
PPKE-ITK

Lecture 13.

2019. 12. 08. 1

2019. 12. 08. 3

Machine Learning

Neural Networks

Deep Learning

 1943: McCulloch and Pitts proposed a model to mimic how the
brain operates.

 1958: Rosenblatt introduced the Perceptron

2019. 12. 08. 4

Perceptron Model

 Thanks to the success of the Perceptron model, there was a big
hype around AI (not unlike now!!)

 1969: It was shown that a perceptron may fail to separate
seemingly simple patterns (e.g. cannot learn the XOR function).

 Research in the area nearly stopped completely (AI winter)

 1974: Paul J. Werbos introduced backpropagation algorithm:
efficient training of multi layer networks.

2019. 12. 08. 5

 1989-98: Convolutional Neural Networks in action:

 Since 2012 there is a huge buzz around neural networks again.
 Recap: What happened in 2012?

• The ImageNet challenge was won by a deep neural network architecture,
the AlexNet:

2019. 12. 08. 6

New stat-of-the-art result on
MNIST by the LeNet-5

Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4), 541-551.

LeCun, Yann; Léon Bottou; Yoshua Bengio; Patrick Haffner
(1998). "Gradient-based learning applied to document recognition„
Proceedings of the IEEE.86 (11): 2278–2324.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. „ImageNet Classification with Deep
Convolutional Neural Networks” NIPS 2012: Neural Information Processing
Systems, Lake Tahoe, Nevada

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

 Task: For each image produce a list of at most 5 object categories
in the descending order of confidence.

 The training data: 1.2 million images 1000 categories
 Summary of the Challenges:

• A large number of images in training

• A large number of classes

• Diversity of classes

• Diversity of images within classes

2019. 12. 08. 7

2019. 12. 08. 8

Test images of „Hammer”

 Results:

 Since then it is widely used in computer vision (and also in many
other fields)

2019. 12. 08. 9

2019. 12. 08. 10

 Simplest ANN: One Neuron

2019. 12. 08. 11

x1

x2

xn

w1

w2

wn

bwx
n

i

ii 
1

f    bxwfbwxfzfy
n

i

ii 







 

1

inputs

weights

output

f is the activation function

http://cs231n.github.io/neural-networks-1/

X0=1

b

Note: If f is a sigmoid function then this is
exactly the logistic regression.

 These simple computational units (the artificial neurons) can be
organized into networks. (Like the „real” neurons in the human
nervous system)

2019. 12. 08. 12

Input Layer

1st Hidden Layer Nth Hidden Layer

Output Layer

1

1,2w
1

1,iw

1

,1 jw

1

, jiw

x1

x2

xj

Watch out for the
indexation, it could
be counterintuitive!

 Feed-Forward network
• Contains only forward connections: the neurons in layer l are only

connected to the neurons in layer l+1.

• No backward or within-layer connections.

 Fully Connected layers:
• All units in layer l are connected to all units in layer l+1.

 Each neuron has a bias connection:
• Acts as a connection where the input is always 1.

 ANNs are universal function approximators [Cybenko 1989]
„The universal approximation theorem states that a feed-forward network

with a single hidden layer containing a finite number of neurons (i.e.,
a multilayer perceptron), can approximate continuous
functions on compact subsets of Rn.” (Wikipedia)

2019. 12. 08. 13

https://en.wikipedia.org/wiki/Universal_approximation_theorem


























0.77

0.08

0.15

 , F

 The Forward Pass is the calculation of the response of the
network to an input.

 Assuming you have a trained network, all trainable parameters
(θ) are tuned for the task:

 It can be calculated a series of matrix-vector operation:


























0.01

0.95

0.04

 , F


























0.06

0.03

0.91

 , F

2019. 12. 08. 14

1

1,mw

1

,nmw

x1

x2

xn
         1111

1

1

2

1

1

2

1

1

1

2

1

1

1

1

2

1

1

1

1

2

1

1

bxWfzfa

b

b

b

x

x

x

w

w

w

f

z

z

z

f

a

a

a

mnmmm





























































































































































1

1,1w

2019. 12. 08. 15

         
        

       3233

2122

1111

baWz

baWfa

bxWfzfa







Extracted Features:
HOG/SIFT/Pixels

Predicted Labels:
Cat/Car/Dog/Truck

Input Images

images ofset Ι

 Ix 
    33~ zgay 

g():
can be a softmax
function for
classification,
or it can be omitted
in case of regression.

 The activation function is a non-linear function applied in each
neuron on z, the weighted sum of the neuron’s input.

 Commonly used activation functions:
• Sigmoid

• Hyperbolic tangent (tanh)

• Rectified Linear Unit (ReLU,)

• ...

• What happens if we don’t use activation function? (== If the activation
function is linear?)

 The composition of linear functions is a linear function. It would be
equivalent to a 1-layer logistic/linear regression.

2019. 12. 08. 16

Lately ReLU is the default
choice for deep nets.

 xy ,0max

2019. 12. 08. 17

 Forward propagation:
 Loss function:

• For classification, we can use cross-entropy loss (see softmax)

• For regression, we can use L2 loss (see linear regression)

 How can we minimize the loss?

2019. 12. 08. 18

Input Layer

1st Hidden
Layer

2nd Hidden
Layer

Output Layer

              321123~ bbbxWfWfWgy 

3

1,1w

3

2,1w

2

1,1w

2

1,2w

1

1,1w

 










1

3,2

1

2,2

1

1,2

1

3,1

1

2,1

1

1,11

www

www
W

   1

3

1

2

1

1

1 bbbb 

  3~ zgy   yyJ ,~

 To optimize the weights and biases so that the loss is minimal we
use Gradient Descent algorithm:

• The weights and biases are initialized as small random numbers.

• Each parameter (weights and biases) are modified simultaneously in each
iteration:

 How can we compute the gradient of the loss wrt each parameter?
 With Backpropagation algorithm:

• It is based on the application of the chain rule:

• This is the most efficient way to compute the exact gradients.

2019. 12. 08. 19

J
w

ww
l

ji

l

ji

l

ji)(

,

)(

,

)(

,



  J

b
bb

l

i

l

i

l

i)(

)()(




 

           xgxgfxFxgfxF 

 Practical considerations:
• Initialization with small random numbers (instead of all zeros) to break

the symmetry, otherwise all the hidden units would learn the same
function of the input.

• Training Strategies:

 Adjust the weights based on the ...

 ...error of one training sample (Stochastic Gradient Descent)

 ...average error of all the training samples (Batch Gradient Descent)

 ...average error of a few dozens/hundreds of training samples (Mini-Batch
Gradient Descent)

 The average error on the mini-batch usually approximates well the average
error on all the training samples, but it is much faster.

 Still we will use all the training samples many times: after we go through all
mini-batches (== we complete one epoch), we reshuffle the samples,
divide them into mini-batches again and start the next epoch.

2019. 12. 08. 20

 Regularization:
• The goal is to prevent the network from overfitting.

• Commonly used types of regularization:

 L2 regularization:

 An extra term is added to the cost to penalize peaky weights:

 This regularization prefers diffuse weights.

 L1 regularization:

 Regularization term:

 Favours sparse weight vectors. (Sparse means that only a few elements in
the vector are non-zero)

2019. 12. 08. 21





n

j

jL
ww

1

2

2 22







n

j

jL
ww

1
1 22



L2-norm of the weights

L1-norm of the weights

 Regularization:
 Dropout:

 During training each neuron can be deactivated with a certain probability.

 In each iteration of the training, a different sub-network is optimized.

 In test time there is no dropout!

 Early stopping:

 Monitor the training:
calculate performance metrics
(accuracy, f1-score, ROC-AUC, etc.)
on a separate validation set after each round.

 Stop the training if the performance drops on the validation set!

2019. 12. 08. 22

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

 In general we can say that the more parameters we use the
larger the training dataset needs to be to be able to train
without overfitting.

 Creating a large dataset takes time and expensive.

 Have to get the most out of the available data!

 Data Augmentation:
• Increasing the size of the available training dataset by adding modified

versions of the original samples.

 The augmentation has to be task specific (e.g. for handwritten
digit recognition, flip is not a good idea..)

2019. 12. 08. 23

2019. 12. 08. 24

Original Image

Data Augmentation:

2019. 12. 08. 25

 Fully connected layers on the raw pixels are not efficient. Why?
• Regular neural nets don’t scale well to full images:

 For a small image of 128x128 we have 16384 pixels.

 If in the first hidden layer we have 100 neurons that is already 1.6 million
parameters!!

• To tune this many parameters we would need a lot of training samples to
avoid overfitting, and it would be slow.

 Natural images...
• contain strong local correlation, we should take it into account

• have similar local statistics over the image, we could share the used
parameters.

 Convolutional Neural Networks look at small parts of the image,
one at a time using the same set of weights for each part.

 For CNN the weights are organized in 3D (width, height, depth).

2019. 12. 08. 26

2019. 12. 08. 27

Input image

Fully Connected Layer

Input image

Convolutional Layer

• The weights are reused in different parts of the
image -> much less parameters.
• Practically convolutional kernels will be learned.
Each kernel has 3 dimensions (only 2 are
visualized above)

Each pixel is one input for the network
-> the number of parameters can be
very high even for a medium sized
image.

2019. 12. 08. 28

*

Input: 𝑛-channel array:
ℎ × 𝑤 × 𝑛

Output: 1-channel

(ℎ − 𝑘ℎ + 1) ×
(𝑤 − 𝑘𝑤 + 1) × 1

Filter: 𝑛-channel
kernel of size
𝑘ℎ × 𝑘𝑤 × 𝑛

2019. 12. 08. 29

*

Input: 𝑛-channel array:
ℎ × 𝑤 × 𝑛

Filter: 𝑛-channel
kernel of size
𝑘ℎ × 𝑘𝑤 × 𝑛

Output: 1-channel

(ℎ − 𝑘ℎ + 1) ×
(𝑤 − 𝑘𝑤 + 1) × 1

2019. 12. 08. 30

*

Input: 𝑛-channel array:
ℎ × 𝑤 × 𝑛

Output:𝑓-channel
array of size
(ℎ − 𝑘ℎ + 1) ×
(𝑤 − 𝑘𝑤 + 1) × 𝑓

𝑓 filter: each one is
an 𝑛-channel kernel
of size 𝑘ℎ × 𝑘𝑤 × 𝑛

*
*

*

2019. 12. 08. 31

3-channel (R,G,B) input
image with 32x32 pixels

Volume of neurons calculating
5 different convolutions

Each neuron in the convolutional layer is connected only to a
local region in the input volume spatially, but to the full depth
(i.e. all color channels). The neurons along the

depth are all looking at
the same region of the
image. But they learn a
different set of weights.

http://cs231n.github.io/convolutional-networks/

 Convolutional layers:
• Has learnable weights and biases.

• Has an activation function in the neurons.

• The performed computation is a differentiable function.

• It assumes that the input is an image:

 Using this assumption it can be more efficient with less parameters

2019. 12. 08. 32

 It is common practice to insert a Pooling layer in-between successive
convolutional layers.

 The goal is
• to gain robustness against small changes in the location of a feature

• to reduce dimensionality (downsample along the spatial dimensions)

2019. 12. 08. 33

The algorithm should
recognize the wolf on

both images, regardless
of its location on the

image.

How mutch the feature
maps are downsampled is
defined by the parameters

of the pooling.

http://cs231n.github.io/convolutional-networks/

 Parameters of the pooling:
• Filter size: usual sizes are 2x2 or 3x3
• Stride: defines the spatial shift of the filter

 Introduces zero parameters since it computes a fixed function of the
input.

 Types of pooling:
• Max pooling
• Average pooling

2019. 12. 08. 34

http://cs231n.github.io/convolutional-networks/

2019. 12. 08. 35

Source of the image:
https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. “Convolutional deep belief networks for scalable unsupervised learning
of hierarchical representations.” In ICML 2009.

Low level features Mid-level features High level features

Convolutional layers Fully Connected layers

 For natural images the low level features are similar, hence the
learned features will be very similar for different tasks.

 Big databases are not so easy to come by.
 The models that were trained on a big dataset could be partly

reused on other tasks:
• Reuse a convnet as fixed feature extractor: Take a trained model,

remove its final fully connected layer and use the rest as a fixed feature
extractor for a classifier (like a linear SVM or a softmax).

• Fine tuning: use the network pre-trained on an other data and use it as
initialization for the training on the data of interest. Usually this fine
tuning is done with low learning rate, or even with the first few layers
kept fixed.

 Using pre-trained models also helps against over fitting!

2019. 12. 08. 36

More info: http://cs231n.github.io/transfer-learning/

2019. 12. 08. 37

2019. 12. 08. 38

Source: http://cs231n.stanford.edu/slides/winter1516_lecture12.pdf

For more info: https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

 MatConvNet:
• Developed in Oxford for CNN training.

• The network architecture is defined in a cell array of structs:

 Each element in the array is one layer of the network:

 Convolutional layer

 Pooling layer

 Activation layer

 Dropout layer

 Normalization layer

 ...

 Each layer is defined in one struct:

2019. 12. 08. 39

2019. 12. 08. 40

 The first successfull application of convolutional networks.
 It was used for handwritten digit/zip code recognition.

2019. 12. 08. 41

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

 Alex Krizhevsky’s architecture that won the Imagenet in 2012.
 Similar to the LeNet architecture, but deeper.
 #parameters: 60 million

2019. 12. 08. 42

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information
processing systems. 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

 Winner of the 2014 Imagenet challenge.
 Introduced the Inception module
 #parameters: 5 million

2019. 12. 08. 43

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich, „Going Deeper withConvolution,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

Convolution
Pooling
Softmax
Other

https://arxiv.org/pdf/1409.4842v1.pdf

2019. 12. 08. 44

1x1
convolutions

3x3
convolutions

5x5
convolutions

Filter
concatenation

Previous layer

3x3 max
pooling

1x1
convolutions

1x1
convolutions

1x1
convolutions

 Winner in 2015.
 152 layers
 Introduction of the

Residual blocks
 It can be regarded as

a special case of
Highway networks.

2019. 12. 08. 45

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual
Learning for Image Recognition. 2015.

http://yanran.li/peppypapers/2016/01/10/highway-networks-and-deep-residual-networks.html
https://arxiv.org/pdf/1512.03385v1.pdf

 http://cs231n.stanford.edu/

 http://deeplearning.stanford.edu/tutorial/

 http://neuralnetworksanddeeplearning.com/

 http://deeplearning.net/

 http://www.deeplearningbook.org/

 https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

 http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-
deep.html

 http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

2019. 12. 08. 46

http://cs231n.stanford.edu/
http://deeplearning.stanford.edu/tutorial/
http://neuralnetworksanddeeplearning.com/
http://deeplearning.net/
http://www.deeplearningbook.org/
https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html

