Basic Image Processing Algorithms

PPKE-ITK

Lecture 8.

Image and Video Segmentation

Previously on... Basic Image Processing

• Previous topics:

- Color Spaces, dithering
- 2D convolution, Canny edge detector
- Hough transformation & Image Enhancement
- Fourier analysis
- Texture analysis
- Image recovery
- Segmentation: Otsu, K-means and Morphology
- Remaining topics:
 - Markov Random Fields, Marked Point Processes
 - Mean shift
 - Descriptors: SIFT, HOG, Local Binary Patterns
 - Video processing
 - Machine Learning
 - Deep Learning

Classical era mainly from '60s-'80s (with exceptions)

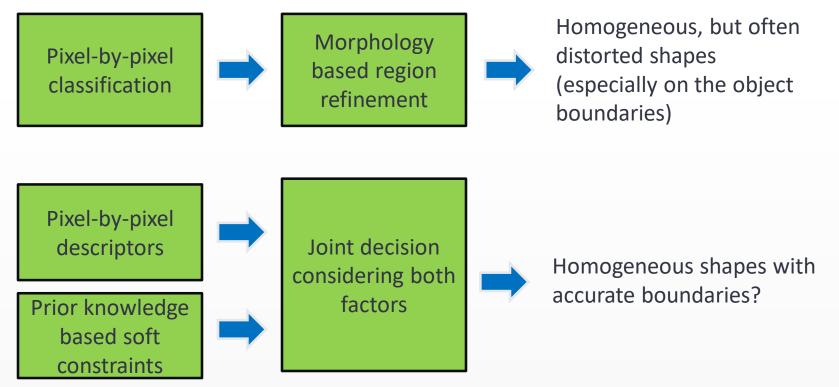
Modern era mainy from '00s-'10s (with exceptions)

Recap: Morphological Operations Limitations: distortion of object shapes

Foreground Mask of MoG (T=20)

Beyond morphology based approaches?

- Pixel-by-pixel classification: observation (image) based knowledge, e.g. pixel color values, local texture features etc.
- Morphology to obtain homogeneous regions: prior knowledge



Markov Random Fields in Image Segmentation

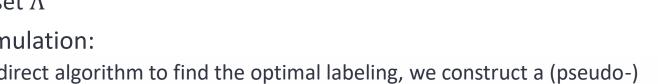
- Segmentation as pixel labeling
- Probabilistic approach
 - Segmentation as MAP estimation
 - Markov Random Field (MRF)
 - Gibbs distribution & Energy function
- Classical energy minimization
 - Simulated Annealing
 - Markov Chain Monte Carlo (MCMC) sampling
- Example MRF model & Demo
- Parameter estimation (EM)

MRF slides adopted © Zoltan Kato, University of Szeged, http://www.inf.u-szeged.hu/~kato/

Markov Random Fields in Image Segmentation main principle

Mapping the image to a graph

- nodes are assigned to the different pixels, and the edges connect pixels which are in interaction
- Segmentation as pixel labeling:
 - each pixel gets a class-label from a task-dependent label set Λ
- Inverse problem formulation:



- Instead of finding a direct algorithm to find the optimal labeling, we construct a (pseudo-)
 probability function which assigns a likelihood value to each possible global segmentation,
 then an optimization process attempts to find the labeling with the highest confidence
- What does the probability function depend on?
 - local feature vectors at each pixel (color, texture etc)
 - classes in Λ are as stochastic processes, described by different feature distributions
 - label consistency (soft) constraints between neighboring pixels
 - e.g. for preferring smooth segmentation map we penalize if two neighboring nodes have different labels

Segmentation as a Pixel Labelling Task

- Extract features from the input image
 - Each pixel s in the image has a feature vector \bar{f}_s
 - For the whole image, we have:

 $f = \{\overline{f_s}: s \in S\}$: global observation

- \odot Define the set of labels Λ
 - Each pixel s is assigned a label $\omega_s \in \Lambda$
 - For the whole image, we have:

 $\omega = {\omega_s : s \in S}$: global labeling

- Ω : set of all possible ω global labelings (i.e. $\omega \in \Omega$)
- For an $N \times M$ image, there are $|\Omega| = |\Lambda|^{NM}$ possible global labelings.
 - Which one is the right segmentation?

Source: Zoltan Kato, http://www.inf.u-szeged.hu/~kato/

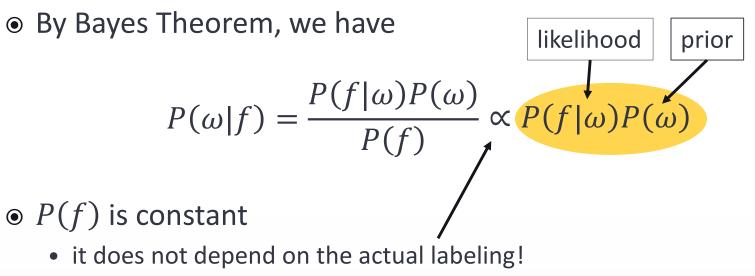
(1)

Probabilistic Approach, MAP

- Define a *probability measure* on the set of all possible global labeling and select the most likely one.
- $P(\omega|f)$ measures the probability of a global labeling ω , given the observed features f
- Our goal is to find an optimal labeling $\widehat{\omega}$ which **maximizes** $P(\omega|f)$
- This is called the *Maximum a Posteriori* (MAP) estimate:

 $\widehat{\omega} = \operatorname*{argmax}_{\omega \in \Omega} P(\omega|f)$

Bayesian Framework



• We need to define $P(f|\omega)$ and $P(\omega)$ in our model

We will use Markov Random Fields

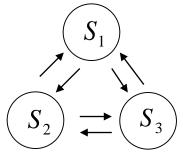
- In real images, regions are often homogenous; neighboring pixels usually have similar properties (intensity, color, texture, ...) → prior neighborhood constraints vs. noisy pixel level descriptors
- Markov Random Field (MRF) is a probabilistic model which captures such contextual constraints
 - Well studied, strong theoretical background
 - Allows Monte-Carlo Markov Chain (MCMC) sampling of the (hidden) underlying structure → Simulated Annealing
 - Fast and exact solution for certain type of models → Graph cut [Kolmogorov]

What is MRF?

- To give a formal definition for Markov Random Fields, we need some basic building blocks
 - Observation Field and (hidden) Labeling Field
 - Pixels and their Neighbors
 - Cliques and Clique Potentials
 - Energy function
 - Gibbs Distribution

Markov Chains vs Markov Random Fields

- Recap: Discrete Markov Chains: discrete time, discrete state stochastic processes
 - Given: set of possible states $S_1, S_2, ..., S_N$
 - q_t : state at time t, (t = 1, ..., T)
 - Observed state sequence: $q_1, q_2, ..., q_T$
 - Markov property:

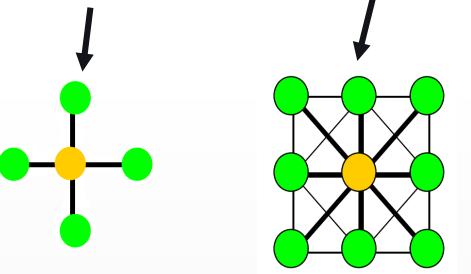


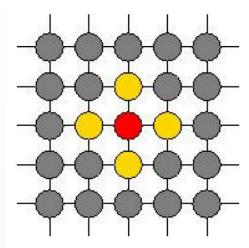
 $P(q_t = S_j | q_{t-1} = S_i) = P(q_t = S_j | q_{t-1} = S_i, q_{t-2} = S_k, \dots, q_1 = S_l)$

- Conditional probability of the current state only depends on the previous state (i.e. only neighboring states interact – in time)
- Markov Random Fields: instead of temporal neighboring states, we consider the spatially neighboring pixels
 - Pixel labels are not independent, however, direct dependence is only considered between the spatial neighbors

Definition – Neighbors

- For each pixel, we can define some surrounding pixels as its neighbors.
- Example: 1st order neighbors and 2nd order neighbors



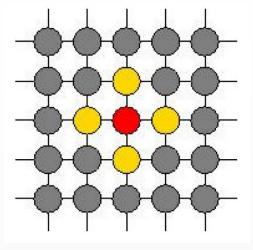


Definition – MRF

- The labeling field X can be modeled as a Markov Random Field (MRF) if
 - 1. For all $\omega \in \Omega$: $P(X = \omega) > 0$
 - 2. For every $s \in S$ and $\omega \in \Omega$:

 $P(\omega_s|\omega_r, r \neq s) = P(\omega_s|\omega_r, r \in N_s)$

• N_s denotes the neighbors of pixel s



Hammersley-Clifford Theorem

• The Hammersley-Clifford Theorem states that a random field is a MRF if and only if $P(\omega)$ follows a Gibbs distribution.

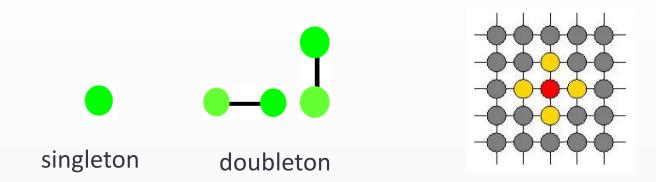
$$P(\omega) = \frac{1}{Z} \exp\left(-U(\omega)\right) = \frac{1}{Z} \exp\left(-\sum_{c \in C} V_c(\omega)\right)$$

- where $Z = \sum_{\omega \in \Omega} \exp(-U(\omega))$ is a normalization constant
- Practical consequence:
 - probability functions of MRFs have a special form: they can be factorized into small terms $V_c(\omega)$ called *clique potentials*, which can be locally calculated on the graph
 - this property makes possible to design the $P(\omega)$ probability function in a modular way, and enables using efficient iterative optimization techniques
 - Technical note: instead of maximizing this probability function we usually minimize the minus logarithm of it, $U(\omega)$, which is called the *energy function*

Definition – Clique

- The H-C theorem provides us an easy way of defining MRF models via clique potentials.
- A subset C ⊆ S is called a *clique* if every pair of pixels in this subset are neighbors.
- A clique containing *n* pixels is called *n*th order clique, denoted by C_n
- The set of cliques in an image is denoted by

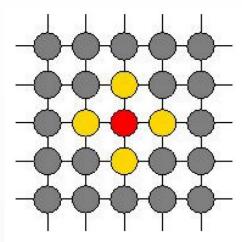
$$C = C_1 \cup C_2 \cup \dots \cup C_K$$



Definition – Clique Potential

- For each clique *c* in the image, we can assign a value $V_c(\omega)$ which is called *clique potential* of *c*, where ω is the configuration of the labeling field
- The sum of potentials of all cliques gives us the energy $U(\omega)$ of the configuration ω .

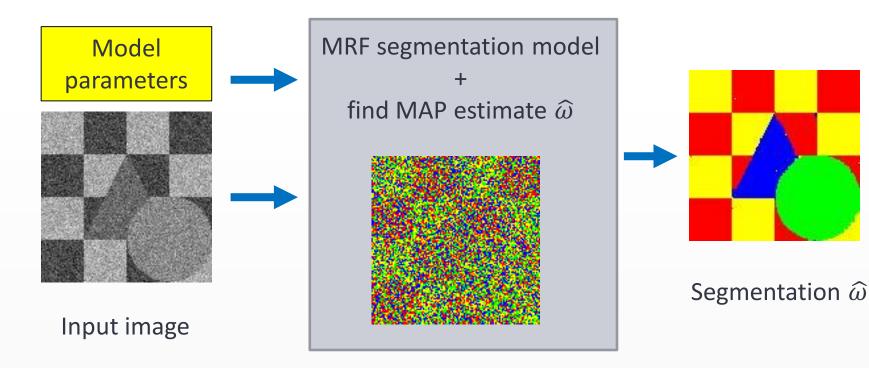
$$(\omega) = \sum_{c \in C} V_c(\omega) =$$
$$= \sum_{i \in C_1} V_{C_1}(\omega_i) + \sum_{(i,j) \in C_2} V_{C_2}(\omega_i, \omega_j) + \cdots$$



Π

Segmentation of grayscale images: A simple MRF model

 Construct a segmentation model where regions are formed by spatial clusters of pixels with similar intensity:



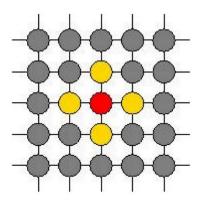
MRF segmentation model

 Pixel labels (or classes) are represented by (for example) Gaussian distributions:

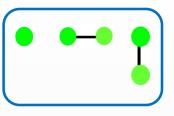
$$P(f_s|\omega_s) = \frac{1}{\sqrt{2\pi}\sigma_{\omega_s}} \exp\left(-\frac{\left(f_s - \mu_{\omega_s}\right)^2}{2\sigma_{\omega_s}^2}\right)$$

- Clique potentials
 - **Singleton**: proportional to the likelihood of features given $\omega : \log P(f|\omega)$
 - Doubleton: favors similar labels at neighboring pixels – smoothness prior

$$V_{C_2}(i,j) = \beta \delta(\omega_i, \omega_j) = \begin{cases} -\beta & \text{if } \omega_i = \omega_j \\ +\beta & \text{if } \omega_i \neq \omega_j \end{cases}$$



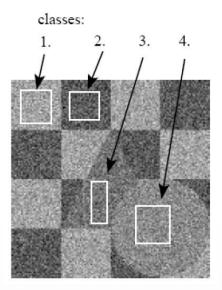
Cliques



• as β increases, regions become more homogenous

Model parameters

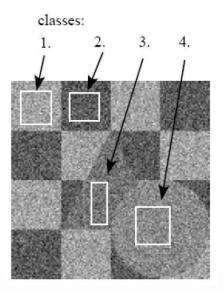
- \odot Doubleton potential β
 - less dependent on the input \rightarrow
 - can be fixed a priori
- \odot Number of labels $|\Lambda|$
 - Problem dependent \rightarrow
 - usually given by the user or
 - inferred from some higher level knowledge
- Each label $\lambda \in \Lambda$ is represented by a Gaussian distribution $N(\mu_{\lambda}, \sigma_{\lambda})$:
 - estimated from the input image



Model parameters

 The class statistics (mean and variance) can be estimated via the *empirical mean and variance*:

$$\forall \lambda \in \Lambda: \qquad \mu_{\lambda} = \frac{1}{|S_{\lambda}|} \sum_{s \in S_{\lambda}} f_s$$
$$\sigma_{\lambda}^2 = \frac{1}{|S_{\lambda}|} \sum_{s \in S_{\lambda}} (f_s - \mu_{\lambda})^2$$



- where S_{λ} denotes the set of pixels in the training set of class λ
- a training set consists in a representative region selected by the user

Energy function

• Now we can define the energy function of our MRF model:

$$U(\omega) = \sum_{s} \left(\log(\sqrt{2\pi}\sigma_{\omega_s}) + \frac{(f_s - \mu_{\omega_s})^2}{2\sigma_{\omega_s}^2} \right) + \sum_{s,r} \beta \delta(\omega_s, \omega_r)$$

• Recap: the $P(\omega)$ probability can be directly derived from the energy $P(\omega) = \frac{1}{Z} \exp(-U(\omega)) = \frac{1}{Z} \exp\left(-\sum_{c \in C} V_c(\omega)\right)$

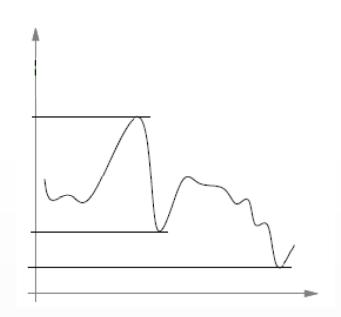
• Hence: $\widehat{\omega}^{MAP} = \operatorname*{argmax}_{\omega \in \Omega} P(\omega|f) = \operatorname*{argmin}_{\omega \in \Omega} U(\omega)$

Optimization

Problem reduced to the minimization of

a **non-convex** energy function

- Many local minima
- Gradient descent?
 - Works only if we have a *good* initial segmentation
- Simulated Annealing
 - Always works (at least in theory)

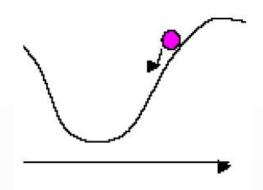


ICM (Iterated Conditional Mode) ~Gradient descent approach [Besag86]

- 1. Start at a "good" initial configuration ω^0 and set k = 0.
- 2. For each configuration which differs *at most* in one element from the current configuration ω^k (they are denoted by \mathcal{N}_{ω^k}), compute the energy $U(\eta)$ ($\eta \in \mathcal{N}_{\omega^k}$).
- 3. From the configurations \mathcal{N}_{ω^k} , select the one which has the minimal energy:

 $\omega^{k+1} = \operatorname*{argmin}_{\eta \in \mathcal{N}_{\omega^k}} U(\eta)$

4. Goto Step 2, with k = k + 1until convergence obtained (for example the energy change is less than a certain threshold).

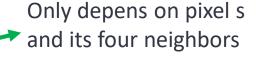


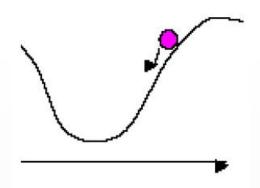
ICM (Iterated Conditional Mode) ICM for mage segmentation models

- 1. Start at a "good" initial segmentation ω^0 and set k = 0.
- 2. For each segmentation which differs at most in one pixel's label (pixel s) from the current segmentation ω^k (they are denoted by \mathcal{N}_{ω^k}), compute the energy $\Delta U(\eta) = U(\eta) U(\omega^k)$ ($\eta \in \mathcal{N}_{\omega^k}$).
- 3. From the configurations \mathcal{N}_{ω^k} , select the one which has the minimal energy:

 $\omega^{k+1} = \operatorname*{argmin}_{\eta \in \mathcal{N}_{\omega^k}} \Delta U(\eta)$

4. Goto Step 2, with k = k + 1until convergence obtained (for example the energy change is less than a certain threshold).

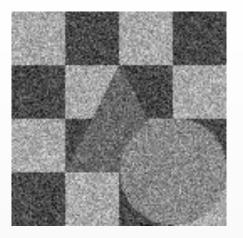


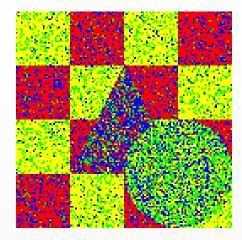


ICM initialization

• Per-pixel Maximum a Posteriori (MAP) estimate:

$$\omega_s^0 = \operatorname*{argmin}_{\lambda \in \Lambda} \left(\log(\sqrt{2\pi}\sigma_{\lambda}) + \frac{(f_s - \mu_{\lambda})^2}{2\sigma_{\lambda}^2} \right)$$

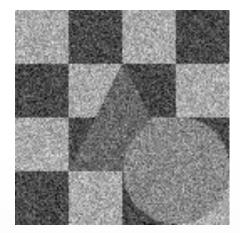


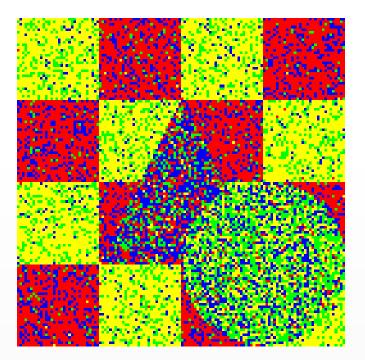


Input image

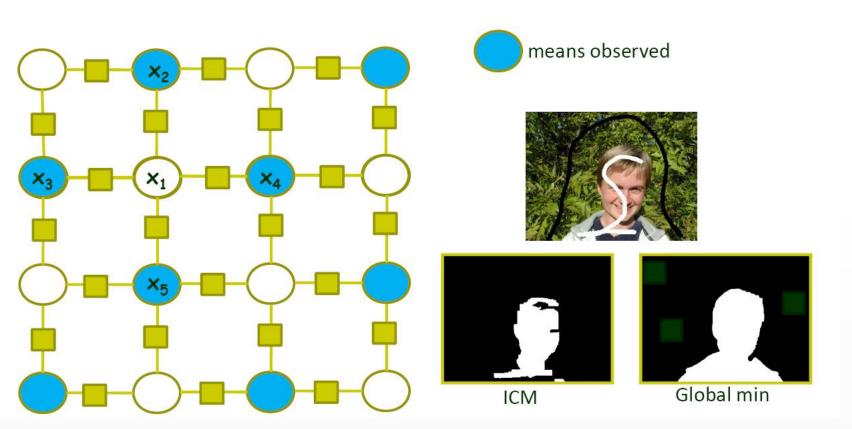
Initial label map

ICM optimization steps





ICM vs. Simulated Annealing



Can get stuck in local minima!

Slide adopted from C. Rother ICCV'09 tutorial: http://research.microsoft.com/

Simulated Annealing: accept a move even if energy increases (with certain probability)

Simulated Annealing Modified Metropolis Dynamics (MMD)

- 1. Set k = 0 and initialize ω randomly. Choose a sufficiently high initial temperature $T = T_{0.}$
- 2. Construct a trial perturbation η from the current configuration ω such that η differs only in one element from ω .
- 3. (Metropolis criteria) Compute $\Delta U = U(\eta) U(\omega)$ and accept η if $\Delta U < 0$ else accept with probability $\exp(-\Delta U/T)$ (analogy with thermodynamics):

$$\omega = \begin{cases} \eta & \text{if } \Delta U \leq 0 \\ \eta & \text{if } \Delta U > 0 \text{ and } \xi < \exp(-\Delta U/T) \\ \omega & \text{otherwise} \end{cases}$$

where ξ is a uniform random number in [0,1[.

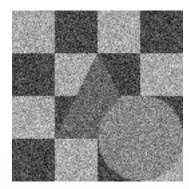
4. Decrease the temperature $T = T_{k+1}$ and goto step 2 with k = k + 1 until the system is frozen.

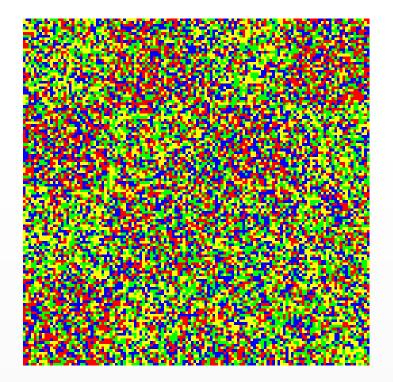
Temperature Schedule

- In theory: should be logarithmic in practice: exponential schedule is reasonable
- Initial temperature: set it to a relatively low value (~4) \rightarrow faster execution
 - must be high enough to allow random jumps at the beginning!
- Schedule: $T_{k+1} = c \cdot T_k$, k = 0, 1, 2, ... (e.g. c = 0.95).
- Stopping criteria:
 - Fixed number of iterations
 - Energy change is less than a thresholds

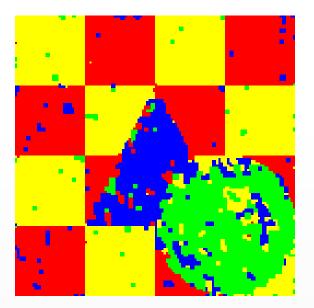
MMD segmentation

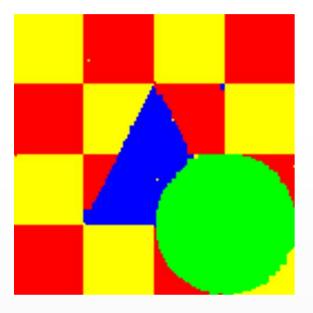
• Starting MMD: random label map!





ICM vs MMD





ICM result

MMD result

MRF Summary

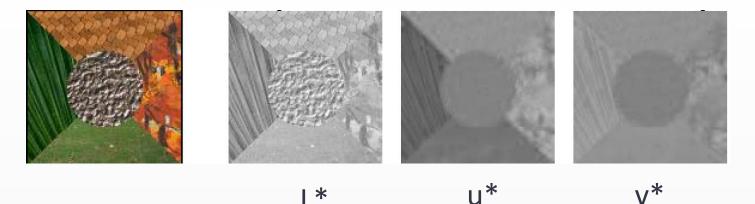
- Design your model carefully
 - Optimization is just a tool, do not expect a good segmentation from a wrong model
- What about other than graylevel features?
 - Extension to color is relatively straightforward

What color features?



Extract Color Feature

- We adopt the CIE-L*u*v* color space because it is perceptually uniform.
 - Recap from earlier slides: similarly to CIE-L*a*b*, color difference can be measured here by Euclidean distance of two color vectors.
- We convert each pixel from RGB space to CIEL*u*v* space
 - We have 3 color feature images



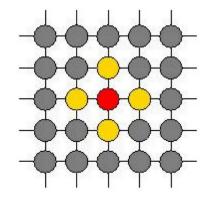
Color MRF segmentation model

 Pixel labels (or classes) are represented by three-variate Gaussian distributions

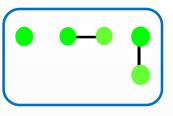
$$P(f_{s}|\omega_{s}) = \frac{1}{\sqrt{2\pi}|\Sigma_{\omega_{s}}|} \exp\left(-\frac{1}{2}\left(\bar{f}_{s} - \bar{\mu}_{\omega_{s}}\right)\Sigma_{\omega_{s}}^{-1}\left(\bar{f}_{s} - \bar{\mu}_{\omega_{s}}\right)^{T}\right)$$

- Clique potentials
 - **Singleton**: proportional to the likelihood of features given $\omega : \log P(f|\omega)$
 - Doubleton: favors similar labels at neighboring pixels – smoothness prior

$$V_{C_2}(i,j) = \beta \delta(\omega_i, \omega_j) = \begin{cases} -\beta & \text{if } \omega_i = \omega_j \\ +\beta & \text{if } \omega_i \neq \omega_j \end{cases}$$

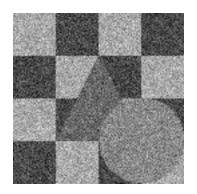


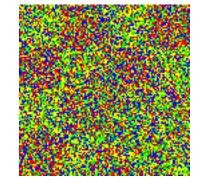
Cliques

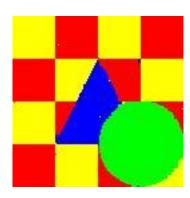


• as β increases, regions become more homogenous

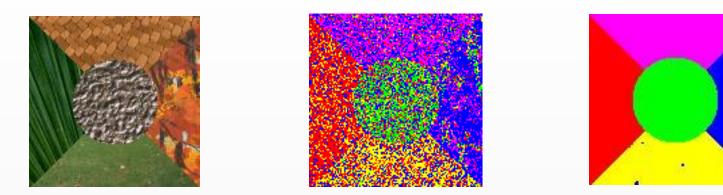
Segmentation examples







gray level based segmentation



color image segmentation