Basic Image Processing Algorithms

PPKE-ITK

Lecture 12.

Introduction to Machine Learning

What is Machine Learning?

- Face detection
- E-mail spam filter
- Page ranking in Google search
- Road sign recognition in cars
- Advertisements on web pages and other recommendation systems
- Handwriting recognition
- Credit card fraud detection

Winter is here. Go to the store and buy some snow shovels.

Winter is here. Go to

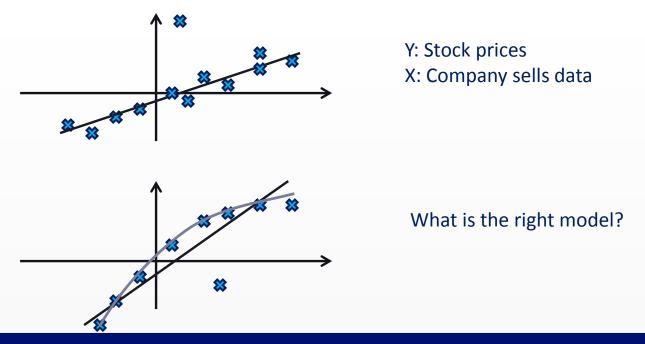
3

What is Machine Learning?

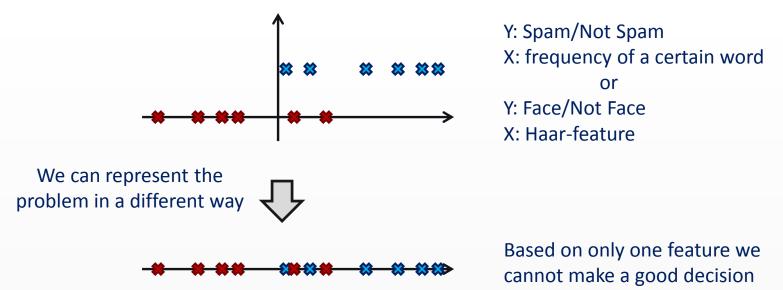
 Arthur Samuel (1959): "Field of study that gives computers the ability to learn without being explicitly programmed".

Tom M. Mitchell: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E".

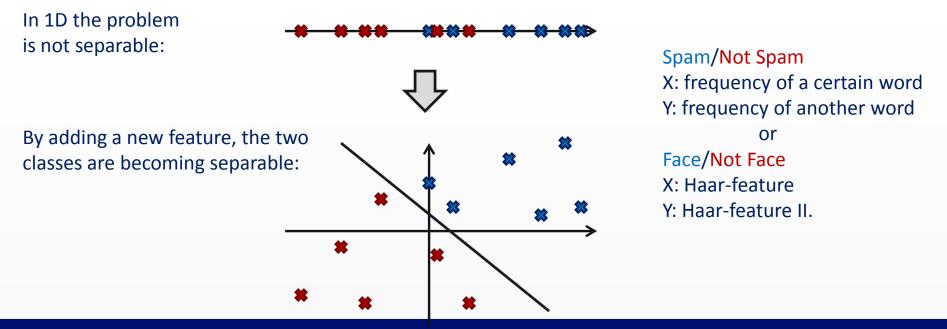
- Supervised Learning:
 - The supervised algorithms are trained on labeled data, where the desired output is known. The goal is to train a classifier that can work on previously unknown data.
 - Regression: prediction of continuous valued output



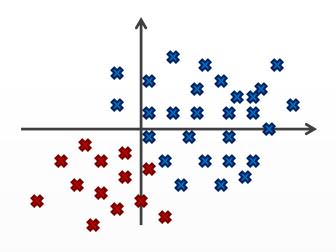
- Supervised Learning:
 - The supervised algorithms are trained on labeled data, where the desired output is known. The goal is to train a classifier that can work on previously unknown data.
 - Classification: prediction of discrete valued output

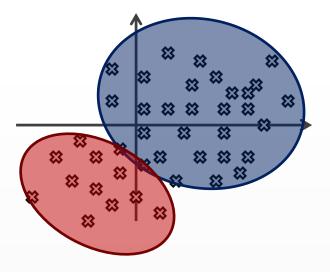


- Supervised Learning:
 - The supervised algorithms are trained on labeled data, where the desired output is known. The goal is to train a classifier that can work on previously unknown data.
 - Classification: prediction of discrete valued output



- Unsupervised Learning
 - In case of unsupervised learning the training data is not labeled.





Supervised learning

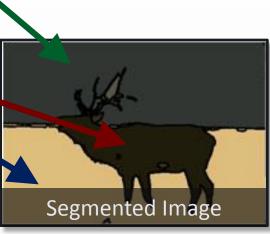
Unsupervised learning

- Unsupervised Learning
 - The goal is to find meaningful structure in the data.
 - Applications:
 - Social Network Analysis
 - Market Segmentation
 - Compression

Original Image

Image Segmentation

☆



Source of the Images: http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/

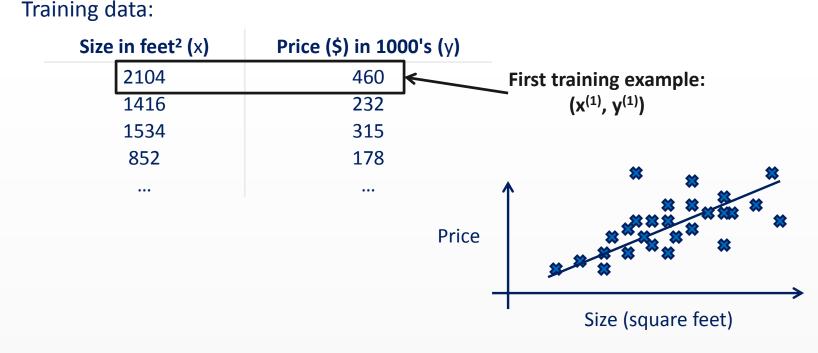
- Reinforcement Learning
 - The goal is to get an agent to act in the world so as to maximize its rewards.
- Recently very hot topic:
 - Computers can automatically learn to play ATARI games...
 - ...can beat humans in go (AlphaGo)
 - ...can learn to walk

Supervised Learning

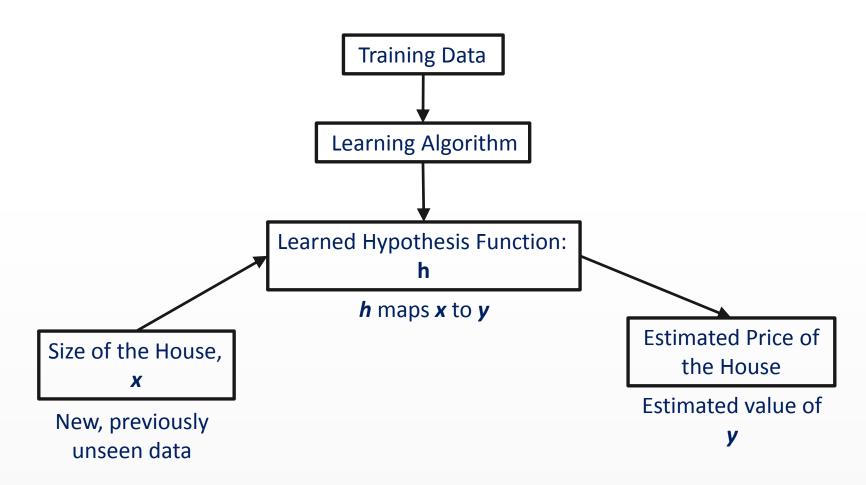
Linear Regression

• Example: Housing Prices

- It is a supervised learning problem: we have data with ground truth.
- We know the size of the houses and the price they were sold for:

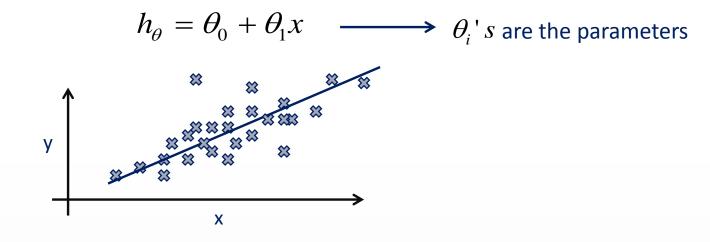


Summarization of a Learning Algorithm

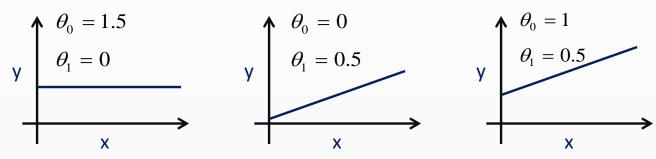


Supervised Learning Linear Regression

• Representation of *h* for linear regression with one variable:



• How to find the best values for the parameter θ ?



Linear Regression

- How to find the best values for the parameter θ ?
- Idea: Find parameters (θ_0, θ_1) , so that $h_{\theta}(x)$ is close to y for the training examples.

$$\min_{\theta_0 \theta_1} \frac{1}{2m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2$$
$$h_\theta \left(x^{(i)} \right) = \theta_0 + \theta_1 x^{(i)}$$

where *m* is the number of training examples

• The conventional notation of the above expression:

$$\min_{\theta_0 \theta_1} J(\theta_0, \theta_1)$$
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

 $J(\theta_0, \theta_1)$ is called the **cost function**

Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

 $\tau(\alpha \alpha)$

Linear Regression

 We have a hypothesis function to map the features to the labels: x to y, house size to price, etc.

$$h_{\theta} = \theta_0 + \theta_1 x$$

• The hypothesis function has parameters (θ_0, θ_1) , which are optimized during the training by the minimization of the cost function:

$$V(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

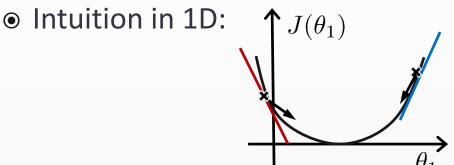
• Simplified example (with $\theta_0 = 0$):

Gradient Descent

- Gradient Descent method will be used to find the minimum of $J(\theta_0, \theta_1)$:
 - Start with *arbitrary initial values* (e.g. $\theta_0 = 0$, $\theta_1 = 0$)
 - In each iteration change θ_0 and θ_1 so that J is reduced, until it reaches its minimum value. To achieve this the following **update rule** is used:

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$
 for *j*=0,1
learning rate derivative of J

• The update is done simultaneously for all the θ_i .

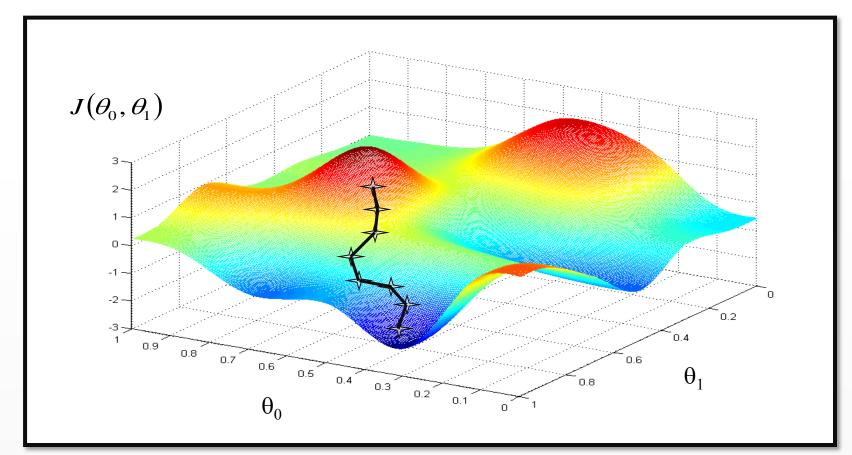


The tangential has a positive slope, the derivative is positive, θ will be decreased.

The tangential has a negative slope, the derivative is negative, θ will be increased.

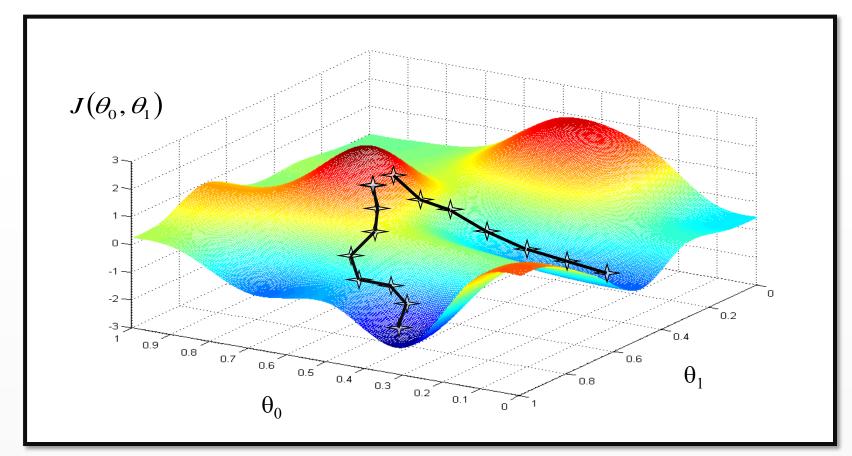
Gradient Descent

• In each iteration we move toward the minimum:



Gradient Descent

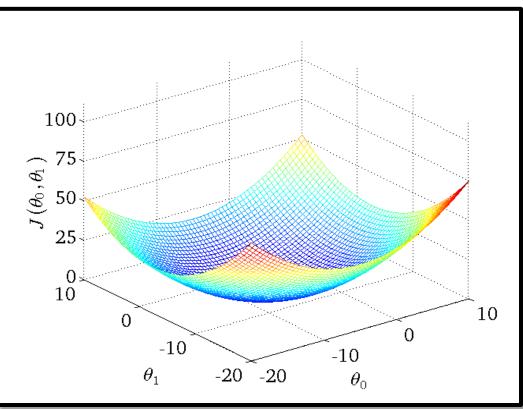
• In each iteration we move toward the (local) minimum:



Source: Andrew Ng Machine Learning Course on Coursera https://www.coursera.org/course/ml

Linear Regression

• With a convex *J* function, there is only one minimum, the global minimum:



Linear Regression

• Linear regression can be more powerful with **multiple variables**:

- Size of the house, # bedrooms, age, # floors, ...
- The new hypothesis function

$$h_{\theta}(x_1, x_2, x_3, ..., x_n) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + ... + \theta_n x_n$$

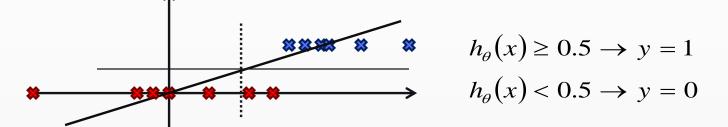
• More convenient to write it in a matrix-vector form:

$$h_{\theta}(x) = \theta^{T} \cdot x = \begin{bmatrix} \theta_{0} & \theta_{1} & \dots & \theta_{n} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \qquad J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

• Features may have different scale (#bedrooms: 1-5, size of the house: 500-2000). Scaling the features to the same range + normalizing the mean often helps the learning algorithm to perform better.

Logistic Regression

- Supervised classification algorithm:
 - From the input features (x) it predicts a discrete output (y):
 - Face/Not Face, Spam/Not Spam, ...
 - In the training data y is a vector of 0's and 1's:
 - O denotes that the samples belongs to the negative class: not face, not spam, ...
 - 1 denotes that the samples belongs to the positive class: face, spam, ...
 - There are multiclass classification problems with N different classes, where y = 1,2,3,..N. (e.g. car recognition: Opel, Honda, Peugeot,...)
 - Can we use linear regression for this problem?

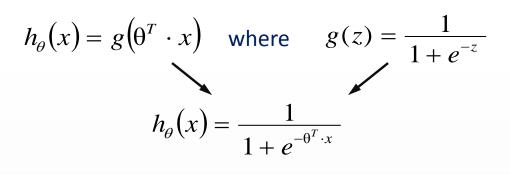


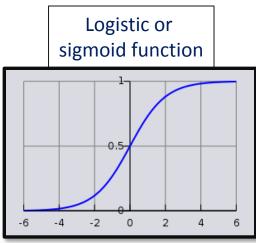
Logistic Regression

• Logistic regression produces answers between [0,1]:

$$0 \le h_{\theta}(x) \le 1$$

• To achieve this we take the logistic function of $\theta^T x$:





• Interpretation of the hypothesis:

• If for some x, $h_{\theta}(x) = 0.8$, it means that x, has 80% probability to belong to the positive class:

$$h_{\theta}(x) = P(y = 1 \mid x; \theta) = 0.8$$

$$\rightarrow P(y = 0 \mid x; \theta) = 1 - P(y = 1 \mid x; \theta) = 0.2$$

Decision Boundary

- Interpretation of the hypothesis:
 - To predict binary class labels we use a threshold 0.5:

$$P(y = 1 \mid x; \theta) \ge 0.5 \rightarrow y = 1$$
$$P(y = 1 \mid x; \theta) < 0.5 \rightarrow y = 0$$

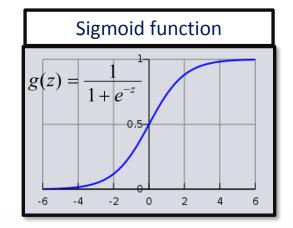
 ΔT

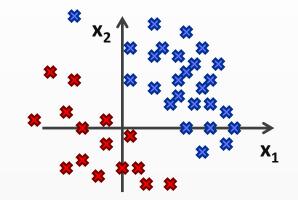
• Using a sigmoid function this mean:

 $() > 0 \pi 1$

$$g(z) \ge 0.5$$
 when $z \ge 0 \implies \theta^{T} \cdot x \ge 0$
 $g(z) < 0.5$ when $z < 0 \implies \theta^{T} \cdot x < 0$

 How can we classify our dataset, assuming we have the trained parameters θ?





Decision Boundary

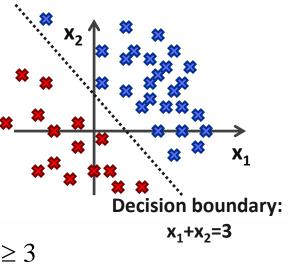
- Interpretation of the hypothesis:
 - Example I:
 - We have the following hypothesis function:

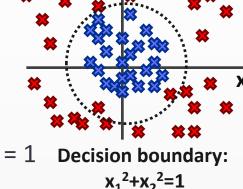
$$h_{\theta}(x) = g(\theta^T x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

- With parameters: $\theta_0 = -3$, $\theta_1 = 1$, $\theta_2 = 1$
- We predict "1" if $-3 + x_1 + x_2 \ge 0 \implies x_1 + x_2 \ge 3$
- We predict "0" if $-3 + x_1 + x_2 < 0 \implies x_1 + x_2 < 3$
- Example II:
 - The decision boundary can be nonlinear

$$h_{\theta}(x) = g(\theta^T x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

• With parameters: $\theta_0 = -1$, $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 1$, $\theta_4 = 1$ Decision boundary:





Logistic Regression

- How to chose parameter θ ?
 - We have *m* training examples: (x⁽¹⁾, y⁽¹⁾), (x⁽²⁾, y⁽²⁾), ..., (x^(m), y^(m))
 - Each training example has an *n* dimensional feature vector *x* and a label *y*.
 - The hypothesis function is $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T \cdot x}}$
 - What cost function should we use?
 - In linear regression the cost function was the following:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

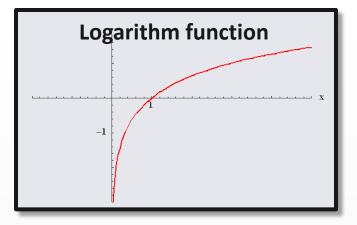
- The problem is now we have a nonlinear hypothesis function and if we plug it into J(θ) the result will be a non-convex cost function.
- We need to replace the $ext{cost}ig(h_{ heta}ig(x^{(i)}ig),\,y^{(i)}ig)$

Logistic Regression

- How to chose parameter θ ?
 - We will use the following cost term:

$$\operatorname{cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

- If y=1:
 - The cost is equal to zero if $h_{\theta}(x) = 1$, and as $h_{\theta}(x)$ goes to 0, the cost goes to infinity.
- If **y=0**:
 - The cost is equal to zero if $h_{\theta}(x) = 0$, and as $h_{\theta}(x)$ goes to 1, the cost goes to infinity.
- The unified cost function of logistic regression is as follows:



$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}(h_{\theta}(x^{(i)}), y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})))$$

Softmax Regression

• If the classification problem is not binary, e.g.:

- Cat, Dog, Car, Airplain, Boat, etc.
- Handwritten digits/characters
- Facial expressions
- The training set is $\{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$, where $y^{(i)}$ is in $\{1, ..., K\}$.
- For multiclass classification there are different strategies:
 - Transformation to Binary:
 - 1 vs. All (need K classifiers)
 - 1 vs. 1 (need K*(K-1)/2 classifiers)
 - Extension from Binary:
 - Softmax
 - ..
 - Hierarchical

Onehot encoding:

 $y = 1 \implies \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$ $y = 2 \implies \begin{bmatrix} 0 & 1 & \cdots & 0 \end{bmatrix}$ $\vdots \qquad \vdots$ $y = K \implies \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}$

2017.12.05.

Mutually exclusive categories

Softmax Regression

 For K exclusive categories we can use Softmax classifier, where the hypothesis function maps the input x to the following a K-dimensional hypothesis vector:

$$h_{\theta}(x) = \frac{1}{\sum_{j=1}^{K} e^{\theta^{(j)T} \cdot x}} \begin{bmatrix} e^{\theta^{(0)T}x} \\ e^{\theta^{(2)T}x} \\ \vdots \\ e^{\theta^{(K)T}x} \end{bmatrix}$$

 $\begin{bmatrix} \mathbf{a}^{(1)}T \end{bmatrix}$

Now θ is a matrix and each of its columns is the parameterization of the x feature vector for one class.

$$\mathbf{\Theta} = \begin{bmatrix} | & | & | \\ \mathbf{\Theta}^{(1)} & \mathbf{\Theta}^{(2)} & \cdots & \mathbf{\Theta}^{(K)} \\ | & | & | \end{bmatrix}$$

• The *k*th element the hypothesis vector can be interpreted as probability of membership of the *k*th category: $P(y_i = k \mid x_i, \theta) = \frac{e^{\theta^{(k)^T} x_i}}{\sum_{i=1}^{K} e^{\theta^{(j)^T} \cdot x_i}}$

• Logistic regression can be regarded as a special case (when K = 2) of the Softmax classifier.

Softmax Regression

• The cost function (cross-entropy loss) is the following:

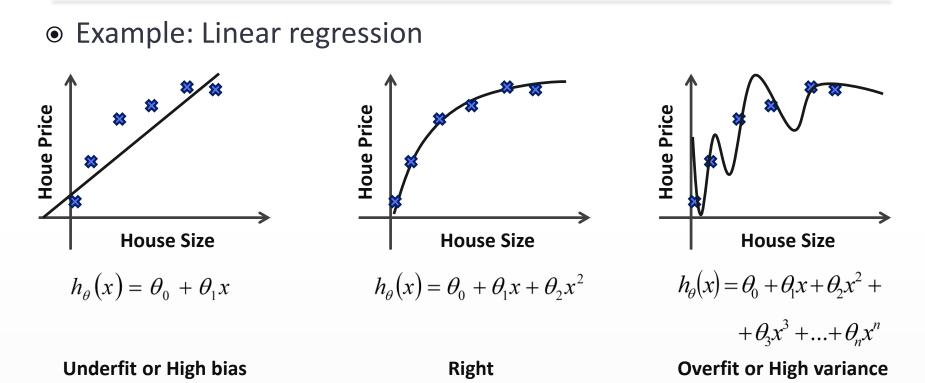
$$J(\theta) = -\sum_{i=1}^{n} \sum_{k=1}^{K} 1\{y_i = k\} \log \frac{e^{\theta^{(k)T}x}}{\sum_{i=1}^{K} e^{\theta^{(j)T} \cdot x}} = -\sum_{i=1}^{n} \sum_{k=1}^{K} 1\{y_i = k\} \log P(y_i = k \mid x_i, \theta)$$

We cannot solve for the minimum of J(θ) analytically, and thus as usual we'll resort to an iterative optimization algorithm. Taking the derivatives, one can show that the gradient is:

$$\nabla_{\theta^{(k)}} J(\theta) = -\sum_{i=1}^{m} \left[x_i (1\{y_i = k\} - P(y_i = k \mid x_i, \theta)) \right]$$

- where $\nabla_{\theta^{(k)}} J(\theta)$ is itself a vector, so that its j-th element is $\frac{\partial J(\theta)}{\partial \theta_{lk}}$ the partial derivative of $J(\theta)$ with respect to the j-th element of $\theta^{(k)}$.
- Armed with this formula for the derivative, one can then plug it into a standard optimization package and have it minimize $J(\theta)$.

Regularization



 If we have too many features we can learn a hypothesis that fits the training data very well, but fails on new samples (= does not generalize well)

Regularization

- To handle underfitting we can introduce new features.
- To handle overfitting:
 - We can **reduce the number of features** (but this might mean we lose useful information):
 - We can select manually which features to keep.
 - Use a model selection algorithm.
 - We can apply **regularization**:
 - We can keep all the features but we reduce their magnitude (the value of the θ parameters).
 - Works well if we have a lot of features and each contributes a little bit to predict *y*.
 - The idea is to keep the parameters low, to get a simpler hypothesis function, which is less prone to overfitting.

Regularization

- How can we keep the parameters low?
 - The cost function for linear/logistic regression with regularization:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}(h_{\theta}(x^{(i)}), y^{(i)}) + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$

Note: θ_0 is not regularized

L2 regularization term

- The regularization parameter λ controls the trade-off between two goals:
 - Fitting the data well
 - Keeping the parameters low, to avoid overfitting
- If λ is too large all the parameters (except θ_0) will be close to 0, the model won't fit the data, we will see underfitting.

Main Sources

- Andrew Ng Machine Learning Course
 - On Coursera: <u>https://www.coursera.org/course/ml</u>
 - At Stanford: <u>http://cs229.stanford.edu/</u>
- Further reading:
 - Lectures by Nando de Freitas:
 - Undergraduate Machine Learning at UBC 2012: https://www.youtube.com/playlist?list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf&feature=view_all
 - Machine Learning at UBC 2013 http://www.cs.ubc.ca/~nando/540-2013/lectures.html
 - A Few Useful Things to Know about Machine Learning:

http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

• Linear classification Loss Visualization:

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/