Basic Image Processing

PPKE-ITK

Lecture 5.

Texture analysis

Motivation: find the object!

Solution: color filtering

KIFESTŐ LUSTÁKNAK

Solution: texture segmentation

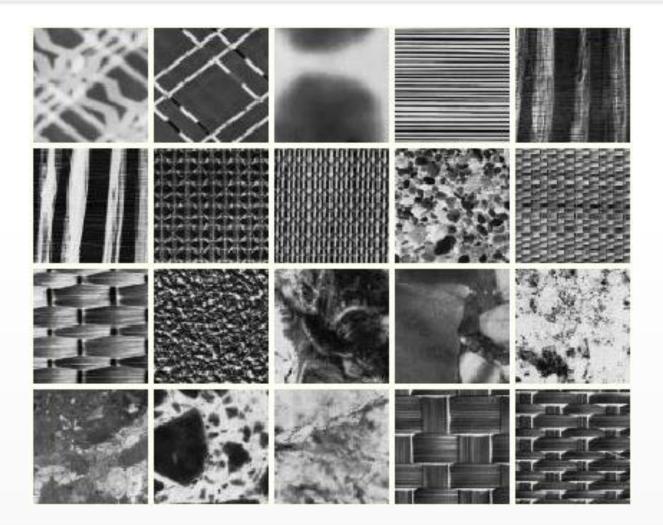
Textures - definition

- Textures demonstrate the difference between an artificial world of objects whose surfaces are only characterized by their color and reflectivity properties to that of real world imagery
- How we can define texture: microstructure
 - certainly not: an arbitrary pattern that extends over a large image
- Basic properties
 - Small elementary pattern which is repeated periodically or quasiperiodically in space (like pattern on a wall paper)
- It is sufficient to describe:
 - Small elementary pattern
 - Repetition rules (characteristic scales)
- Types
 - Artificial (Julesz, Pratt, Gagalowic)
 - Natural (Brodatz)

Textures - definition

- Hawkins:
 - Some local ,order' is repeated over a region which is large in comparison to the order's size,
 - The order consists in the nonrandom arrangement of elementary parts
 - The parts are roughly uniform entities having approximately the same dimensions everywhere within the textured region
- Description:
 - coarseness ~ period of repetition
 - e.g. wool is "coarser" than silk, under the same conditions
 - fineness / rudeness, contrast, orientation, arrangement ...

Texture



A texture is an image that follows some statistical properties
It has similar structures repeated over and over again

Natural textures - Brodatz

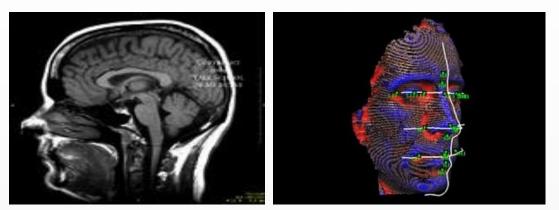
grass (fű) bark (fakéreg) canvas (vászon) sand (homok) pigskin (disznóbőr) oxhide (marhabőr)...

Further natural textures from Brodatz

Artificial textures

Application Areas of Texture Analysis

Food processing industry



Biometrics analysis (fingerprint, iris or retina, etc.)

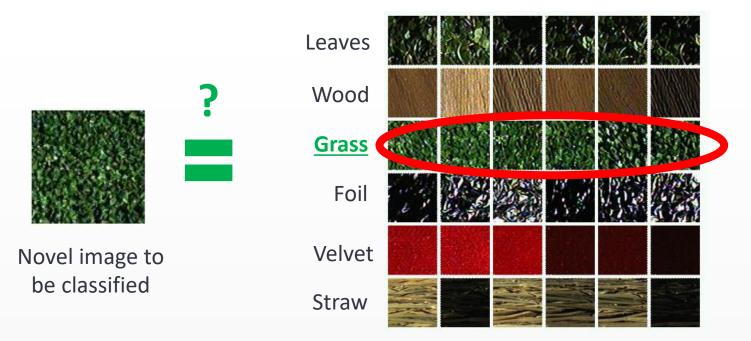
Medical image analysis

Global information system (GIS) (for land, etc. analysis)

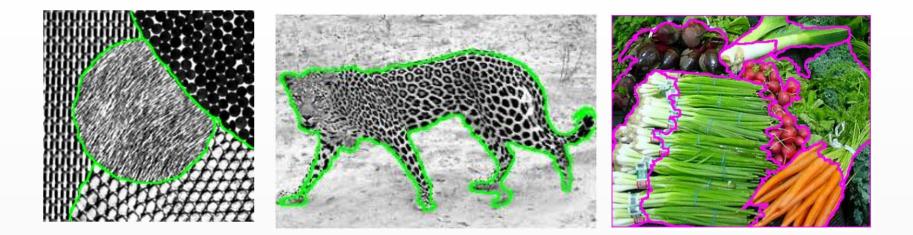
October 13, 2018

Texture analysis:

- There are various primary issues in texture analysis:
 - > TEXTURE CLASSIFICATION
 - > TEXTURE SEGMENTATION
 - > SHAPE RECOVERY FROM TEXTURE, and
 - > MODELING.


Texture classification

- In texture classification, the problem is identifying the given textured region from a given set of texture classes.
 - The texture analysis algorithms **extract distinguishing feature** from each region to facilitate classification of such patterns.

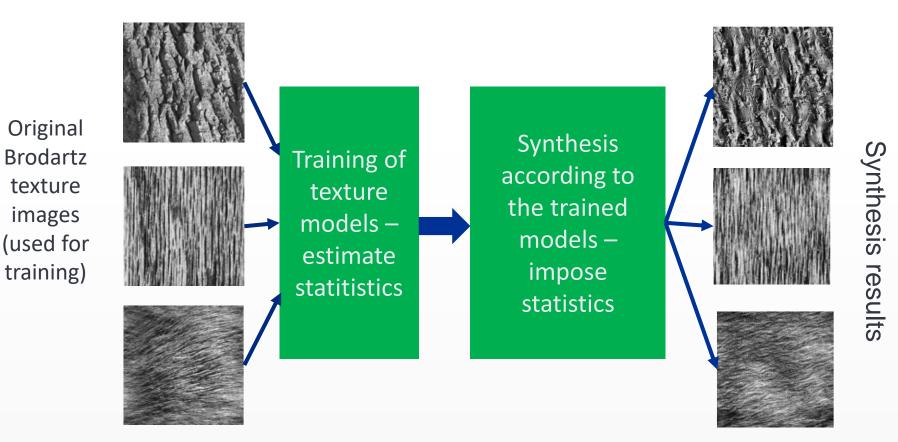

Texture classification

- In texture classification, the problem is identifying the given textured region from a given set of texture classes.
 - The texture analysis algorithms **extract distinguishing feature** from each region to facilitate classification of such patterns.

Texture segmentation

- Unlike texture classification, texture segmentation is concerned with automatically determining the boundaries between various textured regions in an image.
- Both reign-based methods and boundary-based methods have been attempted to segments texture images.

Shape recovery from texture


- Image plane variation in the texture properties, such as density, size and orientation of texture primitives, are the cues exploited by shape –from-texture algorithms.
- Quantifying the changes in the shape of texture elements is also useful to determine surface orientation.

Texture modeling

• Specify a model that clearly identifies the given pattern sample

Techniques for Texture Extraction

- There are various techniques for texture extraction. Texture feature extraction algorithms can be grouped as follows:
 - > Statistical
 - Geometrical
 - Model based
 - Signal Processing

Statistical methods

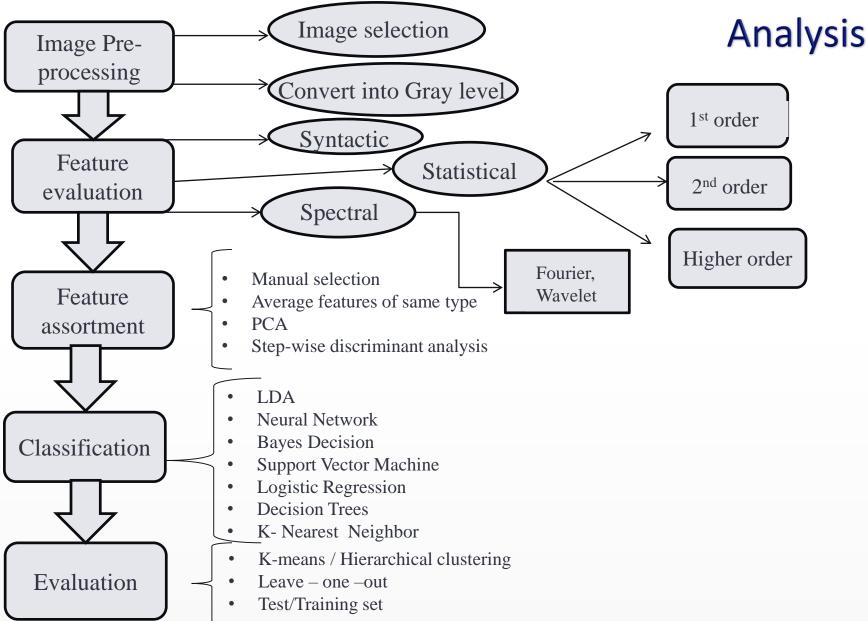
1. Local features

- Grey level of central pixels,
- Average of grey levels in window,
- Median,
- Standard deviation of grey levels,
- Difference of maximum and minimum grey levels,
- Difference between average grey level in small and large windows,
- Kirsch feature,
- Combine features
- 2. Galloway
 - run length matrix
- 3. Haralick
 - co-occurrence matrix

Geometrical methods

- Steps
 - 1. Threshold images into binary images of *n* grey levels.
 - 2. Calculate **statistical** features of **connected areas**.

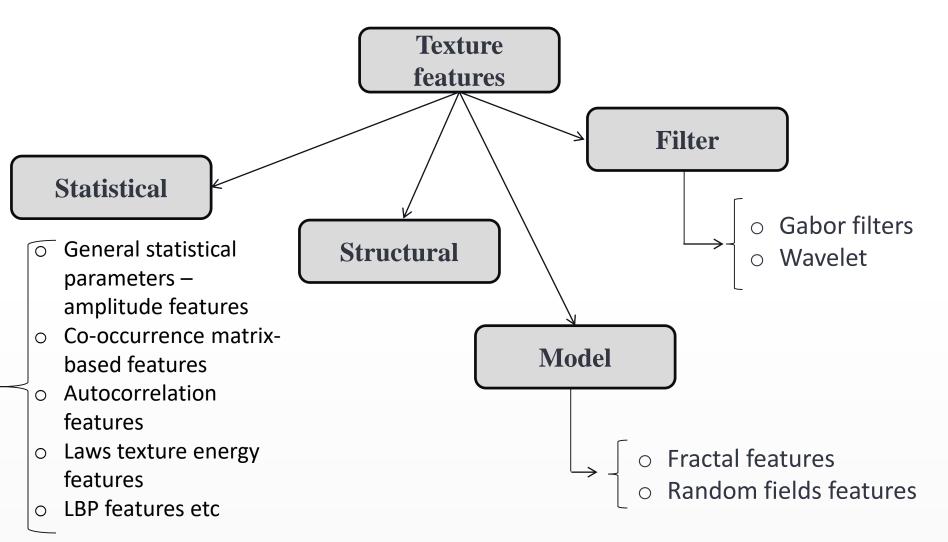
Model based methods


- These involve building mathematical models to describe textures:
 - Markov random fields (see: later image segmentation lecture)
 - ➤ Fractals:

Signal processing includes

- These methods involve transforming original images using filters and calculating the energy of the transformed images.
- Law's masks (see: today later)
- Laines Daubechies wavelets
- Fourier transform (see: last lecture)
- Gabor filters (see: today later)

Flowchart for Texture



Discrimination vs. classification of textures

• Discrimination

- Classification grouping of blobs or points, and classifying them into various classes (local attributes)
- Segmentation separation of spots / areas (local properties + neighborhoods)
- Classification
 - Supervised approach
 - take samples of textures (statistics, metrics) then
 - examine the similarity of new textures
 - Unsupervised
 - evaluate statistics
 - sample categorization into classes

Methods for Texture Features

Statistical features Amplitude features

- Amplitude-features
 - Mean $M(j,k) = \frac{1}{(2w+1)^2} \sum_{m=-w}^{w} \sum_{n=-w}^{w} F(j+m,k+n)$
 - Deviation

$$S(j,k) = \frac{1}{(2w+1)^2} \left[\sum_{m=-w}^{w} \sum_{n=-w}^{w} \left[F(j+m,k+n) - M(j+m,k+n) \right]^2 \right]^{1/2}$$

Statistical features Gray Level Co-occurrence Matrix (GLCM)

- Also referred as **co-occurrence distribution**.
- It is the most classical second-order statistical method for texture analysis.
- An image is composed of **pixels** each with an intensity (a specific gray level), the GLCM is a tabulation of how often different combinations of gray levels co-occur in an image or image section.
- Gray Level Co-occurrence Matrix (GLCM) filters operate by computing, for each filter window position, how often specific pairs of image cell values occur in neighboring cell positions (such as one cell to the right).
- The results are tabulated in a co-occurrence matrix, and specific statistical measures are computed from this matrix to produce the filtered value for the target cell

Statistical features

First vs. second order statistics examples

- First order statistics example: simple histogram
 - Measures the number of different gray value occurrences of independent pixels
 - h_i : number of pixels in the image with gray value i
- Second order statistics example: GLCM
 - Measures the frequencies of joint gray value occurrences of different pixel pairs with a pre-defined spatial offset
 - $p_{ij}(\Delta x, \Delta y)$: frequency of pixel pairs with an offset $(\Delta x, \Delta y)$, where the gray value of the first pixel is *i* and the gray value of the second pixel is *j*
 - For example: $\Delta x=1$, $\Delta y=0$, i=0, j=255: frequency of one-pixel-wide vertical black-white transitions in an image

Statistical:

Co-occurrence Matrix-based Features

- It is a matrix of *frequencies* at which → two pixels, separated by a certain vector, occur in the image.
- Co-occurrence matrix is defined as,

$$p_{ij}(\Delta x, \Delta y) = W \cdot Q(i, j | \Delta x, \Delta y)$$

where,

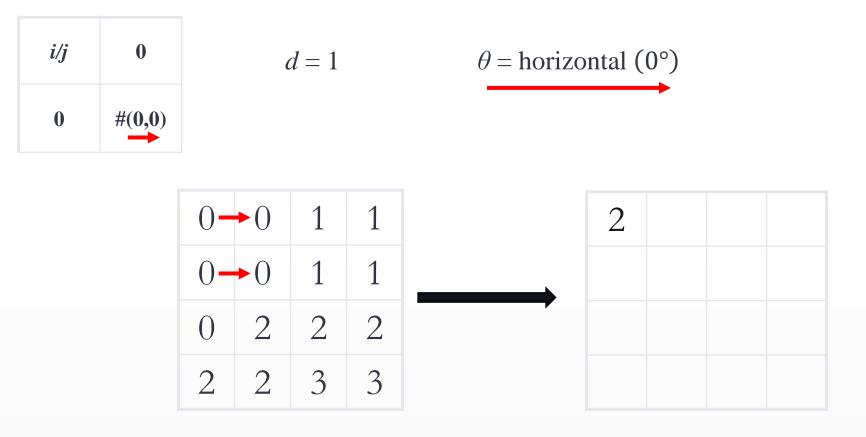
$$W = \frac{1}{(M - \Delta x)(N - \Delta y)} \qquad Q(i, j | \Delta x, \Delta y) = \sum_{n=1}^{N - \Delta y} \sum_{m=1}^{M - \Delta x} A$$

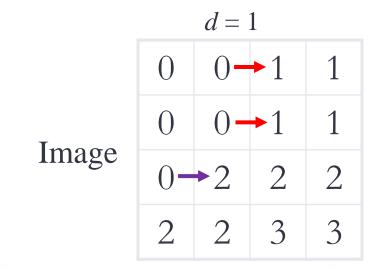
where,

$$A = \begin{cases} 1 & \text{if } f(m,n) = i \text{ and } f(m + \Delta x, n + \Delta y) = j \\ 0 & \text{otherwise} \end{cases}$$

Computation of Co-occurrence Matrix

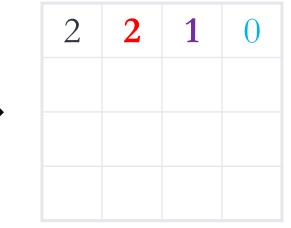
- It has size N×N (N = Number of gray-values) i.e., the rows & columns represent the set of possible pixel values.
- Polar representation of the offset:
 - <u>two</u> parameters d, θ (instead of Δx , Δy):
 - $d \rightarrow$ Relative **distance** between the pixel pair (measured in pixel number. e.g., 1, 2, ...)
 - $\theta \rightarrow$ Relative **orientation** / rotational angle. (e.g., 0^o, 45^o, 90^o, 135^o, ...)


8 Directions/orientations (θ) of Adjacency



we consider θ as horizontal (0°), front diagonal (45°), vertical (90°) and back diagonal (135°)

Computation of Co-occurrence Matrix


Im	age	matr	ix	Find the <u>num</u>				es of p	oixel
0	0	1	1	<i>i</i> to the neigh	boung	pixei v	aiue j		
0	0	1	1		i/j	0	1	2	3
0	2	2	2		0	#(0,0)	#(0,1)	#(0,2)	#(0,3)
2	2	3	3		1	#(1,0)	#(1,1)	#(1,2)	#(1,3)
Pixel values: 0,1,2,3. Thus, $N=4$			2	#(2.0)	#(2 1)	#(2.2)	#(2.3)		
Thus, <i>size</i> of $CM = 4x4$			2	#(2,0)	#(2,1)	#(2,2)	#(2,3)		
d = 1					3	#(3,0)	#(3,1)	#(3,2)	#(3,3)
$\theta = \text{horizontal} (0^\circ)$									

i/j	0	1	2	3
0		#(0,1)	#(0,2)	#(0,3)
1				
2				
3				

 $\theta = \text{horizontal} (0^\circ)$

CM for the Image

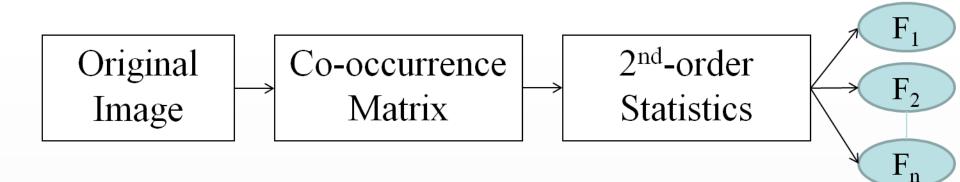
d = 10 1 1 0 1 0 1 0 Image 2 2 2 0 2 2 3-3

0 3 i/j 2 1 0 **#(0,0) #(0,1)** #(0,2) #(0,3) 1 **#(1,0)** #(1,1) #(1,2) #(1,3) 2 **#(2,0) #(2,1)** #(2,2) #(2,3) 3 #(3,3) **#(3,0)** #(3,1) #(3,2)

 $\theta = horizontal(0^\circ)$

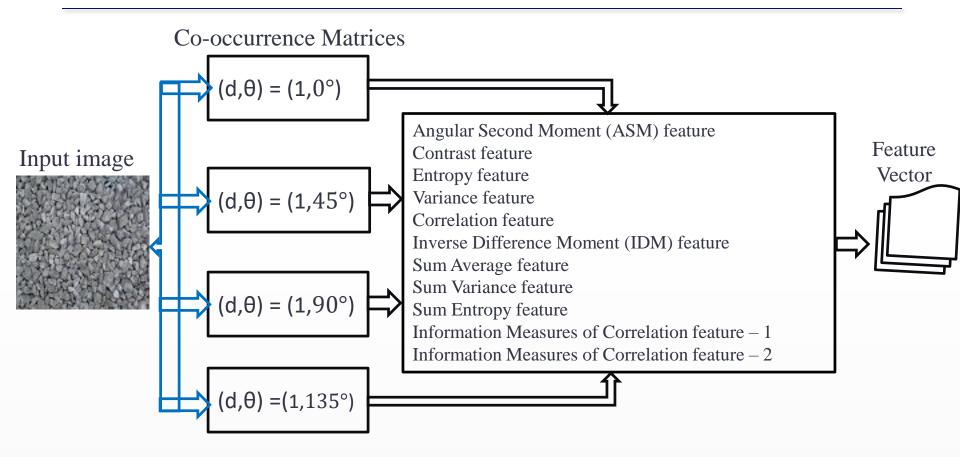
CM for the Image

	d = 1				$\theta = \mathbf{vertical}(90^\circ)$		
	0	0	1	1		3	
	0	0	1	1		0	
Image	0	2	2	2		0	
	2	2	3	3		0	


3	0	2	0
0	2	2	0
0	0	1	2
0	0	0	0

CM for the Image

i/j	0	1	2	3
0	#(0,0)	#(0,1)	#(0,2)	#(0,3)
1	#(1,0)	#(1,1)	#(1,2)	#(1,3)
2	#(2,0)	#(2,1)	#(2,2)	#(2,3)
3	#(3,0)	#(3,1)	#(3,2)	#(3,3)


Features on co-occurrence matrix

- Co-occurrence matrices capture properties of a texture
- But they are *not directly useful* for further analysis (e.g., comparison of two textures)

11 Numeric features are computed from a matrix

Features on co-occurrence matrix

Energy

- Also called **Uniformity or Angular second moment**.
- Measures the textural uniformity that is pixel pair repetitions.
- Detects disorders in textures.
- Energy reaches a maximum value equal to one

Energy=
$$\sum_i \sum_j p_{ij}^2$$

Entropy

- Measures the disorder or complexity of an image.
- The entropy is large when the image is not texturally uniform.
- Complex textures tend to have high entropy.
- Entropy is strongly, but inversely correlated to energy.

Entropy= $-\sum_i \sum_j p_{ij} \log_2 p_{ij}$

Contrast

- Measures the spatial frequency of an image and is difference moment of GLCM.
- It is the difference between the highest and the lowest values of a contiguous set of pixels.
- It measures the amount of local variations present in the image.

Contrast=
$$\sum_{i} \sum_{j} (i-j)^2 p_{ij}$$

Homogeneity

- Also called as **Inverse Difference Moment**.
- Measures image homogeneity as it assumes larger values for smaller gray tone differences in pair elements.
- It is more sensitive to the presence of near diagonal elements in the GLCM.
- It has maximum value when all elements in the image are same.
- Homogeneity decreases if contrast increases while energy is kept constant.

• Homogeneity(hom) =
$$\sum_{i} \sum_{j} \frac{1}{1 + (i-j)^2} p_{ij}$$

Variance

- This statistic is a measure of heterogeneity and is strongly correlated to first order statistical variable such as standard deviation.
- Variance increases when the gray level values differ from their mean

Variance(var)= $\sum_{i} \sum_{j} (i - \mu)^2 p_{ij}$ where μ is the mean of p_{ij}

GLCM Filters

• **Contrast** (Sum of Squares Variance)

 measures gray-level contrast by using GLCM weighting factors equal to the square of the gray level difference. Thus the averaging weights are 0 for matrix position on the main diagonal and increase exponentially away from the diagonal. The filter result is 0 for areas with identical image values and is high where there are large differences in tone.

Input image

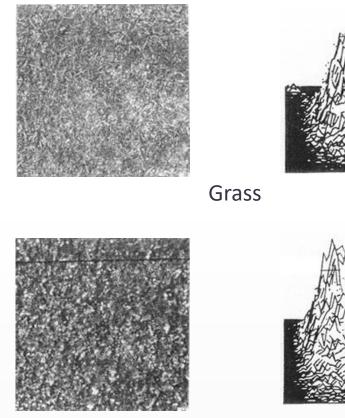
Thresholded Contrast

Contrast filter output

Features on co-occurrence matrix Examples

Feature	Comment
F2: Contrast	Have discriminating ability.Rotationally-variant.
F3: Entropy	Have strong discriminating ability.Almost rotational-invariant.
F4: Variance	Have discriminating ability.Rotational-invariant.
F5: Correlation	Have strong discriminating ability.Rotational-dependent feature.

Features on co-occurrence matrix


Feature	Comment
F7: Sum average	 Characteristics are similar to 'variance'/F4 Rotational-invariant.
F10: Information Measure of Correlation–1	 It has almost similar pattern of 'sum average'/F7 but vary for various classes Varies significantly with rotation
F11: Information Measure of Correlation–2	 It is computationally expensive compare to others. Rotation-variant

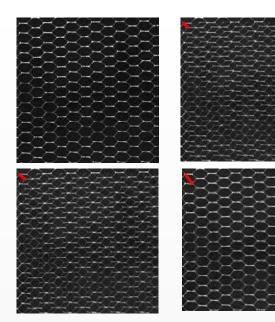
Features on co-occurrence matrix

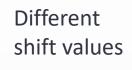
Feature	Comment
F1: Angular Second Moment / Energy	- No distinguishing ability
F6: Inverse Different Moment	- Similar to 'angular second moment'/F1
F8: Sum Variance	- Similar to 'variance'/F4
F9: Sum Entropy	- Similar to 'entropy'/F3

Visualization of co-occurence histograms

- Dependency matrices
 - co-occurrence histograms
 - calculated in a given direction, and distance
 - smoother texture implies more steady response (less dependencies)
 - Coarse texture: dominant response along the main diagonal

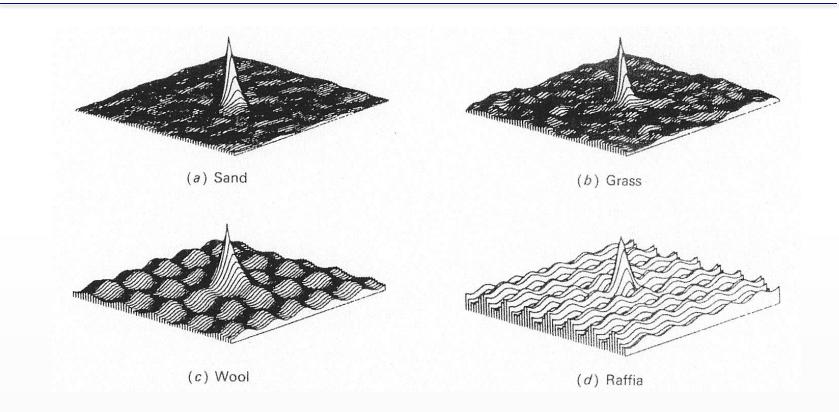
lvy (borostyán)


Grayscale dependency matrices for $r = 4, \theta = 0^{\circ}$

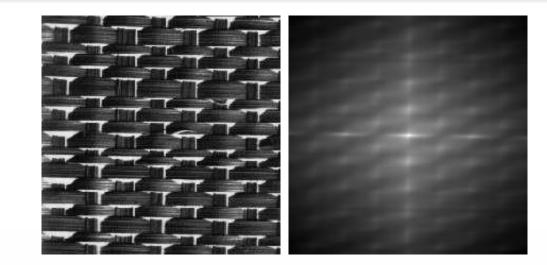

Statistical features Autocorrelation function

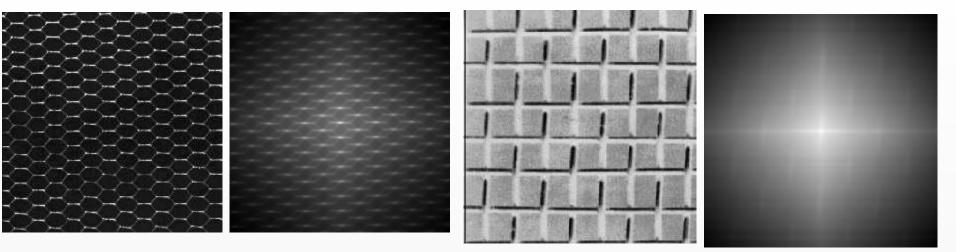
 Definition of autocorrelation: compare the dot product (energy) of non shifted image with a shifted image

$$R_{II}(\Delta x, \Delta y) = \frac{\sum_{x=0}^{N} \sum_{y=0}^{N} I(x, y) I(x + \Delta x, y + \Delta y)}{\sum_{x=0}^{N} \sum_{y=0}^{N} I^{2}(x, y)}$$

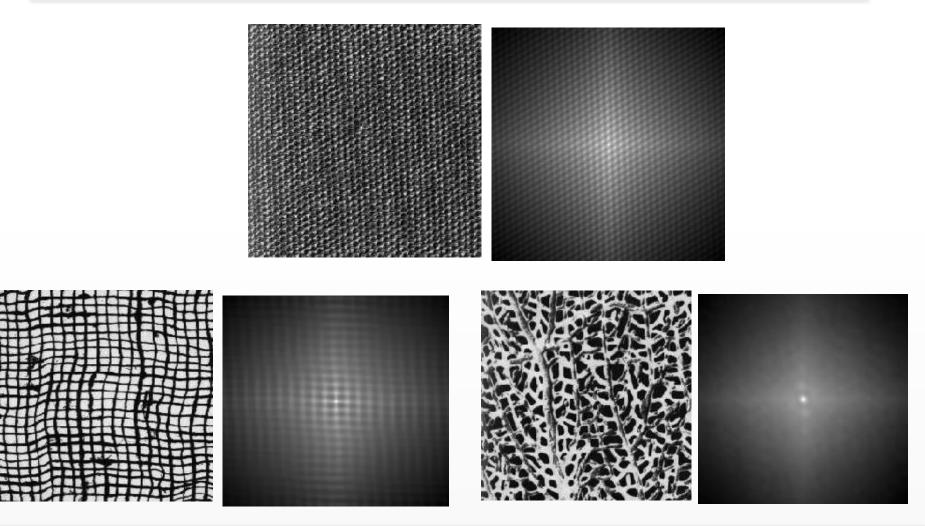

- Features:
 - Autocorrelation function can detect repetitive patterns of texels
 - Also defines fineness/coarseness of the texture

Textures – image features



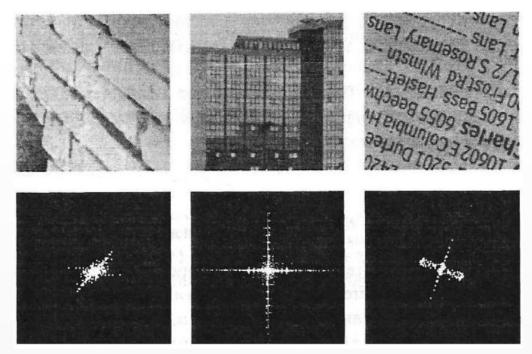

Principle: a coarse pattern texture for the same shift value shows greater autocorrelation than a finer pattern one

Interpreting autocorrelation

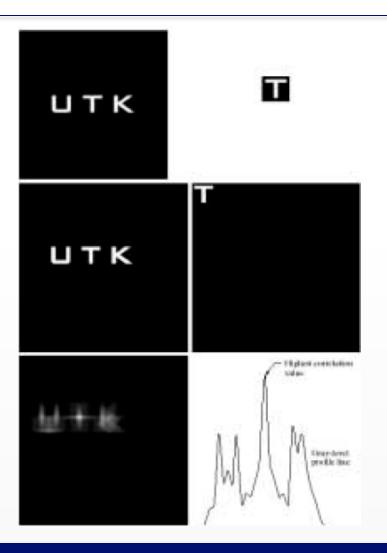

- Coarse texture \rightarrow function drops off slowly
- Fine texture \rightarrow function drops off rapidly
- Regular textures → function will have peaks and valleys; peaks can repeat far away from [0, 0]
- Random textures → only peak at [0, 0]; breadth of peak gives
 the size of the texture

Autocorrelation

Autocorrelation


Autocorrelation calculation the Fourier domain

• Wiener-Khinchin Theorem

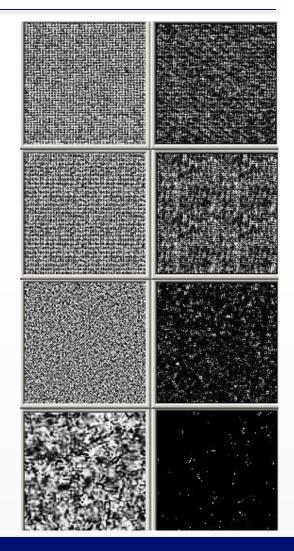

- Input image: I(x, y)
- Fourier transform: $\{X(\omega_1, \omega_2)\} = DFT\{I(x, y)\}$
- Power spectrum: $P_{XX}(\omega_1, \omega_2) = X(\omega_1, \omega_2) \cdot X^*(\omega_1, \omega_2) = |X(\omega_1, \omega_2)|^2$
- Autocorrelation: inverse Fourier transform of the power spectrum: $\{R_{II}(\Delta x, \Delta y)\} = IDFT\{P_{XX}(\omega_1, \omega_2)\}$

Fourier domain analysis

- Power spectrum: $X\{\omega_1, \omega_2\} \cdot X^*\{\omega_1, \omega_2\} = = |X\{\omega_1, \omega_2\}|^2$
- \odot Concentrated power \rightarrow regularity
- \odot High frequency power \rightarrow fine texture
- Directionality \rightarrow directional texture

Correlation (pattern recognition)

Textures – image features


Edge detection based procedures

E(j,k) = binary edge image obtained by some edge detector (eg. Sobel)

Use low threshold for binarization


Measure of local edge content

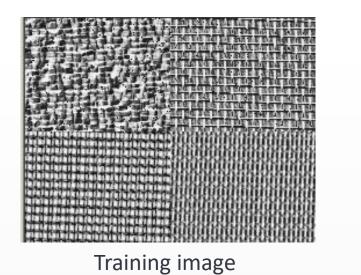
$$T(j,k) = \frac{1}{(2w+1)^2} \sum_{m=-w}^{w} \sum_{n=-w}^{w} E(j+m,k+n)$$

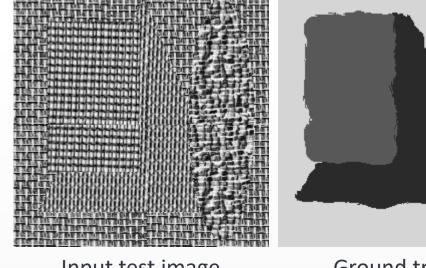
Laws filters

- Enhancing micro-structure of the texture
- Main elements:
 - Averaging
 - Edges
 - Points

level detection filter

edge detection filter

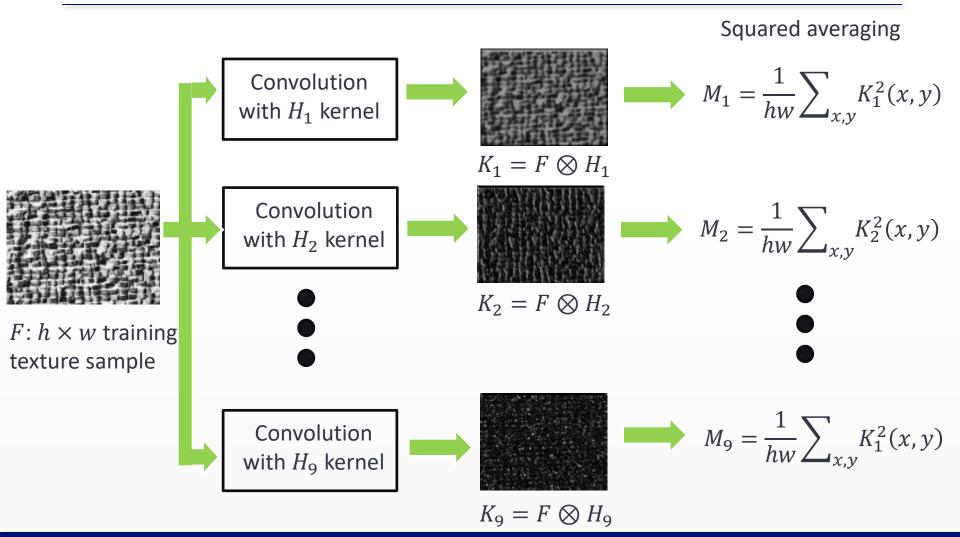

spot detection filter


Laws filters

$$H_{1} = L_{3}L_{3}^{T} = \frac{1}{36} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \qquad H_{2} = L_{3}E_{3}^{T} = \frac{1}{12} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad H_{3} = L_{3}S_{3}^{T} = \frac{1}{12} \begin{bmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ 1 & -2 & 1 \end{bmatrix}$$
$$H_{4} = E_{3}L_{3}^{T} = \frac{1}{12} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad H_{5} = E_{3}E_{3}^{T} = \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \qquad H_{6} = E_{3}S_{3}^{T} = \frac{1}{4} \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ -1 & 2 & -1 \end{bmatrix}$$
$$H_{7} = S_{3}L_{3}^{T} = \frac{1}{12} \begin{bmatrix} 1 & 2 & 1 \\ -2 & -4 & -2 \\ 1 & 2 & 1 \end{bmatrix} \qquad H_{8} = S_{3}E_{3}^{T} = \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ -2 & 0 & 2 \\ 1 & 0 & -1 \end{bmatrix} \qquad H_{9} = S_{3}S_{3}^{T} = \frac{1}{4} \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ -1 & 2 & -1 \end{bmatrix}$$

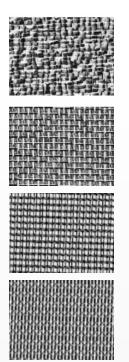
Texture segmentation - Laws

Training step, thereafter recognizing the trained textures
Utilizing Law matrices



Input test image

Ground truth for the test image


Learning a training texture model

Laws filter-training phase

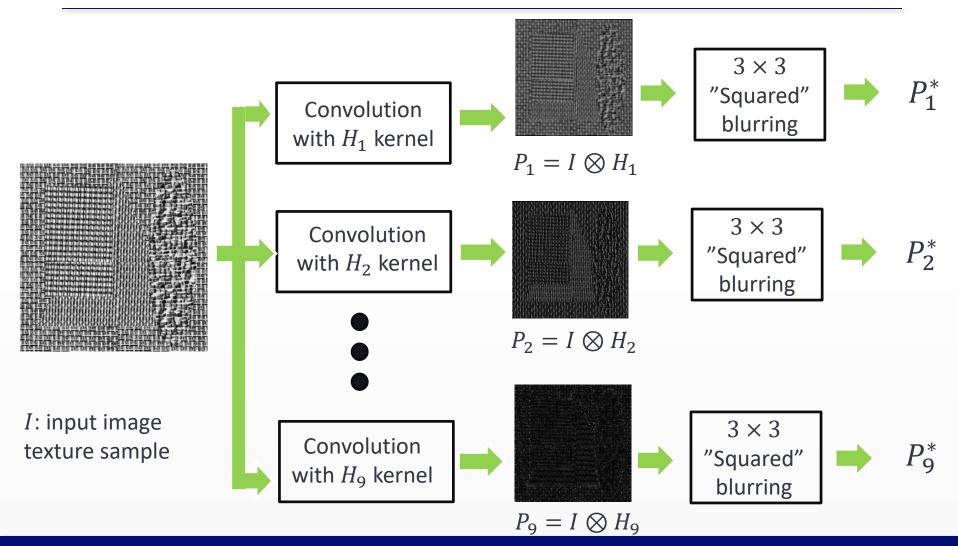
• Each training texture j is represented by 9 scalars: $M_1^j \dots M_9^j$

 $M_i^j = \frac{1}{hw} \sum_{x,y} \left(K_i^j(x,y) \right)^2$, where i = 1, ..., 9, j = 1, ..., 4, and $K_i^j = F_j \otimes K_i$,

 $M_1^1, M_2^1, M_3^1, M_4^1, M_5^1, M_6^1, M_7^1, M_8^1, M_9^1$


 $M_1^2, M_2^2, M_3^2, M_4^2, M_5^2, M_6^2, M_7^2, M_8^2, M_9^2$

 $M_1^3, M_2^3, M_3^3, M_4^3, M_5^3, M_6^3, M_7^3, M_8^3, M_9^3$

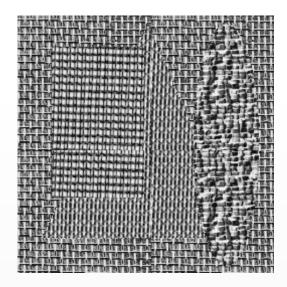

 $M_1^4, M_2^4, M_3^4, M_4^4, M_5^4, M_6^4, M_7^4, M_8^4, M_9^4$

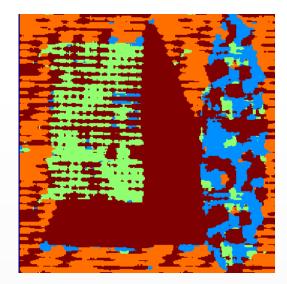
Laws filter- recognition phase

 Input image: consists of arbitrary regions of pre-trained textures

Laws filter- recognition phase

Laws filter- recognition phase

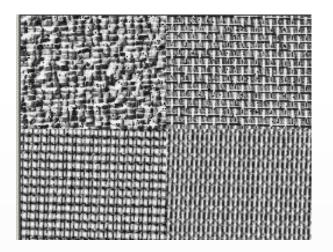

• Pixel level decision of the input map

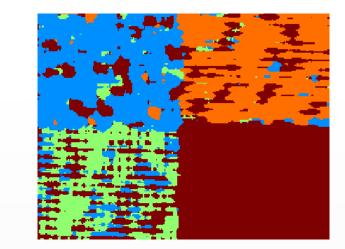

where

$$P_i^*(x,y) = \frac{1}{9} \sum_{r=x-1}^{x+1} \sum_{s=y-1}^{y+1} P_i^2(x+r,y+s)$$

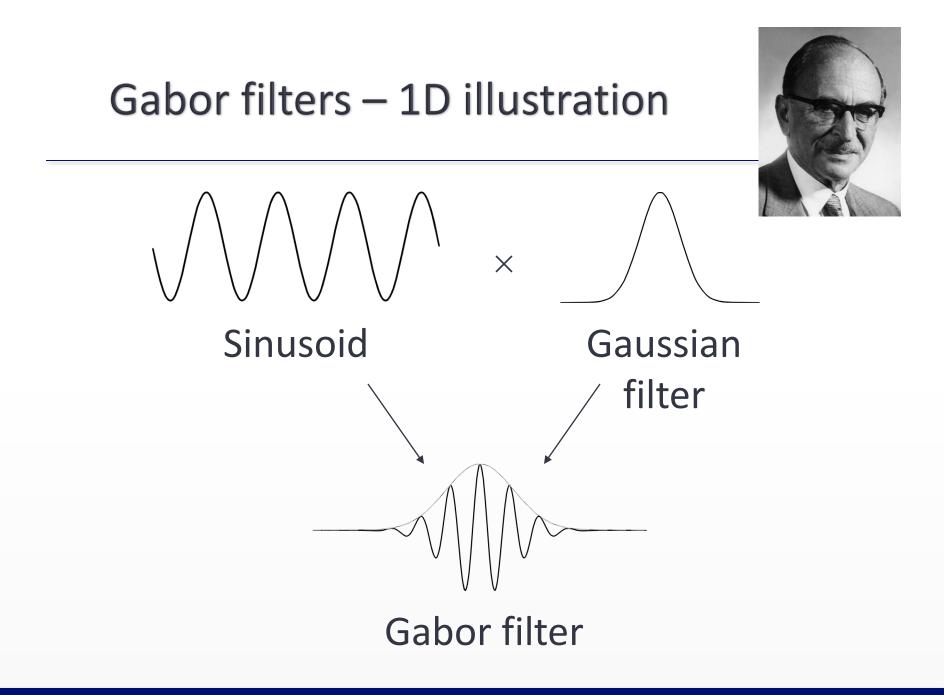
Texture segmentation result

 Output "winner class" maps for the four textures – enhanced with some morphology

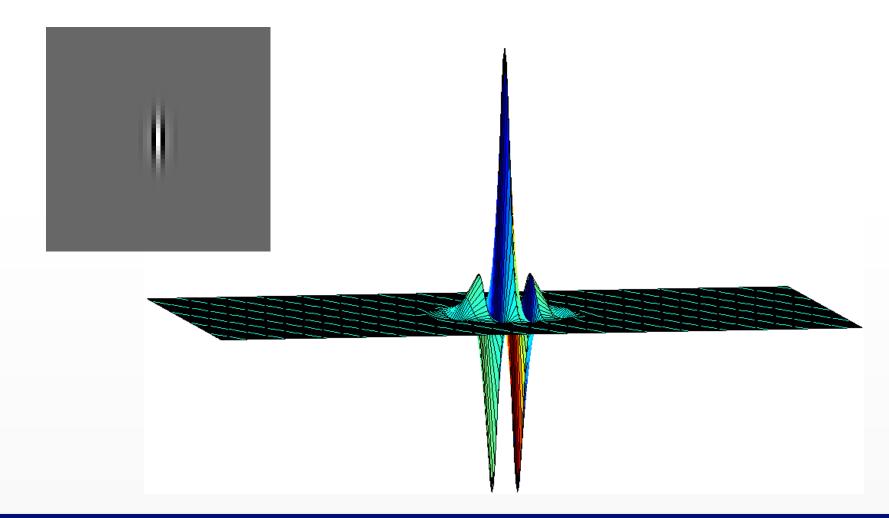



Laws segmentation results

Ground truth

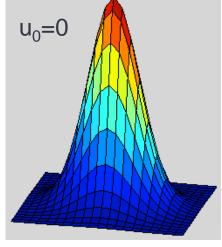

Texture segmentation result

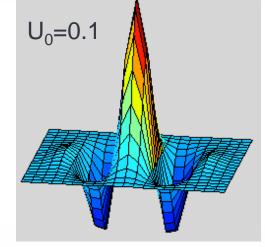
 Output "winner class" maps for the four textures – enhanced with some morphology

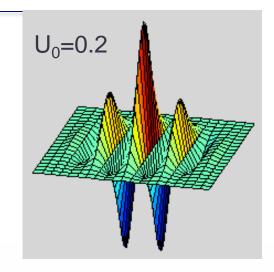


Laws segmentation results

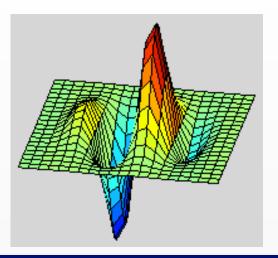
Gabor filters- 2D kernel example

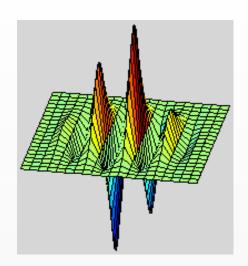


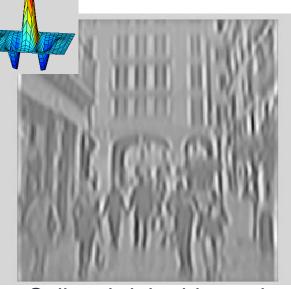




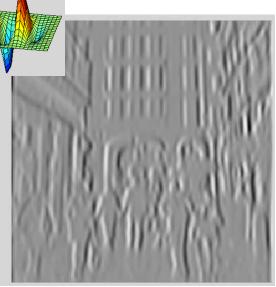
2D - Gabor wavelets

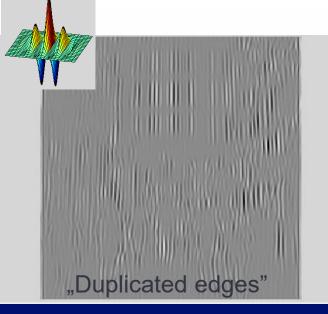

$$\psi_{c}(x,y) = e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} \cos(2\pi u_{0}x)$$

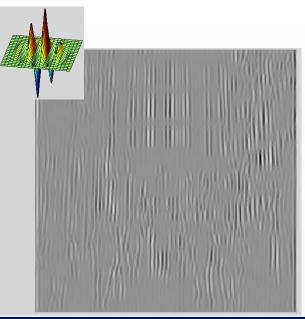




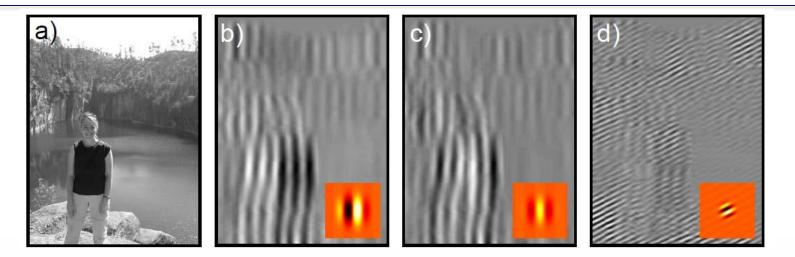
$$\psi_s(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}} \sin(2\pi u_0 x)$$






Salient bright thin vertical lines

Dark-bright transitions in horizontal direction

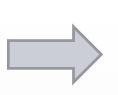


Application of Gabor filters in image processing

- Gabor filters can selectively highlight specific image elements according to their appropriately set frequency, orientation and phase parameters
- Invariant for additive changes of illumination (in case of asymmetric sinusoid functions)
- Motivation: vision mechanism of mammals one of the first processing operations of visual stimuli in the brain

Application of Gabor filters in image processing

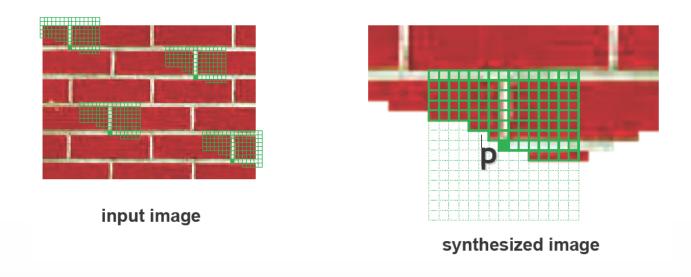
 a) Input image. b) Output of a low frequency, horizontal, asymetric Gabor filter. c) Output of a low frequency, horizontal, symetric Gabor filter d) Output of a diagonal Gabor filter

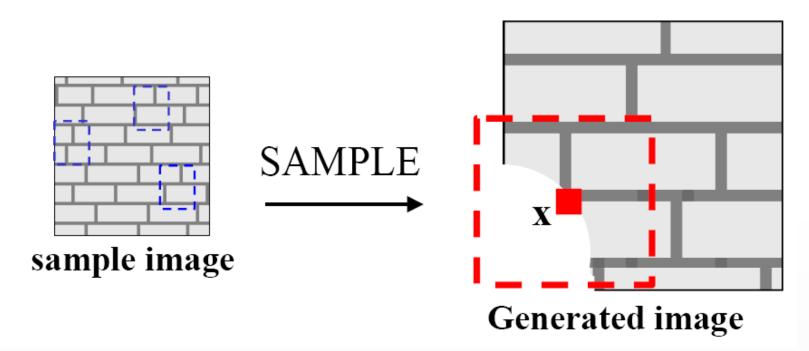

Direction selective Gabor filter bank

100	(11)/		(III)	
	(111)			
	(111)			
1111	~////			
100	(111)			10

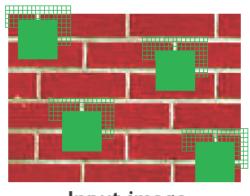
Texture Synthesis

 Given a small sample, generate larger realistic versions of the texture

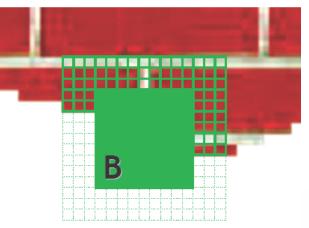



Alexei A. Efrosand Thomas K. Leung, "Texture Synthesis by Non-parametric Sampling,"Proc. International Conference on Computer Vision (ICCV), 1999.

Synthesizing One Pixel

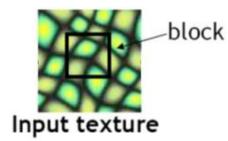

- What is P(x | neighborhood of pixels around x)?
 - Find all the windows in the image that match the neighborhoodconsider only pixels in the neighbourhood that are already filled in
 - To synthesize **x**
 - pick one matching window at random
 - assign x to be the centerpixel of that window

Really Synthesizing One Pixel



- An exact neighborhood match might not be present
- So we find the **best** matches using SSD error and randomly choose between them, preferring better matches with higher probability

Block-based texture synthesis


Input image



Synthesizing a block

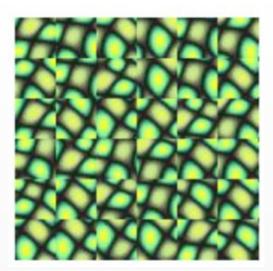
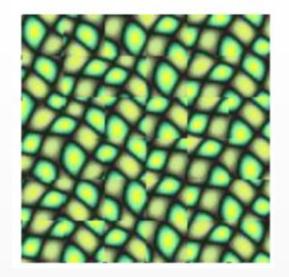
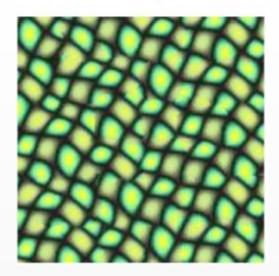

- **Observation**: neighbor pixels are highly correlated
- Idea: unit of synthesis = block
 - Exactly the same but now we want P(B|N(B))
 - Much faster: synthesize all pixels in a block at once

Image Quilting for Texture Synthesis and Transfer', Efros& Freeman, SIGGRAPH, 2001.

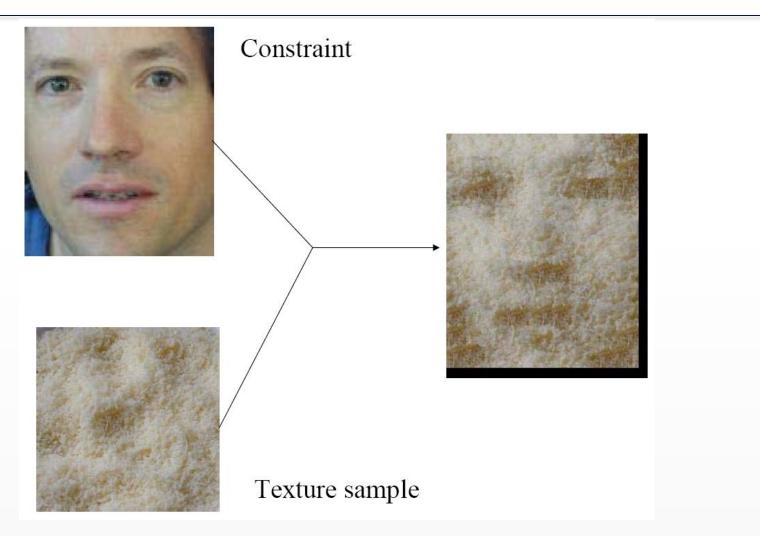


Random placement of blocks



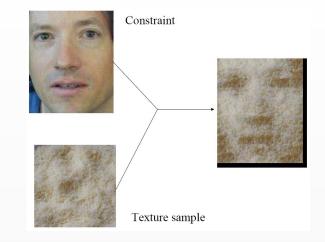
Neighboring blocks constrained by overlap

Minimal error boundary cut


overlapping blocks vertical boundary $\begin{array}{c} \end{array} \end{array}$

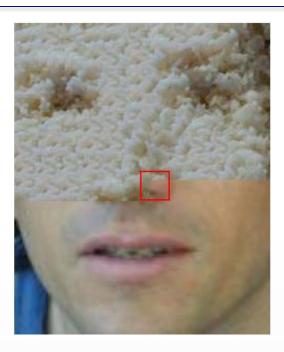
min. error boundary

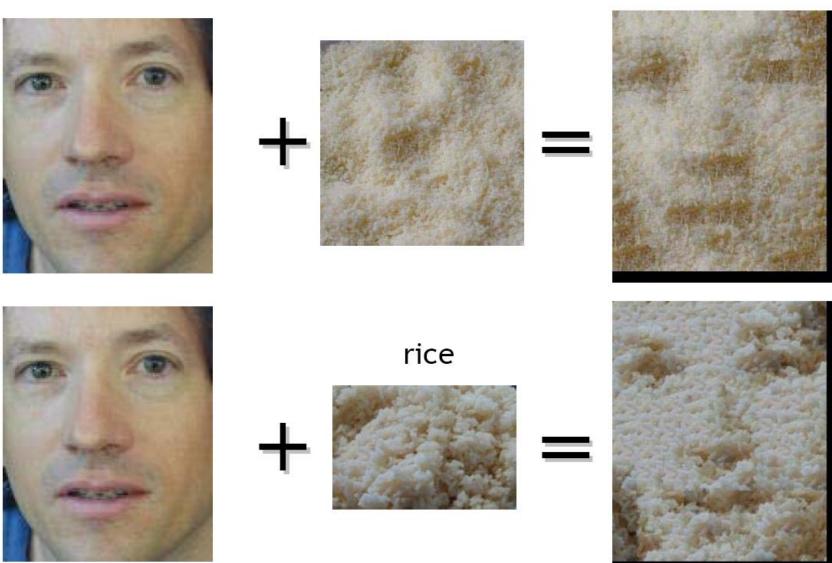
overlap error


Texture Transfer

Texture Transfer

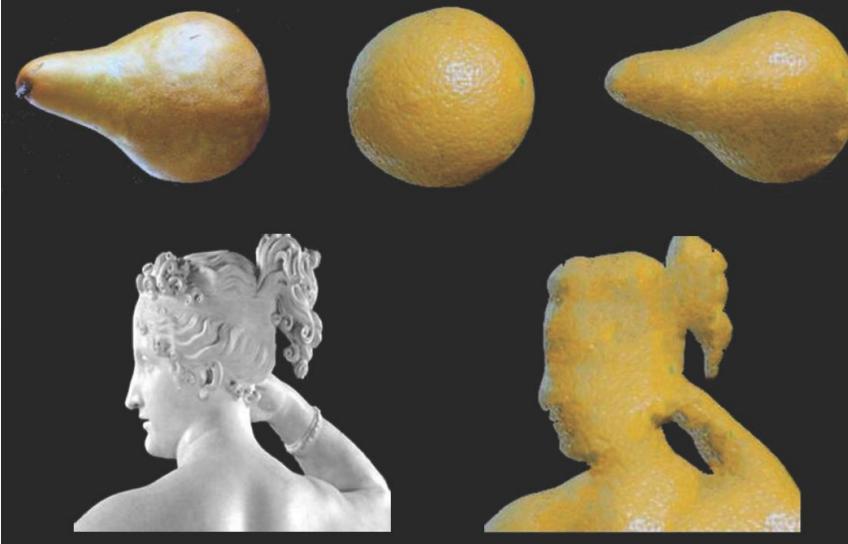
- Each patch satisfy a desired correspondence map *C* as well as satisfy the texture synthesis requirements.
- *C*: a spatial map of some corresponding quantity over both the texture source image and a controlling target image.
 - E.g. image intensity, blurred image intensity, local image orientation angles, or other derived quantities.


Here: bright patches of face and bright patches of rice are defined to have a low correspondence error.


Texture Transfer

 Take the texture from one image and "paint" it onto another object

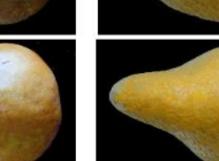
- Same algorithm as before with additional term
 - do texture synthesis on image1, create new image (size of image2)
 - add term to match intensity of image2



parmesan

Target image

Source texture


Texture transfer result

source texture

target images

source texture

target image

correspondence maps

texture transfer result

texture transfer results