lmage Recovery

Extension: The Wiener Filter




Wiener Filter

® Stochastic restoration approach:
e Treat the image as a sample from a 2D random field.

e The image is part of a class of samples (an ensemble), realizations of
the same random field. Expected value over

® Definitions: many realizations of
. / the 2D random field
e Autocorrelation:
Ry (N, Ny, n5m,) = E[f(ny,n,) £ (ny, )]
* Wide Sense Stationarity property (WSS):

Rff (nl’ n,, N3, n4) — Rff (nl — N3, N, — n4) — Rff (d1’ dz)

e Ergodicity:
* ensemble average is equal to spatial average

_ 1 N N ,
Ry (dy,d,) = lim GN L 1F k_ZN kgf(kl,kz)f (k, —d; k, —d,)

=
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Wiener Filter

® Stochastic restoration approach:
e Treat the image as a sample from a 2D random field.

® Definitions:

e Power-Spectrum:
Py (@, @;) = FRy (dy, )

Fourier transformation

e Cross-Correlation:
ng (nl’ n,, N, n4) — E[f (n11 nz)g*(n:e’ n4)]
Py (0, @,) = F{Ry (d,, d,)]

P, (@, ®,) = FIR (d,, d,)|

—>
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Wiener Filter

® The degradation model:
y(n,, n,) = x(n;, n,) *h(n;, n,) +n(n;, n,)
® The objective:

i(nl, n,) = argmin Elx(nv n,) — )?(nl’ nZ)‘Z]

X(ng,ny)

® We look for the solution in the following format, assuming an
LS| restoration model:

)?(nl’ n,) =r(n,n,)=*y(n,n,)

e The input image is assumed to be WSS with autocorrelation R,,(n,,n,).
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Wiener Filter

® It can be shown that the autocorrelation of

y(nl’ nz) — X(n1’ nz) * h(nl’ nz)

...I1s the following:
RW (n, ny) = Ry (ng,n,) *h(ny, n,) *h*(-n;,—n,)
@ In the frequency domain:
Pyy (0, w,) = ‘H(wl’wz)‘z - Py (@, @,)
similarly..

Ry (n,n,) =R, (n,n,)*h"(=n;,-n,) — Pg (0, @,) = H (@, »,) - Py (0, @,)

Ry (N, n,) = Ry (N, n,) *h(n,, n,) -  Pylo,0,) =H(o, 0, P,(o, »,)
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Wiener Filter

® Assumptions:
e that both the input image and the noise are WSS.
e The restoration error and the signal (the observed image) is orthogonal:

Ele(n,, n,)y"(n,, n)| = El(x(ny, n,) = X(ny, n))y"(nson,)] =0, ¥(n,n,), (n,,n,)
{
E[x(nl, n,)y"(n,, n4)] = E[Y(nl, n,)y"(n,, n4)]
E[x(n,, n,)y" (ny, n,)|= E[(y(n,, n,) * r(n, n,))y” (ng, n,)]

ny(nl’ nz) = Ryy(nl’ nz) * r(nl’ nz)

@ Going to the frequency domain

ny (a)l’ a)Z)

R(a)liwz): P (a) a))
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Wiener Filter

® Assuming zero mean, uncorrelated image and noise, we can
derive the following equation for the restoration filter:

R(a)l’ 602) — ny (a)l’ Q)Z)

I:)yy (a)l’ a)Z)

PXy(a)l’ w,) = H (@, @,) - Py (@, @,)

Py (@, ®,) = ‘H(a)l’ wz)‘z Py (@, @) + By (@, @,)

&

H" (o, ,) - Py (0, @,)

R(wp 0)2) —

2
‘H(a)l’ wz)‘ - Py (o, @,) + Py (@, @,)
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Wiener Filter and CLS Filter

® Wiener filter:
H *(a)17 0)2) : I:)xx (0)1, 0)2)

R(a)l’a)Z) = 2 =
‘H(a)lla)z)‘ - Py, @,) + By (@, ,)
_ H* (o, ®,) _ H (0, @,)
P (@), ,) 2 ol
H(w,, ® 2y A @ N
‘ (o, 2)‘ pxx(a)l,a)z) ‘H(a)l,a)z)‘ + Pxx(wl’a)Z)

Assuming white noise

® CLS filter:
H *(a)l’ @,)

H (e, coz)‘2 + a|C(a,, a)z)‘2

R(wy, w,) =

® With the right choice of C and a, CLS filter is the same as the
Wiener filter.
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Wiener Filter

Reconstructed with Wiener filter Reconstructed with CLS filter
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