
 Versatile technique for clustering-based segmentation
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D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature space 
analysis," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, 
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 Sources: Mean Shift Theory and Applications, presentation of 
Yaron Ukrainitz &  Bernard Sarel

 Further credits:
• Alper Yilmaz, Afshin Dehghan

• Lecture of Mubarak Shah, UCF FL, USA

 https://www.youtube.com/watch?v=M8B3RZVqgOo
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 Non-parametric iterative clustering technique introduced in
1975 by Fukunaga and Hostetler.

 Do not need to know the number of clusters a priori.

 Does not constrain the shape of the cluster.

 Mean shift considers the points in the feature space as samples
from an underlying probability density function.

 The objective of the algorithm is to find the modes of this PDF,
and associate each point with the node it is „attracted to”.
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Fukunaga and Hostetler, "The Estimation of the Gradient of a Density Function, with Applications in 
Pattern Recognition", IEEE Transactions on Information Theory vol 21 , pp 32-40 ,1975
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 Given:
• Data points and approximate location of  the mean of this data

 Task:
• Estimate the exact location of the mean of the data by determining the 

shift vector from the initial mean 

• We do this iteratively, until we do not have to move (mean shift vector 
equals to zero)
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 Mean shift vector always points towards the direction of the 
maximum increase in the density
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 𝑛𝑥: number of points 
in the kernel

 𝑦0: initial mean 
location

 𝑥𝑖: data points
 ℎ: kernel radius
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 Weights are determined by different kernels:
• Uniform, Gaussian, Epanechnikov



 A tool for:
• Finding modes in a set of data samples, manifesting an underlying 

probability density function (PDF) in RN

 PDF in feature space
• Color space

• Scale space

• Actually any feature space you can conceive

• … 
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 Problem: model the height 
distribution of people in the class

• Approximate the histogram with a 
Gaussian density:

 𝜇 and 𝜎 are empirical mean and stdev
values calculated from the samples
(i.e. people in the class)

𝑓 𝑥 =
1

2𝜋𝜎
exp −

𝑥 − 𝜇 2

2𝜎2

𝑃 𝑥1 < 𝑥 ≤ 𝑥2 = න

𝑥1

𝑥2

𝑓 𝑥 𝑑𝑥

 Parametric distributions: 
• We have a closed formula for the probability density function (PDF) 

with a few parameters

• Estimate the PDF parameters from the samples, then forget the 
samples and use the pdf directly for probability calculation

• Various distributions exist: Gaussian, Poisson, Gamma, Beta, etc… 



11/19/2019 16

 What happens if the 
distribution of samples…

• … does not fits any well known 
parametric pdf formula, or…

• … we cannot decide what sort 
of formula we need the use 
(too few samples)

 Non-Parametric distributions: 
• We do not have a closed formula for the probability density function (PDF)

• Instead, we need to store the samples, and use the samples directly to 
model the PDF

• Our desire: the value of 𝑓 𝑥 should be „high”, if we find „a lot of samples” 
around 𝑥

𝑓 𝑥 =? ? ? Non-Gaussian distribution



 A tool for:
• Finding modes in a set of data samples, manifesting an underlying 

probability density function (PDF) in RN
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Assumed Underlying PDF Real Data Samples

The data point density 
implies a pdf value

2D data points
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Assumed Underlying PDF Real Data Samples

?
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Assumed Underlying PDF
Real Data Samples

Assumption : The data points are sampled from an underlying PDF

Estimate

• Each sample point contributes to the PDF with an additive term
(here: Gaussian) - 𝜇𝑖 : equal to the 𝑖th sample



 Non-parametric PDF with Gaussian kernel:
• Seems like a mixture of Gaussians, where the number of components is 

equal to the number of samples, and the mean values of the 
components are at the sample points 𝜇1, 𝜇2, … , 𝜇𝑛

 Probability calculation for particular 𝑥 value: 
• We calculate it as a weighted sum from the surrounding sample points -

all the points contribute!

• We look at the distance of 𝑥 from each sample point

• The PDF value is high for 𝑥 which has a lot of samples around it
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Data
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• Roles of kernels: they determine the weights of nearby 
points in the density calculation.



 Radially symmetric kernel

11/19/2019 24

𝐾 𝑥 = 𝑐𝑘 𝑥 2

𝑃 𝑥 =
1

𝑛
෍

𝑖=1

𝑛

𝐾 𝑥 − 𝑥𝑖 =
1

𝑛
𝑐෍

𝑖=1

𝑛

𝑘 𝑥 − 𝑥𝑖
2

Profile



 Non parametric probability function (pdf)
• We do not have any assumptions about the closed form of the 

distribution (such as Gaussian or mixture of Gaussians)

• We estimate the  pdf directly from the sample points 𝑥1… 𝑥𝑛
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 Given feature vector 𝑥
• e.g. 1D gray value, 3D color vector, 6D vector of color + texture 

components etc.

 Task: calculate the probability (density) value of 𝑥 directly 
from the sample points 𝑥1… 𝑥𝑛

• Calculate the Euclidean distance 𝑑𝑖 of 𝑥 from each 𝑥𝑖.

• Use a kernel profile 𝑘(. ) which assigns a weight to 𝑥𝑖 as a function of 
the  calculated 𝑑𝑖 distance (for lower distance higher weight, see 
different kernels)

• Take the pdf value as a the normalized sum of the weights

• High pdf values corresponds to 𝑥 features which have several 𝑥𝑖-s 
„nearby”  
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 Relations of nonparametric pdfs and means shift

 Derivative of the pdf (gradient of the density):
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Updated Mean Shift Procedure:
• Find all modes using the Simple Mean Shift Procedure
• Prune modes by perturbing them (find saddle points and plateaus)
• Prune nearby – take highest mode in the window

What happens if we
reach a saddle point 

?

Perturb the mode position
and check if we return back



 Main steps:
1. A density estimation window (e.g. a Gaussian window) is placed on

each sample point.

2. Within each window the mean shift vector is calculated, which points
toward the maximum density:

3. The window is shifted with the mean shift vector.

4. Step 2 and 3 are repeated until convergence to a local density
maximum.

5. The sample points that converged to the same local maximum will
belong to the same cluster.
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where …
x is a d dimensional feature point,
g(x)=-K’(x), where K is a kernel function (e.g.
Gaussian kernel)
h is the bandwidth parameter of the kernel



Tessellate the space with windows Run the procedure in parallel
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The blue data points were traversed by the windows towards the mode



 Attraction basin: the region for which all trajectories lead 
to the same mode

 Cluster: all data points in the attraction basin of a mode

Slide by Y. Ukrainitz & B. Sarel
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Simple Modal Structures

Complex Modal Structures



Initial window

centers

Modes found Modes after

pruning

Final clusters

Feature space:

L*u*v representation



L*u*v space representation



Not all trajectories

in the attraction basin

reach the same mode

2D (L*u) 

space 

representation

Final clusters



 Segmented regions
• Similar  color/texture values

• Spatially connected pixels

 Grayscale image segmentation
model

• Each pixel = a „billiard ball” 𝒙 in the 3D 
joint spatial-intensity space:
𝒙 = 𝑥, 𝑦, 𝑧(𝑥, 𝑦) ∈ ℝ3

where 𝑧(𝑥,𝑦)  is the gray level of pixel 
(𝑥,𝑦) 

• Segmentation: find the modes of this 
3D distribution – i.e. dense regions with 
their attraction basins  
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Feature space : Joint domain = spatial coordinates + color space
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Meaning : treat the image as data points in the spatial and gray level domain:

Image Data
(slice)

Mean Shift
vectors

Smoothing
result

𝒙 = 𝑥𝑠, 𝑥𝑟 = 𝑥, 𝑦, 𝑧(𝑥, 𝑦) ∈ ℝ3 where 𝑧(𝑥, 𝑦) is the gray level of pixel (𝑥, 𝑦)
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z

The image gray levels… … can be viewed as data points

in the x, y, z space (joined spatial

and color space)



y

z
Flat regions induce the modes !



 The effect of window 
size in spatial and
range spaces
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 Segment = Cluster,        or Cluster of Clusters
 Algorithm:

• Run Filtering (discontinuity preserving smoothing)

• Cluster the clusters which are closer than window size
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…when feature space is only 

gray levels…
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http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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 Speedups
• Uniform kernel (much faster but not as good)

• Binning or hierarchical methods

• Approximate nearest neighbor search

 Methods to adapt kernel size depending on data density
 Lots of theoretical support

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach 
toward Feature Space Analysis, PAMI 2002. 



 Pros
• Good general-practice segmentation
• Finds variable number of regions
• Robust to outliers

 Cons
• Have to choose kernel size in advance
• Original algorithm doesn’t deal well with high 

dimensions
 When to use it

• Oversegmentatoin
• Multiple segmentations
• Other tracking and clustering applications


