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What is Image Recovery?



 (Recap) Image enhancement is the manipulation or
transformation of the image to improve the visual
appearance or to help further automatic processing steps.

• We don’t add new information to the image, just make it more visible
(e.g. increasing contrast) or highlight a part of it (e.g. dynamic range
slicing).

 Recovery: the modeling and removal of the degradation the
image is subjected to, based on some optimality criteria.

• In case of recovery there is a degradation we want to remove, lost
information we want to recover (e.g. make blurred text readable
again). It is done by modeling the degradation and making assumptions
about the degradation and the original image.
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Blurred Image Restored Image Original Image
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 Images from the Hubble Space Telescope, taken with a defective 
mirror.
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Source of the images: Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos
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 Blind restoration of image corrupted by motion blur:
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Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For Multimedia Problems," Multimedia, IEEE Transactions 
on , vol.16, no.4, pp.1000,1017, June 2014.

Original Image with Motion Blur Restored Image
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 Super-resolution: 
• The process of combining multiple low resolution images to form a high 

resolution image.
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Source of the Image: http://www.motiondsp.com/products/ikena/super-resolution

Single, non-enhanced
frame

Multiple Frames of 
the same scene

Reconstructed Frame
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 Concept: 
• We have a series of snapshots of the same scene (e.g. video). 

• Due to camera or subject motion, each image provides a slightly 
different view.

• Together, they provide a much more of information about the scene.
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http://www.ifp.illinois.edu/~jyang29/papers/chap1.pdf



 Error Concealment: reconstruction of data that was lost during 
transmission of images e.g. over a network where data packets 
are lost 

October 15, 2019 10

J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded images," IEEE Signal Processing Letters, 2008.
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 Inpainting: 
• Similar to error concealment but the location of the missing information is not 

so well structured and not known apriori, so we have to find it first.
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http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-image-restoration.html
http://nbviewer.ipython.org/github/chintak/inpainting-demo/blob/master/Hello_ShopSense.ipynb
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 Deblocking: 
• removal of blocking artifacts introduced by compression
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S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge Regeneration" Journal of Electronic Imaging (JEI), Jan 2014
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Sources of Degradation

1. Motion
2. Atmospheric turbulence
3. Out-of-focus lens
4. Finite resolution of the 

sensors
5. Limitations of the 

acquisition system
6. Transmission error
7. Quantization error
8. Noise
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Forms of Restoration

1. Restoration/Deconvolution

2. Removal of Compression 
Artifacts 

3. Super-Resolution 

4. Inpainting/Concealment

5. Noise smoothing 
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 The original image x goes through a system (H), that introduces
some type of degradation resulting the observed image y:

 The objective is to reconstruct x based on…
• y and H recovery

• y blind recovery

• y and partially H semi-blind recovery

 If we know x and
• y system identification

• H system implementation
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Original Image*

* From the TV series Fringe
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 The model of degradation for restoration problems:

 If an LSI degradation system is assumed, with signal independent  
additive noise:

 The restoration problem in this case is called deconvolution.
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 PSF: system’s impulse response
• An image ℎ 𝑛1, 𝑛2 which describes 

the response of an imaging system  to 
a point source or a point object

• The degree of spreading (blurring) of 
the point object is a measure for the 
quality of the imaging system

• The observed image 𝑦 𝑛1, 𝑛2 can be 
taken as the convolution of the object 
and the PSF   

 2D convolution calculation in a naive form: quite slow, 𝑂 𝑁4



 1D convolution can be represented in a matrix-vector form:
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H: block circulant matrix. 

𝑦 = 𝐻 𝑥∙
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 The 𝑁1× 𝑁2 images involved must be lexicographically ordered. 
That means that an image is converted to a column vector by 
pasting the rows one by one after converting them to columns. 

• An image of size 256×256 is converted to a column vector of size 
65536×1. 

 An LSI degradation model can be written in a matrix form, where 
the images are vectors and the degradation process is a huge but 
sparse block circulant matrix 𝐻, and 𝑛 is a noise component

• 𝑥, 𝑛 and 𝑦 are column vectors of size 𝑁1𝑁2 × 1

𝑦 = 𝐻𝑥 + 𝑛



 Convolution theorem: convolution in the spatial (PSF) domain 
becomes simple element wise multiplication in the Fourier domain

 LSI degradation model representation in the frequency domain: 
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Here all matrices have a size of 𝑁1×𝑁2:
• 𝑋 𝜔1, 𝜔2 : DFT of the 𝑥 𝑛1, 𝑛2 2D input image (matrix!)
• H 𝜔1, 𝜔2 : DFT of the point spread function (optical transfer function), 
• N 𝜔1, 𝜔2 : DFT of the noise
• Y 𝜔1, 𝜔2 : DFT of the output

𝑦 𝑛1, 𝑛2 = 𝑥 𝑛1, 𝑛2 ∗ ℎ 𝑛1, 𝑛2 →

→ 𝑌 𝜔1, 𝜔2 = 𝑋 𝜔1, 𝜔2 ∙ 𝐻 𝜔1, 𝜔2
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 Simplest deconvolution filter, developed for LSI systems.
 Can be easily implemented in the frequency domain as the

inverse of the degradation filter.
 Main limitations and drawbacks:

• Strong noise amplification

• The degradation system has to be known a priori.

 The degradation equation:

• In this problem we know 𝑯 and y and we are looking for a descent x

• The objective is to find x that minimizes the Euclidian norm of the
error:
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 The problem is formulated as follows: we are looking to 
minimize the Euclidian norm of the error:

 The first derivative of the minimization function must be set to 
zero. 
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 We have that in Matrix-vector form (Mvf):

 Frequency domain representation: if we take the DFT of the above 
relationship in both sides we have: 

• Recap: connection between the Mvf and the DFT representation of LSI 
systems

• We do not prove here:  if the DFT of an LSI transform H is 𝐻 𝜔1, 𝜔2 , then 
the DFT of HT is 𝐻∗ 𝜔1, 𝜔2 (complex conjugate) 

• Easy to prove: for any complex number   𝑐 ∙ 𝑐∗ = 𝑐 2:

 𝑐 ∙ 𝑐∗ = 𝑥 + 𝑗𝑦 ∙ 𝑥 − 𝑗𝑦 = 𝑥2 − 𝑗𝑥𝑦 + 𝑗𝑥𝑦 − 𝑗𝑗𝑦2 = 𝑥2 + 𝑦2 = 𝑐 2
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𝐻𝐻𝑇𝑥 = 𝐻𝑇𝑦

𝐻 𝜔1, 𝜔2
2 ∙ 𝑋 𝜔1, 𝜔2 = 𝐻∗ 𝜔1, 𝜔2 ∙ 𝑌 𝜔1, 𝜔2



 We have that:

 Problem: It is very likely that 𝐻 𝜔1, 𝜔2 is 0 or very small at 
certain frequency pairs. 
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Slide credit: Tania Stathaki Imperial College London 

 For example, 𝐻 𝜔1, 𝜔2 could be a 𝑠𝑖𝑛𝑐
function. 

 In general, since 𝐻 𝜔1, 𝜔2 is a low pass 
filter, it is very likely that its values drop 
off rapidly as the distance of 𝜔1, 𝜔2

from the origin (0,0) increases. 



 Simplification: consider a system where 𝐻 𝜔1, 𝜔2 is real*. In 
this case, the inverse filter output is calculated as:

 Assume, that in fact the degradation system output is affected
by noise 𝑁 𝜔1, 𝜔2 :

 In this case:
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*holds for central symmetric PSF
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 Filter output is affected by noise 𝑁 𝜔1, 𝜔2 :

 Problem: It is definite that while 𝐻 𝜔1, 𝜔2 is 0 or very small at 
certain frequency pairs, 𝑁 𝜔1, 𝜔2 is large. 

 Note that 𝐻 𝜔1, 𝜔2 is a low pass filter, whereas 𝑁 𝜔1, 𝜔2 is 

an all pass function. Therefore, the term 
𝑁 𝜔1,𝜔2

𝐻 𝜔1,𝜔2
(error of 

estimation for 𝑋 𝜔1, 𝜔2 ) can be huge!
 The drawback of this method is the strong amplification of 

noise - Inverse filtering fails in that case  
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 Instead of the conventional inverse filter, we implement the 
following: 

 The parameter 𝑇 (called threshold in the figures in the next 
slides) is a small number chosen by the user. 

 This filter is called pseudo-inverse or generalized inverse filter. 
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Original Image Blurred Image

Blurred Image with Additional Noise The Noise Component (amplified 10 times)
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Reconstructed Image (with T=0.005) Reconstructed Image (with T=0.01) 

Reconstructed Image (with T=0.02) Reconstructed Image (with T=0.1) 
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Blurred Image with Additional Noise Reconstructed Image (with T=0.1) 
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T=.2;
x=double(imread('lena.bmp')); %read original image
N1=size(x,1); N2=size(x,2);
figure(1); imagesc(x); colormap(gray); %display original image
w=5; h=ones(w,w)/w^2; % PSF of bluring 
X=fft2(x); % DFT of original image
H=fft2(h,N1,N2); % DFT of PSF
Y=X.*H; % DFT of blurred image
y=ifft2(Y)+10*randn(N1,N2); %observed image: blurred + additive 
noise
Y=fft2(y); % DFT of the observed image
figure(2); imagesc(abs(ifft2(Y))); colormap(gray); %display 
observed image
BF=find(abs(H)<T);
H(BF)=T;
invH=ones(N1,N2)./H;
X1=Y.*invH;
im=abs(ifft2(X1)); % reconstructed image
figure(3); imagesc(im); colormap(gray) %display result
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 The objective is to reduce the noise amplification effect of the
inverse filter by adding extra constraints about the restored
image:

• On one hand we still have the term describing the solution’s fidelity to
the data:

• But we also have a second term, incorporating some prior knowledge
about the smoothness of the original image:

• Putting the two together with the introduction of α:
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 C is a high pass filter
• Intuitively this means that we want to keep under control the amount

of energy contained in the high frequencies on the restored image.
 α is the regularization parameter

 In the frequency domain (for H and C block circulant) we have
the following formula:

• if α is 0, we get back the simple Least Square method (Inverse Filter)
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 (Optional) Different types of regularization:
• CLS:

• Maximum Entropy Regularization:

• Total Variation Regularization: 

• lp – norms:
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Original Image Blurred Image with Additional Noise

Reconstructed Image (CLS with α=0.1) Reconstructed Image (CLS with α=0.5) 
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Reconstructed Image (LS with T=0.02) Reconstructed Image (LS with T=0.1) 

Reconstructed Image (CLS with α=0.1) Reconstructed Image (CLS with α=0.5) 
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 Stochastic restoration approach: 
• Treat the image as a sample from a 2D random field.

• The image is part of a class of samples (an ensemble), realizations of
the same random field.

• Autocorrelation:

• Power-Spectrum (Wide Sense Stationarity (WSS) input)
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 Definition of autocorrelation:

 Wide Sense Stationarity property (WSS):

 Ergodicity: 
• ensemble average is equal to spatial average 
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 Recap (from textures lecture) Wiener-Khinchin Theorem
• Input image: 𝑥 𝑛1, 𝑛2
• Fourier transform: 𝑋 𝜔1, 𝜔2 = DFT 𝑥 𝑛1, 𝑛2
• Power spectrum: 𝑃𝑥𝑥 𝜔1, 𝜔2 = 𝑋 𝜔1, 𝜔2 ∙ 𝑋∗ 𝜔1, 𝜔2

• Autocorrelation: inverse Fourier transform of the power spectrum: 
𝑅𝑥𝑥 𝑑1, 𝑑2 = IDFT 𝑃𝑥𝑥 𝜔1, 𝜔2
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 The degradation model:
 The objective:

 We look for the solution in the following format, assuming an 
LSI restoration model:

• The input image is assumed to be WSS with autocorrelation Rxx(n1,n2).

 The recovered image is obtained in the Fourier domain:
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 Assumptions:
• that both the input image and the noise are WSS.

• The restoration error and the signal (the observed image) is orthogonal:

• It can be shown* that the following transfer function implements the 
above constraint:
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*proof available as supplementary material –

optional to read, not part of exam



 Wiener filter:

 CLS filter:

 With the right choice of C and α, CLS filter is the same as the 
Wiener filter.
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Noise to signal ratio
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Reconstructed with Wiener filter Reconstructed with CLS filter

Original Image Motion Blurred Noisy Image
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 See more practical details on the corresponding laboratory 
excercise!
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 Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

 Babacan, D. S., R. Molina, and A. K. Katsaggelos, "Total Variation Super Resolution Using A Variational
Approach", IEEE International Conf. on Image Processing 2008, San Diego, USA, 10/10/2008.

 J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded
images," IEEE Signal Processing Letters, vol. 15, pp. 178-181, 2008.

 Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For
Multimedia Problems," Multimedia, IEEE Transactions on , vol.16, no.4, pp.1000,1017, June 2014

 http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-
image-restoration.html

 S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge
Regeneration" Journal of Electronic Imaging (JEI), Jan 2014
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