Basic Image Processing

PPKE-ITK

Lecture 6.

October 15, 2019

Image Recovery

Image Recovery

What is Image Recovery?

Recovery vs Enhancement

- (Recap) Image enhancement is the manipulation or transformation of the image to improve the visual appearance or to help further automatic processing steps.
 - We don't add new information to the image, just make it more visible (e.g. increasing contrast) or highlight a part of it (e.g. dynamic range slicing).
- **Recovery:** the **modeling** and **removal** of the degradation the image is subjected to, based on some **optimality criteria**.
 - In case of recovery there is a *degradation we want to remove*, lost *information we want to recover* (e.g. make blurred text readable again). It is done by modeling the degradation and making assumptions about the degradation and the original image.

Blurred Image

Restored Image

Original Image

• Images from the Hubble Space Telescope, taken with a defective

Source of the images: Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

• Blind restoration of image corrupted by motion blur:

Original Image with Motion Blur

Restored Image

Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For Multimedia Problems," *Multimedia, IEEE Transactions* on , vol.16, no.4, pp.1000,1017, June 2014.

- Super-resolution:
 - The process of combining multiple low resolution images to form a high resolution image.

Source of the Image: http://www.motiondsp.com/products/ikena/super-resolution

Super-Resolution

- Concept:
 - We have a series of snapshots of the same scene (e.g. video).
 - Due to camera or subject motion, each image provides a slightly different view.
 - Together, they provide a much more of information about the scene.

http://www.ifp.illinois.edu/~jyang29/papers/chap1.pdf

• Error Concealment: reconstruction of data that was lost during transmission of images e.g. over a network where data packets

are lost

J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded images," IEEE Signal Processing Letters, 2008.

- Inpainting:
 - Similar to error concealment but the location of the missing information is not so well structured and not known apriori, so we have to find it first.

http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-image-restoration.html http://nbviewer.ipython.org/github/chintak/inpainting-demo/blob/master/Hello_ShopSense.ipynb

- Deblocking:
 - removal of blocking artifacts introduced by compression

S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge Regeneration" Journal of Electronic Imaging (JEI), Jan 2014

Sources of Degradation and Forms of Recovery

Sources of Degradation

- 1. Motion
- 2. Atmospheric turbulence
- 3. Out-of-focus lens
- 4. Finite resolution of the sensors
- 5. Limitations of the acquisition system
- 6. Transmission error
- 7. Quantization error
- 8. Noise

Forms of Restoration

- 1. Restoration/Deconvolution
- 2. Removal of Compression Artifacts
- 3. Super-Resolution
- 4. Inpainting/Concealment
- 5. Noise smoothing

Inverse problem formulation of Recovery

 The original image x goes through a system (H), that introduces some type of degradation resulting the observed image y:

$$x(n_1, n_2) \to H \to y(n_1, n_2)$$

• The objective is to reconstruct *x* based on...

• If we know *x* and

• V

• H

- system identification
- system implementation

Degradation and Restoration

October 15, 2019

Basic Image Processing Algorithms

Degradation Model

• The model of degradation for **restoration** problems:

$$y(n_1, n_2) = H[x(n_1, n_2)] + n(n_1, n_2)$$

 If an LSI degradation system is assumed, with signal independent additive noise:

$$y(n_1, n_2) = x(n_1, n_2) * h(n_1, n_2) + n(n_1, n_2)$$

• The restoration problem in this case is called **deconvolution**.

Point spread function (PSF) of an imaging system

- PSF: system's impulse response
 - An image h(n₁, n₂) which describes the response of an imaging system to a point source or a point object
 - The degree of spreading (blurring) of the point object is a measure for the quality of the imaging system
 - The observed image $y(n_1, n_2)$ can be taken as the convolution of the object and the PSF

Object

$$x(n_1, n_2)$$
 $*$ (b)
Observed image
 $y(n_1, n_2)$
PSF $h(n_1, n_2)$

 $y(n_1, n_2) = x(n_1, n_2) * h(n_1, n_2)$

• 2D convolution calculation in a naive form: quite slow, $O(N^4)$

Faster convolution calculation – 1st approach: Convolution in matrix-vector form (MVF)

 $x:1 \times N$

1D convolution can be represented in a matrix-vector form:

$$y(n) = x(n) * h(n) = \sum_{k} x(k)h(n-k), \text{ where } h: 1 \times L$$
$$y: 1 \times (N+L-1)$$

H: block circulant matrix.

LSI degradation model in MVF

- The $N_1 \times N_2$ images involved must be lexicographically ordered. That means that an image is converted to a column vector by pasting the rows one by one after converting them to columns.
 - An image of size 256×256 is converted to a column vector of size 65536×1.
- An LSI degradation model can be written in a matrix form, where the images are vectors and the degradation process is a huge but sparse block circulant matrix H, and n is a noise component

$$y = Hx + n$$

• x, n and y are column vectors of size $N_1N_2 \times 1$

Faster convolution calculation – 2nd approach: Operation in the Fourier domain

- **Convolution theorem:** convolution in the spatial (PSF) domain becomes simple element wise multiplication in the Fourier domain $y(n_1, n_2) = x(n_1, n_2) * h(n_1, n_2) \rightarrow$ $\rightarrow Y(\omega_1, \omega_2) = X(\omega_1, \omega_2) \cdot H(\omega_1, \omega_2)$
- LSI degradation model representation in the <u>frequency domain</u>:

$$Y(\omega_{1}, \omega_{2}) = H(\omega_{1}, \omega_{2}) \cdot X(\omega_{1}, \omega_{2}) + N(\omega_{1}, \omega_{2}), \text{ where } \begin{cases} \omega_{1} = 0, ..., N_{1} - 1\\ \omega_{2} = 0, ..., N_{2} - 1 \end{cases}$$

Here all matrices have a size of $N_1 \times N_2$:

- $X(\omega_1, \omega_2)$: DFT of the $x(n_1, n_2)$ 2D input image (matrix!)
- $H(\omega_1, \omega_2)$: DFT of the point spread function (*optical transfer function*),
- $N(\omega_1, \omega_2)$: DFT of the noise
- $Y(\omega_1, \omega_2)$: DFT of the output

Image Recovery

Deconvolution Algorithms

- Simplest deconvolution filter, developed for LSI systems.
- Can be easily implemented in the frequency domain as the inverse of the degradation filter.
- Main limitations and drawbacks:
 - Strong noise amplification
 - The degradation system has to be known a priori.
- The degradation equation: y = Hx + n
 - In this problem we know **H** and **y** and we are looking for a descent **x**
 - The objective is to find **x** that minimizes the Euclidian norm of the error:

$$\underset{x}{\operatorname{argmin}} \left(J(x) \right) = \underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|^2 \right)$$

- The problem is formulated as follows: we are looking to minimize the Euclidian norm of the error: $\operatorname{argmin}_{x} (J(x)) = \operatorname{argmin}_{x} (\|y - Hx\|^{2})$
- The first derivative of the minimization function must be set to zero.

$$\frac{\partial J(x)}{\partial x} = 0 \Rightarrow \frac{\partial}{\partial x} \left(y^T y - 2x^T H^T y + x^T H^T H x \right)$$
$$= -2H^T y + 2H^T H x = 0$$

$$H^{T}Hx = H^{T}y$$
 Generalized Inverse
 $x = (H^{T}H)^{+}H^{T}y$

• We have that in Matrix-vector form (Mvf):

$$HH^T x = H^T y$$

 Frequency domain representation: if we take the DFT of the above relationship in both sides we have:

$$|H(\omega_1, \omega_2)|^2 \cdot X(\omega_1, \omega_2) = H^*(\omega_1, \omega_2) \cdot Y(\omega_1, \omega_2)$$

- *Recap:* connection between the Mvf and the DFT representation of LSI systems
- We do not prove here: if the DFT of an LSI transform H is $H(\omega_1, \omega_2)$, then the DFT of H^T is $H^*(\omega_1, \omega_2)$ (complex conjugate)
- Easy to prove: for any complex number $c \cdot c^* = |c|^2$:
 - $c \cdot c^* = (x + jy) \cdot (x jy) = x^2 jxy + jxy jjy^2 = x^2 + y^2 = |c|^2$

• We have that:

$$X(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2)Y(\omega_1, \omega_2)}{|H(\omega_1, \omega_2)|^2}$$

- **Problem:** It is very likely that $H(\omega_1, \omega_2)$ is 0 or very small at certain frequency pairs.
- For example, $H(\omega_1, \omega_2)$ could be a *sinc* function.
- In general, since $H(\omega_1, \omega_2)$ is a low pass filter, it is very likely that its values drop off rapidly as the distance of (ω_1, ω_2) from the origin (0,0) increases.

Slide credit: Tania Stathaki Imperial College London

Inverse filtering for noisy scenarios

• Simplification: consider a system where $H(\omega_1, \omega_2)$ is real*. In this case, the inverse filter output is calculated as:

$$\hat{X}_{inv}(\omega_1,\omega_2) = \frac{Y(\omega_1,\omega_2)}{H(\omega_1,\omega_2)}$$

 Assume, that in fact the degradation system output is affected by noise N(ω₁, ω₂):

$$Y(\omega_1, \omega_2) = H(\omega_1, \omega_2) \cdot X(\omega_1, \omega_2) + N(\omega_1, \omega_2)$$

Reconstruc-

Inverse filtering for noisy scenarios

• Filter output is affected by noise $N(\omega_1, \omega_2)$:

$$X(\omega_1, \omega_2) = \frac{Y(\omega_1, \omega_2) - N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} = \frac{Y(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} - \frac{N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$$

- **Problem:** It is definite that while $H(\omega_1, \omega_2)$ is 0 or very small at certain frequency pairs, $N(\omega_1, \omega_2)$ is large.
- Note that $H(\omega_1, \omega_2)$ is a low pass filter, whereas $N(\omega_1, \omega_2)$ is an all pass function. Therefore, the term $\frac{N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$ (error of estimation for $X(\omega_1, \omega_2)$) can be huge!
- The drawback of this method is the strong amplification of noise - Inverse filtering fails in that case ☺

Pseudo-inverse filtering

 Instead of the conventional inverse filter, we implement the following:

$$X(\omega_1, \omega_2) = \begin{cases} \frac{H^*(\omega_1, \omega_2)Y(\omega_1, \omega_2)}{|H(\omega_1, \omega_2)|^2} & \text{if } |H(\omega_1, \omega_2)| \ge T\\ T & \text{if } |H(\omega_1, \omega_2)| < T \end{cases}$$

- The parameter *T* (called **threshold** in the figures in the next slides) is a small number chosen by the user.
- This filter is called **pseudo-inverse** or **generalized** inverse filter.

Pseudo-inverse filtering with different thresholds

Original Image

Blurred Image

Blurred Image with Additional Noise

The Noise Component (amplified 10 times)

Reconstructed Image (with T=0.005)

Reconstructed Image (with T=0.02)

Reconstructed Image (with T=0.01)

Reconstructed Image (with T=0.1)

Blurred Image with Additional Noise

Reconstructed Image (with T=0.1)

Matlab code of an inverse filter

```
T = .2;
x=double(imread('lena.bmp')); %read original image
N1=size(x,1); N2=size(x,2);
figure(1); imagesc(x); colormap(gray); %display original image
w=5; h=ones(w,w)/w^2; % PSF of bluring
X=fft2(x); % DFT of original image
H=fft2(h,N1,N2); % DFT of PSF
Y=X.*H; % DFT of blurred image
y=ifft2(Y)+10*randn(N1,N2); %observed image: blurred + additive
noise
Y=fft2(y); % DFT of the observed image
figure(2); imagesc(abs(ifft2(Y))); colormap(gray); %display
observed image
BF=find(abs(H)<T);</pre>
H(BF) = T;
invH=ones(N1,N2)./H;
X1=Y.*invH;
im=abs(ifft2(X1)); % reconstructed image
figure(3); imagesc(im); colormap(gray) %display result
```

- The objective is to reduce the noise amplification effect of the inverse filter by adding extra constraints about the restored image:
 - On one hand we still have the term describing the solution's fidelity to the data: $\operatorname{argmin}(I(x)) = \operatorname{argmin}(\|y - Hx\|^2)$

$$\underset{x}{\operatorname{argmin}} \left(J(x) \right) = \underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|^2 \right)$$

• But we also have a second term, incorporating some *prior knowledge* about the smoothness of the original image:

$$\left\|Cx\right\|_{2}^{2} < \varepsilon$$

• Putting the two together with the introduction of α :

$$\underset{x}{\operatorname{argmin}}\left(\left\|y-Hx\right\|_{2}^{2}+\alpha\left\|Cx\right\|_{2}^{2}\right)$$

$$\underset{x}{\operatorname{argmin}}\left(\left\|y - Hx\right\|_{2}^{2} + \alpha \left\|Cx\right\|_{2}^{2}\right) \implies x = \left(H^{T}H + \alpha C^{T}C\right)^{+}H^{T}y$$

- C is a high pass filter
 - Intuitively this means that we want to keep under control the amount of energy contained in the high frequencies on the restored image.
- $\odot \alpha$ is the regularization parameter
- In the frequency domain (for H and C block circulant) we have the following formula:

$$X(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2)}{\left|H(\omega_1, \omega_2)\right|^2 + \alpha \left|C(\omega_1, \omega_2)\right|^2} Y(\omega_1, \omega_2)$$

• if α is 0, we get back the simple Least Square method (Inverse Filter)

- (Optional) Different types of regularization:
 - CLS:

$$\widetilde{x}(\alpha)_{CLS} = \operatorname*{argmin}_{x} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \left\| Cx \right\|_{2}^{2} \right)$$

• Maximum Entropy Regularization:

$$\widetilde{x}(\alpha)_{ME} = \underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \sum_{i=1}^{N} x_{i} \log(x_{i}) \right)$$

• Total Variation Regularization:

$$\widetilde{x}(\alpha)_{TV} = \underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \sum_{i=1}^{N} \left\| [\Delta x]_{i} \right\| \right)$$

• I_p – norms:

$$J(z) = ||z||_{p}^{p} = \sum_{i=1}^{N} |z_{i}|^{p}, \qquad 1 \le p \le 2$$

Original Image

Reconstructed Image (CLS with α =0.1)

Blurred Image with Additional Noise

Reconstructed Image (CLS with α =0.5)

CLS vs. LS

Reconstructed Image (CLS with α =0.1)

Reconstructed Image (LS with T=0.02)

Reconstructed Image (CLS with α =0.5)

Reconstructed Image (LS with T=0.1)

Wiener Filter

- Stochastic restoration approach:
 - Treat the image as a sample from a 2D random field.
 - The image is part of a class of samples (an ensemble), realizations of the same random field.

$$R(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2) \cdot P_{xx}(\omega_1, \omega_2)}{\left|H(\omega_1, \omega_2)\right|^2 \cdot P_{xx}(\omega_1, \omega_2) + P_{NN}(\omega_1, \omega_2)}$$

Expected value over many realizations of the 2D random field

• Autocorrelation:

$$R_{ff}(n_1, n_2, n_3, n_4) = E[f(n_1, n_2)f^*(n_3, n_4)]$$

• Power-Spectrum (Wide Sense Stationarity (WSS) input)

$$P_{ff}(\omega_1, \omega_2) = \text{DFT} \Big\{ R_{ff}(d_1, d_2) \Big\}_{d_1 = n_1 - n_3, d_2 = n_2 - n_4}$$
Fourier transformation

Autocorrelation calculation - some details

Expected value over many realizations of the 2D random field

• Definition of autocorrelation:

$$R_{ff}(n_1, n_2, n_3, n_4) = E[f(n_1, n_2)f^*(n_3, n_4)]$$

• Wide Sense Stationarity property (WSS):

$$R_{ff}(n_1, n_2, n_3, n_4) = R_{ff}(n_1 - n_3, n_2 - n_4) = R_{ff}(d_1, d_2)$$

• Ergodicity:

ensemble average is equal to spatial average

$$R_{ff}(d_1, d_2) = \lim_{N \to \infty} \frac{1}{(2N+1)^2} \sum_{k_1 = -N}^{N} \sum_{k_2 = -N}^{N} f(k_1, k_2) f^*(k_1 - d_1, k_2 - d_2)$$

Autocorrelation calculation the Fourier domain

- Recap (from textures lecture) Wiener-Khinchin Theorem
 - Input image: $x(n_1, n_2)$
 - Fourier transform: $\{X(\omega_1, \omega_2)\} = DFT\{x(n_1, n_2)\}$
 - Power spectrum: $P_{\chi\chi}(\omega_1, \omega_2) = X(\omega_1, \omega_2) \cdot X^*(\omega_1, \omega_2)$
 - Autocorrelation: inverse Fourier transform of the power spectrum: $\{R_{xx}(d_1, d_2)\} = IDFT\{P_{xx}(\omega_1, \omega_2)\}$

Wiener Filter

● The degradation model: y(n₁, n₂) = x(n₁, n₂) * h(n₁, n₂) + n(n₁, n₂)
● The objective:

$$\widetilde{x}(n_1, n_2) = \operatorname*{argmin}_{\widetilde{x}(n_1, n_2)} E\Big[x(n_1, n_2) - \widetilde{x}(n_1, n_2) \Big|^2 \Big]$$

 We look for the solution in the following format, assuming an LSI restoration model:

$$\widetilde{x}(n_1, n_2) = r(n_1, n_2) * y(n_1, n_2)$$

- The input image is assumed to be WSS with autocorrelation $R_{xx}(n_1, n_2)$.
- The recovered image is obtained in the Fourier domain:

image

$$X(\omega_1, \omega_2) = R(\omega_1, \omega_2) \cdot Y(\omega_1, \omega_2)$$

Recovered Wiener Observed

filter

Basic Image Processing Algorithms

degraded image

Wiener Filter

- Assumptions:
 - that both the input image and the noise are WSS.
 - The restoration error and the signal (the observed image) is orthogonal:

$$E[e(n_1, n_2)y^*(n_3, n_4)] = E[(x(n_1, n_2) - \tilde{x}(n_1, n_2))y^*(n_3, n_4)] = 0, \quad \forall (n_1, n_2), (n_3, n_4)$$

 It can be shown* that the following transfer function implements the above constraint:

$$R(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2) \cdot P_{xx}(\omega_1, \omega_2)}{\left|H(\omega_1, \omega_2)\right|^2 \cdot P_{xx}(\omega_1, \omega_2) + P_{NN}(\omega_1, \omega_2)}$$

*proof available as supplementary material optional to read, not part of exam

Wiener Filter and CLS Filter

• Wiener filter:

$$R(\omega_{1},\omega_{2}) = \frac{H^{*}(\omega_{1},\omega_{2}) \cdot P_{xx}(\omega_{1},\omega_{2})}{|H(\omega_{1},\omega_{2})|^{2} \cdot P_{xx}(\omega_{1},\omega_{2}) + P_{NN}(\omega_{1},\omega_{2})} = \frac{H^{*}(\omega_{1},\omega_{2})}{|H(\omega_{1},\omega_{2})|^{2} + \frac{P_{NN}(\omega_{1},\omega_{2})}{P_{xx}(\omega_{1},\omega_{2})}} = \frac{H^{*}(\omega_{1},\omega_{2})}{|H(\omega_{1},\omega_{2})|^{2} + \frac{\sigma_{N}^{2}}{P_{xx}(\omega_{1},\omega_{2})}}$$

$$e$$
 CLS filter:

$$R(\omega_{1},\omega_{2}) = \frac{H^{*}(\omega_{1},\omega_{2})}{|H(\omega_{1},\omega_{2})|^{2} + \alpha|C(\omega_{1},\omega_{2})|^{2}}$$
Noise to signal ratio

 With the right choice of C and α, CLS filter is the same as the Wiener filter.

Wiener Filter

Original Image

Reconstructed with Wiener filter

Motion Blurred Noisy Image

Reconstructed with CLS filter

Wiener Lab task on week 7

 See more practical details on the corresponding laboratory excercise!

noisy blurred with edge-/frame-modification

reconstructed with autocorrelations

Main Sources and Further Readings

- Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos
- Babacan, D. S., R. Molina, and A. K. Katsaggelos, "Total Variation Super Resolution Using A Variational Approach", IEEE International Conf. on Image Processing 2008, San Diego, USA, 10/10/2008.
- J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded images," IEEE Signal Processing Letters, vol. 15, pp. 178-181, 2008.
- Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For Multimedia Problems," *Multimedia, IEEE Transactions on*, vol.16, no.4, pp.1000,1017, June 2014
- http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digitalimage-restoration.html
- S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge Regeneration" Journal of Electronic Imaging (JEI), Jan 2014