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 Previous topics:
• Color Spaces, dithering

• 2D convolution, Canny edge detector

• Hough transformation & Image Enhancement

• Fourier analysis

• Texture analysis

• Image recovery

• Segmentation: Otsu, K-means and Morphology
 Remaining topics:

• Markov Random Fields, Marked Point Processes 

• Mean shift 

• Descriptors: SIFT, HOG, Local Binary Patterns

• Video processing

• Machine Learning

• Deep Learning
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Classical era 
mainly from
’60s-’80s 
(with 
exceptions)

Modern era
mainy from
’00s-’10s 
(with 
exceptions)
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Foreground Mask of MoG (T=20) 

Closing Opening



 Pixel-by-pixel classification: observation (image) based 
knowledge, e.g. pixel color values, local texture features etc.

 Morphology to obtain homogeneous regions: prior knowledge
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Pixel-by-pixel 
classification

Morphology 
based region 
refinement

Pixel-by-pixel 
descriptors

Prior knowledge 
based soft 
constraints

Joint decision 
considering both 

factors

Homogeneous, but often 
distorted shapes 
(especially on the object 
boundaries)

Homogeneous shapes with 
accurate boundaries?



 Segmentation as pixel labeling
 Probabilistic approach

• Segmentation as MAP estimation

• Markov Random Field (MRF)

• Gibbs distribution & Energy function

 Classical energy minimization
• Simulated Annealing

• Markov Chain Monte Carlo (MCMC) sampling

 Example MRF model & Demo
 Parameter estimation (EM)
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MRF slides adopted © Zoltan Kato, University of Szeged, http://www.inf.u-szeged.hu/~kato/



 Mapping the image to a graph
• nodes are assigned to the different pixels, and the 

edges connect pixels which are in interaction
 Segmentation as pixel labeling:  

• each pixel gets a class-label from a task-
dependent label set Λ
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 Inverse problem formulation:
• Instead of finding a direct algorithm to find the optimal labeling, we construct a (pseudo-) 

probability function which assigns a likelihood value to each possible global segmentation, 
then an optimization process attempts to find the labeling with the highest confidence

 What does the probability function depend on?
• local feature vectors at each pixel (color, texture etc) 

 classes in Λ are as stochastic processes, described by different feature distributions

• label consistency (soft) constraints between neighboring pixels

 e.g. for preferring smooth segmentation map we penalize if two neighboring nodes have 
different labels



 Extract features from the input image
• Each pixel 𝑠 in the image has a feature vector ҧ𝑓𝑠
• For the whole image, we have:

𝑓 = ҧ𝑓𝑠: 𝑠 ∈ 𝑆 : global observation

 Define the set of labels Λ
• Each pixel 𝑠 is assigned a label ω𝑠 ∈ Λ

• For the whole image, we have:

ω = ω𝑠: 𝑠 ∈ 𝑆 : global labeling

• Ω: set of all possible ω global labelings (i.e. ω ∈ Ω)

 For an 𝑁 ×𝑀 image, there are Ω = Λ 𝑁𝑀

possible global labelings.
• Which one is the right segmentation?
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𝑓

ω
Source: Zoltan Kato, http://www.inf.u-szeged.hu/~kato/



 Define a probability measure on the set of all possible global 
labeling and select the most likely one.

 𝑃 𝜔|𝑓 measures the probability of a global labeling 𝜔, given 
the observed features 𝑓

 Our goal is to find an optimal labeling ෝ𝜔 which maximizes
𝑃 𝜔|𝑓

 This is called the Maximum a Posteriori (MAP) estimate:
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ෝ𝜔 = argmax
𝜔∈Ω

𝑃 𝜔|𝑓



 By Bayes Theorem, we have

 𝑃 𝑓 is constant 
• it does not depend on the actual labeling!

 We need to define 𝑃 𝑓|𝜔 and 𝑃 𝜔 in our model
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𝑃 𝜔|𝑓 =
𝑃 𝑓|𝜔 𝑃 𝜔

𝑃 𝑓

likelihood prior

∝ 𝑃 𝑓|𝜔 𝑃 𝜔

We will use Markov Random Fields



 In real images, regions are often homogenous; neighboring 
pixels usually have similar properties (intensity, color, texture, 
…) → prior neighborhood constraints vs. noisy pixel level 
descriptors

 Markov Random Field (MRF) is a probabilistic model which 
captures such contextual constraints

• Well studied, strong theoretical background

• Allows Monte-Carlo Markov Chain (MCMC) sampling of the (hidden) 
underlying structure → Simulated Annealing

• Fast and exact solution for certain type of models → Graph cut 
[Kolmogorov]
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 To give a formal definition for Markov Random Fields, we need 
some basic building blocks

• Observation Field and (hidden) Labeling Field

• Pixels and their Neighbors

• Cliques and Clique Potentials

• Energy function

• Gibbs Distribution
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 Recap: Discrete Markov Chains: discrete time, discrete state 
stochastic processes

• Given: set of possible states 𝑆1, 𝑆2,…𝑆𝑁
• 𝑞𝑡: state at time 𝑡, (𝑡 = 1, …𝑇)

• Observed state sequence: 𝑞1, 𝑞2,…𝑞𝑇
• Markov property:

 Conditional probability of the current state only depends on the 
previous state (i.e. only neighboring states interact – in time)

 Markov Random Fields: instead of temporal neighboring 
states, we consider the spatially neighboring pixels

• Pixel labels are not independent, however, direct dependence is only 
considered between the spatial neighbors
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1S

2S 3S

𝑃 𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖 = 𝑃 𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖, 𝑞𝑡−2 = 𝑆𝑘 , … 𝑞1 = 𝑆𝑙



 For each pixel, we can define some surrounding pixels as its 
neighbors.

 Example: 1st order neighbors and 2nd order neighbors
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 The labeling field 𝑋 can be modeled as a Markov Random 
Field (MRF) if

1. For all ω ∈ Ω: P 𝑋 = ω > 0

2. For every 𝑠 ∈ 𝑆 and ω ∈ Ω ∶

 𝑁𝑠 denotes the neighbors of pixel s
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P ω𝑠|ω𝑟 , 𝑟 ≠ 𝑠 = P ω𝑠|ω𝑟 , 𝑟 ∈ 𝑁𝑠



 The Hammersley-Clifford Theorem states that a random field is a MRF if 
and only if 𝑃 𝜔 follows a Gibbs distribution.

• where Z = σω∈Ω exp −𝑈 𝜔 is a normalization constant

 Practical consequence:

• probability functions of MRFs have a special form: they can be factorized into
small terms 𝑉𝑐 𝜔 called clique potentials, which can be locally calculated on
the graph

• this property makes possible to design the 𝑃 𝜔 probability function in a
modular way, and enables using efficient iterative optimization techniques

• Technical note: instead of maximizing this probability function we usually
minimize the minus logarithm of it, 𝑈 𝜔 , which is called the energy function
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𝑃 𝜔 =
1

𝑍
exp −𝑈 𝜔 =

1

𝑍
exp −

𝑐∈𝐶

𝑉𝑐 𝜔



 The H-C theorem provides us an easy way of defining MRF models via 
clique potentials.

 A subset C ⊆ 𝑆is called a clique if every pair of pixels in this subset are 
neighbors.

 A clique containing n pixels is called nth order clique, denoted by Cn
 The set of cliques in an image is denoted by
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C = 𝐶1 ∪ 𝐶2 ∪ ... ∪ 𝐶𝐾

singleton doubleton



 For each clique c in the image, we can assign a value 𝑉𝑐 𝜔
which is called clique potential of c, where 𝜔 is the 
configuration of the labeling field

 The sum of potentials of all cliques gives us the energy 𝑈 𝜔
of the configuration 𝜔.
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𝑈 𝜔 =

𝑐∈𝐶

𝑉𝑐 𝜔 =

= 

𝑖∈𝐶1

𝑉𝐶1 𝜔𝑖 +

(𝑖,𝑗)∈𝐶2

𝑉𝐶2 𝜔𝑖, 𝜔𝑗 +⋯



 Construct a segmentation model where regions are formed by 
spatial clusters of pixels with similar intensity:
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Input image

Segmentation ෝ𝜔

Model 
parameters

MRF segmentation model
+

find MAP estimate ෝ𝜔



 Pixel labels (or classes) are represented by (for
example) Gaussian distributions:

 Clique potentials
• Singleton: proportional to the likelihood of features 

given 𝜔 ∶ log 𝑃 𝑓|𝜔

• Doubleton: favors similar labels at neighboring 
pixels – smoothness prior

 as 𝛽 increases, regions become more homogenous
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𝑃 𝑓𝑠|𝜔𝑠 =
1

2𝜋𝜎𝜔𝑠

exp −
𝑓𝑠 − 𝜇𝜔𝑠

2

2𝜎𝜔𝑠
2

𝑉𝐶2 𝑖, 𝑗 = 𝛽𝛿 𝜔𝑖 , 𝜔𝑗 = ൝
−𝛽 if 𝜔𝑖 = 𝜔𝑗
+𝛽 if 𝜔𝑖 ≠ 𝜔𝑗

Cliques



 Doubleton potential β
• less dependent on the input →

 can be fixed a priori

 Number of labels Λ
• Problem dependent →

 usually given by the user or

 inferred from some higher level knowledge

 Each label λ ∈ Λ is represented by a 
Gaussian distribution N 𝜇λ, 𝜎λ : 

• estimated from the input image
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 The class statistics (mean and variance) 
can be estimated via the empirical mean 
and variance:

• where 𝑆𝜆denotes the set of pixels in the 
training set of class λ

• a training set consists in a representative 
region selected by the user
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𝜇𝜆 =
1

𝑆𝜆


𝑠∈𝑆𝜆

𝑓𝑠

𝜎𝜆
2 =

1

𝑆𝜆


𝑠∈𝑆𝜆

𝑓𝑠 − 𝜇𝜆
2

∀λ ∈ Λ:



 Now we can define the energy function of our MRF model:

 Recap: the 𝑃 𝜔 probability can be directly derived from the 
energy

 Hence:
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𝑈 𝜔 =

𝑠

log 2𝜋𝜎𝜔𝑠
+

𝑓𝑠 − 𝜇𝜔𝑠

2

2𝜎𝜔𝑠
2 +

𝑠,𝑟

𝛽𝛿 𝜔𝑠 , 𝜔𝑟

𝑃 𝜔 =
1

𝑍
exp −𝑈 𝜔 =

1

𝑍
exp −

𝑐∈𝐶

𝑉𝑐 𝜔

ෝ𝜔𝑀𝐴𝑃 = argmax
𝜔∈Ω

𝑃 𝜔|𝑓 = argmin
𝜔∈Ω

𝑈 𝜔



 Problem reduced to the minimization of 
a non-convex energy function

• Many local minima

 Gradient descent?
• Works only if we have a good  initial 

segmentation

 Simulated Annealing
• Always works (at least in theory)
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1. Start at a „good” initial configuration 𝜔0 and set 
𝑘 = 0.

2. For each configuration which differs at most in 
one element from the current configuration 𝜔𝑘

(they are denoted by 𝒩𝜔𝑘), compute the 

energy 𝑈 𝜂 (𝜂 ∈ 𝒩𝜔𝑘).

3. From the configurations 𝒩𝜔𝑘 , select the one 

which has the minimal energy:

4. Goto Step 2, with k = k + 1until convergence 
obtained (for example the energy change is less 
than a certain threshold).
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𝜔𝑘+1 = argmin
𝜂∈𝒩

𝜔𝑘

𝑈 𝜂



1. Start at a „good” initial segmentation 𝜔0 and set 
𝑘 = 0.

2. For each segmentation which differs at most in one 
pixel’s label (pixel s) from the current segmentation
𝜔𝑘 (they are denoted by 𝒩𝜔𝑘 ), compute the 

energy ∆𝑈 𝜂 = 𝑈 𝜂 − 𝑈 𝜔𝑘 (𝜂 ∈ 𝒩𝜔𝑘).

3. From the configurations 𝒩𝜔𝑘 , select the one which 

has the minimal energy:

4. Goto Step 2, with k = k + 1until convergence 
obtained (for example the energy change is less 
than a certain threshold).
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𝜔𝑘+1 = argmin
𝜂∈𝒩

𝜔𝑘

∆𝑈(𝜂)

Only depens on pixel s 
and its four neighbors



 Per-pixel Maximum a Posteriori (MAP) estimate:
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𝜔𝑠
0=argmin

λ∈Λ
log 2𝜋𝜎λ +

𝑓𝑠 − 𝜇λ
2

2𝜎λ
2

Input image Initial label map
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Simulated Annealing: accept a move even if
energy increases (with certain probability)

Can get stuck in local minima!

Slide adopted from C. Rother ICCV’09 tutorial:
http://research.microsoft.com/
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1. Set 𝑘 = 0 and initialize 𝜔 randomly. Choose a sufficiently high 
initial temperature 𝑇 = 𝑇0.

2. Construct a trial perturbation 𝜂 from the current configuration 𝜔
such that 𝜂 differs only in one element from 𝜔.

3. (Metropolis criteria) Compute ∆𝑈 = 𝑈 𝜂 − 𝑈 𝜔 and accept 𝜂 if 
∆𝑈 < 0 else accept with probability exp −∆𝑈/𝑇 (analogy with 
thermodynamics):

where 𝜉 is a uniform random number in 0,1 .

4. Decrease the temperature 𝑇 = 𝑇𝑘+1 and goto step 2 with  k = k +
1 until the system is frozen.

𝜔 = ቐ
𝜂 if ∆𝑈 ≤ 0

𝜂 if ∆𝑈 > 0 and 𝜉 < exp −∆𝑈/𝑇
𝜔 otherwise



 In theory: should be logarithmic – in practice: exponential 
schedule is reasonable

 Initial temperature: set it to a relatively low value (~4) → 

faster execution
• must be high enough to allow random jumps at the beginning!

 Schedule: 𝑇𝑘+1 = 𝑐 ∙ 𝑇𝑘 , 𝑘 = 0,1,2,… (e.g. 𝑐 = 0.95).
 Stopping criteria:

• Fixed number of iterations

• Energy change is less than a thresholds
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 Starting MMD: random label map!
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MMD resultICM result



 Design your model carefully
• Optimization is just a tool, do not expect a good segmentation from a 

wrong model

 What about other than graylevel features?
• Extension to color is relatively straightforward
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 We adopt the CIE-L*u*v* color space because it is 
perceptually uniform.

• Recap from earlier slides: similarly to CIE-L*a*b*, color difference can 
be measured here by Euclidean distance of two color vectors.

 We convert each pixel from RGB space to CIEL*u*v* space
• We have 3 color feature images
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L* u* v*



 Pixel labels (or classes) are represented by 
three-variate Gaussian distributions

 Clique potentials
• Singleton: proportional to the likelihood of features 

given 𝜔 ∶ log 𝑃 𝑓|𝜔

• Doubleton: favors similar labels at neighboring 
pixels – smoothness prior

 as 𝛽 increases, regions become more homogenous
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𝑃 𝑓𝑠|𝜔𝑠 =
1

2𝜋 Σ𝜔𝑠

exp −
1

2
ҧ𝑓𝑠 − ҧ𝜇𝜔𝑠

Σ𝜔𝑠
−1 ҧ𝑓𝑠 − ҧ𝜇𝜔𝑠

𝑇

𝑉𝐶2 𝑖, 𝑗 = 𝛽𝛿 𝜔𝑖 , 𝜔𝑗 = ൝
−𝛽 if 𝜔𝑖 = 𝜔𝑗
+𝛽 if 𝜔𝑖 ≠ 𝜔𝑗

Cliques
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color image segmentation

gray level based segmentation


