not Spam, ...
e In the training data y is a vector of 0’s and 1’s:
* 0 denotes that the samples belongs to the negative class: not face, not
spam, ...
+ 1 denotes that the samples belongs to the positive class: face, spam, ...

e There are multiclass classification problems with N different classes,
wherey =1,2,3,..N. (e.g. car recognition: Opel, Honda, Peugeot,...)

e Can we use linear regression for this problem?

A
/x\wx/x h,(x)=05—>y=1

a—/a-uoé—o > h,(x)<05—>y=0

2017.12.05.

Logistic Regression

@ Logistic regression produces answers between [0,1]:

O0<h,(x)<1
@ To achieve this we take the logistic function of 87 x:
1 Logistic or
hg(x) — g(@T . X) where g(2) = 17 e sigmoid function

hg(\x;: 1+;-9T'X g //

® Interpretation of the hypothesis: o 4 2 0 2 4 e

o If for some x, h,(x) = 0.8, it means that x, has 80% probability to

belong to the positive class:
h,(x)=P(y=1|x,0)=0.8

—->P(y=0|x60)=1-P(y=1| x,6)=0.2

2017.12.05. 23

Decision Boundary

@ Interpretation of the hypothesis:
e To predict binary class labels we use a

1 1
threshold 0.5: alz) 3 L /
P(Y:1|X;9)20.5—>y:1 j —
P(y=1|%6)<05—>y=0 28N

e Using a sigmoid function this mean:

Sigmoid function

g(z)>05 when z>0 = 0" -x>0

9(z)<05 when z<0 = 0" -x<0 8 gy %

e How can we classify our dataset, assuming "
we have the trained parameters 67? ot u % 8>

2017.12.05.

Decision Boundary

® Interpretation of the hypothesis: CELA 8
e Example I B o P
P ¥ fm g a!':p
* We have the following hypothesis function: % g‘ggx
. B R
he(x) = 9(9 X): 9(90 + X + ‘92)(2) 0 ® % ~ 8% X
® 1% % -
* With parameters: 6,=-3,0,=1,0,=1 Dec's")’(“+§’(°_“;‘daryz
17727

* We predict ,17if —3+x +x,>20 = x +X, >3
* We predict ,0”if —3+X +X, <0 = X +X, <3
e Example ll:

* The decision boundary can be nonlinear

h,(x) = g(HT x) — g(@o + 0% + O,%, + O.X° + 94x22)

* With parameters: 6,=-1,0,=0,0,=0,65;=1,0,=1 Decision boundary:

2 2
X “+X,7=1
2017.12.05.

Logistic Regression

® How to chose parameter 67
e We have m training examples: (x(1),y(1)), (x(2),y2)) , ..., (x(m),y(m))

e Each training example has an n dimensional feature vector x and a label y.
1

e The hypothesis function is h,(x) = .
1+e"

e What cost function should we use?
* In linear regression the cost function was the following:

30)= L 3L, (<) - y0) = L 3 cost(n, ())

i=1

* The problem is now we have a nonlinear hypothesis function and if we
plug it into J(B) the result will be a non-convex cost function.

* We need to replace the COSt(hg(X(i)), y(i))

2017.12.05.

Logistic Regression

® How to chose parameter 6°?
* We will use the following cost term:
_ [Flog(h,(x)) if y=1
cost(h, (x). y) = {— log(1— h,(x)) if y=0
- Ify=1:
* The cost is equal to zero if hy(x) = 1, and Logarithm function

as hg(x) goes to 0, the cost goes to infinity. _ /
* If y=0: S s

* The cost is equal to zero if hy(x) = 0, and 1)
as hg(x) goes to 1, the cost goes to infinity.

e The unified cost function of logistic
regression is as follows:

m

30)= & Seost o))~ L Sy gl () + -y i,)

i=1

2017.12.05.

Softmax Regression

@ If the classification problem is not binary, e.g.:
* Cat, Dog, Car, Airplain, Boat, etc. Mutually exclusive categories
e Handwritten digits/characters

e Facial expressions

® The training set is {(x{1),y1), ..., (x"),yM)}, where y' is in {1,...,K}.
® For multiclass classification there are different strategies:

e Transformation to Binary:

* 1 vs. All (need K classifiers)
* 1vs. 1 (need K*(K-1)/2 classifiers)

e Extension from Binary:

Onehot encoding:

y=1 = [L 0 - 0]
y=2 = [0 1 --- 0]

* Softmax ; ;

y=K = [0 0 - 1]

e Hierarchical
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

2017.12.05.

Softmax Regression

® For K exclusive categories we can use Softmax classifier, where the
hypothesis function maps the input x to the following a K-dimensional
hypothesis vector:

‘eewa 7 Now 6 is a matrix and each of its columns is the
1 DT parameterization of the x feature vector for one
h, (X) — . class.
0T | | |
Ze P 0={0% 0@ ... "
=1
- -] |

® The kth element the hypothesis vector can be interpreted as probability
of membership of the kth category: e0"Tx

X e(J)T)
2.€

=1

Py, = k|x,,0)=

@ Logistic regression can be regarded as a special case (when K = 2) of the
Softmax classifier.

12/5/2017

Softmax Regression

® The cost function (cross-entropy loss) is the following:

3(0)=-3>"1{y, =k}log = 3> 1{y, = k}og P(y, =k [,,6)

i=1 k=1 ee(m-x i—1 k=1

o(KT

j=1

® We cannot solve for the minimum of J(8) analytically, and thus as usual
we’ll resort to an iterative optimization algorithm. Taking the derivatives,
one can show that the gradient is:

m

Ve(k)*](e): _z [Xi (1{yi = k}_ P(yi =k X;, 9))]

i=1
2J(6)
a@lk

partial derivative of J(0) with respect to the j-th element of g k).

» Armed with this formula for the derivative, one can then plugitinto a
standard optimization package and have it minimize J(6).

 where V) J(8) is itself a vector, so that its j-th element is the

12/5/2017

Regularization

® Example: Linear regression

% A
(] (] (V]
2 o 2
a a a
v] (V]
> > =2
o o o
T T T
> > >
House Size House Size | House Size
hy(x)= 6, + 0,x hy(x) =6, + O,x + 6,x h(x) =8, +Gx+6x" +
+60x +..+0x"
Underfit or High bias Right Overfit or High variance

@ If we have too many features we can learn a hypothesis that
fits the training data very well, but fails on new samples (=
does not generalize well)

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

2017.12.05.

Regularization

@ To handle underfitting we can introduce new features.
® To handle overfitting:

e We can reduce the number of features (but this might mean we lose
useful information):

* We can select manually which features to keep.
* Use a model selection algorithm.
e We can apply regularization:

* We can keep all the features but we reduce their magnitude (the value
of the 6 parameters).

* Works well if we have a lot of features and each contributes a little bit
to predict y.

* The idea is to keep the parameters low, to get a simpler hypothesis
function, which is less prone to overfitting.

2017.12.05.

Regularization

® How can we keep the parameters low?
e The cost function for linear/logistic regression with regularization:

m i i L Note: 0, is not
J (‘9) = % 2_1: COSt(hH (X())’ y()) N /11_2:;4 01'2 regulaorized

L2 regularization term

e The regularization parameter A controls the trade-off between two goals:
* Fitting the data well
* Keeping the parameters low, to avoid overfitting

 If Ais too large all the parameters (except 8,) will be close to 0, the model
won'’t fit the data, we will see underfitting.

2017.12.05.

Main Sources

® Andrew Ng Machine Learning Course

e On Coursera: https://www.coursera.org/course/ml
e At Stanford: http://cs229.stanford.edu/

® Further reading:
e Lectures by Nando de Freitas:

* Undergraduate Machine Learning at UBC 2012:
https://www.youtube.com/playlist?list=PLE6Wd9FR--Ecf 5nCbnSQMHqORpiChflf&feature=view all
* Machine Learning at UBC 2013
http://www.cs.ubc.ca/~nando/540-2013/lectures.html

e A Few Useful Things to Know about Machine Learning:

http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

e Linear classification Loss Visualization:
http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

2017.12.05.

https://www.coursera.org/course/ml
http://cs229.stanford.edu/
https://www.youtube.com/playlist?list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf&feature=view_all
http://www.cs.ubc.ca/~nando/540-2013/lectures.html
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

Basic Image Processing Algorithms

PPKE-ITK

Lecture 13.

2019. 12. 08.

Introduction to Deep Learning

What is Deep Learning?

Machine Learning

Neural Networks

2019. 12. 08.

History of Neural Networks

® 1943: McCulloch and Pitts proposed a model to mimic how the
brain operates.

2019.

® 1958: Rosenblatt introduced the Perceptron

12. 08.

@ Activation
Fundamental unit of a Neural Network ,,-""f/ function
-
L/ n
1 if Zu-'l. x >0
output = o)

/ w" -1 otherwise
_ weighls ,-=ﬂ_. -
Inputs

Perceptron Model

History of Neural Networks

® Thanks to the success of the Perceptron model, there was a big
hype around Al (not unlike now!!)

® 1969: It was shown that a perceptron may fail to separate
seemingly simple patterns (e.g. cannot learn the XOR function).

® Research in the area nearly stopped completely (Al winter)

® 1974: Paul J. Werbos introduced backpropagation algorithm:
efficient training of multi layer networks.

2019. 12. 08.

History of Neural Networks

® 1989-98: Convolutional Neural Networks in action:

Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., , ' {
Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4), 541-551. 7 6 3 0.5- 3
LeCun, Yann; Léon Bottou; Yoshua Bengio; Patrick Haffner 5 g 9 ‘ ' b

(1998). "Gradient-based learning applied to document recognition,,
Proceedings of the IEEE.86 (11): 2278-2324.

New stat-of-the-art result on
MNIST by the LeNet-5

® Since 2012 there is a huge buzz around neural networks again.
® Recap: What happened in 20127

 The ImageNet challenge was won by a deep neural network architecture,
the AlexNet:

Krizhevsky, A., Sutskever, |. and Hinton, G. E. ,,ImageNet Classification with Deep
Convolutional Neural Networks” NIPS 2012: Neural Information Processing
Systems, Lake Tahoe, Nevada

2019. 12. 08.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

ImageNet Challenge 2012

@ Task: For each image produce a list of at most 5 object categories
in the descending order of confldence

Lot . §
container ship motor scooter mushroom cherry Madagascar cat

mite container ship motor scooter ~_convertible agaric dalmatiah squirrel monkey

black widow lifeboat go-kart J grille mushroom grape spider monkey
cockroach amphibian moped [] pickup jelly fungus elderberry titi
tick fireboat bumper car beach wagon gill fungus |ffordshire bullterrier indri
starfish drilling platform golfcart i fire engine || dead-man's-fingers currant howler monkey

® The training data: 1.2 million images 1000 categories
® Summary of the Challenges:

e Alarge number of images in training

e A large number of classes

e Diversity of classes

e Diversity of images within classes

2019. 12. 08.

ImageNet Challenge 2012

2019. 12. 08.

ImageNet Challenge 2012

® Results:

Error (5 predictions)

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

® Since then it is widely used in computer vision (and also in many
other fields)

2019. 12. 08.

Artificial Neural Networks

2019. 12. 08.

Artificial Neural Networks

® Simplest ANN: One Neuron
X,=1

output

[wa +bj_f (xw+b)

X, fis the activation function
We|ght5 impulses carried
toward cell body
. branches
Inputs dendrites (' of axon

. axon

nucleus terminals

Note: If fis a sigmoid function then this is
exactly the logistic regression.

http://cs231n. glthub |o/neural networks 1/

2019. 12. 08.

Artificial Neural Networks

@® These simple computational units (the artificial neurons) can be

|H

organized into networks. (Like the ,real” neurons in the human

nervous system)

Output Layer

Watch out for the
indexation, it could
be counterintuitive!

1st Hidden Layer Nth Hidden Layer

2019. 12. 08.

Artificial Neural Networks

® Feed-Forward network

e Contains only forward connections: the neurons in layer [are only
connected to the neurons in layer [+1.

e No backward or within-layer connections.
® Fully Connected layers:
e All units in layer | are connected to all units in layer /[+1.
® Each neuron has a bias connection:
e Acts as a connection where the input is always 1.
@ ANNs are universal function approximators [Cybenko 1989]

,The universal approximation theorem states that a feed-forward network
with a single hidden layer containing a finite number of neurons (i.e.,
a multilayer perceptron), can approximate continuous
functions on compact subsets of R".” (Wikipedia)

2019. 12. 08.

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Artificial Neural Networks - Forward Pass

® The Forward Pass is the calculation of the response of the
network to an input.

® Assuming you have a trained network, all trainable parameters
(6) are tuned for the task:

(DRI TR 2R

@ It can be calculated a series of matrix-vector operation:

2019. 12. 08.

Artificial Neural Networks - Forward Pass

GB W &
B E SR - P
S v RS

FE<sBnKa R
B WEOSARE
RSO A XN

Input Images

I € set of images

Extracted Features:

HOG/SIFT/Pixels

x=£(1)

Qutput Layer

1st Hidden Layer 2nd Hidden Layer

a® = f(2®)= f (W ®x+b®)
a® = f (W @a® +p®)
23 _\W @52 4 p®

Predicted Labels:
Cat/Car/Dog/Truck

yzgazg@®)
a():

can be a softmax
function for
classification,

or it can be omitted
in case of regression.

2019. 12. 08.

Artificial Neural Networks - Activation Functions

@ The activation function is a non-linear function applied in each
neuron on z, the weighted sum of the neuron’s input.

® Commonly used activation functions: '

e Sigmoid

0.5}

Hyperbolic tangent (tanh)
Rectified Linear Unit (ReLU, y =max(0,x))

e .. -0.5 —RelLU
N tanh

Lately ReLU is the default P | Tsigmod]

choice for deep nets. N 0 5

0

2019. 12. 08.

What happens if we don’t use activation function? (== If the activation
function is linear?)

* The composition of linear functions is a linear function. It would be
equivalent to a 1-layer logistic/linear regression.

Network Training

2019. 12. 08.

Training of the Network

Output Layer

2nd Hidden
Layer

1st Hidden
Layer

® Forward propagation: ¥ =gW®fWw®Ww“x+b)+b?)+b) Wm{ |
® Loss function: b= b} b
e For classification, we can use cross-entropy loss (see softmax)
e For regression, we can use L2 loss (see linear regression)
® How can we minimize the loss?

2019. 12. 08.

Training of the Network

® To optimize the weights and biases so that the loss is minimal we
use Gradient Descent algorithm:
e The weights and biases are initialized as small random numbers.

e Each parameter (weights and biases) are modified simultaneously in each

iteration:

0 QNG 0
iy J b’ =D, _aéb.(')

i,] i

J

M _—

® How can we compute the gradient of the loss wrt each parameter?
® With Backpropagation algorithm:
e |tis based on the application of the chain rule:

F(x)= f(g(x)) = F'(x)=f'(g(x))g’(x)

e This is the most efficient way to compute the exact gradients.

2019. 12. 08.

Training of the Network

® Practical considerations:

e Initialization with small random numbers (instead of all zeros) to break
the symmetry, otherwise all the hidden units would learn the same
function of the input.

e Training Strategies:

+ Adjust the weights based on the ...
- ...error of one training sample (Stochastic Gradient Descent)
- ...average error of all the training samples (Batch Gradient Descent)

- ...average error of a few dozens/hundreds of training samples (Mini-Batch
Gradient Descent)

- The average error on the mini-batch usually approximates well the average
error on all the training samples, but it is much faster.

- Still we will use all the training samples many times: after we go through all
mini-batches (== we complete one epoch), we reshuffle the samples,
divide them into mini-batches again and start the next epoch.

2019. 12. 08.

Training of the Network

® Regularization:

e The goal is to prevent the network from overfitting.
e Commonly used types of regularization:

* L2 regularization:

* An extra term is added to the cost to penalize peaky weights:
%HWHLZ = %wa <—— |2-norm of the weights
j=1
* This regularization prefers diffuse weights.
* L1 regularization:

* Regularization term:

_H Hu Z‘W ‘ <—— L1-norm of the weights

* Favours sparse weight vectors. (Sparse means that only a few elements in
the vector are non-zero)

2019. 12. 08.

Training of the Network

® Regularization:

* Dropout:
 During training each neuron can be deactivated with a certain probability.
* In each iteration of the training, a different sub-network is optimized.

* In test time there is no dropout!

* Early stopping:

’ Mon ItOF the tra Ini ng. a) Standard Neural Net (b) After applying dropout.
calculate performa nce metrics http://www.cs.toronto.edu/~rsalakhu/papers/srivastavalda.pdf
(accuracy, f1-score, ROC-AUC, etc.)
on a separate validation set after each round.

- Stop the training if the performance drops on the validation set!

2019. 12. 08.

Training of the Network

@ In general we can say that the more parameters we use the
larger the training dataset needs to be to be able to train
without overfitting.

® Creating a large dataset takes time and expensive.

@ Have to get the most out of the available data!

® Data Augmentation:

* Increasing the size of the available training dataset by adding modified
versions of the original samples.

® The augmentation has to be task specific (e.g. for handwritten
digit recognition, flip is not a good idea..)

2019. 12. 08.

Training of the Network

4\ L ,M&;ﬁ

2019. 12. 08.

Convolutional Neural Networks

2019. 12. 08.

Convolutional Neural Network

@ Fully connected layers on the raw pixels are not efficient. Why?
e Regular neural nets don’t scale well to full images:
* For a small image of 128x128 we have 16384 pixels.

* If in the first hidden layer we have 100 neurons that is already 1.6 million
parameters!!

e To tune this many parameters we would need a lot of training samples to
avoid overfitting, and it would be slow.

® Natural images...
e contain strong local correlation, we should take it into account

e have similar local statistics over the image, we could share the used
parameters.

® Convolutional Neural Networks look at small parts of the image,
one at a time using the same set of weights for each part.
@ For CNN the weights are organized in 3D (width, height, depth).

2019. 12. 08.

Network
OO OO
24 OO OO
OO0 0O
‘ O000 OO0
oé 0000 ...0O
Input image Input image O00O0 OO
Fully Connected Layer Convolutional Layer
Each pixel is one input for the network * The weights are reused in different parts of the
-> the number of parameters can be image -> much less parameters.
very high even for a medium sized * Practically convolutional kernels will be learned.
image. Each kernel has 3 dimensions (only 2 are

visualized above)

2019. 12. 08.

Convolution on volumes

*

Input: n-channel array: Filter: n-channel Output: 1-channel

hXwXn kernel of size (h — K+ 1)
kp X ky, Xn W —ky, +1)x 1

2019. 12. 08.

Convolution on volumes

Input: n-channel array: Filter: n-channel Output: 1-channel

hXwXn kernel of size (h — K+ 1)
kp X ky, Xn W —ky, +1)x 1

2019. 12. 08.

A convolution layer with f = 4 filters

L *
-----=|=

I]
EEEEEE N N
AR I
IR |
T
HEEEEN -
HEREEEE
Input: n-channel array: / filter: each oneis Output:f-channel
hXwXn an n-channel kernel array of size
of size ky, X k,, X n (h —ky + 1) X

(w -k, +1)Xf

2019. 12. 08.

Convolutional Neural Network

Each neuron in the convolutional layer is connected only to a

local region in the input volume spatially, but to the full depth
(i.e. all color channels). JQStEeaurreOgI? Iz;u)l(c))lr:ign;h;
32 the same region of the
// image. But they learn a
§ — different set of weights.
—=F0E0P
32
e /
.3-channfe| (R,G,B) in.put Volume of neurons calculating
image with 32x32 pixels 5 different convolutions

http://cs231n.github.io/convolutional-networks/

31

2019. 12. 08.

Convolutional Neural Network

@ Convolutional layers:
e Has learnable weights and biases.

e Has an activation function in the neurons.
 The performed computation is a differentiable function.

e |t assumes that the input is an image:
* Using this assumption it can be more efficient with less parameters

2019. 12. 08.

Pooling Layer

® Itis common practice to insert a Pooling layer in-between successive
convolutional layers.
® The goal is

e to gain robustness against small changes in the location of a feature

The algorithm should
recognize the wolf on
both images, regardless
of its location on the
image.

e to reduce dimensionality (downsample along the spatial dimensions)
224x224x64

112x112x64 How mutch the feature
pool maps are downsampled is
defined by the parameters
of the pooling.

http://cs231n.github.io/convolutional-networks/

2019. 12. 08.

Pooling Layer

Single depth slice

% 11112]| 4
max pool with 2x2 filters
SHmGNl 7 | 8 and stride 2 6 | 8
3 | 2 NG] 3|4
1 | 2 |EES
v >

® Parameters of the pooling:
 Filter size: usual sizes are 2x2 or 3x3
e Stride: defines the spatial shift of the filter
@ Introduces zero parameters since it computes a fixed function of the
input.
® Types of pooling:
e Max pooling

e Average pooling
http://cs231n.github.io/convolutional-networks/

2019. 12. 08. 34

What does the CNN Learn?

Low level features Mid-level features High level features

Sl l= DL S
EEROEmoIm
NEEAlI=a
RUBEY =¥
temho®

Convolutional layers Fully Connected layers

Source of the image:
https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. “Convolutional deep belief networks for scalable unsupervised learning
of hierarchical representations.” In ICML 2009.

2019. 12. 08.

Transfer Learning

@ For natural images the low level features are similar, hence the
learned features will be very similar for different tasks.

® Big databases are not so easy to come by.

® The models that were trained on a big dataset could be partly
reused on other tasks:

e Reuse a convnet as fixed feature extractor: Take a trained model,
remove its final fully connected layer and use the rest as a fixed feature
extractor for a classifier (like a linear SVM or a softmax).

e Fine tuning: use the network pre-trained on an other data and use it as
initialization for the training on the data of interest. Usually this fine
tuning is done with low learning rate, or even with the first few layers
kept fixed.

® Using pre-trained models also helps against over fitting!

More info: http://cs231n.github.io/transfer-learning/

2019. 12. 08. 36

Deep Learning Frameworks

2019. 12. 08.

Frameworks

Caffe
Language C++, Python
Pretrained Yes ++
Multi-GPU: Yes
Data parallel
Multi-GPU: No
Model parallel
Readable Yes (C++)

source code

Good at RNN No

Torch Theano TensorFlow
Lua Python Python

Yes ++ Yes (Lasagne) | Inception
Yes cunn. Yes Yes
DataParallelTable platoon

Yes Experimental Yes (best)

fbcunn.ModelParallel

Yes (Lua) No No

Mediocre Yes Yes (best)

Source: http://cs231n.stanford.edu/slides/winter1516_lecture12.pdf

For more info: https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

2019. 12. 08.

Frameworks

® MatConvNet:

e Developed in Oxford for CNN training.
e The network architecture is defined in a cell array of structs:
* Each element in the array is one layer of the network:
 Convolutional layer
* Pooling layer
- Activation layer
- Dropout layer
- Normalization layer

* Each layer is defined in one struct:

net.layers{end+l} = struct('type’ n M
'weights"'", {{f*randn(5,5,1,20, '"=ingle'), zeros(l, 20, '"single')}}, ...

. i v -
tride', 1,

2019. 12. 08.

CNN Architectures

LeNet-5 Architecture

1 C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

32x32 6@28x28 S2: . maps r
6@14x14 r rr
I Irllll Ir.

C5: layer .
190 y I;%Iayer c‘;lﬁlTPUT

|
| Full oon|J|ection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

CNN called LeNet by Yann LeCun (1998)

@ The first successfull application of convolutional networks.
® It was used for handwritten digit/zip code recognition.

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

2019. 12. 08.

Alexnet

® Alex Krizhevsky’s architecture that won the Imagenet in 2012.
@ Similar to the LeNet architecture, but deeper.
® #parameters: 60 million

,", . N | 3"-_‘ ‘ '?X‘_V‘_‘: . =l - >
RS\ ELN SR\ - 3 N
A “- -'-’_'_. 3 “a e o B
\ i T 192 192 128 2048 20ag \dense
27 128 — —
N AN 13 13
224 1= 3 ~ ENER 3| | SN S
e E— 13 B e ense ense
. : 27 3 3] I3 13
55 3| 550
P 192 192 128 Max | [
: 2048 2048
224\Stride Max 128 Max pooling
Uof 4 pooling pooling
3 48

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information
processing systems. 2012

2019. 12. 08.

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

GooglLeNet

® Winner of the 2014 Imagenet challenge.
@ Introduced the Inception module
® #fparameters: 5 million

Ha

oo
1eogren s

; L

5] S

bt
Ef
B o

i
THT TIHHE
@Eﬂﬁgﬂﬁgglgﬂg E-@ E ax k] I(;on:{olution
i i i : ooling
BB B gpon |
Other

Christian Szegedy, Wei Liu, Yangging Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich, ,,Going Deeper withConvolution,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

2019. 12. 08.

https://arxiv.org/pdf/1409.4842v1.pdf

GooglLeNet — Inception Module

Filter
concatenation

/ 333 55 1x1

convolutions convolutions convolutions

1x1 f f A

convolutions
1x1 1x1 3x3 max
\ convolutions convolutions pooling

Previous layer

2019. 12. 08.

Deep Residual Networks

YGG-1% J4-layer plain 34-layer residual

® Winnerin 2015.

® 152 layers

® Introduction of the
Residual blocks

@ It can be regarded as
a special case of
Highway networks.

X

weight layer
F(x) [relu

weight layer

X
identity

4

relu

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual
Learning for Image Recognition. 2015.

2019. 12. 08.

http://yanran.li/peppypapers/2016/01/10/highway-networks-and-deep-residual-networks.html
https://arxiv.org/pdf/1512.03385v1.pdf

Further Reading

® http://cs231n.stanford.edu/

® http://deeplearning.stanford.edu/tutorial/

® http://neuralnetworksanddeeplearning.com/

® http://deeplearning.net/

® http://www.deeplearningbook.org/

® https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

® http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-
deep.html

® http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

2019. 12. 08.

http://cs231n.stanford.edu/
http://deeplearning.stanford.edu/tutorial/
http://neuralnetworksanddeeplearning.com/
http://deeplearning.net/
http://www.deeplearningbook.org/
https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

