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Image and Video Segmentation




Previously on... Basic Image Processing

® Previous topics:
e Color Spaces, dithering
2D convolution, Canny edge detector Classical era
e Hough transformation & Image Enhancement __ mainly from

e Fourier anaIyS|.s ’60s-'80s
e Texture analysis i
(with

e Image recovery _
e Segmentation: Otsu, K-means and Morphology exceptions)

® Remaining topics:

e Markov Random Fields, Marked Point Processes Modern era
e Mean shift mainy from
o Descriptors: SIFT, HOG, Local Binary Patterns — ’00s-"10s

e Video processing (with

e Machine Learning exceptions)

o Deei Learnini S



Recap: Morphological Operations
Limitations: distortion of object shapes

Foreground Mask.of MoG (7=20)

Closing Opening
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Beyond morphology based approaches?

@ Pixel-by-pixel classification: observation (image) based
knowledge, e.g. pixel color values, local texture features etc.
® Morphology to obtain homogeneous regions: prior knowledge

Homogeneous, but often

Morphology

Pixel-by-pixel - . — ' distorted shapes
classification braesﬁr(\jerriil:tn (especially on the object

boundaries)

Pixel-by-pixel '
descriptors Joint decision |
considering both - Homogeneous shapes with

iac?
Prior knowledge e accurate boundaries-

based soft ‘

constraints
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Markov Random Fields in Image Segmentation

® Segmentation as pixel labeling
@ Probabilistic approach
e Segmentation as MAP estimation
e Markov Random Field (MRF)
e Gibbs distribution & Energy function
® Classical energy minimization
e Simulated Annealing
e Markov Chain Monte Carlo (MCMC) sampling
® Example MRF model & Demo
® Parameter estimation (EM)

MREF slides adopted © Zoltan Kato, University of Szeged, http://www.inf.u-szeged.hu/~kato/
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Markov Random Fields in Image Segmentation
main principle

® Mapping the image to a graph

e nodes are assigned to the different pixels, and the o000 p oo o
edges connect pixels which are in interaction 0 0 ©
® Segmentation as pixel labeling: o000 doo oo
e each pixel gets a class-label from a task- il R

dependent label set A

@® Inverse problem formulation:

e Instead of finding a direct algorithm to find the optimal labeling, we construct a (pseudo-)
probability function which assigns a likelihood value to each possible global segmentation,
then an optimization process attempts to find the labeling with the highest confidence

® What does the probability function depend on?
» |ocal feature vectors at each pixel (color, texture etc)
* classes in A are as stochastic processes, described by different feature distributions
» |abel consistency (soft) constraints between neighboring pixels

* e.g. for preferring smooth segmentation map we penalize if two neighboring nodes have
different labels
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Segmentation as a Pixel Labelling Task

@ Extract features from the input image
e Each pixel s in the image has a feature vector fs
e For the whole image, we have: R
f = {fs:s € S}: global observation A
® Define the set of labels A L
e Each pixel s is assigned a label wg € A
e For the whole image, we have:
w = {w,:s € S}: global labeling
o (): set of all possible w global labelings (i.e. w € ()
® Foran N X M image, there are [Q| = |A|YM
possible global labelings.
 Which one is the right segmentation?

Source: Zoltan Kato, http://www.inf.u-szeged.hu/~kato/

2019. 11. 05.



Probabilistic Approach, MAP

® Define a probability measure on the set of all possible global
labeling and select the most likely one.

® P(w|f) measures the probability of a global labeling w, given
the observed features f

® Our goal is to find an optimal labeling @ which maximizes
P(w|f)

® This is called the Maximum a Posteriori (MAP) estimate:

@ = argmax P(w|f)
WE()
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Bayesian Framework

@ By Bayes Theorem, we have

likelihood | | prior

|
Polf) = LII@P@) o))

P(f)
® P(f) is constant /

e it does not depend on the actual labeling!
@ We need to define P(f|w) and P(w) in our model

We will use Markov Random Fields
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Why MRF Modelization?

@ In real images, regions are often homogenous; neighboring
pixels usually have similar properties (intensity, color, texture,
...) — prior neighborhood constraints vs. noisy pixel level
descriptors

® Markov Random Field (MRF) is a probabilistic model which
captures such contextual constraints

e Well studied, strong theoretical background

e Allows Monte-Carlo Markov Chain (MCMC) sampling of the (hidden)
underlying structure — Simulated Annealing

e Fast and exact solution for certain type of models — Graph cut
[Kolmogorov]
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What is MRF?

@ To give a formal definition for Markov Random Fields, we need
some basic building blocks
e Observation Field and (hidden) Labeling Field
Pixels and their Neighbors

Cliques and Clique Potentials

Energy function
Gibbs Distribution
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Markov Chains vs Markov Random Fields

® Recap: Discrete Markov Chains: discrete time, discrete state
stochastic processes
e Given: set of possible states 54, S5,...Sy @

e q;:stateattimet, (t=1,..T) // \:\

e Observed state sequence: ¢4, qy,...q7 @ . @
e Markov property: i

P(CIt = Sj|CIt—1 = Si) = P(Qt = 5j|Qt—1 =381, qt—2 = Sky Q1 = Sl)

 Conditional probability of the current state only depends on the
previous state (i.e. only neighboring states interact —in time)

® Markov Random Fields: instead of temporal neighboring
states, we consider the spatially neighboring pixels

e Pixel labels are not independent, however, direct dependence is only
considered between the spatial neighbors
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Definition — Neighbors

@ For each pixel, we can define some surrounding pixels as its
neighbors.
® Example: 1St order neighbors and 2nOI order neighbors
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Definition — MRF

@ The labeling field X can be modeled as a Markov Random
Field (MRF) if
1. Forallw e :PX =w) >0
2. ForeveryseSandw € :

P(wi|w,,r #+5) = P(ws|w,, T € Ny)

- N, denotes the neighbors of pixel s
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Hammersley-Clifford Theorem

® The Hammersley-Clifford Theorem states that a random field is a MRF if
and only if P(w) follows a Gibbs distribution.

1 1
P(w) = Eexp(—U(a))) = exp| — z V. (w)

ceC

e whereZ =Y, cqexp(—U(w)) is a normalization constant

® Practical consequence:

e probability functions of MRFs have a special form: they can be factorized into
small terms V.(w) called clique potentials, which can be locally calculated on
the graph

o this property makes possible to design the P(w) probability function in a
modular way, and enables using efficient iterative optimization techniques

e Technical note: instead of maximizing this probability function we usually
minimize the minus logarithm of it, U(w), which is called the energy function
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Definition — Clique

® The H-C theorem provides us an easy way of defining MRF models via
clique potentials.

® A subset C € Sis called a cligue if every pair of pixels in this subset are

neighbors.

A clique containing n pixels is called nt order clique, denoted by C,,

The set of cliques in an image is denoted by

®© ®

C:C'1UC2UUCK

’

@ —@

singleton doubleton
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Definition — Cliqgue Potential

® For each clique c in the image, we can assign a value I.(w)
which is called clique potential of c, where w is the
configuration of the labeling field

® The sum of potentials of all cliques gives us the energy U(w)
of the configuration w.

U(w) = ) Ve(w) =

ceC

= Z Ve, (w;) +Z VCZ(a)i, a)j) + -

= (i,))EC,
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Segmentation of grayscale images:
A simple MRF model

@ Construct a segmentation model where regions are formed by
spatial clusters of pixels with similar intensity:

Model MRF segmentation model

parameters &
find MAP estimate @

}

Segmentation @

Input image
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MRF segmentation model

® Pixel labels (or classes) are represented by (for
example) Gaussian distributions:

exp | — (fs - :“ws)z
V210, 205,
® Cligue potentials

e Singleton: proportional to the likelihood of features

P(fslws) -

given w : log P(f|w) Cligues
e Doubleton: favors similar labels at neighboring o O f
pixels — smoothness prior

—ﬁ lf w; = (UJ

Ve ) = B0 ) = i o 7

- as 3 increases, regions become more homogenous
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Model parameters

classes:

@ Doubleton potential B
e |less dependent on the input —
* can be fixed a priori
® Number of labels |A|
e Problem dependent —
* usually given by the user or

* inferred from some higher level knowledge
@ Each label A € A is represented by a
Gaussian distribution N(uy, 03):
e estimated from the input image
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Model parameters

® The class statistics (mean and variance) classes:

can be estimated via the empirical mean
and variance:

1
aen m=1S

» where S;denotes the set of pixels in the
training set of class A

e atraining set consists in a representative
region selected by the user
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Energy function

® Now we can define the energy function of our MRF model:

2
Ul(w) = Z (log(\/%aws) + Us 2_0'[;%) ) + 2 B (ws, w,)

Wg

S S,r

® Recap: the P(w) probability can be directly derived from the

energy . .
P(w) = Zexp(—U(w)) = Eexp (— Z V. (w))

ceC

® Hence:

oM4P = argmax P(w|f) = argmin U(w)
wEel) wel)

11/5/2019




Optimization

® Problem reduced to the minimization of
a non-convex energy function
e Many local minima !
® Gradient descent?
e Works only if we have a good initial
segmentation /o
® Simulated Annealing

IL-,“\ /'f |} II,"Iﬁ-— —
e Always works (at least in theory)

Y
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ICM (lterated Conditional Mode)
~Gradient descent approach [Besag86]

1. Start at a ,,good” initial configuration w® and set
k = 0.

2. For each configuration which differs at most in
one element from the current configuration w
(they are denoted by V' «), compute the
energy U(n) (n € NV k).

3. From the configurations vk, select the one £
which has the minimal energy:

k

w**t! = argmin U(n)

nEka [ 4

4. Goto Step 2, with k = k 4+ 1until convergence
obtained (for example the energy change is less
than a certain threshold).
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ICM (lterated Conditional Mode)

ICM for mage segmentation models

1. Start at a,good” initial segmentation w® and set
k=0 Only depens on pixel s

and its four neighbors

3. From the configurations V', select the one which W
has the minimal energy:

w**t1 = argmin AU ()

neN k 4

4. Goto Step 2, with k = k 4+ 1until convergence
obtained (for example the energy change is less
than a certain threshold).

11/5/2019




ICM initialization

® Per-pixel Maximum a Posteriori (MAP) estimate:

0 . (fs — m)?
ws = argmin log(\/ 2710;\) + 5
AEA 205

Input image Initial label map
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ICM optimization steps




ICM vs. Simulated Annealing

ODQDODQ
OD®DQDO
ODQDQD.
QDQDQDQ = Gl

Can get stuck in local minimal

: accept a move even if
energy increases (with certain probability) Slide adopted from C. Rother ICCV'09 tutorial:

http://research.microsoft.com/
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Simulated Annealing
Modified Metropolis Dynamics (MMD)

1. Set k = 0 and initialize w randomly. Choose a sufficiently high
initial temperature T =T,

2. Construct a trial perturbation n from the current configuration w
such that n differs only in one element from w.

3. (Metropolis criteria) Compute AU = U(n) — U(w) and accept 1 if
AU < 0 else accept with probability exp(—AU/T) (analogy with
thermodynamics):

n ifAU <0
w =49n ifAU > 0and ¢ < exp(—AU/T)
w otherwise

where € is a uniform random number in [0,1].
4. Decrease the temperature T = Ty, and goto step 2 with k =k +
1 until the system is frozen.
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Temperature Schedule

@ In theory: should be logarithmic — in practice: exponential
schedule is reasonable
@ Initial temperature: set it to a relatively low value (~4) —
faster execution
e must be high enough to allow random jumps at the beginning!
® Schedule: T,,1 =c Ty, k=0,1,2,.. (e.g.c = 0.95).
® Stopping criteria:
e Fixed number of iterations
e Energy change is less than a thresholds
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MMD segmentation

@ Starting MMD: random label map!

2019. 11. 05.



ICM vs MMD

ICM result MMD result
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MRF Summary

® Design your model carefully

e Optimization is just a tool, do not expect a good segmentation from a
wrong model

® What about other than graylevel features?
e Extension to color is relatively straightforward
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What color features?
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Extract Color Feature

® We adopt the CIE-L*u*v* color space because it is
perceptually uniform.

e Recap from earlier slides: similarly to CIE-L*a*b*, color difference can
be measured here by Euclidean distance of two color vectors.

® We convert each pixel from RGB space to CIEL*u*v* space
 We have 3 color feature images
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Color MRF segmentation model

@ Pixel labels (or classes) are represented by
three-variate Gaussian distributions

1 1, _ _
P(fs|lws) = \/E|Z | exp <_E (ﬁs - ﬁws)zg):sl(fs - ﬁws)T>

® Cligue potentials
e Singleton: proportional to the likelihood of features
given w : log P(f|w)
e Doubleton: favors similar labels at neighboring o 00— f
pixels — smoothness prior

Cliques

—ﬁ lf w; = (UJ

VCz(i'j) — ,86((‘)1'1(‘)]) — {-l_ﬁ

- as 3 increases, regions become more homogenous
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Segmentation examples

color image segmentation
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